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Abstract: In this manuscript, we propose a parametric family of iterative methods of fourth-order
convergence, and the stability of the class is studied through the use of tools of complex dynamics.
We obtain the fixed and critical points of the rational operator associated with the family. A stability
analysis of the fixed points allows us to find sets of values of the parameter for which the behavior of
the corresponding method is stable or unstable; therefore, we can select the regions of the parameter
in which the methods behave more efficiently when they are applied for solving nonlinear equations
or the regions in which the schemes have chaotic behavior.
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1. Introduction

One of the most important legacies in numerical analysis in the 20th century is the
resolution of nonlinear equations by using high-order iterative methods, since we often
encounter nonlinear mathematical models for which there are no analytical methods that
allow us to find a solution of the nonlinear equation f pxq “ 0. This topic has attracted
researchers from different areas, such as Traub in [1], who initiated the analysis of these
methods.

Recently, Petković et al. (in [2]) and Amat et al. (in [3]) collected and updated the state
of the art of multipoint methods. The advantage of this type of method is that it does not
use higher-order derivatives, and it is of great practical importance because it overcomes
the theoretical limitations of one-point methods. The latter are not good alternatives for
increasing the order of convergence and the computational efficiency rate.

When the order of an iterative method increases, so does the number of functional
evaluations per step. Ostrowski’s efficiency index (see [4]) gives a measure of the balance
between these quantities, according to the formula p

1
d , where p is the order of convergence

of the method and d is the number of functional evaluations per iteration. According to the
Kung–Traub conjecture [5], the order of convergence of any multipoint method without
memory cannot exceed the limit 2n´1, which is called the optimal order. Therefore, the
optimal order of a method with three functional evaluations per step is 4. King’s family of
methods [6], of which Ostrowski’s method [4] is a particular case, as is Jarratt’s method [7]
and some of the families of multistep methods studied extensively in Traub’s book [8], are
optimal fourth-order methods, since they perform only three functional evaluations per
step. In recent years, as the extensive literature shows, there has been a renewed interest in
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the search for multistep methods in order to achieve optimal order convergence and, thus,
better efficiency.

The rest of this paper is organized as follows. Section 2 is devoted to the presentation
of a family of iterative methods that will be subjected to a dynamical analysis in Section 3.
The stability of fixed points is studied, and the stable and unstable elements of the family
are selected by means of the generation of the parameter plane. Some numerical tests are
performed in Section 4, showing the performance of selected stable and unstable methods
in comparison with other known ones. Finally, some conclusions are shown in Section 5.

2. The Proposed Family

In this section, we present particular cases of optimal fourth-order iterative methods
for solving the nonlinear equation f pxq “ 0, f : D Ď RÑ R, which was proposed in [9] by
using the weight function procedure, the iterative expression of which is:

$

’

’

&

’

’

%

yn “ xn ´
f pxnq

f 1pxnq

xn`1 “ xn ´
f pxnq

f 1pxnq
Hpupxnqq,

(1)

where upxnq “
f pynq

f pxnq
and Hpuq is a real-valued weight function that achieves an optimal

fourth-order convergence by using three functional evaluations. The following result
indicates the necessary conditions that the weight function in question (1) has to fulfil so
that the order of convergence reached is four [9].

Theorem 1. Let f be a sufficiently differentiable function f : D Ď RÑ R with a single-zero ξ on
the open interval D. Let Hpuq be a real-valued differentiable function. If an initial approximation
x0 is sufficiently close to the required root ξ of equation f pxq “ 0, then the order of convergence of
the scheme (1) is four when Hpuq satisfies the following conditions:

Hp0q “ 1, H1p0q “ 1, H2p0q “ 4 and |H3p0q| ă `8. (2)

In this case, the error equation is

en`1 “

„ˆ

5´
1
6

H3p0q
˙

c3
2 ´ c2c3



e4
n `O

´

e5
n

¯

, (3)

where

en “ xn ´ ξ and ck “
1
k!

f pkqpξq
f 1pξq

, k “ 2, 3, 4, . . .

Special Cases

In this section, we present some particular classes of iterative schemes obtained from
expression (1) for different weight functions Hpuq that satisfy the conditions of Theorem 1.

1. Firstly, we consider the well-known Ostrowski method, which is a particular case
given by the following weight function:

Hpuq “
1´ u
1´ 2u

. (4)
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This weight function guarantees the fourth-order convergence of Ostrowski’s scheme,
whose iterative expression is:

$

’

’

&

’

’

%

yn “ xn ´
f pxnq

f 1pxnq
,

xn`1 “ xn ´
f pxnq

f 1pxnq

„

f pxnq ´ f pynq

f pxnq ´ 2 f pynq



.
(5)

2. The following weight function is now considered:

Hpuq “
1` u2 ´ u3

1´ u
, (6)

which satisfies all of the conditions of Theorem 1. This scheme was proposed by
Maheshwari in [10], and its iterative expression is:

$

’

’

’

&

’

’

’

%

yn “ xn ´
f pxnq

f 1pxnq
,

xn`1 “ xn ´
f pxnq

f 1pxnq

«

f pxnq

f pxnq ´ f pynq
`

ˆ

f pynq

f pxnq

˙2
ff

.
(7)

3. The following uniparametric family satisfies the conditions of Theorem 1:

Hpuq “
α` up1` α` u` 2αuq

α` u
, (8)

where α is a real parameter, and it provides a new iterative class of iterative schemes:
$

’

’

&

’

’

%

yn “ xn ´
f pxnq

f 1pxnq
,

xn`1 “ xn ´
f pxnq

f 1pxnq

„

α f pxnq
2 ` f pxnq f pynqp1` αq ` p1` 2αq f pynq

2

f pxnqr f pynq ` α f pxnqs



.
(9)

4. Finally, using the convergence conditions to define the Taylor polynomial associated
with the generic function Hpuq, we obtain the last weight function presented here,
thus satisfying Theorem 1.

Hpuq “
H3p0q

6
u3 ` 2u2 ` u` 1. (10)

We know that |H3p0q| ă 8, so if we substitute H3p0qwith β, we have a parametric
family of iterative schemes of fourth-order convergence:

$

’

’

’

&

’

’

’

%

yn “ xn ´
f pxnq

f 1pxnq
,

xn`1 “ xn ´
f pxnq

f 1pxnq

«

β

6

ˆ

f pynq

f pxnq

˙3
` 2

ˆ

f pynq

f pxnq

˙2
`

ˆ

f pynq

f pxnq

˙

` 1

ff

.
(11)

Now, we will study the stability of the family given by Equation (11).

3. The Scaling Theorem

If the conjugation classes and the scaling theorem are verified for the method under
study, it is possible to generalize a dynamical study on the polynomial of the second degree
on which this study is performed. In this case, by applying this to a generic polynomial,
such as ppzq “ pz´ aqpz´ bq, we can assume that the result obtained will be equivalent
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to the result that we will obtain with any quadratic polynomial, since there will always
be an affine transformation that takes us from this generic polynomial to any quadratic
polynomial (see, for example, [11]). We emphasize that this result is only fulfilled in
methods that contain derivatives, which is the justification of this study.

Let Ĉ be the Riemann sphere. Let R f : ĈÑ Ĉ be the fixed-point operator of iterative
scheme (11) on a function f , that is,

R f pzq “ z´
ˆ

β

6
u3 ` 2u2 ` u` 1

˙

f pzq
f 1pzq

, (12)

where

u “
f pyq
f pzq

and y “ z´
f pzq
f 1pzq

.

In order to generalize the dynamical analysis of family (11), we prove the following
result.

Theorem 2 (Scaling Theorem). Let Apzq “ αz` µ, α ‰ 0 be an affine mapping. In addition, let
f pzq be a holomorphic function and hpzq “ λp f ˝ Aqpzq with λ ‰ 0; then, the fixed-point operator
R f is an affine conjugate to Rh by A, i.e.,

´

A ˝ Rh ˝ A´1
¯

pzq “ R f pzq.

Proof. We will prove the following identity:
´

R f ˝ A
¯

pzq “
`

A ˝ Rh
˘

pzq, for all z P Ĉ.

R f pzq “ z´
ˆ

β

6
u3 ` 2u2 ` u` 1

˙

f pzq
f 1pzq

“ z´

«

β

6

ˆ

f pyq
f pzq

˙3
` 2

ˆ

f pyq
f pzq

˙2
`

ˆ

f pyq
f pzq

˙

` 1

ff

f pzq
f 1pzq

.
(13)

By developing the left side,

´

R f ˝ A
¯

pzq “ Apzq ´

«

β

6

ˆ

f pApyqq
f pApzqq

˙3
` 2

ˆ

f pApyqq
f pApzqq

˙2
`

ˆ

f pApyqq
f pApzqq

˙

` 1

ff

f pApzqq
f 1pApzqq

. (14)

Furthermore, we know that the fixed-point operator related to function h, for α ‰ 0, is:

Rhpzq “ z´
ˆ

β

6
u3 ` 2u2 ` u` 1

˙

hpzq
h1pzq

“ z´

«

β

6

ˆ

λ f pApyqq
λ f pApzqq

˙3
` 2

ˆ

λ f pApyqq
λ f pApzqq

˙2
`

ˆ

λ f pApyqq
λ f pApzqq

˙

` 1

ff

λ f pApzqq
λα f 1pApzqq

“ z´
1
α

«

β

6

ˆ

f pApyqq
f pApzqq

˙3
` 2

ˆ

f pApyqq
f pApzqq

˙2
`

ˆ

f pApyqq
f pApzqq

˙

` 1

ff

f pApzqq
f 1pApzqq

.

Considering that Apξ1 ´ ξ2q “ Apξ1q ´ Apξ2q ` µ, for all ξ1, ξ2 P C,
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`

A ˝ Rh
˘

pzq “A

˜

z´
1
α

«

β

6

ˆ

f pApyqq
f pApzqq

˙3
` 2

ˆ

f pApyqq
f pApzqq

˙2
`

ˆ

f pApyqq
f pApzqq

˙

` 1

ff

f pApzqq
f 1pApzqq

¸

“Apzq ´ A

˜

1
α

«

β

6

ˆ

f pApyqq
f pApzqq

˙3
` 2

ˆ

f pApyqq
f pApzqq

˙2
`

ˆ

f pApyqq
f pApzqq

˙

` 1

ff

f pApzqq
f 1pApzqq

¸

` µ

“Apzq ´

«

β

6

ˆ

f pApyqq
f pApzqq

˙3
` 2

ˆ

f pApyqq
f pApzqq

˙2
`

ˆ

f pApyqq
f pApzqq

˙

` 1

ff

f pApzqq
f 1pApzqq

.

(15)

From the results obtained in (14) and (15),
´

R f ˝ A
¯

pzq “
`

A ˝ Rh
˘

pzq.

Therefore, the method in (11) satisfies the scaling theorem.

Now, we analyze the dynamical behavior of this class in terms of parameter β in order
to determine the methods with good stability properties and avoid the members of the
family whose behavior is unstable.

4. Dynamical Analysis

In this part, we use several tools of complex dynamics. Thus, we need the function f
to be defined on the Riemann sphere Ĉ.

In the following, we recall some concepts of complex dynamics. Let us suppose a
fixed-point function on an arbitrary polynomial ppzq “ pz´ aqpz´ bq; this gives a rational
function, R.

Indeed, if given a rational function R : Ĉ Ñ Ĉ, where Ĉ represents the Riemann
sphere, the orbit at a point z0 can be defined as

tz0,Rpz0q,R2pz0q,R3pz0q, . . . ,Rnpz0q, . . .u.

It is necessary to study the phase plane of R by classifying the fixed points according
to the asymptotic behavior related to their orbits. A z0 P Ĉ is said to be a fixed point
if Rpz0q “ z0. A periodic point z0, of period p ą 1, is a point where Rppz0q “ z0 and
Rkpz0q ‰ z0, where k ă p. A preperiodic point is a point z0 that is not periodic, but there
exists a k ą 0 such that Rkpz0q is periodic. A point z0 is a critical point of the rational
function R if R1pz0q “ 0. If a critical point is different from any of those related to the roots
of polynomial ppzq, it is called a free critical point. In a similar way, the fixed points that are
different from the roots of ppzq are called strange fixed points.

Moreover, a fixed point z0 is called an attractor if
ˇ

ˇR1pz0q
ˇ

ˇ ă 1, a superattractor if
ˇ

ˇR1pz0q
ˇ

ˇ “ 0, repulsive if
ˇ

ˇR1pz0q
ˇ

ˇ ą 1, and parabolic if
ˇ

ˇR1pz0q
ˇ

ˇ “ 1. Fixed points other than
those associated with the roots of the polynomial ppzq are called strange fixed points. The
basin of attraction of an attractor α is defined as:

Apαq “
!

z0 P pC : Rnpz0q Ñ α, n Ñ8

)

.

For the rational function R, the Fatou set of R, which is denoted by FpRq, is the
set of points z P Ĉ whose orbits tend to one attractor (a fixed point or periodic orbit). Its
complement in Ĉ is the Julia set, J pRq. That is, the basin of attraction from every fixed or
periodic point belongs to the Fatou set, while the boundaries of these basins of attraction
are in the Julia set (for more explanation, see [12–14]).

The following result justifies the interest in the parameter planes that we will introduce
later. The connected component of the basin of attraction, which contains the point or
periodic orbit of attraction, is called the immediate basin of attraction.
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Theorem 3 (Fatou–Julia). Let R be a rational function. An immediate basin of attraction of any
attractor has at least one critical point.

To any rational operator that satisfies the scaling theorem, we can apply a Möbius
transformation, which is stated as follows. If ppzq “ pz´ aqpz´ bq, then Rp depends on
parameters a and b. To eliminate this dependency, we apply a Möbius transformation h as
follows:

Oppzq “
´

h ˝Rp ˝ h´1
¯

pzq,

where
hpzq “

z´ a
z´ b

,

which satisfies

• hp8q “ 1,
• hpaq “ 0
• hpbq “ 8.

Operators Op and Rp have the same qualitative properties of stability.
With Theorem 2, we may find all of the stable behaviors of a rational function R by

analyzing its performance on the set of critical points, as we see below.
Using polynomial ppzq “ pz´ aqpz´ bq, the iterative scheme (11) on this polynomial

provides the following rational operator:

Mppz, β, a, bq “ z`
pz´ aqpz´ bq

ˆ

1`
pz´aqpz´bqp6p2z´a´bq2qpzq`pz´aq2pz´bq2βq

6p2z´a´bq6

˙

2z´ a´ b
, (16)

where qpzq “ a2 ` 4ab ` b2 ´ 6pa ` bqz ` 6z2. By applying the Möbius transformation
on Mppz, β, a, bq, we obtain the rational operator to work, which is an operator free of
parameters a and b.

hpuq “
u´ a
u´ b

,

and its inverse function is
h´1puq “

ub´ a
u´ 1

.

To get the fixed-point operator,

Rppz, βq “
´

h ˝Mp ˝ h´1
¯

pzq “ z4
`

´6pz` 1q2p5` zpz` 4qq ` β
˘

´6pz` 1q2p1` zp5z` 4qq ` z4β
. (17)

So, Mp becomes a conjugate using the Möbius transformation for Rppz, βq in order
to simplify the dynamical analysis. Note that the rational operator Rppz, βq is not reliant
upon the roots of ppzq, a, and b.

4.1. Stability of the Fixed Points

In this section, we analyze the stability of fixed points. We give some important results
on the stability of strange fixed points, and we analyze the behavior of the rational operator
on free critical points. The strange fixed points are z “ 1, and the roots of the polynomial
are

qpz, βq “ 6z6 ` 42z5 ` 126z4 ` p180` βqz3 ` 126z2 ` 42z` 6, (18)

which is denoted by sjpβq, j “ 1, 2, . . . , 6.
The stability of the strange fixed points is analyzed in the following result.

Theorem 4. The fixed points z “ 0 and z “ 8, which are associated with the roots a and b, are
superattractors regardless of the value of β. z “ 1 is a strange fixed point when β ‰ 240, and its
stability is determined as follows:
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(a) If |β´ 240| ą 768, then the fixed point z “ 1 is an attractor,
(b) If |β´ 240| ă 768, then the fixed point z “ 1 is repulsive,
(c) If |β´ 240| “ 768, then the fixed point z “ 1 is neutral.

Proof. By evaluating the rational operator Rppz, βq, as well as its derivative at z “ 0, we
conclude that z “ 0 is a superattractor fixed point. For the punto z “ 8, we derive the

inverse of the operator Rppz, βq, i.e.,
ˆ

1
Rpp 1

z q

˙1

, and we evaluate it in z “ 0. We can affirm

that z “ 8 is a superattractor fixed point.
Now, we evaluate R1ppz, βq on the fixed point z “ 1 in order to determine its stability.

(a) R1pp1, βq “
ˇ

ˇ

ˇ

768
β´240

ˇ

ˇ

ˇ
ă 1, which implies that 768 ă |β´ 240|, and therefore

ˇ

ˇ

ˇ
R1pp1, βq

ˇ

ˇ

ˇ
ă

1 if and only if |β´ 240| ą 768 and β ‰ 240.
(b) R1pp1, βq “

ˇ

ˇ

ˇ

768
β´240

ˇ

ˇ

ˇ
ą 1, which implies that 768 ă |β´240|, and, therefore,

ˇ

ˇ

ˇ
R1pp1, βq

ˇ

ˇ

ˇ
ą

1 if and only if |β´ 240| ă 768 and β ‰ 240.
(c) Finally, R1pp1, βq “

ˇ

ˇ

ˇ

768
β´240

ˇ

ˇ

ˇ
“ 1, which implies that 768 “ |β´ 240|, and, therefore,

ˇ

ˇ

ˇ
R1pp1, βq

ˇ

ˇ

ˇ
“ 1 if and only if |β´ 240| “ 768 and β ‰ 240.

This completes the proof.

In Figure 1, the stability of the strange fixed point z “ 1 is presented.

Figure 1. Strange fixed point stability region where z “ 1.

Theorem 4 shows that we have two fixed points that are superattractors, z “ 0 and
z “ 8, and the strange fixed point z “ 1, for which we find different regions where this
behaves as an attractor, repulsor, and parabolic for β ‰ 240. However, when we solve the
equation Rppz, βq “ z, six other solutions appear; these are strange fixed points that are
solutions of the polynomial qpz, βq (18), which is denoted by sjpβq, j “ 1, 2, . . . , 6. In the
following result, we analyze the stability of these strange fixed points.

Theorem 5. The strange fixed points of the rational operator Rppz, βq, sjpβq, j “ 1, 2, are all
repulsors in a complex plane.

On the other hand, the strange fixed points sjpβq, j “ 3, 4 are:

1. attractors in the open interval 32
9 ă β ă 3.55728. In particular, they are superattractors for

β « 3.55728¯ 4.9603i.
2. parabolics for β “ 4

9 p8¯ 5i
?

5q.
3. repulsors in the rest of the complex plane.

Finally, the strange fixed points sjpβq, j “ 5, 6 are:

1. attractors in ´524.182 ă β ă ´289.865 and ´289.865 ă β ă ´189.865q. In particular,
they are superattractors for β « ´289.865.

2. parabolic at all points on the boundary of the circumference of the cone—in particular, for the
complex numbers β “ 4

9 p8¯ 5i
?

5q.
3. repulsors in the rest of the complex plane.
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Theorem 5 cannot be analytically proven, since the substitution of these strange fixed
points into the stability function results in roots of higher-order polynomials. Still, the
stability regions in the complex plane of the strange fixed points s1pβq and s2pβq can be
visualized in Figure 2a, the stability regions of the fixed points s3pβq and s4pβq can be
visualized in the complex plane in Figure 2b, and the stability regions of the fixed points
s5pβq and s6pβq can be visualized in the complex plane in Figure 2c. Note that in the
foreground, no stability region is visualized, which justifies the behavior of such strange
fixed points; they are repulsors in the whole complex plane, and the strange fixed points
s3pβq and s4pβq are attractors in the small region described in Theorem 5, while the strange
fixed points s5pβq and s6pβq, are parabolic in the boundary of the circumference of the cone
and are attracting inside the cone, being superattracting at the vertex of the cone. They are
repulsive in the rest of the complex plane.

(a) (b) (c)

Figure 2. Strange fixed points sjpβq, j “ 1, . . . , 6. (a) s1pβq and s2pβq. (b) s3pβq and s4pβq. (c) s5pβq

and s6pβq.

4.2. Critical Points

The critical points are obtained by solving equation Rppz, βq1 “ 0. We obtain the
points z “ 0, z “ 8, which correspond to the roots of polynomial ppxq, and the free critical
points described in the following results.

Theorem 6. The free critical points of operator Rppz, βq are:

1. crjpβq “
120`3β¯

?
7p240β´β2q

4pβ´30q , j “ 1, 2.

2. z “ ´1.

Let us also remark that the critical points satisfy cr1pβq “
1

cr2pβq
. So, they are not

independent, and they have the same parameter plane.

There are also values of parameter β for which the critical points coincide:

(a) The critical points cr1pβq “ cr2pβq “ cr3pβqmatch for β “ 0.
(b) The points cr1pβq “ cr2pβqmatch if β “ 240.

The free critical point z “ ´1 is a pre-image of the strange fixed point z “ 1 because
Rp´1, βq “ 1; therefore, there is no need to obtain its related parameter plane because the
information that would be obtained is contained in the stability function of z “ 1.

5. Parameter and Dynamical Planes

In this section, our goal is to determine the regions of the parameter plane for which
we can obtain the most stable members of the family, since the values of β in those regions
will provide us with the best methods in terms of numerical stability.

5.1. Parameter Planes

As cr1pβq and cr2pβq are conjugates, there exists just one free independent critical
point, the related parameter plane of which can be seen in Figure 3. This is focused in a
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black region that mostly corresponds to regions shown in the stability planes of the strange
fixed points s3pβq and s4pβq and the bases of the cones defining the stability functions of
the strange fixed points s5pβq and s6pβq (see Figure 2b,c). Let us assume that there are
free independent critical points acting in the capacity of the starting point of the iterative
schemes of the family associated with each complex value of β; such points are shown in
red on the complex plane if the method converges on any of the roots (zero and infinity) and
in black in other cases. Following this procedure, we obtain the parameter plane presented
in Figure 3 by using the processes shown in [10]. For this representation, we used a mesh
of 1500ˆ 1500 points, a maximum of 500 iterations, and a tolerance of 10´3 in the stopping
criterion. We also show a close-up of this parameter plane in Figure 3b, focusing on the
larger red area; there, the family members are, in general, very stable. These will be the
best values to use for iterative methods in terms of their stability (see [15]).

(a) (b)

Figure 3. Parameter planes pβq for free critical points. (a) Parameter plane with z “ cr1pβq. (b)
Zoomed-in view of the parameter plane.

We emphasize how important the parameter planes are, since they allow us to precisely
identify the values of the β parameter for which the family of iterative methods have stable
behavior or the members have chaotic behavior. In these, we can observe two black- and
red-colored regions; the red-colored region allows us to obtain dynamic planes whose
behavior is stable, and the black-colored regions imply methods that mostly correspond to
values of the parameter in which there are strange fixed points that are attractors or have
periodic attractor orbits; this is guaranteed by the (Fatou–Julia), Theorem 3.

5.2. Dynamical Planes

The dynamical planes appearing in Figures 4 and 5 were obtained using a mesh of
2000ˆ 2000 points of the complex plane, as well as a maximum of 1000 iterations. These
show the basins of attraction that correspond to different values that we selected from the
parameter plane—both from the red-colored zone, where we had more stable members of
the family, and the black-colored zones of the parameter plane, where we had unstable
members of the family. In both cases, different stable behaviors, unstable behaviors, and
periodic basins of attraction, among others, are shown.

In each of the dynamical planes, the circles represent the fixed points of Rpz, βq (with
the independence of their stability), the squares represent the critical points, and the starred
point represents the superattracting fixed points.
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(a) (b) (c) (d)

Figure 4. Dynamical planes whose behavior is unstable. (a) β “ ´200´ 650i. (b) β “ ´300. (c)
β “ ´700. (d) β “ 350.

(a) (b) (c) (d)

Figure 5. Dynamical planes whose behavior is stable. (a) β “ 1. (b) β “ 10. (c) β “ 100´ 200i.
(d) β “ 0.

Unstable and Stable Dynamic Planes

For the values β “ 0, β “ 1, β “ 10, and β “ 100 (Figure 5a–d, respectively), we
observe stable behavior corresponding to the red-colored regions in the parameter plane.
The orange regions in the dynamical planes come from the superattracting fixed point
z “ 0, and the blue area comes from the fixed point z “ 8. Finally, Figure 4a–d correspond
to regions of the parameter plane where we obtain families whose behavior is unstable.
Moreover, for β “ 350, we obtain a dynamical plane with two periodic orbits at points
z “ 0.254854´ 0.96698i and z “ 0.897069` 0.44189i. It is worth noting that the dynamical
plane corresponding to z “ ´200´ 650i has three basins of attraction, which are shown in
green, orange, and blue colors; for z “ ´300, there are four basins of attraction, which are
shown in green, orange, blue, and red; for z “ ´700, there are three basins of attraction,
unlike the stable dynamical planes, which only have two.

6. Numerical Results

We use the functions proposed in Table 1 to perform some numerical tests in order to
analyze the results obtained with different known methods in comparison with the one
proposed in the iterative family (11).

Table 1. Test functions.

f pppxqqq ξ

f1pxq “ e´x ` cos x 1.7461395304080124176507030889537802
f2pxq “ x4 ` sin

´

π
x2

¯

´ 5 1.4142135623730950488016887242096980

f3pxq “ ex ´ 1.5´ tan´1 x 0.7676532662012788981900298911398052
f4pxq “ 10xe´x2

´ 1 1.6796306104284499406749203388379704

We call the methods used for the numerical tests M1, M2, and M3. M3 is the method
that we worked with in this manuscript, and M1 and M2 are two known fourth-order
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methods that we use to compare the numerical results; these are the scheme of C. Chun
and the BCMT family, which can be found in [16,17].

M1 “

$

&

%

yn “ xn ´
f pxnq
f 1pxnq

xn`1 “ yn ´
f pxnq`2 f pynq

f pxnq
f pynq
f 1pxnq

,

where n “ 0, 1, 2 . . . .

M2 “

$

’

&

’

%

yn “ xn ´
f pxnq
f 1pxnq

xn`1 “ xn ´
f pxnq
f 1pxnq

„

α`2
3α2

´

f pxnq
f pxnq`α f pynq

¯3
´

2p1`αq
α2

´

f pxnq
f pxnq`α f pynq

¯

` 3α2`5α`4
3α2



.

where α “ 1 and n “ 0, 1, 2, . . ..

M3 “

$

’

’

’

&

’

’

’

%

yn “ xn ´
f pxnq

f 1pxnq
,

xn`1 “ xn ´
f pxnq

f 1pxnq

«

β

6

ˆ

f pynq

f pxnq

˙3
` 2

ˆ

f pynq

f pxnq

˙2
`

ˆ

f pynq

f pxnq

˙

` 1

ff

.

where β “ 10 and n “ 0, 1, 2, . . ..

The following expression can be used to estimate the theoretical order of convergence:

p « COC “
ln|pxn`1 ´ ξq{pxn ´ ξq|

ln|pxn ´ ξq{pxn´1 ´ ξq|
,

as presented by S. Weerakoon and T.G.I. Fernando in [18]. However, the principal incon-
venience of this COC is that it requires knowledge of the precise root ξ. In order to solve
such a problem, in [19], Cordero and Torregrosa overhauled the definition of COC so that
it would not need the root to be exactly known at all, as shown in the following:

p « ACOC “
ln|xn`1 ´ xn|{|xn ´ xn´1|

ln|xn ´ xn´1|{|xn´1 ´ xn´2|
.

Calculations were performed by using the Matlab programming software with variable-
precision arithmetic, with 200 digits of mantissa and ε “ 10´8 as the error tolerance. For
the computer programs, the following stopping criteria were used:

(i) |xn`1 ´ xn| ă ε or
(ii) | f pxn`1q| ă ε.

Table 2 displays the best outcomes for each experiment. We can see how the following
method is highly efficient compared to schemes such as Chun’s and the BCMT, which we
used for comparison.

Table 2. Benchmark comparison of fourth-order methods in relation to the convergence order and
computational time on the function f pxq.

f pppxqqq Iterations Computational Time in (sec) ACOC

M1 M2 M3 M1 M2 M3 M1 M2 M3

f1pxq, 2 3 3 3 0.050211 0.044647 0.053968 4.1497 3.4747 4.1213
f2pxq, 2 5 4 4 0.185660 0.103332 0.096203 3.9928 3.9584 4.0173
f3pxq, 1 3 3 3 0.054889 0.058569 0.061012 3.7652 3.6640 3.8134
f4pxq, 1.9 4 5 4 0.074889 0.123747 0.098324 3.9630 3.9885 3.9945
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7. Conclusions

In our manuscript, we found a large, optimal, and general kind of fourth-order scheme
that is free of second derivatives. The dynamical analysis that was performed on the
proposed class of methods allowed us to choose family members that were particularly
stable, discarding the ones with unstable performance, where strange fixed points and some
periodical orbits were present. Lastly, we refer to Table 2 to show that the suggested family
is equal to or more competitive than the classical method, the recognized and efficient
methods of Ostrowski and Maheshwari, and other recognized and efficient methods found
in the literature. The dynamic study shows us that there are values of the parameter β for
which we can obtain highly efficient iterative families of methods; some of the values that
we can use are β “ 0, β “ 1 , β “ 10, and β “ 100.

This behavior is justified in the dynamic planes given in Figure 5a–d, since there is
global convergence to the roots of a second-degree polynomial.

In addition, if we use parameter values corresponding to regions of instability, one
of the consequences of using these schemes is that these do not converge to the root, and
if they do converge, they would do so with a large number of iterations, that is, these
members are unreliable. This fact can be confirmed in Figure 4a–d.

The results shown in Tables 2 and 3 are satisfactory from the point of view of numer-
ical calculations. It can be observed that the number of iterations, computational time,
and theoretical convergence order reached by our family, in comparison with the known
methods of Chun and the BCMT, are satisfactory, as we expected, since we took one of
the values of the beta parameter for which it was theoretically shown that we would have
efficient iterative methods. In addition, another piece of evidence that shows the degree of
accuracy with which our method converges to the root is the computation of the absolute
errors |xn`1 ´ xn| and | f pxn`1q|, which are shown in Table 3.

Table 3. Benchmark comparison of fourth-order methods in relation to the absolute error |xn`1 ´ xn|

and | f pxn`1q|.

f pppxqqq |xn`1 ´́́ xn| | f pppxn`1qqq|

M1 M2 M3 M1 M2 M3

f1pxq 7.3ˆ 10´16 2.59ˆ 10´16 1.67ˆ 10´16 1.16ˆ 10´62 2.87ˆ 10´64 2.58ˆ 10´65

f2pxq 1.16ˆ 10´27 1.35ˆ 10´13 2.31ˆ 10´19 2.19ˆ 10´207 2.17ˆ 10´50 3.84ˆ 10´74

f3pxq 5.69ˆ 10´10 9.24ˆ 10´9 1.33ˆ 10´10 5.64ˆ 10´27 8.89ˆ 10´32 1.11ˆ 10´39

f4pxq 3.7ˆ 10´19 1.3ˆ 10´25 2.18ˆ 10´28 2.22ˆ 10´73 7.57ˆ 10´99 1.79ˆ 10´110
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