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ABSTRACT 
This paper deals with the data fusion of MEMS accelerometer and hydrostatic leveling to contribute to the 

structural health monitoring, e.g., of bridge structures. In the past years, researchers derived the deformation 
and bending line of bridges by profile measurements with terrestrial laser scanners (TLS), by means of MEMS 
accelerometers and image assisted total station (IATS) also with the aim to obtain the modal parameters 
(eigenfrequencies and eigenforms). At least the TLS-based approach is not suitable for a long-term monitoring. 
The approach by using MEMS accelerometers is very promising and allows for a long-term installation. Following 
the MEMS accelerometer approach, we investigate the data fusion of MEMS accelerometers and hydrostatic 
leveling, which also allows for a long-term installation of the monitoring system. This approach combines the 
classical hydrostatic leveling with its data showing long-term stability with the high-frequent data of the MEMS 
accelerometers. To investigate the data fusion of the abovementioned sensors a test rig is developed to simulate 
deformations in scaled laboratory environments. The test rig consists of a metal bar with a maximum span width 
of 3 m, which can be bent by a hydraulic press, and allows for a flexible positioning of both sensors. The scope 
of the laboratory experiments is the evaluation of different algorithms and methods regarding the data fusion, 
covering aspects of filtering and calculation of the bending line. Finally, those laboratory experiments should 
support the understanding and knowledge of the bending line calculations and performance of the used sensors 
to obtain deformation information with respect to specific load levels. 

I. INTRODUCTION AND MOTIVATION

A. Introduction

Bridges are an essential part of our modern
infrastructure. Following recent statistics (Statista, 
2021) of, e.g., German, highway bridges, one can see 
that a large number of bridge structures is barely 
acceptable or even worse (Figure 1). Because of their 
condition many of these bridges face reinforcement 
action or even replacement. Every construction work is 
associated with an enormous amount of costs and 
disturbances for the traffic and the people using the 
bridge. The goal of the reinforcement cycle is to 
maximize the bridges’ operating time without 
compromising its structural integrity. 

To quantify the structural integrity and the condition 
of the bridges, e.g., in Germany, they are inspected 
regularly every six years according to DIN 1076. In 
addition to that, further inspections are conducted to 
have a snapshot of the recent situation every three 
years. By utilizing a monitoring system a high 
information density of the bridge parameters and their 
short-term changes can be obtained. This high 
information density allows a much more accurate 
prediction of the bridge behavior and therefore an 
optimal utilization of the load reserves and a prolonged 
reinforcement cycle. The main drawback of such 

monitoring systems seems to be their high costs for 
installation and operation, so that commonly such 
monitoring systems are taken into account when the 
bridge already shows significant damage. More cost-
effective systems should be deployed at earlier stages 
in the bridge life cycle, while those sensor nodes could 
also support the establishment of digital twins, since 
real-time data from various sensor nodes is of great 
importance (Wenner et al., 2021). 

Figure 1. Condition of German highway bridges 2021 
(Statista, 2021). 

Conventional bridge monitoring systems often 
consist of classical geotechnical or geodetic sensors. 
Examples are inclinometers, hydrostatic leveling 
systems (Haupt and Hesse, 2019), total stations, and 
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GNSS measurements. These systems monitor different 
bridge parameters such as modal parameters 
(eigenfrequencies and eigenforms), bending line, or 
long-term deformation. The combination of 
aforementioned classical sensors as well as multiple 
low-cost or consumer grade sensors, e.g., MEMS 
accelerometer, are well suited for an efficient 
acquisition of bridge parameters in the context of 
structural health monitoring (Omidalizarandi et al., 
2019). 

B. Related Work

In the past years, researchers obtained the
deformation and bending line of bridges by profile 
measurements with terrestrial laser scanners (TLS), or 
they obtained the eigenfrequencies and eigenforms by 
means of MEMS accelerometers and image assisted 
total station (IATS). 

For instance, (Schill and Eichhorn, 2019) used a profile 
scanner to derive the vertical deformation of railroad 
bridges. The authors are calculating the deformation of 
bridge girders of a railroad bridge both as a bending line 
and as an oscillation at any point in the axis of the 
girder. In addition, they were able to obtain the 
amplitude spectrum of the bridge vibration. 
(Omidalizarandi, 2020) is determining the modal 
vibration parameters of a bridge using consumer grade 
MEMS accelerometers. An image assisted total station 
(IATS) is used for a 1D coordinate update (1D CUPT). 
(Štebe et al., 2021) are calculating a 1D vibration 
trajectory in laboratory experiments using MEMS 
accelerometers supported by an IATS. Among other 
algorithms a Kalman filter was used for the data fusion 
of the acquired data. 

For a long-term and extensive usage of these 
approaches for a bridge monitoring several challenges 
have to be overcome. 

With respect to a cost-effective monitoring system 
the financial burden of the usage of at least one 
geodetic sensor (IATS or profile scanner) has to be 
considered: 

 An IATS can only measure one point at a time.
The acquisition of several measuring points has
to be carried sequentially, which gains an
importance to be considered for an increasing
number of object points to be measured.

 A profile scanner can only capture deformations
in a 2D profile. While increasing the spatial
coverage by using classical TLS is an option, one
will decrease the temporal resolution.

C. Motivation of our approach

The aim of our approach is to estimate bridge
deformations in particular the vertical deformation to 
calculate a bending line as well as the oscillation in one 
point on the bridge girder. 

In order to address this task and to avoid the 
aforementioned challenges due to permanent 
installations, a different approach will be presented 
here, which consists of a combination of a precise 
pressure based hydrostatic leveling and a consumer 
grade MEMS accelerometer. The combination of these 
two sensors offers the advantage that the IMU can 
capture vibrations and frequencies of the bridge girder, 
while the hydrostatic leveling can provide a 1D 
coordinate update. As long as the evaluation of the data 
is done in the local coordinate system of the hydrostatic 
leveling system no additional external geodetic sensor 
is required. The hydrostatic leveling allows an 
acquisition rate of more than 1 Hz. Furthermore, the 
sensor nodes can be arranged in any arbitrary three-
dimensional grid as long as the height differences are 
within the measurement range of the hydrostatic 
leveling sensors. 

On the one hand, the data analysis is possible in the 
position domain, i.e. metric deformation, where the 
focus is on the estimation of the bending line and the 
long-term deformation. On the other hand, the data 
can be analyzed in the frequency domain with the focus 
on the eigenfrequencies and eigenforms. The sensor 
fusion creates a surplus, since the stand-alone sensors 
either do not have sufficient long-term stability due to 
drift (accelerometer) or do not have the necessary 
acquisition rate (hydrostatic leveling). 

Possible drawbacks of a combined measurement 
system are the costly installation of the sensors on the 
structure or the inertia of the hydrostatic leveling, 
against dynamic deformations. In addition, the use of 
consumer grade accelerometers affects the 
performance of the sensor and the accuracy of the 
system. 

To investigate the potentials of the presented sensor 
combination the following points will be addressed: 

1. Design of a test rig;
2. Evaluation of different data fusion algorithms in

a single sensor node;
3. Transfer of the algorithm to additional sensor

nodes and calculation of a bending line;
4. Validation of the results with a profile scanner or

IATS;
5. Review of the proposed sensor combination and

data fusion.

This contribution addresses the points one the design 
of a test rig and two the evaluation of different data 
fusion algorithms in a single sensor node. 

II. THE TEST RIG

A. Design

The goal of the test rig is to simulate at least one span 
of a bridge supported on two sides. This synthetic 
bridge is exposed to a load and the deformation 
resulting from the load measured by the sensor system. 
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The setup of the experiment can be described with the 
following principle sketch (Pleuger, 2020), (Figure 2). 

 

 
Figure 2. Principle sketch of the test rig with dimensions. 

 

The test rig is a frame in which a beam supported on 
two sides can be installed. A hydraulic press is installed 
between the beam and the crossbar of the frame. The 
beam simulates a bridge girder and the hydraulic press 
is acting as a permanent load. In addition, an analog dial 
gauge is mounted next to the sensor node under 
consideration to validate the measured displacement 
(Figure 3). 

 

 
Figure 3. The test rig with applied sensor nodes. 

 

It is possible to shift the force application point of the 
hydraulic press on the beam. In addition, the design of 
the stands and supports allows the use of different 
beams with different cross-sections and lengths with a 
maximum length of three meters. 

The test rig concept is modular and thus it can be 
rearranged by: 

1. Use of other/additional sensors, such as 
terrestrial laser scanner/profile scanner or IATS. 

2. Extension of the synthetic bridge to several spans 
by installing another stand as a support. 

3. Simulation of different (dynamic) loads to 
describe a bridge crossing more realistically. 

 
B. Choice of sensors and sensor application 

One selected sensor is the electronic pressure-based 
hydrostatic leveling system of the type PC-HAS4-500 
from the company Position Control (Friedrichsthal, 
Germany). The measuring range is between 0 mm and 
500 mm with an accuracy of max. 0.09 %𝐹𝑆 as the sum 
of nonlinearity, hysteresis and repeatability. The long-
term stability is min. 0.09 %𝐹𝑆 𝑎⁄ . The units of the 
hydrostatic leveling system are controlled via an RS-485 
interface with ASCII protocol (Position Control, 2022). 

The selected accelerometer is part of the IMU chip 
BNO 055 of the company Bosch. Here, the chip 

embedded in the modular system by the company 
Tinkerforge (Schloß Holte-Stukenbrock, Germany), in 
particular the IMU brick 2.0, is used. The Tinkerforge 
python API is used for the sensor control and data 
logging. The measuring range of the accelerometer is 
configured to േ4 𝑔 resulting in a 14 bit resolution with 
a maximum acquisition rate of 100 Hz. The non-linearity 
is specified by the manufacturer as max. 2 %𝐹𝑆 and the 
output noise density is specified as max. 190 𝜇𝑔 𝐻𝑧⁄  
(Bosch Sensortec, 2016). The suitability of this sensor 
for bridge monitoring has already been proven by, e.g., 
(Kemkes et al., 2019). 

The sensors are mounted on the test beam in sensor 
nodes. One sensor node consists of a hydrostatic 
leveling unit and a MEMS accelerometer, which are 
firmly connected to the test beam via an aluminum 
frame (Figure 4). 

 

 
Figure 4. A Sensor node with MEMS accelerometer and 
hydrostatic levelling - MEMS accelerometer (left) and 

hydrostatic levelling unit (right); iron beam (top). 
 

To investigate the measurement noise of the sensors, 
values were recorded over a period of one hour without 
any external load being applied. The results can be seen 
in Figure 5 and Figure 6 as the histograms of the 
captured data. 

 

 
Figure 5. Histogram of the accelerometer (mean centred) 

for the measured accelerations. 
 

The distribution of the measurements suggests an 
approximatly normal distributed noise. The classes of 
the accelerometer’s histogram were chosen with 

555



5th Joint International Symposium on Deformation Monitoring (JISDM), 20-22 June 2022, Valencia, Spain 

2022, Editorial Universitat Politècnica de València  

respect to the quantification steps of the accelerometer 
measurement. Table 1 gives an overview of the 
statistical parameters, which clearly indicate the 
difference in the sensor performance between 
hydrostatical leveling and consumer grade 
accelerometer. 

Figure 6. Histogram of the hydrostatic leveling (mean 
centred) for the measured height differences. 

Table 1. Statistical parameters of measurement noise 

Parameter Hydrostatic leveling IMU 

Mean െ1.55 ∙ 10ି଺𝑚 0.0026 𝑚 𝑠ଶ⁄
Median െ1.02 ∙ 10ି଺𝑚 0.0000 𝑚 𝑠ଶ⁄
Standard deviation     3.33 ∙ 10ିହ𝑚 0.0110 𝑚 𝑠ଶ⁄  

C. Experiment

The experiment performed is a static load test in
which several load levels are applied. A dynamic load 
only occurs in the moment of load increase and 
decrease. The load test is subject to the following 
sequence: 

1. Initialization of the measurement
2. Beam for a few seconds at rest: Based on the

values measured during this time, the external
acceleration influences of the accelerometer are
subtracted and the deformation of the
hydrostatic leveling unit is set to zero.

3. Application of the load: After the rest period, the
hydraulic press is operated with a hand pump
and the beam is loaded. After the pump has been
operated for the first time, there is a pause of a
few seconds to allow the hydrostatic leveling to
adjust. After that, the hand pump is operated
according to the same sequence until the desired 
maximum bending is reached. Each operation of
the hand pump corresponds approximately to a
deformation of 3 mm at the sensor node under
consideration. The load applied by the hydraulic
press is to be considered as a static load. No
vibrations or overruns are simulated that would
occur in a real structure.

4. Maximum load: The bridge beam remains in the
maximum displacement state for a few seconds.

5. Unloading: The beam is unloaded via the hand
pump. The beam returns to its initial position.
The data acquisition is stopped after a fade-out
time.

An example for the captured time series is shown in 
Figure 7 and Figure 8. The numbers in those figures 
correspond to the steps in the experiment sequence. 

Figure 7. Timeseries of acceleration measurements. The 
peaks indicate a change of the applied load. 

Figure 8. Timeseries of hydrostatic leveling unit 
measurements. 

III. DATA PROCESSING

The data fusion between acceleration data and height 
differences, in the following named position data, is 
done with the help of a Kalman filter. In this paper, two 
Kalman filter based variants for data fusion are 
presented. Both variants have the 1D displacement, i.e. 
the vertical deflection, as parameter. The variant A 
fuses the position data with raw acceleration 
measurements. A numerical integration of the data is 
performed using the transition matrix of the filter. The 
variant B of the filter fuses the position data with the 
already double integrated acceleration data. Numerical 
integration is performed separately in selected ambient 
windows. 

A consideration of a individual sensor calibration as 
well as corrections of temperature and atmospheric 
pressure is due to the controlled laboratory conditions 
neglected. The authors are aware of the importance of 
calibration and environmental parameter corrections 
which will both be considered in ongoing investigations. 
Possible approaches are presented by (Kemkes et al., 
2019) and (Štebe et al., 2021). 
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A. Kalman filter – Basics

The Kalman filter was developed by Rudolf Emil
Kalman in 1960. It has a great importance in the 
evaluation of dynamic time-dependent processes 
(Kalman, 1960). 

The filter consists of a system model and an 
observation model. In the system model, a state vector 
𝑘௞ାଵ is predicted for epoch 𝑘 ൅ 1 using the transition 
matrix and the state vector of epoch 𝑥௞ (Eq. 1): 

𝑥ො௞ାଵ
ି ൌ 𝑇௞ାଵ,௞ ∙ 𝑥௞

ି ൅ 𝐵௞ାଵ,௞ ∙ 𝑢௞ ൅ 𝑆௞ାଵ,௞ ∙ 𝑤௞ (1) 

𝑢௞ and 𝐵௞ାଵ,௞ are the variables for the known input 
vector and its input gain. 𝑤௞ and 𝑆௞ାଵ,௞ are the process 

error vector and its coefficient matrix. 

In Equation 1 and the following equations, the 
superscript minus denotes the predicted value and the 
superscript plus denotes the filtered value. 

The observation model describes the relationship 
between observations 𝑦௞ାଵ and the state vector 𝑥௞ାଵ 
with the measurement matrix 𝐻௞ାଵ. 𝑣௞ାଵ represents 
the vector of the measurement error (Eq. 2): 

𝑦௞ାଵ ൌ 𝐻௞ାଵ ∙ 𝑥௞ାଵ െ 𝑣௞ାଵ (2) 

In the filtering step, the system model and the 
observation model are merged using the Kalman gain 
𝐾௞ାଵ and the innovation 𝑖௞ାଵ (Eqs. 3 and 4): 

𝑥௞ାଵ
ା ൌ 𝑥௞ାଵ

ି ൅ 𝐾௞ାଵ ∙ 𝑖௞ାଵ (3) 

i௞ାଵ ൌ ሺ𝑦௞ାଵ െ 𝐻௞ାଵ ∙ 𝑥ො𝑘൅1
െ ሻ (4) 

The Kalman gain is calculated by (Eqs. 5 and 6): 

𝐾௞ାଵ ൌ 𝑄௫௫ෞ ೖశభ
ష ∙ 𝐻௞ାଵ

் ∙ ൫𝑄௜௜,௞ାଵ൯
ିଵ

(5) 

𝑄௜௜,௞ାଵ ൌ 𝑄௬௬ೖశభ
൅ 𝐻௞ାଵ ∙ 𝑄௫௫ෞ ೖశభ

ష ∙ 𝐻௞ାଵ
்  (6) 

where 𝑄௫௫ෞ ೖశభ
ష  is the cofactor matrix of the predicted 

state and 𝑄௬௬ೖశభ
 is the cofactor matrix of the 

observations. The cofactor matrix of the predicted state 
is (Eq. 7): 

𝑄௫௫ෞ ೖశభ
శ ൌ 𝑄௫௫ෞ ೖశభ

ష െ 𝐾௞ାଵ ∙ 𝑄௜௜,௞ାଵ ∙ 𝐾௞ାଵ
்

(7) 

Thus, a recursive formulation for the filtered state 
vector and its associated cofactor matrix is obtained, 
see, e.g., (Paffenholz, 2012). 

B. Kalman Filter variant A – acceleration and position

Variant A of the Kalman filter was introduced by
(Omidalizarandi et al., 2019) and used by (Štebe et al., 
2021). Both used an IATS, similar to the hydrostatic 
leveling, to provide 1D displacement data. 

The system model, introduced in Equation 1 is 
defined as follows, where 𝑞ത ൌ 0.1 is the ratio between 
the system and observation noise and ∆𝑡 is the 
acquisition interval (Eq. 8): 

൥
𝑧௞ାଵ
𝑣௞ାଵ
𝑎௞ାଵ

൩ ൌ ൦
1 ∆𝑡

1
2

∆𝑡ଶ

0 1 ∆𝑡
0 0 1

൪ ∙ ൥
𝑧௞
𝑣௞
𝑎௞

൩ ൅ 𝑆௞ାଵ,௞ ∙ 𝑤௞ 

𝑄௫௫ෞ ೖశభ
ൌ

⎣
⎢
⎢
⎢
⎢
⎡

1
20

∆𝑡ହ 1
8

∆𝑡ସ 1
6

∆𝑡ଷ

1
8

∆𝑡ସ 1
3

∆𝑡ଷ 1
2

∆𝑡ଶ

1
6

∆𝑡ଷ 1
20

∆𝑡ଶ ∆𝑡 ⎦
⎥
⎥
⎥
⎥
⎤

∙ 𝑞ത

(8) 

The position data of the hydrostatic leveling and the 
acceleration data of the IMU are available as 
observations. Before the data fusion, the accelerations 
are filtered by a moving average with a filter length of 
1 s to reduce the noise. Since the hydrostatic leveling 
unit collects data at a frequency of 2 Hz and the 
accelerometer collects data at a frequency of 80 Hz, the 
observation equation changes depending on which 
observations are present. When both observations are 
present, the following expression applies (Eq. 9): 

ቂ
𝑧௞ାଵ
𝑎௞ାଵ

ቃ ൌ ቂ1 0 0
0 0 1

ቃ ∙ ൥
𝑧௞
𝑣௞
𝑎௞

൩ െ 𝑣௞ାଵ 

𝑄௬௬ೖశభ
ൌ ൤

𝜎ு௅
ଶ 0
0 𝜎௔

ଶ൨

(9) 

𝜎ு௅ is the hydrostatic leveling’s standard deviation 
obtained from the experiment sequence 2. 𝜎௔ is the 
standard deviation of the filtered acceleration signal. 

If there is only one acceleration, then applies (Eq. 10): 

ሾ𝑎௞ାଵሿ ൌ ሾ0 0 1ሿ ∙ ൥
𝑧௞
𝑣௞
𝑎௞

൩ 

𝑄௬௬ೖశభ
ൌ ሾ𝜎௔

ଶሿ 

(10) 

In addition to Kalman filtering, a Rauch Tung Striebel 
filter is applied to smoothen the time series (Rauch et 
al., 1965). 

C. Kalman Filter variant B – integration and position

In this variant B, the measured position of the
hydrostatic leveling is fused with the dual integrated 
observations of the acceleration sensors. 

Ambient windows are used to separate the 
acceleration time series in blocks with the relevant load 
signal. Load signals are identified as peaks in the 
acceleration time series that are greater than five times 
the calculated standard deviation. The size of the 
window is set to 0.5 s before the peak and 2 s after the 
peak (Figure 9). 
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Figure 9. Selection of an ambient window – measurement 
noise (blue); ambient window raw acceleration (orange); 

limits of the ambient window (red). 

To reduce the sensor drift induced by the numerical 
integration special integration algorithms have to be 
utilized. Possible integration methods of this signal 
would be a zero-phase filter (Štebe et al., 2021), the 
method of the supporting polynomial (Resnik, 2014), 
the modeling of the acceleration time series and 
subsequent integration or the direct modeling of the 
deformations based on the acceleration (Gindy et al., 
2008). 

The results shown here were obtained using the zero-
phase filter method. Consideration of other integration 
algorithms and their comparison will be the subject of 
future work. 

The integration algorithm of the zero-phase filter is 
shown in Figure 10. After each integration, a zero-phase 
filter is applied to eliminate the low frequency drift. The 
filter is a sixth order Butterworth filter with a cut off 
frequency of 0.2 Hz. In addition, a domain correction is 
applied after the first integration, considering the 
boundary condition 𝑣଴ ൌ 𝑣௘௡ௗ (Gindy et al., 2007). 

Figure 10. Integration algorithm - zero phase filter. 

As a result of the selection of the ambient window 
and integration, the deformations are available in each 
of the ambient windows, where each ambient window 
starts with a deformation of zero (Figure 11). 

1) The data fusion and Kalman filtering: The
system model of this variant of the Kalman filter is 
defined as follows (Eq. 11): 

ሾ𝑧௞ାଵሿ ൌ ሾ1ሿ ∙ ሾ𝑧௞ሿ ൅ 𝑆௞ାଵ,௞ ∙ 𝑤௞ 

𝑄௫௫ෞ ೖశభ
ൌ 𝑞ത 

(11) 

The observation model must be adapted depending 
on which observations are available. A distinction is 
made between the following cases: 

1. No observation (Eq. 12):

ሾ𝑧௞ାଵሿ ൌ ሾ0ሿ ∙ ሾ𝑥௞ାଵሿ െ 𝑣௞ାଵ 
𝑄௬௬ೖశభ

ൌ ሾ0ሿ 
(12) 

2. Hydrostatic leveling observation (Eq. 13):

ൣ𝑧ு௅,௞ାଵ൧ ൌ ሾ1ሿ ∙ ሾ𝑥௞ାଵሿ െ 𝑣௞ାଵ

𝑄௬௬ೖశభ
ൌ ሾ𝜎ு௅

ଶ ሿ 
(13) 

3. MEMS accelerometer observation (Eq. 14):

ൣ𝑧௣௦௘௨ௗ௢,௞ାଵ൧ ൌ ሾ1ሿ ∙ ሾ𝑥௞ାଵሿ െ 𝑣௞ାଵ

𝑄௬௬ೖశభ
ൌ ሾ𝜎௔

ଶሿ 
(14) 

4. Both observations (Eq. 15):

ቂ
𝑧ு௅,௞ାଵ

𝑧௣௦௘௨ௗ௢,௞ାଵ
ቃ ൌ ቂ1

1
ቃ ∙ ሾ𝑥௞ାଵሿ െ 𝑣௞ାଵ

𝑄௬௬ೖశభ
ൌ ൤

𝜎ு௅
ଶ 0
0 𝜎௔

ଶ൨
(15) 

Figure 11. Numerical integration with ZPF Filter - 
acceleration (blue); velocity (green); displacement (red). 

In Equations 14 and 15, the integrated accelerations 
are considered as a pseudo observation 𝑧௣௦௘௨ௗ௢. To 

avoid accumulations of the integration error, a 
difference of the integrated accelerations is added to 
the last filtered state value (Eq. 16):  

𝑧௜௡௧௘௚௥௔௧௜௢௡,௞ାଵ ൌ 𝑧௞ ൅ ∆𝑧௣௦௘௨ௗ௢ 

ൌ 𝑧௞ ൅ ൫𝑧௣௦௘௨ௗ௢,௞ାଵ െ 𝑧௣௦௘௨ௗ௢,௞൯ 
(16) 

IV. RESULTS

Figure 12 and Figure 13 show the results of the data 
fusion using variant A, which has also been used by 
other researchers in differing scenarios with a 
combination between IATS and MEMS accelerometer. 
The input parameters are the mean-filtered 
acceleration measurements and the position data from 
the hydrostatic leveling. The variances of the 
measurement noise are used as cofactors. 
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Figure 12. Result Kalman Filter variant A - Fusion of 
Acceleration with position – hydrostatic leveling (green); 

Kalman output (blue); RTS Smoother (cyan). 

Figure 13. Result Kalman filter variant A – Selection. The 
Kalman output drifts in one direction until it is updated with 

a position measurement – hydrostatic leveling (green); 
Kalman output (blue); RTS Smoother (cyan). 

It can be seen that the acquired time series mainly 
follows the hydrostatic leveling observations. However, 
especially in the moments of the load application strong 
oscillations can be seen. On the one hand, this is a result 
of the drift of the accelerometer, as shown in Figure 13. 
On the other hand, the oscillations are also caused by 
vibrations of the water column in the hydrostatic 
leveling unit, see Figure 12. 

The result of the RTS filter strongly approximates the 
observations of the hydrostatic leveling, because of the 
standard deviation-based cofactors of the filter. 

The results of filter variant B are shown in Figure 14 
and Figure 15. It can be seen that the integrated 
ambient windows describe the deformation adequately 
in most cases. With the presented filter variant, it is 
possible to reduce the sensor drift of the MEMS 
accelerometer in the position domain as well as to 
significantly reduce the deviations caused by 
oscillations in the water column in the hydrostatic 
leveling. 

The overall course of the time series is thus smoother 
and is less influenced by deflections caused by the 
measuring system, see blue curve in Figure 14. 

Even though most of the loading cycles show good 
results, further investigations on the performance of 
numerical integration algorithms are necessary to be 
able to represent different types of deformations (static 
and dynamic) and different magnitudes of deflections. 

Once this is done, the data acquisition can be 
extended to multiple sensor nodes to calculate a 

bending line from the computed deformations. To 
support this bending line calculation, further 
measurement quantities of the MEMS IMU should be 
included, e.g., acceleration in the beam axis, Euler angle 
or quaternions. 

Figure 14. Result Kalman filter variant B – Fusion of 
integration and position – hydrostatic leveling (green); 

Kalman output (blue); numerical integration (red). 

Figure 15. Result Kalman filter variant B – Selection. The 
Kalman output is updated by but not fully dependent on the 
position measurement – hydrostatic leveling (green); Kalman 

output (blue); numerical integration (red). 

V. CONCLUSIONS

In this paper, a sensor fusion between a hydrostatic 
leveling system and a consumer grade MEMS 
accelerometer was investigated on a special test rig. 
The experiment shows that the hydrostatic leveling 
system provides accurate measurements when static 
loads are applied. However, the measurements are 
inaccurate in the moments of dynamic load. A possible 
approach for the enhancement of the is presented in 
the addition of a MEMS accelerometer. 

Two variants of a Kalman filter were presented for 
data fusion. Variant A was used in the past by 
(Omidalizarandi, 2020) and (Štebe et al., 2021) under 
different boundary conditions. Different from this 
paper, both authors made use an IATS for the 1D CUPT, 
the types of deformation and load were different, and 
the objective of (Omidalizarandi, 2020) was to 
determine the modal parameters of the bridge. For this 
specific load and sensor combination, variant A is less 
suitable because the hydrostatic leveling provides 
inaccurate results at times of dynamic loading. 

Variant B shows promising results, since the drift of 
the accelerometer measurements is reduced by the 
double integration in the ambient window and thus the 
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dependency on a 1D CUPT is reduced. In particular, 
when the hydrostatic leveling units provide inaccurate 
measurements while the double integrated 
acceleration data can describe the deformation 
adequately. 

The other integration algorithms have to be 
investigated with respect to their influence on the filter 
approach. Also under review in future work is the 
identification of dynamic load periods by means of the 
acceleration measurements to judge the hydrostatic 
leveling data in the same period. 

In the future, a reference measurement needs to be 
included that can capture the deformation behavior 
during dynamic loading in particular, for example a 
profile scanner. 
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