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ABSTRACT 

Multiple epochs of geodetic deformation observations in 1D, 2D or 3D with their covariance matrices 
can be adjusted using the least-squares method and tested for deformation hypotheses, using the 
author’s hypothesis constrained multi-epoch analysis method. The method estimates deformations of 
a subfield relative to points in one or more other subfields. Therefore, the method is invariant for the 
choice of geodetic datum and does not require stable points. Here it is shown how the geodetic datum 
is defined at two levels. At the first level position, orientation, size and form of the point field are fixed 
to enable the use of coordinates (or heights). At the second level the position, orientation, size and 
form within any epoch interval are fixed, if they cannot be fixed from the observations in the 
adjustment model. This enables the comparison of epochs that have no predefined points that are 
stable in the epoch intervals. The stochastic test of the comparison is invariant for the choice of 
geodetic datum at these two levels. A procedure is described how to find the best deformation 
hypothesis, taking account of all available statistical information. It is shown that the proposed 
method is a powerful tool to find the best deformation hypothesis based on geodetic observations 
and their full stochastic information. It is thus usable for a broad scope of applications of geodetic 
deformation analysis. 

I. INTRODUCTION

Geodetic deformation analysis considers the problem 
of identification of deformations in a geodetic point 
field (Caspary 2000; Heunecke et al., 2013; Velsink 
2018b). Usually, several subfields can be distinguished 
in a point field, for example the subfield of reference 
points, and the subfield of object points. This last 
subfield is often not a single field, but can be divided in 
several subfields, where each subfield can be subject to 
different forces, resulting in different deformations. In 
this paper a geodetic point field will be called a geodetic 
network alternatively. 

As an example a bridge over a river is taken. Usually, 
the movement of the bridge as a whole, relative to the 
surroundings is of interest. So, reference points are 
chosen on constructions and houses whose movements 
are representative of the surroundings. The bridge itself 
can consist of two abutments and the bridge deck. The 
movements of these three parts, relative to each other, 
and the movements of several points on just one part, 
relative to each other, are of interest. Therefore the 
object points of the bridge are separated into three 
subfields. This results in four subfields to be considered 
in the geodetic deformation analysis of the bridge. 

A new method for geodetic deformation analysis of a 
point field by means of a time series of 1D, 2D or 3D 
coordinates, or of geodetic measurements, and their 
covariance matrices, was proposed by Velsink (2016; 
2017). The method is called the “hypothesis 

constrained multi-epoch analysis method” (Niemeier 
and Velsink, 2019). 

The problem considered in this paper is the geodetic 
datum invariance at two levels of the hypothesis 
constrained multi-epoch analysis method. The geodetic 
datum is here considered to be the coordinate 
reference system used, including the elements that 
cannot (or not accurately enough) be derived from the 
measurements, usually the elements that define the 
position of the origin, the orientation of the coordinate 
axes, and the scale. In 3D they comprise seven 
elements. It is called here the first level of the geodetic 
datum. 

In some applications the rates of change in time of 
these seven elements have to be incorporated into the 
geodetic datum as well, for example, if a terrestrial 
reference frame is defined (Altamimi et al., 2002). 
Likewise, the hypothesis constrained multi-epoch 
analysis may require an extension of the geodetic 
datum, which is called here the second level of the 
geodetic datum. In Section VI it will be described, what 
this second level is, and it will be shown that the 
hypothesis constrained multi-epoch analysis uses test 
statistics, which are invariant for the choice of this 
second level of the geodetic datum. 

First, this paper treats in Sections II and III the 
characteristics of the hypothesis constrained multi-
epoch analysis. Subsequently the procedure of 
deformation tests is shown in Section IV. Then the first 
and second level of the geodetic datum are treated in 
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more detail and it is shown that the stochastic tests, 
used to perform the analysis, are invariant for the 
second level (Sections V and VI). Finally, an application 
example is given in Section VII, which shows, how to 
perform a hypothesis constrained multi-epoch analysis. 

 

II. HYPOTHESIS CONSTRAINED MULTI-EPOCH ANALYSIS 

Niemeier and Velsink (2019) give a concise 
description of the hypothesis constrained multi-epoch 
analysis for the case that coordinates and their 
covariance matrices (regular or singular) are available 
for n epochs, where n can be 2 or more. The model used 
is called the coordinates model, see Figure 1, and is 
elaborated upon by Velsink (2016). A linearized Gauss-
Markov model is used with observations ℓ, residuals 𝒗, 
parameters 𝒑 and a coefficient matrix 𝑨 (bold letters 
indicate matrices or vectors) (Eq. 1): 

 
𝓵 𝒗 𝑨𝒑. (1) 

 
In Figure 1 it is shown that the coordinates model 

consists of two phases. 
 

 
Figure 1. Coordinates model (Velsink 2018b, p. 26). 

 

In the first phase geodetic observations are adjusted 
for each epoch separately. The results are coordinates 
for each epoch, including their covariance matrix, which 
is often singular, because of the geodetic datum used. 
The second phase takes all coordinates of all epochs, 
and their covariance matrices, together. Hypotheses on 
deformations are formulated and tested (this will be 
treated in Section III A). Figure 1 shows what is 
contained in the observation vector 𝓵 and what in the 
parameter vector 𝒑 in both phases. 

If, however, the measurements of all n epochs are 
available, including their covariance matrices (regular 
or singular), use can be made of the measurements 
model (Velsink 2017), see Figure 2. The figure shows 
likewise as Figure 1, what is contained in 𝓵 and 𝒑. 

 

 
Figure 2. Measurements model (Velsink 2018b, p. 25). 

 

A. Constraints link epochs 

In both models the vector of parameters 𝒑 contains 
for each epoch the coordinates to be estimated. 
Therefore, every point has different coordinates for 
each epoch in which it occurs. If we put all epochs in 
order of time, an epoch interval for a point is defined 
here as the time between an epoch where a point 
appears, and the next epoch, where it appears. For each 
point, and for each epoch interval, one, two or three 
constraints (for 1D, 2D, and 3D respectively) are 
formulated, which state, how the point is moving in that 
epoch interval. If a point does not occur in one or more 
epochs, one or more of its epoch intervals are longer 
than for other points. 

Usually, the null hypothesis is that points don’t move, 
in which case each constraint is that a coordinate (x, y 
or z) in a certain epoch is equal to the equivalent 
coordinate of the same point in the next epoch. 

 
B. Constraints define deformation hypotheses 

Both Figure 1 and Figure 2 mention hypotheses on 
the deformations, which should be incorporated into 
the Gauss-Markov model. This is done by the 
constraints, introduced above. If a point is assumed to 
be moving in a certain epoch interval, for example 
linearly with a change rate of ∇, the ∇ is added to the 
parameter vector. How a constraint can be added to the 
Gauss-Markov model is treated in Section II D. ∇ may be 
a vector in itself, for example, if the assumed 
deformation of one or more points in a certain epoch 
interval (or even more epoch intervals) is described by 
a function with more than one parameter. 

 
C. Geodetic datum – no stable points required 

Figure 1 shows that the parameter vector in the 
coordinates model contains transformation parameters 
as well. Each epoch interval (from epoch i to epoch i+1, 
where i = 1, 2, … n-1) involves a transformation. It takes 
care of the differences in geodetic datum between the 
coordinates in the observation vector that relate to 
epoch i and those that relate to epoch i+1. This implies 
that a geodetic datum has to be fixed for one of the 
epochs, but not for the others. This, in turn, implies that 
the analysis method does not require any stable points 
(i.e. points that do not move in one or more epoch 
intervals). 

The coordinates in the parameter vector are ordered 
by epoch as well, but they are all defined relative to the 
same geodetic datum. 

The measurements model does not require stable 
points either. This is, because in this model a geodetic 
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datum is needed for the parameter vector, but not for 
the observations in the observation vector, unless 
coordinates are used as observations. In the latter case 
transformation parameters have to be added to the 
parameter vector, which leads to the same situation as 
in the coordinates model. 

D. Gauss-Markov model with hard constraints

Usually, the constraints are considered to be hard
constraints, i.e. they can be added to the observation 
vector as observations with a standard deviation of 
zero. This results in a singular covariance matrix of the 
observations. Most handbooks on adjustment theory 
only treat the case that the covariance matrix of the 
Gauss-Markov model is regular (invertible), see e.g. 
Koch (2013, Section 3.2.1). Maybe, this is the reason 
that some publications state that only an approximate 
solution is possible, if observations have a standard 
deviation of zero (Lehmann and Neitzel, 2013; Shi et al., 
2017). This, however, is not true. An exact, rigorous 
solution has been published already more than fifty 
years ago (Rao and Mitra, 1971, pp. 147-150). 

Even if that solution is not used, it is well-known, how 
a Gauss-Markov model with hard constraints can be 
solved rigorously by using Lagrange multipliers (Koch 
2013, Section 3.2.7), or by reducing the amount of 
parameters (Wolf 1982; Velsink 2015, p. 401). 

Whether the hard constraints are justified, can be 
tested with a generalized likelihood ratio test (Velsink 
2018a). This test can be used to test any deformation 
hypothesis, which is formulated by means of 
constraints in the above described coordinates model 
or measurements model. 

III. ANALYSIS PROCESS

Both the coordinates model of Figure 1 and the 
measurements model of Figure 2 can be used to 
perform a geodetic deformation analysis. Both models 
yield least-squares estimates of the coordinates of all 
points for all epochs, and the covariance matrix of all 
these coordinates. 

A. Testing deformation patterns

However, the estimated coordinates are not essential
for the deformation analysis! It is the testing of the null 
hypothesis against alternative hypotheses, which is the 
core of the analysis. Each alternative hypothesis 
describes one possible deformation pattern of all points 
through all epochs. It may be, for example, that a 
subfield is subject to deformation only during the last 
few epochs, and that the points of another subfield are 
moving relative to the other subfields during the first 
few epochs. The deformations of both subfields 
constitute one intricate deformation pattern, described 
in the Gauss-Markov model by several constraints. This 
deformation pattern is considered one alternative 
hypothesis and is tested by a generalized likelihood 
ratio test. To do this, the model of the alternative 

hypothesis is written as an extension of Equation 1 
(Eq. 2): 

𝓵 𝒗 𝑨𝒑 𝑪𝛁 (2) 

vector 𝛁 contains the deformation parameters of Figure 
1 or 2. Matrix 𝑪 is the corresponding coefficient matrix. 
The alternative hypothesis is tested against the null 
hypothesis by using the test statistic (Velsink 2018a) 
(Eq. 3): 

𝐹
𝒓 𝑪 𝑪 𝑸 𝑪 𝑪 𝒓

𝑞 𝜎
, (3) 

with 𝒓 the vector of reciprocal residuals, and 𝑸  its 
cofactor matrix (Velsink, 2018a), which both can be 
computed during the adjustment of the null hypothesis. 
𝑡 indicates the transposed of a vector or matrix, and 𝑞 
is an integer that indicates the degrees of freedom of 
the test and equals the number of parameters in 𝛁.  𝜎  
is the a priori variance of unit weight, which follows 
from splitting the covariance matrix of the observations 
in this factor and the cofactor matrix. 

B. Hypothesis selection problem

Infinitely many deformation patterns can be
formulated for a point field. Many of them can be 
plausible, considering the physical conditions of the 
houses, constructions and soil, where the points are 
located, and the forces that act upon them (e.g. 
earthquakes, landslides, construction works and 
weather conditions). The approach of the hypothesis 
constrained multi-epoch analysis method is to test 
many alternative hypotheses and to find the best one 
among them. Because different alternative hypotheses 
can have different degrees of freedom in the 
generalized likelihood ratio test, the definition of “best” 
is problematic, and the resulting hypothesis selection 
problem does not have a unique answer (Velsink 2018b, 
p. 43). However, a criterion has to be chosen, for
example the test ratio or the Akaike information
criterion (Velsink 2018b, p. 43), and applied.

C. Adaptation of null hypothesis

When the best alternative hypothesis, according to
some criterion of “best”, has been decided upon, this 
alternative hypothesis becomes the new null 
hypothesis. The equation of the new null hypothesis is 
arrived at by writing Equation 2 as (Eq. 4): 

𝓵 𝒗 𝑨 𝑪
𝒑
𝛁  (4) 

The matrix 𝑨 𝑪  is the new coefficient matrix and 

the vector 
𝒑
𝛁  is the new parameter vector. 

Testing the adjustment of the adapted null 
hypothesis should result in an accepted overall model 
test, which confirms that the alternative hypothesis 
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yields a good explanation of all measurements in all 
epochs (or of the coordinates that are derived from 
those measurements in the separate epoch 
adjustments). 

 
D. Least-squares solution by iteration 

Because the used models are linearized ones, both 
observations 𝓵 and parameters 𝒑 and 𝛁 are incremental 
values relative to approximate values. The approximate 
values have to comply with the nonlinear equivalent of 
Equation 4. To get the least-squares solution of 
Equation 4 an iteration process is needed. In each 
iteration step the estimated increments for both 
observations and parameters have to be corrected 
slightly to let the new approximate values comply with 
the nonlinear equivalent of Equation 4. 

These corrections can be computed by least-squares, 
using the model of condition equations, which is dual to 
the Gauss-Markov model and has been published first 
by Gauss (1828). See Velsink (2018a) for this model and 
its least-squares solution in matrix equations. The 
adjusted observations of the previous step are the 
vector of constant terms in this model and the 
estimated parameters are the observations. After 
linearization this yields (Eq. 5): 

 

𝒕 𝑨 𝑪
𝒑𝟎
𝛁𝟎

𝓵𝟎;  𝐸 𝒕 𝟎, (5) 

 
where 𝓵𝟎, 𝒑𝟎 and 𝛁𝟎 are the approximate values of 𝓵, 𝒑 
and 𝛁. The vector 𝒕 contains the misclosures (computed 
with the non-linear model) with 𝐸 𝒕   their 
mathematical expectations. As covariance matrix of the 
“observations” 𝒑𝟎 and 𝛁𝟎 the unit matrix is used. Thus, 
the values of 𝒑𝟎 and 𝛁𝟎 are corrected in this 
“adjustment within an adjustment” and the corrected 
values comply with the main nonlinear model. 

 
The constantly improved approximated values of 

both observations and parameters will usually converge 
to the least-squares solution of the nonlinear model, 
that is, to the adjusted observations and the estimated 
parameters respectively. If not, the initially chosen 
approximate values are not adequate, or the 
observations contain gross errors. 

 
E. Estimated deformations 

The adjustment of the adapted null hypothesis yields 
least-squares estimates of the deformation 
parameters 𝛁. Moreover, the constraints that describe 
the deformations for each point in each epoch, can be 
included in the vector of observations as observations 
with standard deviation zero. In that case, the adjusted 
observations are the least-squares estimates of the 
deformations of each x, y or z coordinate of each point 
in each epoch. 

It is important to note that the estimated 
deformations of all points are not relative to the first 

level of the geodetic datum, but relative to each other, 
more precisely to points that are held fixed (no 
deformation) in the model! It may be that such points 
do not exist. This case will be treated in Section VI A. 

 
F. Minimal Detectable Deformations 

The hypothesis constrained multi-epoch analysis can 
be done by the coordinates model or the 
measurements model. Both models can be adjusted to 
get a least-squares solution by using a least-squares 
algorithm that can handle singular covariance matrices, 
or by using another method to handle hard constraints, 
see Section II D. Equation 3 can be used to test for 
deformations. But also formulas are available to 
compute Minimal Detectable Deformations (MDD) 
(Velsink 2016; 2017). An MDD of a certain coordinate 
difference between the coordinates of the same point 
in an epoch interval gives the deformation in, for 
example, millimeters that can be detected with a 
certain probability (chosen beforehand) by a test of a 
certain alternative hypothesis, described by a matrix 𝑪. 

The MDD’s are a powerful tool to describe the ability 
of a geodetic network to detect deformations 
(sensitivity analysis). It is an important property of the 
MDD’s that they can be computed before any 
measurement has been done. Thus, they can be used to 
formulate requirements for deformation networks, and 
consequently standards can be formulated with them. 

 

IV. PROCEDURE OF DEFORMATION TESTS 

To arrive at the treatment of the invariance for 
changes in the geodetic datum of the hypothesis 
constrained multi-epoch analysis, first the procedure of 
deformation tests is reviewed. 

First, each epoch is adjusted and tested in itself. If the 
reliability of the geodetic network of an epoch is good 
enough, and if testing the epoch does not lead to 
rejection, it is assumed that the epoch model does not 
contains errors of any significance. 

Subsequently the model of all epochs is tested against 
the most general alternative hypothesis, which is done 
by the overall model test (Velsink 2018a, p. 6). If this 
test rejects the null hypothesis, and all epoch tests did 
not lead to rejection, it may be that still some errors are 
present in some epoch or epochs, because the 
combined adjustment of all epochs is more sensitive to 
errors in individual epochs than the adjustment of just 
one epoch. 

If it is concluded that no errors in any individual epoch 
are present any more, but the test of all epochs leads to 
rejection, the conclusion is that deformations are 
present. 

It may be that physical conditions of the earth and of 
buildings and structures on it are indicative of possible 
deformations. But even then, other deformations may 
be present as well. Therefore, all deformation 
constraints are tested one by one (that is, for each 
coordinate difference separately) or one point by one 
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point or both. To get an impression of the number of 
deformation constraints: with n epochs, d dimensions 
(d is 1, 2 or 3), and k points in each epoch (although 
usually the numbers of points in each epoch differ), 
there are 𝑛 1  epoch intervals and, thus, 𝑛 1
𝑑 𝑘 deformation constraints. The test of one point by 
one point means that the d coordinates of a point in an 
epoch interval are tested for the alternative hypothesis 
that this point has moved in that epoch interval, and 
that no other point has moved in that or any other 
epoch interval. 

The test is performed with the test quantity of 
Equation 3 and is a d-dimensional test. The test is 
repeated for all points in all epoch intervals. Let us call 
these tests one point by one point the conventional 
point tests. Because the dimension of all conventional 
point tests is d, the 𝐹 ’s of all these tests can be directly 

compared, and give an impression, where deformations 
might be present. It is not possible to deduce directly 
from these conventional point tests which points in 
which epoch intervals are subject to a deformation, let 
alone determine the character and sizes of these 
deformations. To accomplish this, more complex 
alternative hypotheses have to be formulated and 
tested. This is the hypothesis selection problem, treated 
earlier in Section III B. It will not be treated fully in this 
paper. It is sufficient here to conclude that the best 
alternative hypothesis, and thus the best deformation 
pattern, is selected. 

 

V. FIRST LEVEL GEODETIC DATUM 

In the introduction (Section I) the first level of 
geodetic datum invariance has been defined. If a 
deformation hypothesis is defined by constraints on the 
parameters of the coordinates model or the 
measurements model, the hypothesis can be tested 
with Equation 3. This test is invariant for the first level 
of the geodetic datum (Velsink 2016; 2018a). 

 
A. Deformation constraints link epochs 

As mentioned before, the first level can be defined by 
fixing the coordinates of some points in only one epoch. 
Let us call these points the datum points and let them 
be fixed in the first epoch. The coordinates of the datum 
points in the other epochs (which are not part of the 
datum) are linked to those of the first epoch by 
deformation constraints. 

Usually, the null hypothesis assumes the absence of 
any deformation. This means that the coordinates of 
the datum points of the second to n-th epoch are forced 
to be equal to the coordinates in the previous epoch by 
constraints in the coordinates model or measurements 
model. 

 
B. Example: just one point moved 

Let us suppose that the overall model test rejects the 
null hypothesis, and that the solution of the model 

selection problem is the alternative hypothesis that a 
point S is subject to deformation during just one epoch 
interval, and no other deformation is present. As 
explained in Section III A, the alternative hypothesis is 
defined by a matrix C. In this case, matrix C has d 
columns (d is the dimension: 1, 2 or 3), which contain 
zeros except for a 1 in the d rows that correspond to the 
d observations that represent the deformation 
constraints of point S in that epoch interval. 

Let the k-th observation be the constraint that the x 
coordinate of point S in epoch 𝑖 1 is equal to the x 
coordinate of point S in epoch 𝑖. The observation 
equation reads (Eq. 6): 

 
ℓ 𝑣ℓ 𝑥 , 𝑥 , ∇ , ,  (6) 

 
The “observed” value of ℓ  is zero. Its standard 

deviation is zero as well. When Equation 6 is transferred 
to the matrices of Equation 4, -1 is inserted in A in the 
column that corresponds to the x coordinate of point S 
in epoch 𝑖 1, and 1 is inserted in the corresponding 
column of epoch 𝑖. In matrix C 1 is inserted in the k-th 
row in column 1 (column 2 is for the y coordinates and 
column 3 for the z coordinates). 

The parameter ∇ , ,  only appears in the k-th 

observation equation and it ensures that the constraint 
is disabled. It is noteworthy that the addition of 
parameter ∇ , ,  in the adjustment model has the 
same effect as giving the constraint an infinitely large 
standard deviation (or a weight of zero). Because the 
constraint remains in the adjustment model, an 
estimated value will be computed, which is the 
estimated deformation of the coordinate difference in 
the epoch interval concerned. 

This example serves as an illustration of the way a 
hypothesis is formulated that just one point in one 
epoch interval is subject to deformation. The next 
section contains an example that treats the opposite 
case, where all points are suspected to be influenced by 
deformation. It is there that the second level of the 
geodetic datum plays an important role. 

 

VI. SECOND LEVEL GEODETIC DATUM 

A. Example: All points move 

In professional practice the situation occurs regularly 
that it is not clear, whether there is any deformation, 
and that the point by point analysis of Section IV gives 
an unclear picture, where all points seem to be affected 
by deformation. In this case it is possible to “disable” all 
deformation constraints, which is done by adding an 
additional parameter ∇ to each deformation constraint, 
as exemplified by Equation 6. This results in n separate 
geodetic networks, when there are n epochs. Because 
the relation between all these networks is not defined, 
it will result in a parameter vector in Equation 4, which 
cannot be solved in a least-squares sense uniquely. 

To get a unique solution (or, equivalently to make the 
parameters estimable) every epoch interval has to have 
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at least as many “enabled” deformation constraints as 
needed to get a unique solution. These minimally 
needed constraints are here called “minimal 
deformation constraints” (cf. Pope 1971), and define 
the second level of the geodetic datum. We have seen 
in Section I that the testing quantity of Equation 3 is 
invariant for a change of the first level of the geodetic 
datum. In the sequel the invariance of this test quantity 
for the second level will be considered. 

 
B. Form and size 

Geodetic deformation analysis is about changes of 
the form of a geodetic point field, which can clearly be 
seen in the word de-form-ation. It is about size as well, 
because today our instruments are so good that 
distances can be measured very precisely and changes 
of size of a geodetic point field can be determined 
equally precisely. This means that we are interested in 
form and size describing elements, and in the changes 
of these elements. Measurements used for 
deformation analysis should contain information about 
form, or about form and size, to be of value. It may be 
that they contain information about position and 
orientation relative to the earth, but this is of no value 
for the deformation analysis, as long as the point field 
contains all points of relevant objects subject to 
deformation and of reference objects. 

Euclidian or geographic coordinates relative to a 
reference system contain more than form and size 
information. They contain information about the 
position of the origin and the orientation of the 
coordinate axes relative to the point field under 
consideration. For this reason coordinates are not 
suited as form or size elements. 

Therefore, it is of importance to know, how form and 
size elements can be defined in 1D, 2D and 3D. First, 
form elements in 2D are treated. In the two 
dimensional Euclidian plane the smallest point field 
with a form is a triangle (three points). Two triangles 
have the same form (are conformal), when 
corresponding angles are equal. To fix the form of a 
triangle, two angles of the triangle are sufficient. Baarda 
(1966) showed that the form can be defined by two 
length ratio’s as well (cf. Velsink 2018b, pp. 27-28). This 
means that angles and length ratio’s are suited to 
function as form elements. 

In three dimensional Euclidian space the smallest 
point field with a form that is not in a 2D subspace, is a 
tetrahedron (four points). To fix the form of a 
tetrahedron five angles, or length ratio’s, or a 
combination of both are needed (Velsink 2018b, pp. 
28- 29). 

In one dimensional Euclidian space (a straight line) 
angles are not defined, but length ratio’s are. The 
smallest point field with a meaningful length ratio 
consists of three points (Velsink 2018b, p. 30). 

A size element is a distance between two points. If the 
form of a point field is defined, the size of it is defined if 

one distance between two points within the point field 
is defined. 

With the use of these form and size elements, it is 
possible to consider the invariance of the test quantity 
of Equation 3 for a change of the second level of the 
geodetic datum. 

 
C. Invariance of test quantity 

Let us consider n epochs in the coordinates model or 
the measurements model. They can be viewed as n 
geodetic networks. Let us assume that the 
measurements of all these networks contain enough 
information on the form and size of the network. If the 
networks are linked by minimal deformation 
constraints, the form and size of each network are 
solely determined by the adjusted coordinates or 
measurements of each network, and not by the 
deformation constraints. 

The test quantity of Equation 3 is invariant for a 
change in the first level of the geodetic datum. Such a 
change can be performed, in the case of geodetic 
deformation analysis, by a similarity or congruency 
(rigid body) transformation, which leaves the form, or 
the form and size of a point field unchanged. Therefore, 
the differences (changes) between the form and size 
elements of the two epochs of an epoch interval, are 
left unchanged. This means that the test quantity of 
Equation 3 is invariant for a change in the second level 
of the geodetic datum, if the second level is defined by 
minimal deformation constraints. 

 

VII. APPLICATION 

To describe an application of the invariance of the 
second level of the geodetic datum, a fictitious example 
from professional practice is presented. 

Suppose a building is close to ongoing roadworks and 
it is monitored for deformations by 3D tacheometry 
measurements. Initially the consecutive epoch 
measurements fit well together: the overall model test 
is accepted. It seems that no deformation occurs. But 
then the addition of the next epoch leads to rejection 
of the test and likewise the subsequent epoch. 
However, the one-by-one tests of Section IV do not give 
a clear picture. Maybe, a deformation of several parts 
of the building started, and maybe already during 
several epochs. It is decided that all epochs up to the 
last four epochs will be left out of the model and the 
last four will be analyzed. All deformation constraints 
between the four epochs are disabled by introducing a 
bias ∇, a different one for each epoch interval and each 
coordinate. This is realized in the software by specifying 
a suitable matrix C, see Equation 2. This makes the 
parameter vector 𝒑 not solvable. The software allows 
the user to specify minimal deformation constraints for 
each epoch interval by choosing which coordinates are 
to be fixed. This has the advantage that the adjusted 
deformation constraints (adjusted from zero to nonzero 
values) are relative to the fixed coordinates. But 
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additionally the software offers the possibility not to 
choose a second level of the geodetic datum. In this 
case, the software uses a generalized matrix inverse to 
compute the parameter vector 𝒑. A generalized matrix 
inverse of a matrix 𝑴 is any matrix 𝑮 that fulfils the 
Equation 7: 

 
𝑴  𝑴𝑮𝑴. (7) 

 
A special type of generalized matrix inverse, which is 

unique for 𝑴, is the pseudo-inverse as defined by 
Boullion and Odell (1971), also called the Moore-
Penrose inverse (Ben-Israel and Greville, 2003). It 
minimizes the Euclidian norm of 𝒑, and thus the 
adjusted deformation constraints, although this has, in 
view of the mentioned invariance, no significance: any 
choice of the minimal deformation constraints will give 
the same test results. Therefore, the software does not 
use the pseudo-inverse, but the generalized inverse 
that is calculated the fastest. In MATLAB this can be 
done by using the matrix left divide (“\”) function to 
solve the system of normal equations. 

The next step is to look at the adjusted deformation 
constraints, and to identify deformation patterns in one 
or more subfields, during one or more epoch intervals. 
The result is a collection of possible deformation 
patterns that might explain the adjusted deformation 
constraints. Each deformation pattern can consist of 
several subfields, each of which shows different 
deformation behavior during different epoch intervals. 
Each deformation pattern is translated into an 
alternative hypothesis by specifying a new matrix C, and 
subsequently, after having chosen a level of 
significance, tested with test statistic (3), which is 
assumed to have a chi-squared-distribution. This 
manual process is supported by the software, which has 
the option to systematically construct many 
combinations of simple deformation patterns and test 
them. Research should give more deformation patterns 
that occur often in professional practice. 

Choosing the best alternative hypothesis means 
solving the hypothesis selection problem as stated in 
Section III B. 

Subsequently all epochs are again added to the 
model, and the process just described, is repeated for 
all epochs. Let us assume that it does not lead to 
noticeably different results, indicating that no 
deformation was present before the last four epochs. 

After determining the best alternative hypothesis, 
the null hypothesis is adapted (Section III C) to account 
for the found deformation pattern, and final results are 
computed. The principal of the roadworks is informed 
about the deformations. 

 

VIII. CONCLUSIONS 

In this paper the hypothesis constrained multi-epoch 
analysis method has been explained, and a new result 
on its use has been derived. It has been shown, how 

many epochs of geodetic deformation measurements 
are included in one adjustment model, for which two 
options are available, the coordinates model and the 
measurements model. Deformation hypotheses, or the 
absence of deformation is introduced in these models 
by formulating constraints between epochs. The 
geodetic datum can, thus, be limited to some 
coordinates in just one epoch. This has the advantage 
that no stable points are needed to define the geodetic 
datum. 

It has been shown how the least-squares solution of 
the models is computed with an iterative process of 
adjustment, which is tested subsequently. If the null 
hypothesis is rejected, several alternative hypotheses 
are formulated, which are hypotheses on the 
deformation pattern. 

Each deformation hypothesis can be tested by a test 
statistic that has a chi-squared distribution and which is 
invariant for the choice of geodetic datum. One of the 
deformation hypotheses has to be chosen as the best 
one. This is the hypothesis selection problem. 
Subsequently least-squares estimates of the 
deformations can be computed. It is shown as well, how 
minimal detectable deformations are determined. 

Then a second level of the geodetic datum is defined, 
which enables the search for possible deformation 
patterns, when no clear indication is available, what the 
deformation pattern looks like. The results of the 
previously mentioned tests are shown to be invariant 
for this second level. 

A fictitious application has been elaborated upon to 
make it clear what procedure can be used, when the 
hypothesis constrained multi-epoch analysis method is 
used. 
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