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Abstract

The so-called logistic model with harvesting, p′(t) = rp(t)
(
1 − p(t)

K

)
− c(t)p(t), p(t0) = p0, is a

classical ecological model that has been extensively studied and applied in the deterministic set-
ting. It has also been studied, to some extent, in the stochastic framework using the Itô Calculus
by formulating a Stochastic Differential Equation whose uncertainty is driven by the Gaussian
white noise. In this paper, we present a new approach, based on the so-called theory of Random
Differential Equations, that permits treating all model parameters as a random vector with an
arbitrary join probability distribution (so, not just Gaussian). We take extensive advantage of the
Random Variable Transformation method to probabilistically solve the full randomized version
of the above logistic model with harvesting. It is done by exactly computing the first probability
density function of the solution assuming that all model parameters are continuous random vari-
ables with an arbitrary join probability density function. The probabilistic solution is obtained in
three relevant scenarios where the harvesting or influence function is mathematically described
by discontinuous parametric stochastic processes having a biological meaning. The probabilistic
analysis also includes the computation of the probability density function of the nontrivial equi-
librium state, as well as the probability that stability is reached. All these results are new and
extend their deterministic counterpart under very general assumptions. The theoretical findings
are illustrated via two numerical examples. Finally, we show a detailed example where results
are applied to describe the dynamics of stock of fishes over time using real data.

Keywords: hybrid random differential equation, uncertainty quantification, first probability
density function, real-world application, random variable transformation technique

1. Introduction and preliminaries1

The mathematical modelling of population growth has attracted the attention of numerous2

studies starting from the seminal paper by T.R. Malthus [1, 2]. It is well-known that this model3

is formulated via the following linear differential equation, p′(t) = rp(t), where p(t) denotes the4

population size at the time instant t > 0 and r represents the per capita growth rate. Despite its5
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simplicity and strong criticism about it [3], the Malthusian model seems to be fairly adequate to6

explain the first growth stage of many biological populations and, in general, of growth processes,7

for which a rapid exponential growth (r >> 0) is observed, namely p(t) = p0ert, being p08

the size of the initial population [4, 5]. The investigation of Malthusian model still continues9

attracting researchers via new and appealing analysis where uncertainties play a key role [6, 7,10

8, 9, 10]. The main flaw of Malthusian model is that, when r > 0, it predicts infinite growth11

in the long-term despite resources (like, for example, food in the biological context) are always12

limited. Motivated by this drawback, P.F. Verhulst proposed the celebrated logistic model [11,13

12], formulated by the following initial value problem (IVP)14

p′(t) = rp(t)
(
1 −

p(t)
K

)
, p(t0) = p0, (1)

where K > 0 represents the carrying capacity. The logistic model can be regarded as a gen-15

eralization of the Malthusian one whose per capita growth rate, say r̂, is not constant but de-16

pending on both the population size at the time instant t, p(t), and the carrying capacity, K, i.e.17

p′(t) = r̂p(t) where r̂ = r
(
1 − p(t)

K

)
. It is well-known that the solution of model (1) is given by18

p(t) =
p0Ker(t−t0)

K+p0(er(t−t0)−1) and that p(t)→ K as t → ∞, provided r > 0, regardless the initial condition19

p0.20

The logistic model, and some generalizations of it, have been extensively investigated and ap-21

plied in different contexts. In [13], one obtains the explicit solution of a class of non-autonomous22

logistic models whose carrying capacity is time-dependent, K(t), and defined via different func-23

tional forms in order to better describe changes in the environment. In [14], one investigates the24

case where K(t) depends on the population at an earlier time, capturing a delay in the way the25

population modifies its environment. This leads to the logistic delay differential equation. In [15]26

one specifically deals with the following generalization of model (1), usually referred to as the27

logistic model with capture,28

p′(t) = rp(t)
(
1 −

p(t)
K

)
− c(t)p(t), p(t0) = p0. (2)

The term c(t)p(t) is called the harvesting or influence function and the factor c(t) is the harvesting29

intensity coefficient.30

The study of the logistic model with uncertainties has been conducted mainly using two31

different approaches, namely, via stochastic differential equations (SDEs) and via random differ-32

ential equations (RDEs).33

On the one hand, SDEs are driven by the Wiener stochastic process, which is Gaussian and34

with nowhere differentiable trajectories. The rigorous treatment of SDEs requires the application35

of Itô or Stratonovic stochastic calculus [16, 17, 18]. In the extant literature, the study of the36

logistic SDE has included the asymptotic analysis of the equilibrium state [19, 20], the com-37

putation of main statistical quantities of interest (distribution of the solution, the mean passage38

time, the distribution of hitting times, etc.) [21], the numerical approximation of its solution by39

discretizations [22], the computation of time-dependent densities [23], etc. It is also important40

to point out that different variations of the logistic SDE have been proposed using distributed or41

infinite delays [24, 25], impulsive control [26, 27] and other formulations.42

On the other hand, in the setting of RDEs, uncertainties are directly assigned to model inputs43

(initial/boundary conditions, forcing term and/or coefficients) via random variables or stochastic44
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processes whose sample behaviour is fairly regular (e.g., continuity) [28, 29]. This approach pro-45

vides more flexibility when assigning probability distributions to model inputs since apart from46

the Gaussian pattern other relevant probability distributions are also allowed (binomial, Poisson,47

Beta, Exponential, etc.) [29]. This key fact makes RDEs particularly attractive for modelling48

purposes. Results about RDEs are scarcer than the ones for SDEs. Some interesting contribu-49

tions have been recently obtained for the logistic RDE [30, 31, 32, 33]. In these contributions50

the classical or standard randomized logistic model (obtained when c(t) = 0 in (2)) is studied via51

the calculation of the probability density function (p.d.f.) of the solution, in two main cases, first52

when the carrying capacity is a random variable [30, 31], and secondly, when it is a stochastic53

process [32, 33].54

The aim of this paper is to study a full randomized version of model (2) by assuming that55

the harvesting coefficient c(t) is a parametric stochastic process with jumps (discontinuous) at56

specific time instants, say, ti. For the sake of generality, in our analysis, we will assume that57

the size of jumps at ti, randomly fluctuates, and it will be represented by a random variable,58

ci, that determines the harvesting intensity. Then, this model is defined by a hybrid RDE. As59

it shall be later indicated, we will consider different functional forms of c(t) that reasonably60

represent the way capture (or harvesting) is made. To the best of our knowledge this randomized61

model has not been studied yet, and our analysis can be regarded as complementing the previous62

aforementioned studies for the standard logistic RDE. Indeed, our main goal in this paper is to63

determine, under very general hypotheses, the first probability density function (1-p.d.f.) of the64

solution stochastic process [34, 28], as well as to study, from a probabilistic point of view, the65

stability of the non-trivial solution of model (2). To conduct our analysis the so-called Random66

Variable Transformation (RVT) method will be extensively applied throughout the paper. The67

RVT technique is a powerful tool that, in its continuous formulation, permits computing the68

p.d.f. of an absolutely continuous random vector, which results from mapping another absolutely69

continuous random vector whose p.d.f. is known [35], [36, Th. 2.1.5]. It is important to point70

out that computing the 1-p.d.f. of a stochastic process is a major goal, since by integrating the71

1-p.d.f. one can calculate every one-dimensional moments of the stochastic process, provided72

they exist. In particular, the mean and the variance as well as the probability that the process lies73

within a specific interval of interest can be obtained by the 1-p.d.f. This latter information can be74

of paramount usefulness in practice to account, for example, the probability that the number of75

individuals of an endangered species varies within a critical range.76

For the sake of generality, hereinafter we will assume that all model inputs in the IVP (2), i.e.,77

p0, r, K, c are positive absolutely continuous random variables defined in a common complete78

probability space (Ω,F ,P) with a joint p.d.f., fp0,r,K,c := fp0,r,K,c(p0, r,K, c). As usual, we will79

omit the ω-notation when convenient, so, for example, we will denote p0 or p0(ω), indistinctly,80

and the same can be said for the rest of random variables or stochastic processes throughout the81

paper. To keep our mathematical development as general as possible, observe that we do not82

assume that model inputs are independent random variables. In that particular case, fp0,r,K,c =83

fp0 fr fK fc being fp0 := fp0 (p0), fr := fr(r), fK := fK(K) and fc := fc(c) the marginal p.d.f.’s of84

p0, r, K and c, respectively. Since independence hypothesis is not only usual when performing85

theoretical stochastic analysis but also realistic in many real scenarios, in our subsequent analysis86

we will specialize some of our findings to this relevant scenario.87

The paper is organized as follows. In Section 2, we will give an explicit expression for the88

1-p.d.f. of the solution stochastic process, p(t), of the randomized logistic model (2), in three89

relevant case studies with respect to the functional form of the harvesting term. In Section 3,90

we determine the p.d.f. of the non-trivial equilibrium state as well as the probability of reaching91
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stability. In Section 4, the theoretical findings established in the previous sections are illustrated92

by means of several numerical examples that cover all the case studies presented in Section 2 as93

well as the random stability analysis. In Section 5, we show how the theoretical results can be94

applied to perform an Uncertainty Quantification analysis for the hybrid logistic model (2) using95

real-world data. Conclusions are drawn in Section 6.96

2. Stochastic analysis via the first probability density function97

In this section we analyze a randomized version of model (2). According to [15], the analyt-98

ical solution of this model is given by99

p(t) =
p0Kq(t)

K + rp0

∫ t

t0
q(z) dz

, q(z) = exp
(∫ z

t0
(r − c(τ)) dτ

)
. (3)

It is interesting to remark that in the particular case that r − c(t) = b, the classical Verhulst model100

is obtained with the following identification of parameters: growth rate b, initial condition p0101

and carrying capacity Kb/r.102

Now, we will determine the 1-p.d.f., fp(t) := fp(t)(p), of p = p(t) given in (3), regarded as a103

parametric stochastic process that depends on the absolutely continuous random variables p0, r,104

K and c, whose joint p.d.f. is denoted by fp0,r,K,c. To this end, it is convenient to denote105

h(t) =

∫ t

t0
q(z) dz, t ≥ t0. (4)

Then106

p(t) =
p0 K q(t)

K + r p0 h(t)
. (5)

Let fix t ≥ t0 and then we apply the RVT method using the following mapping,107

(p0, r,K, c) 7−→ (X,Y, p,Z) =

(
p0, r,

p0 K q(t)
K + r p0 h(t)

, c
)
. (6)

This mapping is invertible and its inverse is defined by108

(X,Y, p,Z) 7−→ (p0, r,K, c) =

(
X,Y,

Y X p h(t)
X q(t) − p

,Z
)
. (7)

The 1-p.d.f, fp(t), can be calculated in terms of the p.d.f., fX,Y,p,Z := fX,Y,p,Z(X,Y, p,Z), of the
random vector (X,Y, p,Z) via the following marginalization

fp(t)(p) =

∫
D(X,Y,Z)

fX,Y,p,Z(X,Y, p,Z) dX dY dZ,

where D(X,Y,Z) denotes the domain of the random vector (X,Y,Z). Finally, let us observe that109

fp(t) can be directly expressed in terms of data by calculating the p.d.f., fX,Y,p,Z , in terms of fp0,r,K,c110

by means of the RVT method111

fp(t)(p) =

∫
D(p0,r,c)

fp0,r,K,c

(
p0, r,

r p0 p h(t)
p0 q(t) − p

, c
)
|J(X,Y, p,Z)| dp0 dr dc, (8)
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where |J(X,Y, p,Z)| represents the absolute value of the Jacobian matrix determinant of the map-
ping given by (7)

J(X,Y, p,Z) = det


∂p0
∂X

∂p0
∂Y

∂p0
∂p

∂p0
∂Z

∂r
∂X

∂r
∂Y

∂r
∂p

∂r
∂Z

∂K
∂X

∂K
∂Y

∂K
∂p

∂K
∂Z

∂c
∂X

∂c
∂Y

∂c
∂p

∂c
∂Z

 =
∂K
∂p

=
r p2

0 q(t) h(t)
(p0 q(t) − p)2 .

Notice that in the last step we have used (6) and (7). Since q(t) > 0 (see (3)), hence h(t) > 0 too112

(see (4)), and also p0 and r are positive random variables, then |J(X,Y, p,Z)| = J(X,Y, p,Z) > 0113

and by substituting the value of J(X,Y, p,Z) into (8), one obtains the following explicit expression114

for the 1-p.d.f. of the solution stochastic process of model (2),115

fp(t)(p) =

∫
D(p0,r,c)

fp0,r,K,c

(
p0, r,

r p0 p h(t)
p0 q(t) − p

, c
)

r p2
0 q(t) h(t)

(p0 q(t) − p)2 dp0 dr dc. (9)

In the following remarks, we give alternative expressions for fp(t)(p) in relevant particular cases116

where independence about some model inputs is assumed.117

Remark 1. In the case that p0, r, K and c are independent random variables, expression (9)118

writes119

fp(t)(p) =

∫
D(c)

∫
D(r)

∫
D(p0)

fp0 (p0) fr(r) fK

(
r p0 p h(t)
p0 q(t) − p

)
fc(c)

r p2
0 q(t) h(t)

(p0 q(t) − p)2 dp0 dr dc. (10)

Remark 2. The independence hypothesis assumed in Remark 1 can be relaxed so that fp(t) can120

be expressed as an expectation. For example, if the random vector (p0, r, c) and the random121

variable K are independent, then122

fp(t)(p) =

∫
D(p0,r,c)

fp0,r,c(p0, r, c) fK

(
r p0 p(t) h(t)
p0 q(t) − p(t)

)
r p2

0 q(t) h(t)
(p0 q(t) − p(t))2 dp0 dr dc

= Ep0,r,c

[
fK

(
r p0 p(t) h(t)

p0 q(t)−p

) r p2
0 q(t) h(t)

(p0 q(t)−p(t))2

]
,

(11)

where Ep0,r,c[ ] stands for the expectation with respect to the random vector (p0, r, c). This ex-123

pression is particularly useful to compute the 1-p.d.f. fp(t) via Monte Carlo simulations [37] and124

it will be used in the numerical examples exhibited in Section 4.125

126

Remark 3. It is important to point out that the calculation of the 1-p.d.f. has been based on the127

definition of mapping (6), but other mappings can also be appropriate to achieve the goal. The128

key points that make our mapping success are that the solution stochastic process can be obtained129

from the mapping (in our case is exactly its third component), and that it has an inverse mapping,130

which is also computable. For example, the following mapping can alternatively be considered131

to determine the 1-p.d.f.132

(p0, r,K, c) 7−→ (p, X,Y,Z) =

(
p0 K q(t)

K + r p0 h(t)
, r,K, c

)
. (12)
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Notice that in the definition of both mappings, (6) and (12), we define them through the identity133

transformation of the random model parameters, except for one of the components that is just the134

solution itself. Notice that the corresponding inverse mappings can be easily computed. Finally,135

notice that the final expression that we would obtain using the mapping (12) is not the same as136

(9), but equivalent.137

In the rest of this section, we will determine the 1-p.d.f., fp(t), of the solution stochastic138

process, p(t), of model (2) in several particular cases with regard to the specific form of the139

harvesting intensity coefficient c(t). With this aim, and for the sake of clarity in the presenta-140

tion, our subsequent analysis is divided into three subsections where different forms for c(t) are141

considered. Each one of them corresponds to distinct types of harvesting, which can be biologi-142

cally interpreted. To carry out our analysis, it is important to observe that, according to (5), p(t)143

depends on c(t) via q(t) and h(t) (see (3) and (4)). Therefore, in each subsection we will only144

concentrate on determining explicit expressions for q(t) and h(t) in each case. Our findings ex-145

tend to the stochastic scenario the deterministic results presented in [15] and permit considering146

more general forms for the harvesting intensity coefficient c(t).147

2.1. Case I: A perpetual capture with random intensity is applied148

In this first case, we assume that the parametric stochastic process c(t) is defined via the149

Heaviside step function (also termed unit step function), θ(·), [38]150

c(t) = cθ(t − t1) =

{
0, t ≤ t1,
c, t > t1,

(13)

where, in our context t1 > t0 is fixed and c = c(ω), ω ∈ Ω, is a random variable. This case can151

be biologically interpreted as that a perpetual capture with a random intensity, modelled via c, is152

made from the time instant t1. Notice that in practice, the value of c may fluctuate, for example153

due to environment factors, so it is better described by means of a random quantity. Note that in154

the solution given by (3), c(t) only appears via the term q(z) and its integral h(t) (see (4)). So,155

according to (3) and (13), for z ≤ t1, one gets156

q(z) = exp
(∫ z

t0
r dτ

)
= er(z−t0),

and for z > t1157

q(z) = exp
(∫ t1

t0
r dτ +

∫ z

t1
r − c dτ

)
= er(z−t0)−c(z−t1).

Therefore,158

q(z) =

{
er(z−t0), z ≤ t1,
er(z−t0)−c(z−t1), z > t1.

(14)

Then, according to (4), for t ≤ t1, one gets

h(t) =

∫ t

t0
er(z−t0) dz =

1
r

(
er(t−t0) − 1

)
and, for t > t1,159

h(t) =

∫ t1

t0
er(z−t0) dz +

∫ t

t1
er(z−t0)−c(z−t1) dz

=
1
r

(
er(t1−t0) − 1

)
+

1
r − c

(
er(t−t0)−c(t−t1) − er(t1−t0)

)
.
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Summarizing,160

h(t) =


1
r

(
er(t−t0) − 1

)
, t ≤ t1,

1
r

(
er(t1−t0) − 1

)
+

1
r − c

(
er(t−t0)−c(t−t1) − er(t1−t0)

)
, t > t1.

(15)

Notice that in this case the 1-p.d.f., fp(t), given by (9), is defined in two pieces, for t0 ≤ t ≤ t1 and161

for t > t1, according to piecewise functions q(t) and h(t), given in (14) and (15), respectively.162

2.2. Case II: Several capture periods with different random intensities are applied163

In the foregoing Case I, we have assumed that a single perennial capture is made with a164

uncertain fluctuating intensity described by the random variable c = c(ω), ω ∈ Ω. However, it165

seems more realistic that such harvesting period only lasts for a finite period, say ]t1, t2], being166

t1 > t0. This can be mathematically expressed by the Heaviside function as167

c(t) = c [θ(t − t1) − θ(t − t2)] =


0, t ≤ t1,
c, t1 < t ≤ t2,
0, t > t2.

(16)

This situation happens in different biological scenarios such as the fishing or hunting periods168

practiced by humans, whose dates are usually regulated by administrations or, in the case of wild169

predators that hunt preys, only during specific periods.170

As it has been previously indicated, to determine the 1-p.d.f., fp(t), of the solution stochastic171

process it is enough to obtain the functions q(t) and h(t) defined in (3) and (4), respectively. To172

facilitate the presentation of calculations of these two functions, we will first analyze the simplest173

case, when c(t) is defined by (16), and afterwards, we will generalize the results for the case that a174

finite number of harvesting, each one with a different duration and intensity, is made. In contrast175

to Case I, the computations will be now directly presented.176

So, let us assume that c(t) is given by (16). Then, following a similar reasoning as in Case I,
q(z) and h(t) can be calculated. For q(z) one gets

q(z) =


er(z−t0), z ≤ t1,
e(ct1−rt0)−(c−r)z, t1 < z ≤ t2,
er(z−t0)−c(t2−t1), z > t2.

While for h(t), one obtains

h(t) =



1
r

(
er(t−t0) − 1

)
, z ≤ t1,

1
r

(A1 − 1) +
1

r − c

(
De−(c−r)t − A1

)
, t1 < z ≤ t2,

1
r

(A1 − 1) +
1

r − c

(
De−(c−r)t − A1

)
+

1
r

B
(
er(t−t0) − A2

)
, z > t2.

These results have been calculated by computing the following integrals. For t ≤ t1, h(t) =177 ∫ t
t0

er(z−t0) dz. For t1 < t ≤ t2, h(t) =
∫ t1

t0
er(z−t0) dz +

∫ t
t1

De−(c−r)z dz being D = ect1−rt0 . And for178
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t > t2, h(t) =
∫ t1

t0
er(z−t0) dz +

∫ t2
t1

De−(c−r)z dz +
∫ t

t2
Ber(z−t0) dz being B = e−c(t2−t1). To compact the179

notation with the general case that will be presented down below, we have also introduced the180

following notation, A1 = er(t1−t0) and A2 = er(t2−t0).181

The foregoing scenario can be generalized in order to account for several captures made dur-182

ing more periods with different duration and applying a different fluctuating (uncertain) intensity183

within each one of these periods. With this aim, we will assume that the harvesting function is184

of the form185

c(t) =

n−1∑
i=1

ci [θ(t − ti) − θ(t − ti+1)] ,

where ci = ci(ω), ω ∈ Ω, and t1 < t2 < · · · < tn−1 < tn, so now n periods are considered. This186

function is defined in order to describe fishing or hunting activities when captures are regulated187

depending on the population size or allowed during certain periods of the year. Assuming this188

particular function c(t), the obtained expressions for q(z) and h(t) are189

q(z) =


er(z−t0), z ≤ t1,
er(z−t0)−

∑k−1
i=1 ci(ti+1−ti)−ck(z−tk), tk < z ≤ tk+1, k ∈ {1, . . . , n − 1} ,

er(z−t0)−
∑n−1

i=1 ci(ti+1−ti), z > tn.
(17)

Then, for t ≤ t1, h(t) can be written as190

h(t) =
1
r

(
er(t−t0) − 1

)
. (18)

In the case that tk < t ≤ tk+1 for k ∈ {1, . . . , n − 1}, we first introduce the following notation

D1 = ec1t1−rt0 , Bi = e−ci(ti+1−ti), Ai = er(ti−t0), i ∈ {1, 2, . . . , n},

to simplify the subsequent expressions. After some technical computations, one obtains191

h(t) =
1
r

(A1 − 1) +
1

r − c1

(
D1e−(c1−r)t − A1

)

+

k∑
i=2

1
r − ci

B1 · · · Bi−1

(
er(t−t0)−ci(t−t0) − Ai

)
.

(19)

Finally, for t > tn,192

h(t) =
1
r

(A1 − 1) +
1

r − c1

(
D1e−(c1−r)tn − A1

)
+

n∑
i=2

1
r − ci

B1 · · · Bi−1

(
er(tn−t0)−ci(tn−t0) − Ai

)

+
1
r

B1 · · · Bn

(
er(t−t0) − An

)
.

(20)

As a result, in this case the 1-p.d.f., fp(t), given by (9), is defined by n + 1 pieces, t0 < t ≤ t1,193

t1 < t ≤ t2, . . ., tn−1 < t ≤ tn and t > tn, according to the piecewise functions q(t) and h(t), given194

in (17) and (18)–(20), respectively.195
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2.3. Case III: Punctual captures are applied196

Finally, we analyze the case that only punctual captures are made, i.e. the duration of captures197

is negligible when compared with the total time of growth. In this case, the harvesting function198

can be modelled using the Dirac delta function [38]. As in the Case II, we will first present the199

results for the case that a punctual capture takes place at certain time, say t1, with a fluctuating200

intensity, c = c(ω), ω ∈ Ω, i.e., we will assume that c(t) = cδ(t − t1), being δ(·) the Dirac delta201

function, and later on, we will consider a generalization of this previous situation. In the former202

case, applying the definition of q(z), one obtains203

q(z) = exp
(∫ z

t0
(r − cδ(τ − t1)) dτ

)
= exp

(
r(z − t0) −

∫ z

t0
c δ(τ − t1) dτ

)
. (21)

Using the following property of Dirac delta function [39],204 ∫ b

a
f (τ)δ(τ − t) dτ =

{
f (t), a < τ < b,
0, otherwise,

expression (21) can be simplified in terms of Heaviside function, θ(·),205

q(z) = er(z−t0)−cθ(z−t1) =

{
er(z−t0), z ≤ t1,
er(z−t0)−c, z > t1.

(22)

While, using the definition of h(t) given in (4) and notation from the previous case, Ai = er(ti−t0),206

one obtains207

h(t) =



∫ t

t0
er(z−t0) dz =

1
r

(
er(t−t0) − 1

)
, t ≤ t1,

∫ t

t0
er(z−t0)−c dz =

1
r

(A1 − 1) +
e−c

r

(
er(t−t0) − A1

)
, t > t1.

(23)

Therefore, the 1-p.d.f., fp(t), given by (9), is defined in two pieces, t0 < t ≤ t1 and t > t1,208

according to the piecewise functions q(t) and h(t), given in (22) and (23), respectively.209

Now, we assume that punctual captures take place at different time instants, ti, having each210

one of them distinct random intensities, ci = ci(ω), ω ∈ Ω. This situation is modelled by means211

of the following harvesting function, c(t) =
∑N

i=1 ciδ(t − ti), N = 1, 2, . . .. Then, the following212

expressions for q(z) and h(t) respectively are obtained213

q(z) =


er(z−t0), z ≤ t1,
er(z−t0)−

∑n
i=1 ci , tn < z ≤ tn+1, n = 1, . . . ,N − 1,

er(z−t0)−
∑N

i=1 ci , z > tN ,

(24)

and214

h(t) =



1
r

(
er(t−t0) − 1

)
, z ≤ t1,

1
r (A1 − 1) + 1

r
∑n−1

j=1 e−
∑ j

i=1 ci
(
A j+1 − A j

)
+ e−

∑n
i=1 ci

r

(
er(t−t0) − An

)
, tn < z ≤ tn+1, n = 1, . . . ,N − 1,

1
r (A1 − 1) + 1

r
∑N−1

j=1 e−
∑ j

i=1 ci
(
A j+1 − A j

)
+ e−

∑N
i=1 ci

r

(
er(t−t0) − AN

)
, z > tN .

(25)
9



The above results are easily adapted when N = +∞, i.e., there are infinite punctual captures.215

216

Similarly as in the second part of Case II, the 1-p.d.f., fp(t), given by (9), is defined in pieces,217

according to the piecewise functions q(t) and h(t), given in (24) and (25), respectively.218

3. Probabilistic stability analysis219

The aim of this section is to study, from a probabilistic standpoint, the stability of the ran-220

domized logistic model with capture, formulated by (2) in the case that the harvesting intensity221

coefficient, c(t), becomes a random variable for t large enough, i.e. when c(t) = c(t;ω) = ĉ(ω),222

ω ∈ Ω for all t ≥ t̂. Observe that this happens in the three cases analyzed in the previous section.223

Indeed, in Case I: ĉ(ω) = c(ω) and t̂ = t1; in Case II: ĉ(ω) = 0 and t̂ = tn; in Case III: ĉ(ω) = 0224

and t̂ > tN with N finite. In these two latter scenarios, the equilibrium state will intuitively match225

the one corresponding to the classical logistic model (i.e., with no capture).226

Down below, our analysis will focus on computing the p.d.f. of the equilibrium or steady state,227

which is also a random variable, as well as on determining the probability of reaching stability.228

All the theoretical findings will be illustrated in Section 4.229

Steady states are the solutions of the random algebraic equation ṗ = 0, i.e. rp(1 − pK) = cp.230

Solving for p, we obtain two equilibrium points231

p∗1 = 0, p∗2 =
(r − c)K

r
. (26)

Notice that, as previously indicated, if c = 0, p∗2 = K, that corresponds to the non-trivial equilib-232

rium point for the classical logistic model.233

We are interested in studying the linear stability of p∗2. To this end, we introduce the variable234

p̂ centred at that equilibrium value, p̂(t) = p(t) − p∗2. Then, the differential equation of model (2)235

can be written as236

p̂′(t) = r( p̂(t) + p∗2)
(
1 −

1
K

(p̂(t) + p∗2)
)
− c( p̂(t) + p∗2),

whose linearized form is237

p̂′(t) =

(
r −

2r
K

p∗2 − c
)

p̂(t) + (r − c)p∗2 −
r
K

(p∗2)2.

In this manner, the original equation is written in the linearized form about the non-trivial equi-238

librium point, p∗2, and it is known that if all the eigenvalues have negative real part, then the239

solution is linearly stable [40]. In our case this condition writes240

r −
2r
K

p∗2 − c < 0⇐⇒ r −
2r
K

(r − c)K
r

< c⇐⇒ r
(
1 −

2(r − c)
r

)
< c⇐⇒ c < r.

Taking into account (26), this condition guarantees the non-trivial equilibrium state is positive,241

p∗2 =
(r−c)K

r > 0. This fact admits an easy biological interpretation, namely, when the growth242

rate, r, is greater than the harvesting intensity determined by the coefficient c, the population243

does not tend to extinction but to p∗2 > 0. Observe that in our context both r = r(ω) and c = c(ω),244

ω ∈ Ω, are random variables, so the stability condition, r(ω) > c(ω), happens with a certain245
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probability, say πs. Now, we compute this πs under the general assumption that both random246

variables have an arbitrary joint p.d.f., fr,c := fr,c(r, c) (which can be derived from the general247

setting by marginalizing with respect to p0 and K the complete joint p.d.f., fp0,r,K,c)). To calculate248

πs, we will apply the RVT technique. To this end, we first introduce the auxiliary random variable249

Y(ω) = r(ω) − c(ω), ω ∈ Ω, and define the following mapping250

(r, c) 7−→ (Y, Z) = (r − c, c)

whose inverse is251

(Y, Z) 7−→ (r, c) = (Y + Z, Z),

Observe that the Jacobian matrix determinant of the inverse mapping is 1. Then, according to252

the RVT method, the p.d.f. of random variable Y is253

fY (y) =

∫
D(Z)

fY,Z(y, z) dz =

∫
D(c)

fr,c(y + c, c) dc, (27)

where D(Z) and D(c) represent the domains of the random variables Z = Z(ω) and c = c(ω),254

respectively. This function is useful to calculate probabilities of interest involving the random255

variable Y , in particular, we will use it to calculate πs. Indeed, observe that the stability condition256

r(ω) > c(ω) holds if and only if Y(ω) > 0,ω ∈ Ω, so the probability of stability can be determined257

by258

πs = P [{ω ∈ Ω : Y(ω) > 0}] =

∫ ∞

0
fY (y) dy =

∫ ∞

0

∫
D(c)

fr,c(y + c, c) dc dy. (28)

As in the numerical experiments that will be presented in the next section we will deal with259

the case that r and c are independent random variables, we now provide a more explicit expres-260

sion for πs. First, observe that in such a case (27) writes261

fY (y) =

∫
D(c)

fr(y + c) fc(c) dc, (29)

since fr,c = fr fc. We now explicit the domain of integration in (29) in terms of the domains of
random variables r and c, which is more useful in practice. Let −∞ ≤ r1 < r(ω) < r2 ≤ +∞

and −∞ ≤ c1 < c(ω) < c2 ≤ +∞ denote the domains of random variables r and c, respectively.
The argument y + c of the p.d.f. fr appearing in the integral (29) must lie within the domain of
random variable r. So, r1 − y < c < r2 − y and expression (29) becomes

fY (y) =

∫ min(c2, r2−y)

max(c1, r1−y)
fr(y + c) fc(c) dc.

Similarly, if we substitute this expression into (28) we can give sharper bounds for the domain262

of integration with respect to Y(ω) in terms of the explicit data that may be available in practice.263

Indeed, first observe that the domain of random variable Y is r1 − c2 < Y(ω) < r2 − c1, ω ∈ Ω, so264

as there is no guarantee the difference r1 − c2 is positive, we impose max(0, r1 − c2) as the lower265

integration limit. In this manner, taking into account (29), expression (28) writes266

πs =

∫ r2−c1

max(0, r1−c2)
fY (y) dy =

∫ r2−c1

max(0, r1−c2)

∫ min(c2, r2−y)

max(c1, r1−y)
fr(y + c) fc(c) dc dy. (30)
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Now we will obtain the 1-p.d.f. for the non-trivial equilibrium point, p∗2 =
(r−c)K

r . To this267

end, we will apply the RVT method using the following mapping,268

(r,K, c) 7−→ (X, p∗2,Z) =

(
r,

(r − c)K
r

, c
)
. (31)

It is easy to check that its inverse mapping is given by

(X, p∗2,Z) 7−→ (r,K, c) =

(
X,

p∗2X
X − Z

,Z
)
.

The Jacobian matrix determinant of the inverse mapping is

J(X, p∗2,Z) = det
(
∂(r,K,c)
∂(X,p∗2,Z)

)
= det


∂r
∂X

∂r
∂p∗2

∂r
∂Z

∂K
∂X

∂K
∂p∗2

∂K
∂Z

∂c
∂X

∂c
∂p∗2

∂c
∂Z

 = r
r−c , 0.

So, using first the RVT method and secondly marginalizing with respect to r and c one obtains269

fp∗2 (p∗2) =

∫
D(r,c)

fr,K,c

(
r,

p∗2r
r − c

, c
) ∣∣∣∣∣ r

r − c

∣∣∣∣∣ dr dc. (32)

In the particular case that the random vector (r, c) is independent of the random variable K, the270

p.d.f. (32) of the equilibrium state can be expressed in terms of the following expectation271

fp∗2 (p∗2) = Er,c

[
fK

(
p∗2r

r − c

) ∣∣∣∣∣ r
r − c

∣∣∣∣∣] ,
which is useful to compute the p.d.f. via Monte Carlo simulations.272

Remark 4. Similarly as it has been explained in Remark 3, we can obtain the p.d.f. of the273

non-trivial equilibrium, p∗2, considering alternative mappings to (31). Based on the motivation274

detailed in Remark 3, we may also use the following transformation275

(r,K, c) 7−→ (X,Y, p∗2) =

(
r,K,

(r − c)K
r

)
. (33)

Observe that the final expression that we would obtain using the mapping (33) is not the same as276

(32), but equivalent.277

4. Numerical examples278

The aim of this section is to illustrate, by means of two computational examples, the theoret-279

ical findings obtained in the previous section. To simplify the writing and facilitate the presen-280

tation in both examples, we will use the following terminology in agreement with the scenarios281

studied in Section 2282

• Case I (Subsection 2.1): The capture is perpetually made from the time instant tI = 1.283
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• Case II (Subsection 2.2): The capture is made during the period [tII
1 , t

II
2 ] = [1, 4].284

• Case III (Subsection 2.3): A punctual capture is made at the time instant tIII = 1.285

In both examples, different parametric continuous probability distributions are assigned to inputs286

of the IVP (2). We will plot the 1-p.d.f. of the solution stochastic process, fp(t), as well as the287

p.d.f. of the equilibrium, fp∗2 . We will graphically show convergence of fp(t) to fp∗2 as t increases,288

also determining the probability, πs, of this convergence.289

Example 1. Let us consider model (2) and let us assume that all their input parameters are290

uniformly distributed as follows291

p0 ∼ U([0.22, 0.25]), r ∼ U([0.13, 0.20]), K ∼ U([0.4, 0.9]), c ∼ U([0.09, 0.15]). (34)

Furthermore, we will also assume that p0, r, K and c are independent random variables.292

In Figure 1, we show the 1-p.d.f., fp(t), of the solution stochastic process of model (2) at dif-293

ferent time instants (t ∈ {5, 10}). In this graphical representation, we have considered the three294

types of captures analyzed in Subsections 2.1–2.3. These plots have been calculated by Monte295

Carlo with 25000 simulations using the expression (11). Comparing both graphical representa-296

tions we can observe that, in Case I (when a perpetual capture is applied), the size of population297

reduces from t = 5 to t = 10, while in Cases II and III, the population increases because capture298

has been made before t = 5 (in Case II it is made during the period tII = [1, 4] and in Case III is299

punctually made at the time instant tIII = 1). These results are in full agreement with the biolog-300

ical interpretation. Finally, we observe that variability increases (i.e., uncertainty propagates)301

from t = 5 to t = 10 in the three scenarios.302
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Figure 1: Approximation of the 1-p.d.f., fp(t), of the solution stochastic process of model (2) at t = 5 (left) and t = 10
(right) considering the three cases studied in Section 2. According to the description indicated at the beginning of this
section, we have taken: tI = 1 (Case I), [tII1 , t

II
2 ] = [1, 4] (Case II) and tIII = 1 (Case III). Example 1.

In Figure 2, we show the 1-p.d.f., fp(t), as a surface, i.e., its continuous evolution on the whole303

time interval t ∈ [0, 5] in the three above-mentioned cases. On the surface, we have highlighted,304

by means of a solid line, the p.d.f. corresponding to the time instants tI = 1 (Case I); tII
1 = 1305

and tII
2 = 4 (Case II) and tIII = 1 (Case III). To facilitate the full view of these 3D-graphical306

representations, we recommend our readers to check the supplementary data, where subplots are307

shown separately in short video files from different views.308

309
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Figure 2: 3D-graphical representation of the 1-p.d.f., fp(t), for the time interval t ∈ [0, 5] for the three cases studied in
Section 2. Solid lines highlighted on each surface represent the corresponding p.d.f. at the time instants according to the
description indicated at the beginning of this section: tI = 1 (Case I), [tII1 , t

II
2 ] = [1, 4] (Case II) and tIII = 1 (Case III). A

360o view is shown by a video in supplementary files. Example 1.

To illustrate the theoretical results about probabilistic stability analysis obtained in Section 3,310

we have represented the two scenarios indicated at the beginning of Section 3. In both scenarios,311

we have plotted the 1-p.d.f., fp(t), for different values of t and the p.d.f. of the equilibrium point,312

fp∗2 , where p∗2 is given in (26). Specifically, we graphically show that fp(t) converges to fp∗2 as313

t increases. We have also calculated the probability of stability, πs, using expression (30). In314

Figure 3, we show these results when a perpetual capture (Case I) is applied. In this scenario,315

πs = 0.95, so stability is reached with a high probability and it is clearly visualized in Figure 3.316
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Figure 3: Left: P.d.f., fp∗2
, of the equilibrium state p∗2 given in (26). Right: 1-p.d.f., fp(t), of the solution stochastic process

for different values of t ∈ {5, 10, 15, 20} together with fp∗2
. Observe that the vertical scales in both plots are different to

better visualize fp∗2
on the left panel. We can observe that fp(t) tends to fp∗2

as t increases. These plots correspond to Case
I with tI = 1. Example 1.

As it has been explained in the previous section, for certain types of harvesting function that317

satisfy that c(t;ω) = 0 for all ω ∈ Ω as t is large enough, the equilibrium point matches the318

classical logistic model, i.e., the carrying capacity, that now is treated as a random variable319

K = K(ω). Cases II and III studied in Subsections 2.2 and 2.3, respectively, are examples of this320

particular scenario. In Figure 4, we illustrate these interesting cases. In both scenarios we can321
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see that the 1-p.d.f., fp(t) converges to the p.d.f., fK of the carrying capacity, according to (34), is322

a uniform distribution on the interval [0.4, 0.9].323
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Figure 4: Plots of the 1-p.d.f., fp(t), of the solution stochastic process of model (2) at different fixed time instants and
p.d.f. of the equilibrium point, fp∗2

, when p∗2 = K (carrying capacity). Left: Case II. Right: Case III. Example 1.

Example 2. This second example is addressed to show that the theoretical results also correctly
work when other probability distributions, different from the ones assumed in Example 1, are
considered. For the sake of clarity, we follow a similar structure in the presentation. In this
example, we will assume that each model input of the IVP (2) has truncated Beta distribution,
BeT (α; β), where T denotes the truncation interval and α > 0 and β > 0 are the so called shape
parameters. It is important to point out that these distributions have been carefully chosen so that
the corresponding values make biological sense (e.g., the distribution for p0, which represents
the initial population, has been chosen so that its values are smaller than the ones generated by
the random variable K, that represents the carrying capacity). Specifically, we have taken

r ∼ Be[0.4,0.6](5; 1), c ∼ Be[0.02,0.06](2; 5),
p0 ∼ Be[0.05,0.1](2; 2), K ∼ Be[0.8,1](3; 4.5).

Considering the above distributions, we perform a similar analysis as the one exhibited in the324

Example 1. In Figure 5, we have plotted the approximations of the 1-p.d.f., fp(t), at the time325

instants t ∈ {5, 10} in the Case I (with tI = 1), Case II ( [tII
1 , t

II
2 ] = [1, 4]) and Case III (tIII = 1).326

Once again, it can be observed how greater values are expected for p(t) in cases II and III.327

However, the increase (respect the values expected for case I) is smaller. Unlike in the uniform328

case, variability decreases for case II and case III in t = 10.329
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Figure 5: Approximation of the 1-p.d.f., fp(t), of the solution stochastic process of model (2) at t = 5 (left) and t = 10
(right) in the Case I (with tI = 1), Case II ( [tII1 , t

II
2 ] = [1, 4]) and Case III (tIII = 1). Example 2.

In Figure 6, we show 3-D graphical representations corresponding to the 1-p.d.f.’s, fp(t),330

represented in Figure 5. On the surface, we have highlighted, by means of a solid line, the p.d.f.331

corresponding to the time instants tI = 1 (Case I); tII
1 = 1 and tII

2 = 4 (Case II) and tIII = 1 (Case332

III). Once again, we encourage readers to see video files added as supplementary data to better333

visualize the plots.334

Figure 6: 3D-graphical representation of the 1-p.d.f., fp(t)(p), for the time interval t ∈ [0, 5] for the three cases studied
in Section 2. On the surface, we have highlighted, by means of a solid line, the p.d.f. corresponding to the time instants
tI = 1 (Case I); tII1 = 1 and tII2 = 4 (Case II), and tIII = 1 (Case III). A 360o view is shown by a video in supplementary
files. Example 2.

As in the Example 2, in Figure 7, we have represented the p.d.f., f ∗p2
, of the equilibrium335

random variable, p∗2, given in (26) (left panel) and the convergence of the 1-p.d.f.’s, fp(t), towards336

f ∗p2
in Case I (right panel). In this case, the probability of stability is even higher, with a value of337

πs = 0.9994. The particular case that the equilibrium is just the carrying capacity, i.e. p∗2 = K,338

is shown in Figure 8. The Case II is shown on the left panel while the Case III is represented on339

the right panel.340
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Figure 7: Left: P.d.f. of the equilibrium random variable, p∗2, given in (26). Right: Convergence of the 1-p.d.f.’s, fp(t),
towards f ∗p2

in the Case I with tI = 1. Example 2.
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Figure 8: Convergence of the 1-p.d.f.’s, fp(t), towards the p.d.f. f ∗p2
, in the case that the equilibrium random variable is

the carrying capacity, p∗2 = K. Left: Case II with tII1 = 1 and tII2 = 4. Right: Case III with tIII = 1. Example 2.

5. Application to real-world data341

The objective of this section is to show how we can take advantage of the theoretical results342

established throughout the paper when real-world data are available. Specifically, we shall show343

how to reasonably determine the probability distributions of the model inputs of the randomized344

hybrid logistic model (2), that considers different stochastic processes with jump as harvesting345

functions in its formulation. The stochastic calibration process will be thoroughly described so346

that it is easily reproducible by interested readers.347

348

Fisheries policies are responsible for setting fishing quotes and limits in their respective countries,349

looking for the maintenance of species’ stock as well as to increase (or at least keep) humans’350

employment rate and food resources. Governments’ decisions need to be made with the objec-351

tive of minimising the probability of disastrous scenarios, such as stock collapse. In other words,352

policies need to ensure relatively high benefits with low risk. Stock assessment methods use col-353

lected data to describe, by means of mathematical models, hypothetical situations that can help354
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decision makers with their resolution. In this section, we are going to probabilistically describe355

the dynamics of fish population via the randomized model (2) that considers not only species’356

growth rate but also the carrying capacity of the environment and temporary capture periods. The357

study takes into account uncertainties coming from both the inherent complexity of the problem358

and sampled data. We will use data corresponding to the stock of Beaked Redfish in the Barents359

Sea from 1992 to 2018 [41]. For convenience with the mathematical notation introduced in the360

IVP (2), we identify t0 = 1992, so t26 = 2018. Hereinafter, sampled data at every time instant ti,361

i = 0, 1, . . . , 26, will be denoted by pi. These values are plotted in Figure 9.362

Based on these monitored data, we have assumed that captures are made from 2005 to 2008.363

This corresponds to Case II studied in Subsection 2.2 and with the notation introduced at the364

beginning of Section 4, we take tII
1 = 2005 and tII

2 = 2008. We will assume that model parame-365

ters, p0, r, K and c are independent random variables whose distributions will be specified later.366

The calibration process consists of three main steps. First, we will assign flexible parametric367

distributions according to the biological interpretation of each one of them. Secondly, we will368

perform a deterministic fitting that allows us to take plausible initial parameters of the distribu-369

tions assumed to each model input. Finally, an optimisation algorithm will be implemented to370

determine the best values of the parameters of the input distributions by minimizing a certain371

error. Several techniques can be used when calibrating models, however, we have chosen this372

particular technique since it has been successfully used by some of the authors recently in [42]373

with promising results within the setting of another stochastic model.374

Regarding input parameters in the IVP (2), there is not much information. All parameters375

are assumed to be positive, since negative values are not coherent with their biological meaning.376

Moreover, the random variable p0 = p0(ω), that represents the population stock at the initial377

time instant, t0 = 1992, is assumed to vary in a domain whose greatest value is bounded by the378

lowest value of the carrying capacity, K = K(ω), which, in turn, has been assumed to be bounded379

by a fraction of 120% of the maximum stock value, i.e 1.277 × 1, 20 = 1.5324. The growing380

rate, r = r(ω), and the capture intensity, c = c(ω), are random variables whose, respective381

domains, have been limited too. Firstly, the upper end of the domain of c has been assumed to382

be smaller than lower end of the domain of r (otherwise there would be a chance that population383

will decrease over time, a feature that is not observed in sampled data, see Figure 9). Finally, the384

lower end of the domain of random variable r is limited to values larger than 0.005, in order to385

avoid dividing by 0. Taking into account these intuitive constraints, we will assume that p0 and386

K have uniform distributions, i.e. p0 ∼ U(p0,1, p0,2) and K ∼ U(k1, k2) such that p0,2 < k1 and387

k2 < 1.5324. Since random variable r is positive, we will assume that it has a truncated Gamma388

distribution with parameters r1 > 0 and r2 > 0, i.e. r ∼ Ga|Tr (r1; r2), where the domain of389

truncation is Tr = (tr,1, tr,2); here we take tr,1 = 0.005 and tr,2 = ∞. For random variable c, which390

is also positive, we will assume that follows a truncated Gaussian distribution with parameters391

µc and σc > 0, i.e. c ∼ N|Tc (µc;σc), where Tc = (tc,1, tc,2), tc,1 > 0. Our objective is to obtain392

appropriate values for these parameters so that the response of model (2) captures the variability393

of the sampled data. For each t = tn, n = 1, 2, . . . , 26, the response will be constructed by means394

of the expectation, µp(t) := E[p(t)], and the variance, σ2
p(t) := V[p(t)], which can be calculated395

µp(t) =

∫ ∞

−∞

p fp(t)(p) dp, σ2
p(t) =

∫ ∞

−∞

(p − µp(t))2 fp(t)(p) dp, (35)

where fp(t) is given in (9). From these two moments, at every time instant t = tn, we will construct
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confidence intervals at certain prefixed confidence level, 1 − α, α ∈]0, 1[,

1 − α = P
[{
ω ∈ Ω : p(t)(ω) ∈ [µp(t) − νtσp(t), µp(t) + νtσp(t)]

}]
=

∫ µp(t)+νtσp(t)

µp(t)−νtσp(t)
fp(t)(p) dp.

Here, vt represents the radius of the confidence interval which varies with t. This is advantageous
since we dynamically construct the confidence interval to the specific requirements according to
the prefixed level of confidence, instead of using classical approximations where this radius is a
common constant for all the time instants, t. One typically takes vt = 1.96 ≈ 2, which corre-
sponds to the Gaussian approximation.
As previously indicated, as a first approximation we will perform a deterministic calibration of
model inputs, p0, r, K and c. To this end, we use the command NonlinearModelFit in the soft-
ware Mathematica R© [43]. It gives approximate values of model inputs and their corresponding
associated errors. The obtained values are

p̃0 = 0.53003, εp0 = 0.017537,
r̃ = 0.109922, εr = 0.0124091,
c̃ = 0.0823592, εc = 0.0102977,
K̃ = 1.53234, εK = 0.103674.

These values are interpreted as suitable references for the mean and the variance of the model
inputs of the randomized IVP (2). Next, we will take them as starting values when the op-
timisation algorithm will be applied to determine the best values of parameters k1, k2 p0,1,
p0,2, r1, r2, µc, σc, tc,1 and tc,2. Before performing this final calibration, we will reduce the
number of parameters to be determined by estimating tc,1 and tc,2, i.e. the truncation interval
Tc = (tc,1, tc,2) of Gaussian random variable c. This is done by considering that c ∼ N|Tc (c; εc) =

N|Tc (0.0823592; 0.0102977), where Tc = (0.02, 0.2), since one verifies∫ 0.2

0.02

1
√

2 × π × 0.0102977
exp

−1
2

(
c − 0.0823592

0.0102977

)2 dc ≈ 1.

Notice that the choice of the domain of integration is also supported by the Bienaymé–Chebyshev
inequality [35].
To obtain the initial estimates, that will be taken later as seeds or starting values when applying
the optimization algorithm, for rest of parameters on which the probability distributions assigned
to model inputs depend on, we will apply the Moment Matching Method [35]. By denoting
these unknown values as {p(0)

0,1, p(0)
0,2}, {r

(0)
1 , r(0)

2 } and {k(0)
1 , k(0)

2 }, and using the respective distribution
formulas for mean and variance (moments), one obtains the following nonlinear systems,

E[p0] =
p(0)

0,1+p(0)
0,2

2 = 0.53003, V[p0] =

(
p(0)

0,1−p(0)
0,2

)2

12 = 0.017537,

E[r] =
r(0)

1

r(0)
2

= 0.109922, V[r] =
r(0)

1(
r(0)

2

)2 = 0.0124091,

E[K] =
k(0)

1 +k(0)
2

2 = 1.53234, V[K] =

(
k(0)

1 −k(0)
2

)2

12 = 0.103674.
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Solving the three independent systems with the command FindRoot of Mathematica R© software,
yields

p(0)
0,1 = 0.499655, p(0)

0,2 = 0.56040,

r(0)
1 = 78.467, r(0)

2 = 0.00140086,

k(0)
1 = 1.35277, k(0)

2 = 1.71191.

Denoting ξ = (p0,1, p0,2, r1, r2, k1, k2, µc, σc) to simplify the notation, we finally define the error396

function, E = E(ξ), to be minimized as the sum of the squared differences between the expecta-397

tion µp(ti; ξ) = E[p(ti; ξ)] of the solution stochastic process evaluated at every time instant of the398

sample, ti, i = 0, 1, . . . , 26, and the corresponding sampled data pi,399

E = E(ξ) =

26∑
i=0

(µp(ti; ξ) − pi)2. (36)

Notice that µp(ti; ξ) can be calculated via the 1-p.d.f., fp(t), using the expression (35). We have
used the command NMinimize function from Mathematica R© software to minimize the error func-
tion (36) imposing the aforementioned restrictions p0,2 < k1, k2 < 1.5324, 0 < p0,1 < p0,2 and
0 < k1 < k2. This yields the optimal values of the parameters of the probability distributions
assigned to model inputs

p0,1 = 0.493908, p0,2 = 0.567161,

r1 = 70.0067, r2 = 0.00155884,

k1 = 1.33852, k2 = 1.76292,

µc = 0.0824084, σc = 0.0107208.

Therefore, summarizing,400

p0 ∼ U (0.493908, 0.567161) , r ∼ Ga|(0.005,∞) (70.0067; 0.00155884) ,

K ∼ U (1.33852, 1.76292) , c ∼ N|(0.02,0.2) (0.0824084; 0.0107208) .
(37)

401

In order to properly evaluate the quality of the calibration, in Figure 9, we have represented the402

expectation of the solution stochastic process, µp(t), the confidence interval µp(t) ± 1.75σp(t) and403

the sampled data. The confidence interval has been calculated using expressions (35) and (5),404

with α = 0.1, and taking as 1.75 = νt = max νti : i = 0, 1, . . . , 26 in order to guarantee, at least,405

90%-confidence intervals at every time instant ti. The involved integrals have been approximated406

using the command NIntegrate in Mathematica R© software. In Figure 9, we can see that our407

probabilistic calibration is able to capture uncertainties in the dynamics of sampled data.408

To complete our probabilistic analysis, in Figure 10, we show the evolution of the estimate 1-409

p.d.f., p(t), of the stock of Beaked Redfish in the Barents Sea during the period 1992 − 2018 by410

a 3D-plot. For the sake of clarity, we have also included in the plot the result shown in Figure 9.411

It can be observed how values of p tend to a certain mean value with a variability, that has been412

modelled by the random variable K, according to the distribution given in (37).413

20



1992 1997 2002 2007 2012 2017
t (y����)0

0.5

1

1.5

S���� (106K�)

Real Data

μP(t)

μP(t 1.75σP(t)

Figure 9: Probabilistic fitting (mean and 92%-confidence intervals) of sampled data corresponding to stock of Beaked
Redfish in the Barents Sea during the period 1992 − 2018 [41] using the 1-p.d.f., fp(t), of the solution stochastic process
given in (9) of the randomized hybrid logistic model (2) with captures made during the period 2005−2008. This scenario
corresponds to Case II described in Subsection 2.2.

Figure 10: Evolution of the 1-p.d.f., fp(t), over the period 1992 − 2018 together with the mean and 92%-confidence
intervals plotted in Figure 9.

The above-described calibration process has been summarized in the next image.414
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Inputs
Time instants: ti, i = 0, 1, . . . , N .

Population stock at ti: pi, i = 0, 1, . . . , N .

Time instants when captures were performed, tj1, t
j
2, j ∈

{I, II, III}.

Step 1: Assignment of random parametric distributions to model parameters

p0 ∼ U (p0,1, p0,2) , r ∼ Ga|Tr
(r1; r2) ,

K ∼ U (k1, k2) , c ∼ N|Tc
(µc;σc) .

Step 2: Deterministic calibration of model parameters
NonLinearModelFit()

Obtention of the values p̃0, r̃, K̃, c̃, ϵp0
, ϵr, ϵK , ϵc.

Step 3: Obtention of the truncation intervals
Tc = [tc,1, tc,2] such that tc,1 > 0 and

∫ tc,2
tc,1

fc(c)dc = 1,

Tr = [tr,1, tr,2] such that tr,1 > 0 and
∫ tr,2
tr,1

fr(r)dr = 1,
where fc and fr are the PDF of c and r, respectively.

Step 4: Computation of the initial values of the parameters distribution
(Matching Moments Method)

Determine p
(0)
0,1, p

(0)
0,2, r

(0)
1 , r

(0)
2 , k

(0)
1 , k

(0)
2 , µ

(0)
c and σ

(0)
c such that

p̃0 = E[p0] =
p
(0)
0,1+p

(0)
0,2

2 , ϵp0
= V[p0] =

(
p
(0)
0,1−p

(0)
0,2

)2

12 ,

r̃ = E[r] =
r
(0)
1

r
(0)
2

, ϵr = V[r] =
r
(0)
1(

r
(0)
2

)2 ,

K̃ = E[K] =
k
(0)
1 +k

(0)
2

2 , ϵK = V[K] =

(
k
(0)
1 −k

(0)
2

)2

12 ,

c̃ = E[c] = µ
(0)
c , ϵc = V[c] = σ

(0)
c .

Check that the obtained results make sense (e.g., p0,2 < k1).

Step 5: Definition of the error function

E = E(ξ) =
N∑

i=0

(µp(ti; ξ)− pi)
2,

where ξ = (p0,1, p0,2, r1, r2, k1, k2, µc, σc) and µp is defined in expression (35).

Step 6: Minimization of the error function
NMinimize()

Results obtained in Step 4 are used as starting points.

Step 7: Computation of the expectation and confidence interval of the solution

Computation of fp(t)(p) using equation (10), with q(z) and
h(t) defined in (3) (4), respectively.

Computation of the expectation and the variance using equa-
tion (35).

Calculation of the confidence interval. Set α ∈ [0, 1] such that
1 − α represents the prefixed confidence level. Seek νt values
such that

∫ µp(t)+νtσp(t)

µp(t)−νtσp(t)

fp(t)(p) dp ≥ 1− α, α ∈ [0, 1] .

End

Figure 11: Flowchart algorithm corresponding to the probabilistic calibration in the context of the real-world application
presented in Section 5. In the application we have taken N = 26 and j = II with tII1 = 2005 and tII2 = 2008.
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6. Conclusions415

In this paper we have performed a full probabilistic analysis of the randomized logistic model416

with an influence term that describes captures or harvesting, via different functional forms rep-417

resented by discontinuous stochastic processes. We have taken extensive advantage of the so418

called Random Variable Transformation to conduct our study, which has been based on obtain-419

ing the first probability density function of the solution stochastic process of the aforementioned420

hybrid randomized logistic model. The obtained results are, from a probabilistic standpoint very421

general, since we assume abstract joint densities for all the model inputs. We have illustrated422

our theoretical findings by means of two numerical examples where different distributions are423

assumed for model inputs. To complete our contribution, we have carefully detailed, how our424

theoretical results can be applied in practice when real data are available. This application has425

been described so that it can be fully reproducible for anyone interested in it. At this point, it is426

interesting to underline that in the setting of the real-world application shown in the paper, the427

choice of the probability distributions for each one of the model parameters has been done on the428

basis of plausible distributions according to the biological interpretation of model parameters as429

positiveness, boundedness, etc., however it would be desirable to find out optimal methods that430

do not limit the applications of our theoretical results, which rely on the fact that the probability431

distributions of the model parameters are know. This is an open challenge for the Uncertainty432

Quantification community that we will continue facing in our future research. To the best of433

our knowledge, this is the first time that a hybrid random differential equation (i.e., a random434

differential equation having discontinuous stochastic processes in its formulation) is studied by435

computing the first probability density of its solution via the Random Variable Transformation436

method. In this sense, we think the ideas exhibited throughout the paper could be useful to open437

new avenues in the area of random differential equations. In particular, in our prospective work,438

we plan to apply the probabilistic analysis performed in this paper to other relevant models whose439

right hand side is discontinuous. We also bear in mind the possibility of conveniently reinterpret440

the model in the setting of stochastic control to design stable controler so that specific biological441

targets are met. In this manner, we hope to continue helping to extent deterministic theory to the442

random setting using the approach based on Random Differential Equations.443
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[18] E. Allen, Modeling with Itô Stochastic Differential Equations, Mathematical Modelling: Theory and Applications,485

Springer Netherlands, 2007. doi:https://doi.org/10.1007/978-1-4020-5953-7.486

[19] J. Golec, S. Sathananthan, Stability analysis of a stochastic logistic model, Mathematical and Computer Modelling487

38 (2003) 585–593. doi:https://doi.org/10.1016/S0895-7177(03)90029-X.488

[20] X. Sun, Y. Wang, Stability analysis of a stochastic logistic model with nonlinear diffusion term, Applied Mathe-489

matical Modelling 32 (2008) 2067–2075. doi:https://doi.org/10.1016/j.apm.2007.07.012.490

[21] P. Kink, Some analysis of a stochastic logistic growth model, Stochastic Analysis and Applications 36 (2018)491

240–256. doi:10.1080/07362994.2017.1393343.492

[22] H. Schurz, Modeling, analysis and discretization of stochastic logistic equations, International Journal of Numerical493

Analysis and Modeling 4 (2) (2007) 178–197.494

[23] O. Otunuga, Time-dependent probability density function for general stochastic logistic popu-495

lation model with harvesting effort, Physica A: Statistical Mechanics and its Applications 573.496

doi:https://doi.org/10.1016/j.physa.2021.125931.497

[24] M. Liu, K. Wang, Q. Hong, Stability of a stochastic logistic model with distributed delay, Mathematical and498

Computer Modelling 57 (2013) 1112–1121. doi:https://doi.org/10.1016/j.mcm.2012.10.006.499

[25] M. Liu, D. Fan, K. Wang, Stability analysis of a stochastic logistic model with infinite de-500

lay, Communications in Nonlinear Science and Numerical Simulation 18 (2013) 2289–2294.501

doi:https://doi.org/10.1016/j.cnsns.2012.12.011.502

[26] L. Sun, H. Zhu, Y. Ding, Impulsive control for persistence and periodicity of logistic systems, Mathematics and503

Computers in Simulation 171 (2020) 294–305. doi:https://doi.org/10.1016/j.matcom.2019.06.006.504

[27] H. Yoshioka, A simplified stochastic optimization model for logistic dynamics with control-dependent carrying505

capacity, Journal of Biological Dynamics 13 (2019) 148–176. doi:10.1080/17513758.2019.1576927.506

[28] T. Soong, Random Differential Equations in Science and Engineering, Vol. 103 of Mathematics in Science and507

Engineering, Academic Press, New York, 1973.508

[29] R. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, Computational Science and En-509

gineering, Society for Industrial and Applied Mathematics, Philadelphia, 2014.510

[30] F. Dorini, M. Cecconello, L. Dorini, On the logistic equation subject to uncertainties in the environmental carrying511

capacity and initial population density, Communications in Nonlinear Science and Numerical Simulation 33 (2016)512

160–173. doi:https://doi.org/10.1016/j.cnsns.2015.09.009.513

[31] F. Dorini, N. Bobko, L. Dorini, A note on the logistic equation subject to uncertainties in parameters, Computational514

and Applied Mathematics 37 (2018) 1496–1506. doi:10.1007/s40314-016-0409-6.515

24



[32] J. Calatayud, J.-C. Corts, F. A. Dorini, M. Jornet, On a stochastic logistic population model with time-varying516

carrying capacity, Computational and Applied Mathematics 39. doi:10.1007/s40314-020-01343-z.517

[33] J. Calatayud, J.-C. Corts, F. Dorini, On the Random Non-Autonomous Logistic Equation with Time-Dependent518

Coefficients, Fluctuation and Noise Lettersdoi:https://doi.org/10.1142/S0219477521500383.519

[34] T. Neckel, F. Rupp, Random Differential Equations in Scientific Computing, Walter De Gruyter, Berlin, 2013.520

[35] G. Casella, R. Berge, Statistical inference, 2nd Edition, Duxbury advanced series, Duxbury Thomson Learning,521

Pacific Grove, 2002.522

[36] M.-C. Casabn, J.-C. Corts, A. Navarro-Quiles, J.-V. Romero, M.-D. Rosell, R.-J. Villanueva, A compre-523

hensive probabilistic solution of random SIS-type epidemiological models using the random variable trans-524

formation technique, Communications in Nonlinear Science and Numerical Simulation 32 (2016) 199–210.525

doi:https://doi.org/10.1016/j.cnsns.2015.08.009.526

[37] D. Kroese, T. Taimre, Z. Botev, Handbook of Monte Carlo Methods, Vol. 706 of Wiley Series in Probability and527

Statistics, Wiley, 2013.528

[38] D. Baowan, B. Cox, T. Hilder, J. Hill, N. Thamwattana, Chapter 2 - mathematical preliminaries, in: D. Baowan,529

B. J. Cox, T. A. Hilder, J. M. Hill, N. Thamwattana (Eds.), Modelling and Mechanics of Carbon-Based530

Nanostructured Materials, Micro and Nano Technologies, William Andrew Publishing, 2017, pp. 35–58.531

doi:https://doi.org/10.1016/B978-0-12-812463-5.00002-9.532

[39] R. Hoskins, Delta Functions: Introduction to Generalised Functions, 2nd Edition, Elsevier Science, 2009.533

[40] P. Glendinning, D. Crighton, M. Ablowitz, S. Davis, E. Hinch, A. Iserles, J. Ockendon, P. Olver, Stability, Insta-534

bility and Chaos: An Introduction to the Theory of Nonlinear Differential Equations, Cambridge Texts in Applied535

Mathematics, Cambridge University Press, Cambridge, 1994.536

[41] Environmental monitoring of svalbard and jan mayen norsk search all of mosj,537

https://www.mosj.no/en/fauna/marine/deep-sea-redfish.html.538

[42] V. Bevia, C. Burgos, J.-C. Corts, A. Navarro-Quiles, R.-J. Villanueva, Uncertainty quantification analysis of the539

biological gompertz model subject to random fluctuations in all its parameters, Chaos, Solitons & Fractals 138540

(2020) 109908. doi:https://doi.org/10.1016/j.chaos.2020.109908.541

[43] I. Wolfram Research, Mathematica, Version 12.2, champaign, IL, 2020.542

URL https://www.wolfram.com/mathematica543

25


