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Abstract: The construction of derivative-free iterative methods for approximating multiple roots
of a nonlinear equation is a relatively new line of research. This paper presents a novel family
of one-parameter second-order techniques. Our schemes are free from derivatives and have been
designed to find multiple roots (m ≥ 2). The new techniques involve the weight function approach.
The convergence analysis for the new family is presented in the main theorem. In addition, some
special cases of the new class are discussed. We also illustrate the applicability of our methods on van
der Waals, Planck’s radiation, root clustering, and eigenvalue problems. We also contrast them with
the known methods. Finally, the dynamical study of iterative schemes also provides a good overview
of their stability.
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1. Introduction

The modified Newton’s method is one of the basic schemes used to find multiple roots
(x∗) of a nonlinear equation f (x) = 0. Its iterative expression is

xp+1 = xp −m
f (xp)

f ′(xp)
, p = 0, 1, 2 . . . ,

where f is an analytic function in a neighborhood of the zero x∗. In addition to this, m is the
multiplicity of x∗. Sometimes, the derivative f ′(x) may be expensive to calculate or may
indeed be unavailable. To overcome this problem, Traub–Steffensen replaced the derivative
of the function in the modified Newton’s method by the divided difference

f ′(x) ≈ f [wp, xp] =
f (wp)− f (xp)

wp − xp
,

where wp = xp + f (xp). Therefore, the modified Newton’s method becomes

xp+1 = xp −m
f (xp)

f [wp, xp]
p = 0, 1, 2 . . .

This expression is called the modified Traub–Steffensen method.
In the literature, there are many iterative methods for finding the multiple roots of

f (x) = 0, (see, for example [1–5]). Such methods require the evaluations of first or higher-
order derivatives. The motivation for developing high order methods is closely related to
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the Kung–Traub conjecture [6]. It establishes an upper bound for the order of convergence
ρ ≤ 2d−1, where ρ is the order of convergence and d is the number of functional evaluations.
Any iterative method without memory attaining the maximum bound of the Kung–Traub
conjecture is called an optimal method.

Contrary to the methods that require derivative evaluation, the derivative-free tech-
niques for multiple roots are exceptionally uncommon. The main issue with generating
such techniques is the difficulty of finding their convergence order. Derivative-free pro-
cedures are significant when the derivative of function f is hard to evaluate, costly to
compute, or does not exist. To deepen in this aspects, please refer to [7–9].

The main aim of this manuscript was to design a general class of derivative-free
methods. The construction of our technique involved the based weight function procedure.
We develop several new and existing methods when the specific weight functions are
chosen according to the conditions of Theorem 1. The rest of the paper is as follows. In
Section 2, the new family and its convergence order are considered. In Section 3, some test
functions are proposed to check the performance of the new methods from two points of
view: the basin of attraction (for observing the dependence on initial estimations) and the
numerical results with high precision.

2. Construction of a Higher-Order Scheme

Here, we construct an optimal second-order family of the Steffensen-type method [10]
for multiple zeros (m ≥ 2), which is defined by

xp+1 = xp −mH(tp), p = 0, 1, 2 . . . , (1)

where tp =
f (xp)

f [µp ,νp ]
, µp = xp + α f (xp), νp = xp − α f (xp), α ∈ R, α 6= 0, and m ≥ 2 is the

known multiplicity of the required zero. In addition, H(t) is a weight function of variable

t =
f (x)

f [µ, ν]
.

In Theorem 1, we illustrate that the constructed scheme (1) attains the maximum
second-order of convergence for all α ∈ R, α 6= 0.

Theorem 1. Let us assume x = x∗ (say) as multiple zero of multiplicity m ≥ 2 of the analytical
function f : D ⊂ C→ C, being D a neighborhood of x∗. Then, scheme (1) has the second-order of
convergence, when

H(0) = 0, H′(0) = 1, |H′′(0)| < ∞, (2)

and satisfies the following error equation

ep+1 =

(
1
m

A1 −
H′′(0)

2m

)
e2

p + O(e3
p).

Proof. Let us consider that ep = xp − x∗ and Aj = m!
(m+j)!

f (m+j)(x∗)
f (m)(x∗)

, j = 1, 2 are the

errors in pth iteration and asymptotic error constant numbers, respectively. Now, we
generate Taylor series expansions of functions f (xp), f (µp) and f (νp) around x∗ assuming
f (x∗) = f ′(x∗) = f (m−1)(x∗) = 0 and f (m)(x∗) 6= 0,

f (xp) =
f (m)(x∗)

m!
em

p

(
1 + A1ep + A2e2

p + O(e3
p)

)
, (3)

f (µp) =
f m(x∗)

m!
em

p

[
1 + Λ0e1

p + Λ1e2
p + O(e3

p)

]
(4)

and

f (µp) =
f m(x∗)

m!
em

p

[
1 + Λ̄0e1

p + Λ̄1e2
p + O(e3

p)

]
, (5)
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where

Λ0 =

{
α f
′′
(x∗) + A1, m = 2

A1, m ≥ 3

}
,

Λ1 =


1
4

(
α2 f

′′
(x∗)2 + 10αA1 f

′′
(x∗) + 4A2

)
, m = 2

1
2

(
α f
′′′
(x∗) + 2A2

)
, m = 3

A2 m ≥ 4,

,

Λ̄0 =

{
− α f

′′
(x∗) + A1, m = 2

A1, m ≥ 3

}
and

Λ̄1 =


1
4

(
α2 f

′′
(x∗)2 − 10αA1 f

′′
(x∗) + 4A2

)
, m = 2

1
2

(
−α f

′′′
(x∗) + 2A2

)
, m = 3

A2 m ≥ 4,

.

By employing expressions (3)–(5), we obtain

tp =
f (xp)

f [νp, µp]
=

1
m

ep −
A1

m2 e2
p + O(e3

p). (6)

Expression (6) demonstrates that tp is of order one (tp = O(ep)). Then, we have

H(tp) = H(0) + H′(0)tp +
1
2!

H′′(0)t2
p. (7)

By inserting expression (7) in scheme (1),

ep+1 = −mH(0) +
(

1− H′(0)
)

ep +

(
H′(0)

m
A1 −

H′′(0)
2m

)
e2

p + O(e3
p). (8)

From (8), we deduce that scheme (1) reaches at least the second-order of convergence,
if

H(0) = 0 and H′(0) = 1. (9)

Next, by replacing (9) in (8), we have

ep+1 =

(
1
m

A1 −
H′′(0)

2m

)
e2

p + O(e3
p). (10)

Hence, scheme (1) has the second-order convergence for m ≥ 2.

Particular Cases

In this section, we show that we can produce as many new derivative-free methods
and numbers of weight functions that can be constructed. However, all of the weight
functions should satisfy the conditions of Theorem 1. Some of the important cases are
mentioned in Table 1.
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Table 1. Some special cases of our scheme (1).

Cases Weight Functions Corresponding Iterative Method

Case-1 H(t) = t xp+1 = xp −mtp.

Case-2 H(t) = t + 1
2 t2 xp+1 = xp −m

(
tp +

t2
p
2

)
.

Case-3 H(t) = α1t
α1+t , α1 6= 0 ∈ R xp+1 = xp −m

(
α1tp

α1+tp

)
.

Case-4 H(t) = t
1+α2t2 , α2 ∈ R xp+1 = xp −m

(
tp

1+α2t2
p

)
.

Case-5 H(t) = t
1+α3t+α4t2 , α3, α4 ∈ R xp+1 = xp −m

(
tp

1+α3tp+α4t2
p

)
.

Case-6 H(t) = t+α5t2

1+α6t xp+1 = xp −m
(

tp+α5t2
p

1+α6tp

)
.

Case-7 H(t) = 1
2

(
sin t + t

)
xp+1 = xp − m

2

(
sin tp + tp

)
.

Case-8 H(t) = cos t + t + 1 xp+1 = xp −m
(

cos tp + tp + 1
)

.

3. Numerical Experimentation

Now, we check the effectiveness of our proposed iterative methods. We employ
some members of our class: specifically case-4

(
for α2 = 1

100

)
,
(

for α2 = 1
10

)
, and case-6(

for α5 = 1, α6 = m
5
)
,
(
for α5 = 6

10 , α6 = 1
)

and
(

for α5 = 1
10 , α6 = 0

)
, denoted by (PM1),

(PM2), (PM3), (PM4), and (PM5), respectively.We compare our methods with the follow-
ing schemes:

A second order modified Traub–Steffensen method for multiple zeros, which is
given by:

xp+1 = xp −m
f (xp)

f [µp, xp]
. (11)

We denote this method by (MDM).
In addition, we compare the previous schemes with five methods, selected as best

among the methods suggested in [11]. These were proposed by Kumar et al. in [11] for
multiple zeros and are described in Table 2.

Table 2. Different methods of Kumar et al. [11] scheme.

Methods Value of Disposable Denoted by Parameter

xp+1 = xp −
mΘp

1+b1Θ , where Θp =
f (xp)

f [µp ,xp ]
b1 = 1

4 Method 1 (KM1)

xp+1 = xp −
mΘp

1+mb2Θp
, where Θp =

f (xp)
f [µp ,xp ]

b2 = 1
10 Method 2 (KM2)

xp+1 = xp −m
(

eΘp − 1
)

, where Θp =
f (xp)

f [µp ,xp ]
- Method 3 (KM3)

xp+1 = xp −m log
(

Θp + 1
)

, where Θp =
f (xp)

f [µp ,xp ]
- Method 4 (KM4)

xp+1 = xp −
Θp(

1√
m +b3Θ

)2 , where Θp =
f (xp)

f [µp ,xp ]
b3 = 1

10 Method 5 (KM5)

Finally, we also compare with a second order method proposed by Kansal et al. [12],
which is given by

xp+1 = xp −m
(1− b) f (µp) + b f (xp)

f [µp, xp]
, b ∈ R. (12)
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Expression (12), is respectively denoted by (MM1), (MM2), (MM3), and (MM4) for
b = 6

7 , 2
3 , 3

4 , and 5
6 . These values of parameter b are the best for the numerical results, as

claimed by Kansal et al. in [12].
The nonlinear problems to be solved are mentioned in Examples 1–4. In Tables 3–6, we

display the values of absolute residual errors | f (xp)|, number of iterations in order to attain
the desired accuracy, and the absolute errors |xp+1 − xp|. All the values are calculated for
α = −0.1. Further, we employ the ACOC, suggested by Cordero and Torregrosa in [13],

ρ ≈
ln |ěp+1/ěp|
ln |ěp/ěp−1|

, (13)

where ěp = xp − xp−1 and there is no need of exact zero.
During the current numerical experiments with Mathematica (Version-9), all computa-

tions were done with 1000 digits of mantissa, minimizing round-off errors. The (q1 ± q2)
denotes as (q1 × 10±q2). The configuration of the used computer is given below:

• Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz;
• Made: HP;
• RAM: 8:00 GB;
• System type: 64-bit-operating system, x64-based processor.

Moreover, for each example, the stability of new and existing methods was compared
through the basin of attraction technique: new and known methods were used to solve each
problem by using a mesh of 400× 400 points in a region of the complex plane, including the
searched root (see, for example, [14]). Each point of this mesh was used as the starting point.
If the method converges to one root of the nonlinear function in less than 80 iterations,
the point appears in orange or green; in any other case, it appears in black. The tolerance
used to set the convergence to the roots is 10−3 in double-precision arithmetic. Using this
technique, the set of starting points that converge to the root appears as a colored area in
the complex plane. The wideness of these regions means that the method’s dependence on
the starting guess is weak and, therefore, the method is considered stable.

Example 1. It is known that, to find the eigenvalues of a large matrix whose order is greater than
4, we need to solve its characteristic equation. The determination of roots of such a higher order
characteristic equation is a difficult task if we apply the linear algebra approach. So, one of the best
ways is to use numerical techniques. Let us consider the following square matrix of order 9.

A =
1
8



–12 0 0 19 –19 76 –19 18 437
–64 24 0 –24 24 64 –8 32 376
–16 0 24 4 –4 16 –4 8 92
–40 0 0 –10 50 40 2 20 242
–4 0 0 –1 41 4 1 2 25
–40 0 0 18 –18 104 –18 20 462
–84 0 0 –29 29 84 21 42 501
16 0 0 –4 4 –16 4 16 –92
0 0 0 0 0 0 0 0 24


,

whose characteristic equation is defined by function

f1(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3 + 6993x2 − 24732x + 12960. (14)

A real zero of f1(x) is x∗ = 3, with multiplicity m = 4.
Table 3 depicts the better performance of the proposed scheme in comparison to the existing

techniques by taking the initial guess x0 = 2.5. Our proposed methods provide less residual and
functional errors than existing ones.
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Table 3. Comparison of different iterative methods on Example 1.

Methods p xp+1 | f (xp+1)| |xp+1− xp| ρ

MDM
4 3.0000000000000000000 4.1 (−99) 6.0 (−13) 1.999
5 3.0000000000000000000 6.7 (−202) 8.5 (−26) 2.000
6 3.0000000000000000000 1.8 (−407) 1.7 (−51) 2.000

KM1
4 3.0000000000000000000 3.8 (−100) 5.2 (−13) 1.999
5 3.0000000000000000000 1.7 (−204) 4.7 (−26) 2.000
6 3.0000000000000000000 3.5 (−413) 3.8 (−52) 2.000

KM2
4 3.0000000000000000000 3.0 (−102) 3.2 (−13) 1.999
5 3.0000000000000000000 3.9 (−209) 1.4 (−26) 2.000
6 3.0000000000000000000 6.8 (−423) 2.6 (−53) 2.000

KM3
4 3.0000000000000000000 3.3 (−105) 8.4 (−14) 2.000
5 3.0000000000000000000 2.4 (−213) 2.5 (−27) 2.000
6 3.0000000000000000000 1.2 (−429) 2.3 (−54) 2.000

KM4
4 3.0000000000000000000 3.7 (−104) 2.0 (−13) 1.998
5 3.0000000000000000000 2.8 (−213) 4.6 (−27) 2.000
6 3.0000000000000000000 1.6 (−431) 2.4 (−54) 2.000

KM5
4 3.0000000000000000000 2.0 (−102) 3.0 (−13) 1.999
5 3.0000000000000000000 1.8 (−209) 1.3 (−26) 2.000
6 3.0000000000000000000 1.5 (−423) 2.2 (−53) 2.000

MM1
4 3.0000000000000000000 5.9 (−114) 8.3 (−15) 2.000
5 3.0000000000000000000 1.4 (−231) 1.6 (−29) 2.000
6 3.0000000000000000000 7.7 (−467) 6.5 (−59) 2.000

MM2
4 3.0000000000000000000 5.8 (−176) 1.5 (−22) 2.000
5 3.0000000000000000000 1.3 (−355) 5.2 (−45) 2.000
6 3.0000000000000000000 7.1 (−715) 6.4 (−90) 2.000

MM3
4 3.0000000000000000000 7.5 (−134) 2.7 (−17) 2.000
5 3.0000000000000000000 2.3 (−271) 1.8 (−34) 2.000
6 3.0000000000000000000 2.0 (−546) 7.3 (−69) 2.000

MM4
4 3.0000000000000000000 2.3 (−117) 3.1 (−15)
5 3.0000000000000000000 2.1 (−238) 2.3 (−30) 2.000
6 3.0000000000000000000 1.8 (−480) 1.3 (−60) 2.000

PM1
4 3.0000000000000000000 1.9 (−137) 9.6 (−18) 2.000
5 3.0000000000000000000 1.4 (−278) 2.2 (−35) 2.000
6 3.0000000000000000000 7.6 (−561) 1.1 (−70) 2.000

PM2
4 3.0000000000000000000 7.4 (−137) 9.5 (−185) 2.000
5 3.0000000000000000000 2.2 (−277) 3.1 (−35) 2.000
6 3.0000000000000000000 1.9 (−558) 2.3 (−70) 2.000

PM3
4 3.0000000000000000000 3.4 (−122) 7.1 (−16) 2.000
5 3.0000000000000000000 9.8 (−248) 1.4 (−31) 2.000
6 3.0000000000000000000 8.2 (−499) 5.9 (−63) 2.000

PM4
4 3.0000000000000000000 1.7 (−231) 2.2 (−29) 2.000
5 3.0000000000000000000 1.3 (−467) 6.8 (−59) 2.000
6 3.0000000000000000000 7.1 (−940) 6.3 (−118) 2.000

PM5
4 3.0000000000000000000 9.6 (−130) 8.4 (−17) 2.000
5 3.0000000000000000000 5.5 (−263) 1.9 (−33) 2.000
6 3.0000000000000000000 1.8 (−529) 9.1 (−67) 2.000
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Table 4. Comparison of different iterative methods on Example 2.

Methods p xp+1 | f (xp+1)| |xp+1− xp| ρ

MDM
4 1.7500000000000061716 1.1 (−30) 1.9 (−8) 1.993
5 1.7500000000000000000 1.2 (−56) 6.2 (−15) 2.000
6 1.7500000000000000000 1.4 (−108) 6.3 (−28) 2.000

KM1
4 1.7500000000000084340 2.1 (−30) 2.2 (−8) 1.993
5 1.7500000000000000000 4.3 (−56) 8.4 (−15) 2.000
6 1.7500000000000000000 1.7 (−107) 1.2 (−27) 2.000

KM2
4 1.7500000000000079272 1.9 (−30) 2.2 (−8) 1.993
5 1.7500000000000000000 3.3 (−56) 7.9 (−15) 2.000
6 1.7500000000000000000 1.0 (−107) 1.1 (−27) 2.000

KM3
4 1.7500000000000032471 3.2 (−31) 1.4 (−8) 1.994
5 1.7500000000000000000 9.0 (−58) 3.2 (−15) 2.000
6 1.7500000000000000000 7.3 (−111) 1.7 (−28) 2.000

KM4
4 1.7500000000000114420 3.9 (−30) 2.6 (−8) 1.993
5 1.7500000000000000000 1.5 (−55) 1.1 (−14) 2.000
6 1.7500000000000000000 2.1 (−106) 2.2 (−27) 2.000

KM5
4 1.7500000000000087861 2.3 (−30) 2.3 (−8) 1.993
5 1.7500000000000000000 5.1 (−56) 8.8 (−15) 2.000
6 1.7500000000000000000 2.4 (−107) 1.3 (−27) 2.000

MM1
4 1.7500000000000061761 1.1 (−30) 1.9 (−8) 1.993
5 1.7500000000000000000 1.2 (−56) 6.2 (−15) 2.000
6 1.7500000000000000000 1.4 (−108) 6.4 (−28) 2.000

MM2
4 1.7500000000000061821 1.1 (−30) 1.9 (−8) 1.993
5 1.7500000000000000000 1.2 (−56) 6.2 (−15) 2.000
6 1.7500000000000000000 1.4 (−108) 6.4 (−28) 2.000

MM3
4 1.7500000000000061795 1.1 (−30) 1.9 (−8) 1.993
5 1.7500000000000000000 1.2 (−56) 6.2 (−15) 2.000
6 1.7500000000000000000 1.4 (−108) 6.4 (−28) 2.000

MM4
4 1.750000000000006176 1.1 (−30) 1.9 (−8) 1.993
5 1.7500000000000000000 1.2 (−56) 6.2 (−15) 2.000
6 1.7500000000000000000 1.4 (−108) 6.4 (−28) 2.000

PM1
4 1.7500000000000061827 1.1 (−30) 1.9 (−8) 1.993
5 1.7500000000000000000 1.2 (−56) 6.2 (−15) 2.000
6 1.7500000000000000000 1.4 (−108) 6.4 (−28) 2.000

PM2
4 1.7500000000000061917 1.2 (−30) 1.9 (−8) 1.993
5 1.7500000000000000000 1.2 (−56) 6.2 (−15) 2.000
6 1.7500000000000000000 1.4 (−108) 6.4 (−28) 2.000

PM3
4 1.7500000000000028756 2.5 (−31) 1.3 (−8) 2.000
5 1.7500000000000000000 5.5 (−58) 2.9 (−15) 2.000
6 1.7500000000000000000 2.7 (−111) 1.4 (−28) 2.000

PM4
4 1.7500000000000101213 3.1 (−30) 2.4 (−8) 1.993
5 1.7500000000000000000 9.0 (−56) 1.0 (−14) 2.000
6 1.7500000000000000000 7.6 (−107) 1.7 (−27) 2.000

PM5
4 1.7500000000000054473 8.9 (−31) 1.8 (−8) 1.993
5 1.7500000000000000000 7.3 (−57) 5.4 (−15) 2.000
6 1.7500000000000000000 4.9 (−109) 4.9 (−28) 2.000
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Table 5. Comparison of different iterative methods of Example 3.

Methods p xp+1 | f (xp+1)| |xp+1− xp| ρ

MDM
4 4.9651142317442763037 1.3 (−237) 5.6 (−39) 2.000
5 4.9651142317442763037 1.4 (−477) 5.7 (−79) 2.000
6 4.9651142317442763037 1.7 (−957) 5.9 (−159) 2.000

KM1
4 4.9651142317442763037 1.3 (−169) 5.1 (−28) 2.000
5 4.9651142317442763037 2.6 (−339) 2.7 (−56) 2.000
6 4.9651142317442763037 9.9 (−679) 7.1 (−113) 2.000

KM2
4 4.9651142317442763037 1.9 (−163) 5.0 (−27) 2.000
5 4.9651142317442763037 7.9 (−327) 3.0 (−54) 2.000
6 4.9651142317442763037 1.4 (−653) 1.0 (−108) 2.000

KM3
4 4.9651142317442763037 1.4 (−155) 9.2 (−26) 2.000
5 4.9651142317442763037 9.4 (−311) 1.3 (−51) 2.000
6 4.9651142317442763037 4.0 (−621) 2.4 (−103) 2.000

KM4
4 4.9651142317442763037 4.2 (−145) 4.6 (−24) 2.000
5 4.9651142317442763037 1.5 (−289) 3.9 (−48) 2.000
6 4.9651142317442763037 2.0 (−578) 2.8 (−96) 2.000

KM5
4 4.9651142317442763037 1.5 (−158) 3.1 (−26) 2.000
5 4.9651142317442763037 7.1 (−317) 1.3 (−52) 2.000
6 4.9651142317442763037 1.7 (−633) 2.1 (−105) 2.000

MM1
4 4.9651142317442763037 1.3 (−237) 5.6 (−39) 2.000
5 4.9651142317442763037 1.4 (−477) 5.7 (−79) 2.000
6 4.9651142317442763037 1.6 (−957) 5.8 (−159) 2.000

MM2
4 4.9651142317442763037 1.3 (−237) 5.6 (−39) 2.000
5 4.9651142317442763037 1.4 (−477) 5.6 (−79) 2.000
6 4.9651142317442763037 1.5 (−957) 5.8 (−159) 2.000

MM3
4 4.9651142317442763037 1.3 (−237) 5.6 (−39) 2.000
5 4.9651142317442763037 1.4 (−477) 5.7 (−79) 2.000
6 4.9651142317442763037 1.6 (−957) 5.8 (−159) 2.000

MM4
4 4.9651142317442763037 1.3 (−237) 5.6 (−39) 2.000
5 4.9651142317442763037 1.4 (−477) 5.7 (−79) 2.000
6 4.9651142317442763037 1.6 (−957) 5.8 (−159) 2.000

PM1
4 4.9651142317442763037 8.3 (−238) 5.2 (−39) 2.000
5 4.9651142317442763037 5.7 (−478) 4.9 (−79) 2.000
6 4.9651142317442763037 2.7 (−958) 4.3 (−159) 2.000

PM2
4 4.9651142317442763037 1.3 (−239) 2.6 (−39) 2.000
5 4.9651142317442763037 1.4 (−481) 1.2 (−79) 2.000
6 4.9651142317442763037 1.7 (−965) 2.7 (−160) 2.000

PM3
4 4.9651142317442763037 1.2 (−164) 3.2 (−27) 2.000
5 4.9651142317442763037 3.1 (−329) 1.2 (−54) 2.000
6 4.9651142317442763037 2.1 (−658) 1.6 (−109) 2.000

PM4
4 4.9651142317442763037 9.1 (−153) 2.7 (−25) 2.000
5 4.9651142317442763037 4.0 (−305) 1.1 (−50) 2.000
6 4.9651142317442763037 7.8 (−610) 1.8 (−101) 2.000

PM5
4 4.9651142317442763037 7.1 (−250) 5.5 (−41) 2.000
5 4.9651142317442763037 2.6 (−502) 4.7 (−83) 2.000
6 4.9651142317442763037 3.4 (−1007) 3.3 (−167) 2.000
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Table 6. Comparison of different iterative methods of Example 4.

Methods p xp+1 | f (xp+1)| |xp+1− xp| ρ

MDM
4 2.0000000000000000000 2.1 (−9369) 2.3 (−31) 2.000
5 2.0000000000000000000 2.6 (−18950) 2.7 (−63) 2.000
6 2.0000000000000000000 1.4 (−38111) 3.6 (−127) 2.000

KM1
4 2.0000000000000000000 2.3 (−9412) 1.7 (−31) 2.000
5 2.0000000000000000000 6.4 (−19038) 1.4 (−63) 2.000
6 2.0000000000000000000 5.0 (−38289) 9.4 (−128) 2.000

KM2
4 2.0000000000000000000 5.9 (−10018) 1.6 (−33) 2.000
5 2.0000000000000000000 6.7 (−20247) 1.3 (−67) 2.000
6 2.0000000000000000000 8.6 (−40705) 8.2 (−136) 2.000

KM3
4 2.0000000000000000000 7.9 (−9288) 4.2 (−31) 2.000
5 2.0000000000000000000 1.9 (−18782) 9.5 (−63) 2.000
6 2.0000000000000000000 1.2 (−37771) 4.8 (−126) 2.000

KM4
4 2.0000000000000000000 2.3 (−9456) 1.2 (−31) 2.000
5 2.0000000000000000000 3.3 (−19128) 7.1 (−64) 2.000
6 2.0000000000000000000 6.7 (−38472) 2.4 (−128) 2.000

KM5
4 2.0000000000000000000 3.0 (−9857) 6.7 (−33) 2.000
5 2.0000000000000000000 3.1 (−19951) 1.5 (−66) 2.000
6 2.0000000000000000000 3.3 (−40139) 7.7 (−134) 2.000

MM1
4 2.0000000000000000000 1.2 (−9369) 2.3 (−31) 2.000
5 2.0000000000000000000 2.6 (−18950) 2.7 (−63) 2.000
6 2.0000000000000000000 1.4 (−38111) 3.6 (−127) 2.000

MM2
4 2.0000000000000000000 1.2 (−9369) 2.3 (−31) 2.000
5 2.0000000000000000000 2.6 (−18950) 2.7 (−63) 2.000
6 2.0000000000000000000 1.4 (−38111) 3.6 (−127) 2.000

MM3
4 2.0000000000000000000 1.2 (−9369) 2.3 (−31) 2.000
5 2.0000000000000000000 2.6 (−18950) 2.7 (−63) 2.000
6 2.0000000000000000000 1.4 (−38111) 3.6 (−127) 2.000

MM4
4 2.0000000000000000000 1.2 (−9369) 2.3 (−31) 2.000
5 2.0000000000000000000 2.6 (−18950) 2.7 (−63) 2.000
6 2.0000000000000000000 1.4 (−38111) 3.6 (−127) 2.000

PM1
4 2.0000000000000000000 1.2 (−9369) 2.3 (−31) 2.000
5 2.0000000000000000000 2.6 (−18950) 2.7 (−63) 2.000
6 2.0000000000000000000 1.4 (−38111) 3.6 (−127) 2.000

PM2
4 2.0000000000000000000 1.2 (−9369) 2.3 (−31) 2.000
5 2.0000000000000000000 2.6 (−18950) 2.7 (−63) 2.000
6 2.0000000000000000000 1.3 (−38111) 3.6 (−127) 2.000

PM3
4 2.0000000000000000000 4.9 (−11187) 1.2 (−37) 2.000
5 2.0000000000000000000 1.9 (−22516) 2.1 (−75) 2.000
6 2.0000000000000000000 2.9 (−45175) 6.1 (−151) 2.000

PM4
4 2.0000000000000000000 1.3 (−9438) 1.4 (−31) 2.000
5 2.0000000000000000000 9.4 (−19092) 9.3 (−64) 2.000
6 2.0000000000000000000 4.6 (−38398) 4.1 (−128) 2.000

PM5
4 2.0000000000000000000 6.4 (−9353) 2.6 (−31) 2.000
5 2.0000000000000000000 5.7 (−18916) 3.5 (−63) 2.000
6 2.0000000000000000000 4.6 (−38042) 6.1 (−127) 2.000

On the other hand, in Figure 1, the basins of attraction of new and known methods in
this example are presented in the complex area [2, 4]× [−1, 1] (real and imaginary parts of the
complex initial estimations). We observe that the convergence is assured very close to the root
and surrounding coronas, also appearing in orange in each picture. Black areas are also wide and
correspond to the need for higher digits of mantissa to avoid zero-division, as these plots have been
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calculated using double-precision arithmetic. Orange regions are stating guesses converging to the
root and are wider or equal to those corresponding to known methods.

(a) PM1 (b) PM2 (c) PM3 (d) MDM (e) KM1

(f) KM2 (g) MM1 (h) MM2 (i) MM3 (j) MM4

Figure 1. Basins of attraction of new and existing methods for Example 1.

Example 2. The van der Waals equation of state (see [15])(
P +

a1n2

V2

)
(V − na2) = nRT,

describes the nature of a real gas between two gases, namely, a1 and a2 when we introduce the
ideal gas equations. For calculating the volume V of gases, we need the solution of the preceding
expression in terms of the remaining constants

PV3 − (na2P + nRT)V2 + α1n2V − α1α2n2 = 0.

For choosing the particular values of gases, α1 and α2, we can easily obtain the values for n, P,
and T. Then, we yield

f2(x) = x3 − 5.22x2 + 9.0825x− 5.2675. (15)

Function f2 has three zeros, among them: x∗ = 1.75 is a multiple zero of multiplicity m = 2
and x∗ = 1.72 is a simple zero.

In this example, the basins of attraction are plotted in [1, 2]× [−0.5, 0.5] of the complex plane
(see Figure 2). They show two different colors, corresponding to multiple root (orange) and simple
root (green). The methods are able to converge to both roots, but with a lower order of convergence
in the case of the simple one. This is observed in the darkness of the color; it is colored depending on
the number of iterations needed to converge: the higher the number of iterations, the darker the color
of this initial point in the basin of attraction.

We notice that the widest basin of attraction of the multiple root corresponds to the proposed
PM1 method, with the green basin (simple root) being very small in this case compared with those of
the other schemes.

The numerical results are mentioned in Table 4. The proposed schemes show better performance
than known procedures, with low error and accurate result estimations.
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(a) PM1 (b) PM2 (c) PM3 (d) MDM (e) KM1

(f) KM2 (g) MM1 (h) MM2 (i) MM3 (j) MM4

Figure 2. Basins of attraction of new and existing methods for Example 2.

Example 3. Planck’s radiation problem.
Let us consider Planck’s radiation equation, which determines the spectral density of electromagnetic

radiations released by a black body at a given temperature and thermal equilibrium [16] as

G(y) =
8πchy−5

e
ch

ykT − 1
,

where T, y, k, h, and c denote the absolute temperature of the black body, wavelength of radiation,
Boltzmann constant, Plank’s constant, and speed of light in the medium (vacuum), respectively. To
evaluate the wavelength y, which results in the maximum energy density G(y), set G′(y) = 0. We
obtain the following equation

( ch
ykT )e

ch
ykT

e
ch

ykT − 1
= 5.

Further, the nonlinear equation is formulated by setting x = ch
ykT as follows:

f3(x) =
(

e−x − 1 +
x
5

)3
. (16)

The approximated zero is x∗ ≈ 4.965114231744276303698759 of multiplicity m = 3 and
with this solution, one can easily find the wave length y from the relation x = ch

ykT .
The basins of attraction for this example have been plotted in the complex area, whose real

and imaginary parts are included in [2, 8]× [−3, 3], see Figure 3. We notice that the basin of the
multiple root fills all the regions of interest for PM3 and the known methods, but there are small
black areas in the case of PM1 and PM2, far from the multiple root.

The computational results are presented in Table 5, where the proposed method presents the
best residuals, showing the good performance.

Example 4. Root clustering problem (see [17]).
Let us consider another standard nonlinear equation as follows
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f4(x) = (x− 1)120(x− 2)150(x− 3)100(x− 4)55,

which has zeros x∗ = 1, 2, 3, and 4 of multiplicity 120, 150, 100, and 55, respectively. Among
these zeros, we chose the required zero as x∗ = 2. In this case, the basins of attraction were not
presented, as none of the analyzed methods were able to converge to the root by using double-precision
arithmetic. Regarding the numerical results, they were obtained on the initial guess x0 = 2.1 and
are shown in Table 6. One can see that the precision in each scheme is extreme, with the lowest
residual computed by PM1.

(a) PM1 (b) PM2 (c) PM3 (d) MDM (e) KM1

(f) KM2 (g) MM1 (h) MM2 (i) MM3 (j) MM4

Figure 3. Basins of attraction of new and existing methods for Example 3.

4. Concluding Remarks

In this manuscript, a new general class of derivative-free iterative procedures for
multiple roots is suggested. The design of our scheme is based on the weight function
procedure. A convergence study is presented in Theorem 1. In addition, we have shown
several new particular cases in Table 1. Further, we illustrated the applicability of the
proposed schemes on van der Waals, Planck’s radiation, root clustering, and eigenvalue
problems, in comparison with the performance of the existing methods. In all of the
examples, our schemes showed the best behaviors, in terms of stability and effectiveness.
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9. Petković, M.S.; Neta, B.; Petković, B.L.D.; Džunić, J. Multipoint Methods for Solving Nonlinear Equations; Academic Press: New York,

NY, USA, 2012.
10. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice- Hall Series in Automatic Computation; Prentice- Hall: Englewood

Cliffs, NJ, USA, 1964.
11. Zhou, X.; Chen, X.; Song, Y. Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. J. Comput.

Appl. Math. 2011, 235, 4199–4206.
12. Kansal, M.; Alshomrani, A.S.; Bhalla, S.; Behl, R.; Salimi, M. One Parameter Optimal Derivative-Free Family to Find the Multiple

Roots of Algebraic Nonlinear Equations. Mathematics 2020, 8, 2223. https://doi.org/10.3390/math8122223.
13. Cordero, A., Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190,

686–698.
14. Ahlfors, L.V. Complex Analysis; McGraw-Hill Book, Inc.: New York, NY, USA, 1979.
15. Constantinides, A.; Mostoufi, N. Numerical Methods for Chemical Engineers with MATLAB Applications; Prentice Hall PTR: Engle-

wood Cliffs, NJ, USA, 1999.
16. Bradie, B. A Friendly Introduction to Numerical Analysis; Pearson Education Inc.: New Delhi, India, 2006.
17. Zeng, Z. Computing multiple roots of inexact polynomials. Math. Comput. 2004, 74, 869–903.


	Introduction
	Construction of a Higher-Order Scheme
	Numerical Experimentation
	Concluding Remarks
	References

