

MDPI

Article

Derivative-Free Iterative Schemes for Multiple Roots of Nonlinear Functions

Himani Arora ¹, Alicia Cordero ²,*, Juan R. Torregrosa ², Ramandeep Behl ³ and Sattam Alharbi ³

- Department of Mathematics, Guru Nanak Dev University, Amritsar 143005, India; arorahimani362@gmail.com
- Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 València, Spain; jrtorre@mat.upv.es
- Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ramanbehl87@yahoo.in (R.B.); rlal@kau.edu.sa (S.A.)
- * Correspondence: acordero@mat.upv.es

Abstract: The construction of derivative-free iterative methods for approximating multiple roots of a nonlinear equation is a relatively new line of research. This paper presents a novel family of one-parameter second-order techniques. Our schemes are free from derivatives and have been designed to find multiple roots ($m \ge 2$). The new techniques involve the weight function approach. The convergence analysis for the new family is presented in the main theorem. In addition, some special cases of the new class are discussed. We also illustrate the applicability of our methods on van der Waals, Planck's radiation, root clustering, and eigenvalue problems. We also contrast them with the known methods. Finally, the dynamical study of iterative schemes also provides a good overview of their stability.

Keywords: nonlinear equations; Steffensen's method; multiple roots

MSC: 65G99; 65H05

Citation: Arora, H.; Cordero, A.; Torregrosa, J.R.; Behl, R.; Alharbi, S. Derivative-Free Iterative Schemes for Multiple Roots of Nonlinear Functions. *Mathematics* **2022**, *10*, 1530. https://doi.org/10.3390/ math10091530

Academic Editors: Xiangmin Jiao and Carlo Bianca

Received: 9 March 2022 Accepted: 28 April 2022 Published: 3 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The modified Newton's method is one of the basic schemes used to find multiple roots (x_*) of a nonlinear equation f(x) = 0. Its iterative expression is

$$x_{p+1} = x_p - m \frac{f(x_p)}{f'(x_p)}, p = 0, 1, 2 \dots,$$

where f is an analytic function in a neighborhood of the zero x_* . In addition to this, m is the multiplicity of x_* . Sometimes, the derivative f'(x) may be expensive to calculate or may indeed be unavailable. To overcome this problem, Traub–Steffensen replaced the derivative of the function in the modified Newton's method by the divided difference

$$f'(x) \approx f[w_p, x_p] = \frac{f(w_p) - f(x_p)}{w_p - x_p},$$

where $w_p = x_p + f(x_p)$. Therefore, the modified Newton's method becomes

$$x_{p+1} = x_p - m \frac{f(x_p)}{f[w_p, x_p]} p = 0, 1, 2...$$

This expression is called the modified Traub–Steffensen method.

In the literature, there are many iterative methods for finding the multiple roots of f(x) = 0, (see, for example [1–5]). Such methods require the evaluations of first or higher-order derivatives. The motivation for developing high order methods is closely related to

Mathematics 2022, 10, 1530 2 of 13

the Kung–Traub conjecture [6]. It establishes an upper bound for the order of convergence $\rho \leq 2^{d-1}$, where ρ is the order of convergence and d is the number of functional evaluations. Any iterative method without memory attaining the maximum bound of the Kung–Traub conjecture is called an optimal method.

Contrary to the methods that require derivative evaluation, the derivative-free techniques for multiple roots are exceptionally uncommon. The main issue with generating such techniques is the difficulty of finding their convergence order. Derivative-free procedures are significant when the derivative of function f is hard to evaluate, costly to compute, or does not exist. To deepen in this aspects, please refer to [7–9].

The main aim of this manuscript was to design a general class of derivative-free methods. The construction of our technique involved the based weight function procedure. We develop several new and existing methods when the specific weight functions are chosen according to the conditions of Theorem 1. The rest of the paper is as follows. In Section 2, the new family and its convergence order are considered. In Section 3, some test functions are proposed to check the performance of the new methods from two points of view: the basin of attraction (for observing the dependence on initial estimations) and the numerical results with high precision.

2. Construction of a Higher-Order Scheme

Here, we construct an optimal second-order family of the Steffensen-type method [10] for multiple zeros $(m \ge 2)$, which is defined by

$$x_{p+1} = x_p - mH(t_p), \ p = 0, 1, 2...,$$
 (1)

where $t_p = \frac{f(x_p)}{f[\mu_p,\nu_p]}$, $\mu_p = x_p + \alpha f(x_p)$, $\nu_p = x_p - \alpha f(x_p)$, $\alpha \in \mathbb{R}$, $\alpha \neq 0$, and $m \geq 2$ is the known multiplicity of the required zero. In addition, H(t) is a weight function of variable $t = \frac{f(x)}{f[\mu,\nu]}$.

In Theorem 1, we illustrate that the constructed scheme (1) attains the maximum second-order of convergence for all $\alpha \in \mathbb{R}$, $\alpha \neq 0$.

Theorem 1. Let us assume $x = x_*$ (say) as multiple zero of multiplicity $m \ge 2$ of the analytical function $f : \mathbb{D} \subset \mathbb{C} \to \mathbb{C}$, being \mathbb{D} a neighborhood of x_* . Then, scheme (1) has the second-order of convergence, when

$$H(0) = 0, \ H'(0) = 1, \ |H''(0)| < \infty,$$
 (2)

and satisfies the following error equation

$$e_{p+1} = \left(\frac{1}{m}A_1 - \frac{H''(0)}{2m}\right)e_p^2 + O(e_p^3).$$

Proof. Let us consider that $e_p = x_p - x_*$ and $A_j = \frac{m!}{(m+j)!} \frac{f^{(m+j)}(x_*)}{f^{(m)}(x_*)}$, j = 1,2 are the errors in pth iteration and asymptotic error constant numbers, respectively. Now, we generate Taylor series expansions of functions $f(x_p)$, $f(\mu_p)$ and $f(\nu_p)$ around x_* assuming $f(x_*) = f'(x_*) = f^{(m-1)}(x_*) = 0$ and $f^{(m)}(x_*) \neq 0$,

$$f(x_p) = \frac{f^{(m)}(x_*)}{m!} e_p^m \left(1 + A_1 e_p + A_2 e_p^2 + O(e_p^3) \right), \tag{3}$$

$$f(\mu_p) = \frac{f^m(x_*)}{m!} e_p^m \left[1 + \Lambda_0 e_p^1 + \Lambda_1 e_p^2 + O(e_p^3) \right]$$
 (4)

and

$$f(\mu_p) = \frac{f^m(x_*)}{m!} e_p^m \left[1 + \bar{\Lambda}_0 e_p^1 + \bar{\Lambda}_1 e_p^2 + O(e_p^3) \right], \tag{5}$$

Mathematics 2022, 10, 1530 3 of 13

where

$$\Lambda_{0} = \begin{cases} \alpha f''(x_{*}) + A_{1}, & m = 2 \\ A_{1}, & m \geq 3 \end{cases}, \\
\Lambda_{1} = \begin{cases} \frac{1}{4} \left(\alpha^{2} f''(x_{*})^{2} + 10\alpha A_{1} f''(x_{*}) + 4A_{2} \right), & m = 2 \\ \frac{1}{2} \left(\alpha f'''(x_{*}) + 2A_{2} \right), & m = 3 \\ A_{2}, & m \geq 4, \end{cases}, \\
\bar{\Lambda}_{0} = \begin{cases} -\alpha f''(x_{*}) + A_{1}, & m = 2 \\ A_{1}, & m \geq 3 \end{cases}, \\
m = 2, \\
m \geq 3, \\
m \geq$$

and

$$\bar{\Lambda}_1 = \begin{cases} \frac{1}{4} \left(\alpha^2 f''(x_*)^2 - 10\alpha A_1 f''(x_*) + 4A_2 \right), & m = 2\\ \frac{1}{2} \left(-\alpha f'''(x_*) + 2A_2 \right), & m = 3\\ A_2 & m \ge 4, \end{cases}.$$

By employing expressions (3)–(5), we obtain

$$t_p = \frac{f(x_p)}{f[\nu_p, \mu_p]} = \frac{1}{m}e_p - \frac{A_1}{m^2}e_p^2 + O(e_p^3).$$
 (6)

Expression (6) demonstrates that t_p is of order one ($t_p = O(e_p)$). Then, we have

$$H(t_p) = H(0) + H'(0)t_p + \frac{1}{2!}H''(0)t_p^2.$$
(7)

By inserting expression (7) in scheme (1),

Next, by replacing (9) in (8), we have

$$e_{p+1} = -mH(0) + \left(1 - H'(0)\right)e_p + \left(\frac{H'(0)}{m}A_1 - \frac{H''(0)}{2m}\right)e_p^2 + O(e_p^3).$$
 (8)

From (8), we deduce that scheme (1) reaches at least the second-order of convergence,

$$H(0) = 0$$
 and $H'(0) = 1$. (9)

$$e_{p+1} = \left(\frac{1}{m}A_1 - \frac{H''(0)}{2m}\right)e_p^2 + O(e_p^3). \tag{10}$$

Hence, scheme (1) has the second-order convergence for $m \ge 2$. \square

Particular Cases

if

In this section, we show that we can produce as many new derivative-free methods and numbers of weight functions that can be constructed. However, all of the weight functions should satisfy the conditions of Theorem 1. Some of the important cases are mentioned in Table 1.

Mathematics 2022, 10, 1530 4 of 13

Cases	Weight Functions	Corresponding Iterative Method
Case-1	H(t) = t	$x_{p+1} = x_p - mt_p.$
Case-2	$H(t) = t + \frac{1}{2}t^2$	$x_{p+1} = x_p - m\left(t_p + \frac{t_p^2}{2}\right).$
Case-3	$H(t) = \frac{\alpha_1 t}{\alpha_1 + t}, \ \alpha_1 \neq 0 \in \mathbb{R}$	$x_{p+1} = x_p - m\left(\frac{\alpha_1 t_p}{\alpha_1 + t_p}\right).$
Case-4	$H(t) = \frac{t}{1 + \alpha_2 t^2}, \ \alpha_2 \in \mathbb{R}$	$x_{p+1} = x_p - m\left(\frac{t_p}{1 + \alpha_2 t_p^2}\right).$
Case-5	$H(t) = \frac{t}{1 + \alpha_3 t + \alpha_4 t^2}$, α_3 , $\alpha_4 \in \mathbb{R}$	$x_{p+1} = x_p - m \left(\frac{t_p}{1 + \alpha_3 t_p + \alpha_4 t_p^2} \right).$
Case-6	$H(t) = \frac{t + \alpha_5 t^2}{1 + \alpha_6 t}$	$x_{p+1} = x_p - m \left(\frac{t_p + \alpha_5 t_p^2}{1 + \alpha_6 t_p} \right).$
Case-7	$H(t) = \frac{1}{2} \left(\sin t + t \right)$	$x_{p+1} = x_p - \frac{m}{2} \Big(\sin t_p + t_p \Big).$
Case-8	$H(t) = \cos t + t + 1$	$x_{p+1} = x_p - m\Big(\cos t_p + t_p + 1\Big).$

Table 1. Some special cases of our scheme (1).

3. Numerical Experimentation

Now, we check the effectiveness of our proposed iterative methods. We employ some members of our class: specifically case-4 (for $\alpha_2=\frac{1}{100}$), (for $\alpha_2=\frac{1}{10}$), and case-6 (for $\alpha_5=1$, $\alpha_6=\frac{m}{5}$), (for $\alpha_5=\frac{6}{10}$, $\alpha_6=1$) and (for $\alpha_5=\frac{1}{10}$, $\alpha_6=0$), denoted by (PM1), (PM2), (PM3), (PM4), and (PM5), respectively. We compare our methods with the following schemes:

A second order modified Traub-Steffensen method for multiple zeros, which is given by:

$$x_{p+1} = x_p - m \frac{f(x_p)}{f[\mu_p, x_p]}. (11)$$

We denote this method by (MDM).

In addition, we compare the previous schemes with five methods, selected as best among the methods suggested in [11]. These were proposed by Kumar et al. in [11] for multiple zeros and are described in Table 2.

Table 2. Different methods of Kumar et al. [11] scheme.

Methods	Value of Disposable	Denoted by Parameter
$x_{p+1} = x_p - \frac{m\Theta_p}{1 + b_1\Theta}$, where $\Theta_p = \frac{f(x_p)}{f[\mu_p, x_p]}$	$b_1 = \frac{1}{4}$	Method 1 (KM1)
$x_{p+1} = x_p - \frac{m\Theta_p}{1 + mb_2\Theta_p}$, where $\Theta_p = \frac{f(x_p)}{f[\mu_p, x_p]}$	$b_2 = \frac{1}{10}$	Method 2 (KM2)
$x_{p+1} = x_p - m(e^{\Theta_p} - 1)$, where $\Theta_p = \frac{f(x_p)}{f[\mu_p, x_p]}$	-	Method 3 (KM3)
$x_{p+1} = x_p - m \log \left(\Theta_p + 1\right)$, where $\Theta_p = \frac{f(x_p)}{f[\mu_p, x_p]}$	-	Method 4 (KM4)
$x_{p+1} = x_p - rac{\Theta_p}{\left(rac{1}{\sqrt{m}} + b_3\Theta ight)^2}$, where $\Theta_p = rac{f(x_p)}{f[\mu_p, x_p]}$	$b_3 = \frac{1}{10}$	Method 5 (KM5)

Finally, we also compare with a second order method proposed by Kansal et al. [12], which is given by

$$x_{p+1} = x_p - m \frac{(1-b)f(\mu_p) + bf(x_p)}{f[\mu_p, x_p]}, \quad b \in \mathbb{R}.$$
 (12)

Mathematics 2022, 10, 1530 5 of 13

Expression (12), is respectively denoted by (MM1), (MM2), (MM3), and (MM4) for $b = \frac{6}{7}$, $\frac{2}{3}$, $\frac{3}{4}$, and $\frac{5}{6}$. These values of parameter b are the best for the numerical results, as claimed by Kansal et al. in [12].

The nonlinear problems to be solved are mentioned in Examples 1–4. In Tables 3–6, we display the values of absolute residual errors $|f(x_p)|$, number of iterations in order to attain the desired accuracy, and the absolute errors $|x_{p+1} - x_p|$. All the values are calculated for $\alpha = -0.1$. Further, we employ the ACOC, suggested by Cordero and Torregrosa in [13],

$$\rho \approx \frac{\ln |\check{e}_{p+1}/\check{e}_p|}{\ln |\check{e}_p/\check{e}_{p-1}|},\tag{13}$$

where $\check{e}_p = x_p - x_{p-1}$ and there is no need of exact zero.

During the current numerical experiments with Mathematica (Version-9), all computations were done with 1000 digits of mantissa, minimizing round-off errors. The $(q_1 \pm q_2)$ denotes as $(q_1 \times 10^{\pm q_2})$. The configuration of the used computer is given below:

- Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz;
- Made: HP;
- RAM: 8:00 GB;
- System type: 64-bit-operating system, x64-based processor.

Moreover, for each example, the stability of new and existing methods was compared through the basin of attraction technique: new and known methods were used to solve each problem by using a mesh of 400×400 points in a region of the complex plane, including the searched root (see, for example, [14]). Each point of this mesh was used as the starting point. If the method converges to one root of the nonlinear function in less than 80 iterations, the point appears in orange or green; in any other case, it appears in black. The tolerance used to set the convergence to the roots is 10^{-3} in double-precision arithmetic. Using this technique, the set of starting points that converge to the root appears as a colored area in the complex plane. The wideness of these regions means that the method's dependence on the starting guess is weak and, therefore, the method is considered stable.

Example 1. It is known that, to find the eigenvalues of a large matrix whose order is greater than 4, we need to solve its characteristic equation. The determination of roots of such a higher order characteristic equation is a difficult task if we apply the linear algebra approach. So, one of the best ways is to use numerical techniques. Let us consider the following square matrix of order 9.

$$A = \frac{1}{8} \begin{pmatrix} -12 & 0 & 0 & 19 & -19 & 76 & -19 & 18 & 437 \\ -64 & 24 & 0 & -24 & 24 & 64 & -8 & 32 & 376 \\ -16 & 0 & 24 & 4 & -4 & 16 & -4 & 8 & 92 \\ -40 & 0 & 0 & -10 & 50 & 40 & 2 & 20 & 242 \\ -4 & 0 & 0 & -1 & 41 & 4 & 1 & 2 & 25 \\ -40 & 0 & 0 & 18 & -18 & 104 & -18 & 20 & 462 \\ -84 & 0 & 0 & -29 & 29 & 84 & 21 & 42 & 501 \\ 16 & 0 & 0 & -4 & 4 & -16 & 4 & 16 & -92 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 24 \end{pmatrix},$$

whose characteristic equation is defined by function

$$f_1(x) = x^9 - 29x^8 + 349x^7 - 2261x^6 + 8455x^5 - 17663x^4 + 15927x^3 + 6993x^2 - 24732x + 12960.$$
 (14)

A real zero of $f_1(x)$ is $x_* = 3$, with multiplicity m = 4.

Table 3 depicts the better performance of the proposed scheme in comparison to the existing techniques by taking the initial guess $x_0 = 2.5$. Our proposed methods provide less residual and functional errors than existing ones.

Mathematics **2022**, *10*, 1530 6 of 13

Table 3. Comparison of different iterative methods on Example 1.

$\begin{array}{c} MDM \\ 5 \\ 3.0000000000000000000 \\ 4.1 (-99) \\ 6.0 (-13) \\ 1.999 \\ 8.5 (-26) \\ 2.000 \\ 4 \\ 3.0000000000000000000 \\ 3.8 (-407) \\ 1.7 (-511) \\ 2.000 \\ 1.8 (-407) \\ 1.7 (-511) \\ 2.000 \\ 3.0 (-102) $	Methods	p	x_{p+1}	$ f(x_{p+1}) $	$ x_{p+1}-x_p $	ρ
6 3.000000000000000000000000000000000000	MDM					1.999
KM1 4 3.000000000000000000000000000000000000		5				
KM1 5 3.000000000000000000 1.7 (-204) 4.7 (-26) 2.000 4 3.000000000000000000 3.5 (-413) 3.8 (-52) 2.000 KM2 5 3.000000000000000000 3.0 (-102) 3.2 (-13) 1.999 KM2 5 3.00000000000000000 3.0 (-102) 1.4 (-26) 2.000 6 3.000000000000000000000000000000000 3.3 (-105) 8.4 (-14) 2.000 KM3 5 3.000000000000000000000000000000000000		6	3.00000000000000000000	1.8 (-407)	1.7 (-51)	2.000
6 3.000000000000000000000000000000000000			3.00000000000000000000	\ /		1.999
KM2 4 3.000000000000000000000000000000000000	KM1					
KM2 5 3.000000000000000000000000000000000000		6	3.00000000000000000000	3.5 (-413)	3.8 (-52)	2.000
6 3.000000000000000000000000000000000000			3.000000000000000000000		\ /	1.999
KM3 4 3.000000000000000000000000000000000000	KM2	5		\ /	\ /	
KM3 5 3.000000000000000000000000000000000000		6	3.00000000000000000000	6.8 (-423)	2.6 (-53)	2.000
6 3.000000000000000000000000000000000000						
KM4 3.000000000000000000000000000000000000	KM3					
KM4 5 3.0000000000000000000 2.8 (-213) 4.6 (-27) 2.000 4 3.0000000000000000000 1.6 (-431) 2.4 (-54) 2.000 KM5 5 3.00000000000000000 1.8 (-209) 1.3 (-26) 2.000 6 3.000000000000000000 1.5 (-423) 2.2 (-53) 2.000 MM1 5 3.000000000000000 5.9 (-114) 8.3 (-15) 2.000 MM1 5 3.000000000000000 7.7 (-467) 6.5 (-59) 2.000 MM2 3.000000000000000000 7.7 (-467) 6.5 (-59) 2.000 MM2 5 3.000000000000000 7.7 (-467) 6.5 (-59) 2.000 MM2 5 3.000000000000000 7.5 (-134) 2.7 (-17) 2.000 MM3 5 3.0000000000000000 7.5 (-134) 2.7 (-17) 2.000 MM3 5 3.0000000000000000 2.3 (-271) 1.8 (-34) 2.000 MM4 5 3.0000000000000000 2.3 (-117) 3.1 (-15) 2.000 M		6	3.0000000000000000000	1.2 (-429)	2.3 (-54)	2.000
6 3.000000000000000000000000000000000000			3.00000000000000000000	\ /	` /	1.998
KM5 4 3.000000000000000000000000000000000000	KM4					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	3.00000000000000000000	1.6 (-431)	2.4 (-54)	2.000
$\begin{array}{c} 6 \\ 3.00000000000000000000 \\ 1.5 \left(-423\right) \\ 2.2 \left(-53\right) \\ 2.000 \\ 2.000 \\ 3.0000000000000000000 \\ 6 \\ 3.00000000000000000 \\ 6 \\ 3.0000000000000000 \\ 6 \\ 3.000000000000000 \\ 6 \\ 3.00000000000000 \\ 6 \\ 3.00000000000000 \\ 6 \\ 3.00000000000000 \\ 6 \\ 3.00000000000000 \\ 6 \\ 3.00000000000000 \\ 6 \\ 3.00000000000000 \\ 6 \\ 3.00000000000000 \\ 7.5 \left(-134\right) \\ 2.7 \left(-17\right) \\ 2.000 \\ 7.5 \left(-134\right) \\ 2.000 \\ 7.5 \left(-134\right) \\ 2.7 \left(-17\right) \\ 2.000 \\ 7.5 \left(-134\right) \\ 2.000 \\ 7.5 \left(-17\right) \\ 2.000 \\ 7.5 \left(-134\right) \\ 2.1 \left(-238\right) \\ 2.3 \left(-34\right) \\ 2.000 \\ 2.000 \\ 2.1 \left(-238\right) \\ 2.3 \left(-34\right) \\ 2.000 \\ 2.000 \\ 2.1 \left(-238\right) \\ 2.3 \left(-34\right) \\ 2.000 \\ 2.0$		4	3.00000000000000000000	2.0 (-102)	3.0(-13)	1.999
$\begin{array}{c} MM1 & 3.00000000000000000 \\ MM1 & 5 & 3.00000000000000000 \\ 6 & 3.000000000000000000 \\ 1.4 & (-231) & 1.6 & (-29) & 2.000 \\ 6 & 3.00000000000000000 & 7.7 & (-467) & 6.5 & (-59) & 2.000 \\ 4 & 3.000000000000000000 & 5.8 & (-176) & 1.5 & (-22) & 2.000 \\ 6 & 3.00000000000000000 & 1.3 & (-355) & 5.2 & (-45) & 2.000 \\ 6 & 3.0000000000000000 & 7.1 & (-715) & 6.4 & (-90) & 2.000 \\ 4 & 3.000000000000000 & 7.5 & (-134) & 2.7 & (-17) & 2.000 \\ MM3 & 5 & 3.00000000000000 & 2.3 & (-271) & 1.8 & (-34) & 2.000 \\ 6 & 3.0000000000000000 & 2.0 & (-546) & 7.3 & (-69) & 2.000 \\ MM4 & 5 & 3.000000000000000 & 2.1 & (-238) & 2.3 & (-30) & 2.000 \\ 6 & 3.000000000000000000 & 2.1 & (-238) & 2.3 & (-30) & 2.000 \\ 6 & 3.000000000000000000 & 1.8 & (-480) & 1.3 & (-60) & 2.000 \\ PM1 & 5 & 3.00000000000000000 & 1.4 & (-278) & 2.2 & (-35) & 2.000 \\ 6 & 3.0000000000000000000 & 1.4 & (-278) & 2.2 & (-35) & 2.000 \\ PM2 & 5 & 3.00000000000000000 & 7.4 & (-137) & 9.5 & (-185) & 2.000 \\ PM2 & 5 & 3.00000000000000000 & 7.4 & (-137) & 9.5 & (-185) & 2.000 \\ PM3 & 5 & 3.00000000000000000 & 7.4 & (-137) & 9.5 & (-185) & 2.000 \\ PM3 & 5 & 3.00000000000000000 & 3.4 & (-122) & 7.1 & (-16) & 2.000 \\ PM3 & 5 & 3.00000000000000000 & 3.4 & (-122) & 7.1 & (-16) & 2.000 \\ PM4 & 5 & 3.00000000000000000 & 3.4 & (-122) & 7.1 & (-16) & 2.000 \\ PM4 & 5 & 3.00000000000000000 & 3.2 & (-248) & 1.4 & (-31) & 2.000 \\ PM4 & 5 & 3.0000000000000000 & 3.2 & (-248) & 1.4 & (-31) & 2.000 \\ PM4 & 5 & 3.0000000000000000 & 3.2 & (-249) & 5.9 & (-63) & 2.000 \\ PM4 & 5 & 3.00000000000000000 & 1.3 & (-467) & 6.8 & (-59) & 2.000 \\ 6 & 3.0000000000000000000 & 7.1 & (-940) & 6.3 & (-118) & 2.000 \\ 6 & 3.00000000000000000000 & 7.1 & (-940) & 6.3 & (-118) & 2.000 \\ 6 & 3.00000000000000000000000000000000000$	KM5					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	3.0000000000000000000	1.5(-423)	2.2 (-53)	2.000
$\begin{array}{c} 6 \\ 3.00000000000000000000000000000000000$		4	3.000000000000000000000		8.3(-15)	2.000
$\begin{array}{c} MM2 & 3.000000000000000000 \\ MM2 & 5 & 3.00000000000000000 \\ 6 & 3.00000000000000000 \\ 7.1 & (-715) \\ 6.4 & (-90) \\ 2.000 \\ \end{array}$	MM1			(/		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	3.00000000000000000000	7.7 (-467)	6.5 (-59)	2.000
6 3.000000000000000000000000000000000000			3.000000000000000000000	\ /	` /	2.000
MM3 4 3.000000000000000000000000000000000000	MM2					
$\begin{array}{c} MM3 & 5 \\ 6 & 3.00000000000000000000000000000000000$		6	3.00000000000000000000	7.1 (-715)	6.4 (-90)	2.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				\ /	` /	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MM3					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	3.00000000000000000000			2.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MM4					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	3.00000000000000000000	1.8 (-480)		2.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					\ /	
$\begin{array}{c} PM2 & 4 & 3.00000000000000000000000000000000000$	PM1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	3.00000000000000000000	7.6 (-561)	1.1 (-70)	2.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.00000000000000000000		`	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PM2					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	3.00000000000000000000	1.9 (-558)	2.3 (-70)	2.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	РМ3				, ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				\ /	'	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	3.000000000000000000000			2.000
6 3.00000000000000000 7.1 (-940) 6.3 (-118) 2.000 4 3.00000000000000000 9.6 (-130) 8.4 (-17) 2.000 PM5 5 3.00000000000000000 5.5 (-263) 1.9 (-33) 2.000	PM4			` /		
4 3.000000000000000000 9.6 (-130) 8.4 (-17) 2.000 PM5 5 3.000000000000000 5.5 (-263) 1.9 (-33) 2.000				\ /		
<i>PM</i> 5 5 3.0000000000000000 5.5 (-263) 1.9 (-33) 2.000		6	3.000000000000000000000	7.1 (-940)	6.3 (-118)	2.000
	PM5			\ /	` /	
6 3.00000000000000000 1.8 (-529) 9.1 (-67) 2.000				(/		
		6	3.000000000000000000000	1.8 (-529)	9.1 (-67)	2.000

Mathematics **2022**, *10*, 1530 7 of 13

 $\textbf{Table 4.} \ \ \text{Comparison of different iterative methods on Example 2.}$

Methods	p	x_{p+1}	$ f(x_{p+1}) $	$ x_{p+1}-x_p $	ρ
MDM	4	1.75000000000000061716	1.1 (-30)	1.9 (-8)	1.993
	5	1.7500000000000000000	1.2(-56)	6.2(-15)	2.000
	6	1.75000000000000000000	1.4 (-108)	6.3 (-28)	2.000
	4	1.75000000000000084340	2.1 (-30)	2.2(-8)	1.993
KM1	5	1.75000000000000000000	4.3 (-56)	8.4 (-15)	2.000
	6	1.75000000000000000000	1.7 (-107)	1.2 (-27)	2.000
<i>V.</i> 14.0	4	1.7500000000000079272	1.9 (-30)	2.2(-8)	1.993
KM2	5 6	1.7500000000000000000 1.75000000000000000000	3.3 (-56) $1.0 (-107)$	7.9 (-15) $1.1 (-27)$	2.000 2.000
KM3	4 5	1.7500000000000032471 1.750000000000000000000	3.2 (-31) 9.0 (-58)	1.4 (-8) $3.2 (-15)$	1.994 2.000
KIVIS	6	1.75000000000000000000000000000000000000	7.3 (-111)	1.7 (-28)	2.000
KM4	4 5	1.7500000000000114420 1.750000000000000000000	3.9 (-30) $1.5 (-55)$	2.6 (-8) $1.1 (-14)$	1.993 2.000
KIVIT	6	1.75000000000000000000000000000000000000	2.1 (-106)	2.2 (-27)	2.000
	4	1.7500000000000087861	2.3 (-30)	2.3 (-8)	1.993
KM5	5	1.75000000000000000000000000000000000000	5.1 (-56)	8.8 (-15)	2.000
	6	1.750000000000000000000	2.4 (-107)	1.3 (-27)	2.000
	4	1.75000000000000061761	1.1 (-30)	1.9 (-8)	1.993
MM1	5	1.750000000000000000000	1.2(-56)	6.2 (-15)	2.000
	6	1.750000000000000000000	1.4 (-108)	6.4 (-28)	2.000
	4	1.75000000000000061821	1.1 (-30)	1.9 (-8)	1.993
MM2	5	1.75000000000000000000	1.2(-56)	6.2(-15)	2.000
	6	1.75000000000000000000	1.4 (-108)	6.4 (-28)	2.000
16160	4	1.75000000000000061795	1.1 (-30)	1.9(-8)	1.993
MM3	5 6	1.7500000000000000000 1.75000000000000000000	1.2 (-56) $1.4 (-108)$	6.2 (-15) $6.4 (-28)$	2.000 2.000
11111	4 5	1.7500000000000006176 1.750000000000000000000	1.1 (-30) $1.2 (-56)$	1.9 (-8) $6.2 (-15)$	1.993 2.000
MM4	6	1.75000000000000000000000000000000000000	1.2 (-36) 1.4 (-108)	6.2 (-13) $6.4 (-28)$	2.000
				1.9 (-8)	1.993
PM1	4 5	1.75000000000000061827 1.750000000000000000000	1.1 (-30) $1.2 (-56)$	6.2 (-15)	2.000
1 1/11	6	1.75000000000000000000000000000000000000	1.4 (-108)	6.4 (-28)	2.000
PM2	4	1.75000000000000061917	1.2 (-30)	1.9 (-8)	1.993
	5	1.75000000000000000000000000000000000000	1.2 (-56)	6.2 (-15)	2.000
	6	1.750000000000000000000	1.4~(-108)	6.4~(-28)	2.000
<i>PM</i> 3	4	1.7500000000000028756	2.5 (-31)	1.3 (-8)	2.000
	5	1.75000000000000000000	5.5(-58)	2.9(-15)	2.000
	6	1.75000000000000000000	2.7 (-111)	1.4 (-28)	2.000
PM4	4	1.7500000000000101213	3.1 (-30)	2.4 (-8)	1.993
	5	1.75000000000000000000	9.0(-56)	1.0 (-14)	2.000
	6	1.75000000000000000000	7.6 (-107)	1.7 (-27)	2.000
<i>PM</i> 5	4	1.7500000000000054473	8.9 (-31)	1.8(-8)	1.993
	5	1.75000000000000000000000000000000000000	7.3 (-57)	5.4 (-15)	2.000
	6	1.75000000000000000000	4.9 (-109)	4.9 (-28)	2.000

Mathematics **2022**, *10*, 1530 8 of 13

 $\textbf{Table 5.} \ Comparison \ of \ different \ iterative \ methods \ of \ Example \ 3.$

Methods	р	x_{p+1}	$ f(x_{p+1}) $	$ x_{p+1} - x_p $	ρ
MDM	4	4.9651142317442763037	1.3 (-237)	5.6 (-39)	2.000
	5	4.9651142317442763037	$1.4 \; (-477)$	5.7 (-79)	2.000
	6	4.9651142317442763037	1.7 (-957)	5.9 (-159)	2.000
·	4	4.9651142317442763037	1.3(-169)	5.1(-28)	2.000
KM1	5	4.9651142317442763037	2.6 (-339)	2.7(-56)	2.000
	6	4.9651142317442763037	9.9 (-679)	7.1 (-113)	2.000
	4	4.9651142317442763037	1.9(-163)	5.0 (-27)	2.000
KM2	5	4.9651142317442763037	7.9 (-327)	3.0 (-54)	2.000
	6	4.9651142317442763037	1.4 (-653)	1.0 (-108)	2.000
	4	4.9651142317442763037	1.4 (-155)	9.2(-26)	2.000
KM3	5	4.9651142317442763037	9.4 (-311)	1.3 (-51)	2.000
	6	4.9651142317442763037	4.0 (-621)	2.4 (-103)	2.000
	4	4.9651142317442763037	4.2 (-145)	4.6(-24)	2.000
KM4	5	4.9651142317442763037	1.5(-289)	3.9 (-48)	2.000
	6	4.9651142317442763037	2.0 (-578)	2.8(-96)	2.000
	4	4.9651142317442763037	1.5 (-158)	3.1 (-26)	2.000
KM5	5	4.9651142317442763037	7.1 (-317)	1.3(-52)	2.000
	6	4.9651142317442763037	1.7(-633)	2.1 (-105)	2.000
	4	4.9651142317442763037	1.3 (-237)	5.6 (-39)	2.000
MM1	5	4.9651142317442763037	1.4 (-477)	5.7 (-79)	2.000
	6	4.9651142317442763037	1.6(-957)	5.8 (-159)	2.000
	4	4.9651142317442763037	1.3 (-237)	5.6 (-39)	2.000
MM2	5	4.9651142317442763037	1.4~(-477)	5.6 (-79)	2.000
	6	4.9651142317442763037	1.5(-957)	5.8 (-159)	2.000
	4	4.9651142317442763037	1.3 (-237)	5.6 (-39)	2.000
MM3	5	4.9651142317442763037	1.4 (-477)	5.7 (-79)	2.000
	6	4.9651142317442763037	1.6 (-957)	5.8(-159)	2.000
	4	4.9651142317442763037	1.3 (-237)	5.6 (-39)	2.000
MM4	5	4.9651142317442763037	1.4~(-477)	5.7 (-79)	2.000
	6	4.9651142317442763037	1.6 (-957)	5.8(-159)	2.000
	4	4.9651142317442763037	8.3 (-238)	5.2 (-39)	2.000
PM1	5	4.9651142317442763037	5.7(-478)	4.9(-79)	2.000
	6	4.9651142317442763037	2.7 (-958)	4.3(-159)	2.000
PM2	4	4.9651142317442763037	1.3 (-239)	2.6 (-39)	2.000
	5	4.9651142317442763037	1.4(-481)	1.2(-79)	2.000
	6	4.9651142317442763037	1.7(-965)	2.7(-160)	2.000
РМ3	4	4.9651142317442763037	1.2 (-164)	3.2 (-27)	2.000
	5	4.9651142317442763037	3.1 (-329)	$1.2\ (-54)$	2.000
	6	4.9651142317442763037	2.1(-658)	1.6 (-109)	2.000
PM4	4	4.9651142317442763037	9.1 (-153)	2.7 (-25)	2.000
	5	4.9651142317442763037	4.0~(-305)	1.1~(-50)	2.000
	6	4.9651142317442763037	7.8 (-610)	1.8 (-101)	2.000
	4	4.9651142317442763037	7.1 (-250)	5.5 (-41)	2.000
PM5	5	4.9651142317442763037	2.6~(-502)	4.7(-83)	2.000
	6	4.9651142317442763037	3.4 (-1007)	3.3(-167)	2.000

Mathematics **2022**, 10, 1530 9 of 13

Table 6. Comparison of different iterative methods of Example 4.

1			1		
Methods	p	x_{p+1}	$ f\left(x_{p+1}\right) $	$ x_{p+1}-x_p $	ρ
MDM	4	2.000000000000000000000	2.1(-9369)	2.3(-31)	2.000
	5	2.000000000000000000000	2.6(-18950)	2.7(-63)	2.000
	6	2.000000000000000000000	$1.4\ (-38111)$	3.6 (-127)	2.000
	4	2.000000000000000000000	2.3 (-9412)	1.7 (-31)	2.000
KM1	5	2.000000000000000000000	6.4(-19038)	1.4(-63)	2.000
	6	2.000000000000000000000	5.0 (-38289)	9.4 (-128)	2.000
	4	2.00000000000000000000	5.9 (-10018)	1.6 (-33)	2.000
KM2	5	2.00000000000000000000	6.7(-20247)	1.3(-67)	2.000
	6	2.000000000000000000000	8.6 (-40705)	8.2(-136)	2.000
	4	2.000000000000000000000	7.9 (-9288)	4.2 (-31)	2.000
KM3	5	2.00000000000000000000	1.9 (-18782)	9.5(-63)	2.000
	6	2.00000000000000000000	1.2 (-37771)	4.8 (-126)	2.000
	4	2.000000000000000000000	2.3 (-9456)	1.2 (-31)	2.000
KM4	5	2.000000000000000000000	3.3 (-19128)	7.1 (-64)	2.000
	6	2.00000000000000000000	6.7 (-38472)	2.4 (-128)	2.000
	4	2.000000000000000000000	3.0 (-9857)	6.7(-33)	2.000
KM5	5	2.000000000000000000000	$3.1\ (-19951)$	1.5(-66)	2.000
	6	2.00000000000000000000	3.3 (-40139)	7.7 (-134)	2.000
	4	2.00000000000000000000	1.2 (-9369)	2.3 (-31)	2.000
MM1	5	2.00000000000000000000	2.6 (-18950)	2.7(-63)	2.000
	6	2.00000000000000000000	1.4 (-38111)	3.6 (-127)	2.000
14140	4	2.0000000000000000000	1.2 (-9369)	2.3 (-31)	2.000
MM2	5	2.00000000000000000000	2.6 (-18950)	2.7(-63)	2.000
	6	2.00000000000000000000	1.4 (-38111)	3.6 (-127)	2.000
14140	4	2.00000000000000000000	1.2 (-9369)	2.3 (-31)	2.000
MM3	5	2.00000000000000000000	2.6 (-18950)	2.7(-63)	2.000
	6	2.00000000000000000000	1.4 (-38111)	3.6 (-127)	2.000
	4	2.00000000000000000000	1.2(-9369)	2.3(-31)	2.000
MM4	5	2.00000000000000000000	2.6 (-18950)	2.7(-63)	2.000
	6	2.00000000000000000000	1.4 (-38111)	3.6 (-127)	2.000
	4	2.00000000000000000000	1.2(-9369)	2.3 (-31)	2.000
PM1	5	2.0000000000000000000	2.6 (-18950)	2.7 (-63)	2.000
	6	2.000000000000000000000	1.4 (-38111)	3.6 (-127)	2.000
	4	2.00000000000000000000	1.2(-9369)	2.3 (-31)	2.000
PM2	5	2.00000000000000000000	2.6 (-18950)	2.7(-63)	2.000
	6	2.00000000000000000000	1.3 (-38111)	3.6 (-127)	2.000
РМ3	4	2.000000000000000000000	4.9(-11187)	1.2(-37)	2.000
	5	2.00000000000000000000	1.9(-22516)	2.1(-75)	2.000
	6	2.00000000000000000000	2.9 (-45175)	6.1 (-151)	2.000
PM4	4	2.000000000000000000000	1.3(-9438)	1.4 (-31)	2.000
	5	2.00000000000000000000	9.4 (-19092)	9.3(-64)	2.000
	6	2.000000000000000000000	4.6 (-38398)	4.1 (-128)	2.000
	4	2.000000000000000000000	6.4 (-9353)	2.6 (-31)	2.000
PM5	5	2.00000000000000000000	5.7 (-18916)	3.5(-63)	2.000
	6	2.00000000000000000000	4.6 (-38042)	6.1 (-127)	2.000
		· · · · · · · · · · · · · · · · · · ·			

On the other hand, in Figure 1, the basins of attraction of new and known methods in this example are presented in the complex area $[2,4] \times [-1,1]$ (real and imaginary parts of the complex initial estimations). We observe that the convergence is assured very close to the root and surrounding coronas, also appearing in orange in each picture. Black areas are also wide and correspond to the need for higher digits of mantissa to avoid zero-division, as these plots have been

Mathematics 2022, 10, 1530 10 of 13

calculated using double-precision arithmetic. Orange regions are stating guesses converging to the root and are wider or equal to those corresponding to known methods.

Figure 1. Basins of attraction of new and existing methods for Example 1.

Example 2. The van der Waals equation of state (see [15])

$$\left(P + \frac{a_1 n^2}{V^2}\right)(V - na_2) = nRT,$$

describes the nature of a real gas between two gases, namely, a_1 and a_2 when we introduce the ideal gas equations. For calculating the volume V of gases, we need the solution of the preceding expression in terms of the remaining constants

$$PV^{3} - (na_{2}P + nRT)V^{2} + \alpha_{1}n^{2}V - \alpha_{1}\alpha_{2}n^{2} = 0.$$

For choosing the particular values of gases, α_1 and α_2 , we can easily obtain the values for n, P, and T. Then, we yield

$$f_2(x) = x^3 - 5.22x^2 + 9.0825x - 5.2675.$$
 (15)

Function f_2 has three zeros, among them: $x_* = 1.75$ is a multiple zero of multiplicity m = 2 and $x_* = 1.72$ is a simple zero.

In this example, the basins of attraction are plotted in $[1,2] \times [-0.5,0.5]$ of the complex plane (see Figure 2). They show two different colors, corresponding to multiple root (orange) and simple root (green). The methods are able to converge to both roots, but with a lower order of convergence in the case of the simple one. This is observed in the darkness of the color; it is colored depending on the number of iterations needed to converge: the higher the number of iterations, the darker the color of this initial point in the basin of attraction.

We notice that the widest basin of attraction of the multiple root corresponds to the proposed PM1 method, with the green basin (simple root) being very small in this case compared with those of the other schemes.

The numerical results are mentioned in Table 4. The proposed schemes show better performance than known procedures, with low error and accurate result estimations.

Mathematics 2022, 10, 1530 11 of 13

Figure 2. Basins of attraction of new and existing methods for Example 2.

Example 3. Planck's radiation problem.

Let us consider Planck's radiation equation, which determines the spectral density of electromagnetic radiations released by a black body at a given temperature and thermal equilibrium [16] as

$$G(y) = \frac{8\pi chy^{-5}}{e^{\frac{ch}{ykT}} - 1},$$

where T, y, k, h, and c denote the absolute temperature of the black body, wavelength of radiation, Boltzmann constant, Plank's constant, and speed of light in the medium (vacuum), respectively. To evaluate the wavelength y, which results in the maximum energy density G(y), set G'(y) = 0. We obtain the following equation

$$\frac{\left(\frac{ch}{ykT}\right)e^{\frac{ch}{ykT}}}{e^{\frac{ch}{ykT}}-1} = 5.$$

Further, the nonlinear equation is formulated by setting $x = \frac{ch}{ykT}$ as follows:

$$f_3(x) = \left(e^{-x} - 1 + \frac{x}{5}\right)^3. \tag{16}$$

The approximated zero is $x_* \approx 4.965114231744276303698759$ of multiplicity m=3 and with this solution, one can easily find the wave length y from the relation $x=\frac{ch}{ykT}$.

The basins of attraction for this example have been plotted in the complex area, whose real and imaginary parts are included in $[2,8] \times [-3,3]$, see Figure 3. We notice that the basin of the multiple root fills all the regions of interest for PM3 and the known methods, but there are small black areas in the case of PM1 and PM2, far from the multiple root.

The computational results are presented in Table 5, where the proposed method presents the best residuals, showing the good performance.

Example 4. Root clustering problem (see [17]).

Let us consider another standard nonlinear equation as follows

Mathematics 2022, 10, 1530 12 of 13

$$f_4(x) = (x-1)^{120}(x-2)^{150}(x-3)^{100}(x-4)^{55},$$

which has zeros $x_* = 1,2,3$, and 4 of multiplicity 120,150,100, and 55, respectively. Among these zeros, we chose the required zero as $x_* = 2$. In this case, the basins of attraction were not presented, as none of the analyzed methods were able to converge to the root by using double-precision arithmetic. Regarding the numerical results, they were obtained on the initial guess $x_0 = 2.1$ and are shown in Table 6. One can see that the precision in each scheme is extreme, with the lowest residual computed by PM1.

Figure 3. Basins of attraction of new and existing methods for Example 3.

4. Concluding Remarks

In this manuscript, a new general class of derivative-free iterative procedures for multiple roots is suggested. The design of our scheme is based on the weight function procedure. A convergence study is presented in Theorem 1. In addition, we have shown several new particular cases in Table 1. Further, we illustrated the applicability of the proposed schemes on van der Waals, Planck's radiation, root clustering, and eigenvalue problems, in comparison with the performance of the existing methods. In all of the examples, our schemes showed the best behaviors, in terms of stability and effectiveness.

Author Contributions: Conceptualization, R.B. and H.A.; methodology, S.A.; software, S.A.; validation, J.R.T. and A.C.; formal analysis, H.A.; investigation, R.B.; writing—original draft preparation, R.B. and H.A.; writing—review and editing, J.R.T. and A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by grant PGC2018-095896-B-C22, funded by MCIN/AEI/10.13039/5011000113033 by "ERDF A way of making Europe", the European Union.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their comments and suggestions, which improved the final version of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 1530 13 of 13

References

 Geum, Y.H.; Kim, Y.I.; Neta, B. A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 2015, 70, 387–400.

- 2. Sharifi, M.; Babajee, D.K.R.; Soleymani, F. Finding the solution of nonlinear equations by a class of optimal methods. *Comput. Math. Appl.* **2012**, *63*, 764–774.
- 3. Sharma, J.R.; Sharma, R. Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 2010, 217, 878–881.
- 4. Soleymani, F.; Babajee, D.K.R.; Lotfi, T. On a numerical technique for finding multiple zeros and its dynamics. *J. Egypt. Math. Soc.* **2013**, *21*, 346–353.
- 5. Kumar, D.; Sharma, J.R.; Argyros, I.K. Optimal One-Point Iterative Function Free from Derivatives for Multiple Roots. *Mathematics* **2020**, *8*, 709, https://doi.org/10.3390/math8050709.
- 6. Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 1974, 21, 643–651.
- 7. Ortega, J.M.; Rheinboldt, W.C. *Iterative Solution of Nonlinear Equations in Several Variables*; Academic Press: New York, NY, USA, 1970.
- 8. Ostrowski, A.M. Solutions of Equations and System of Equations; Academic Press: New York, NY, USA, 1964.
- 9. Petković, M.S.; Neta, B.; Petković, B.L.D.; Džunić, J. Multipoint Methods for Solving Nonlinear Equations; Academic Press: New York, NY, USA, 2012.
- 10. Traub, J.F. *Iterative Methods for the Solution of Equations*; Prentice- Hall Series in Automatic Computation; Prentice- Hall: Englewood Cliffs, NJ, USA, 1964.
- 11. Zhou, X.; Chen, X.; Song, Y. Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. *J. Comput. Appl. Math.* **2011**, 235, 4199–4206.
- 12. Kansal, M.; Alshomrani, A.S.; Bhalla, S.; Behl, R.; Salimi, M. One Parameter Optimal Derivative-Free Family to Find the Multiple Roots of Algebraic Nonlinear Equations. *Mathematics* **2020**, *8*, 2223. https://doi.org/10.3390/math8122223.
- 13. Cordero, A., Torregrosa, J.R. Variants of Newton's method using fifth-order quadrature formulas. *Appl. Math. Comput.* **2007**, *190*, 686–698.
- 14. Ahlfors, L.V. Complex Analysis; McGraw-Hill Book, Inc.: New York, NY, USA, 1979.
- 15. Constantinides, A.; Mostoufi, N. Numerical Methods for Chemical Engineers with MATLAB Applications; Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1999.
- 16. Bradie, B. A Friendly Introduction to Numerical Analysis; Pearson Education Inc.: New Delhi, India, 2006.
- 17. Zeng, Z. Computing multiple roots of inexact polynomials. *Math. Comput.* **2004**, 74, 869–903.