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a b s t r a c t 

Type 1 diabetes (T1D), previously known as juvenile diabetes or insulin-dependent diabetes, is an autoim- 

mune disease characterized by the insufficient (or lack of) production of insulin by the pancreas. Insulin

is crucial to maintain blood sugar at healthy levels. High blood sugar damages the body and causes a va- 

riety of symptoms, ranging from severe thirst, fatigue, to urinary infections. The cells responsible for the

production of insulin are the β-cells. In T1D, these are killed by an abnormal response of the immune 

system. Specific clones of cytotoxic T-cells invade the pancreatic islets of Langerhans, and eliminate them.

T1D diabetes may develop in human immunodeficiency virus (HIV)-infected patients, though in rare situ- 

ations. In this paper, we propose a cell model for the development of T1D in these patients, after 

immune restoration, during highly active antiretroviral therapy (HAART). The study includes the derivation 

of the

qualitative properties of the model, and its comprehensive investigation via path-following methods, us- 

ing the continuation platform COCO. In this way, the main theoretical predictions are verified in detail. 
Furthermore, this numerical part establishes accurate parameter thresholds to ensure an effective disease 
treatment in HIV-infected persons to prevent the development of T1D.
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. Introduction

Diabetes Mellitus (DM) is a chronic metabolic disease diagnosed 

y high blood glucose levels (known as hyperglycemia). There are 

hree main types of diabetes, namely type 1, type 2, and gesta- 

ional. In type 1 diabetes (T1D), the immune system identifies the 

nsulin-producing cells ( β cells) as external or foreign. This leads 

o an abnormal immune response, characterized by the inability of 

he regulatory T cells to control cytotoxic T cells, directed against 

elf-proteins. CD4 and CD8 T cells attack and destroy β cells, and 

oncurrently, the B cells produce antibodies against β cell proteins. 

here may be some replacement of β cells’ numbers by cell divi- 

ion or cell formation; nevertheless, as years go by, the depletion 

f these cells surmounts the replenishment. A reduction of approx- 
n

r

d

d

mately 80% of β cells is a synonym for the inability of the body to 

ecrete enough insulin, blood sugar levels increase, and clinical di- 

betes is diagnosed. T1D is responsible for causing severe damage 

o the body and failure of various organs and tissues. Symptoms 

nclude extreme thirst and hunger, dry mouth, upset stomach and 

omiting, urge to urinate, weight loss, fatigue, blurry vision, Kuss- 

al respiration, infections of your skin, urinary tract, or vagina, 

ood changes, amongst others. Access to treatment and insulin for 

1D patients is life-saving [1] . 

The most common type of diabetes is type 2. It occurs mainly 

n adults and results from the body becoming resistant or not pro- 

ucing enough insulin. The third type of diabetes is gestational. 

t develops during pregnancy and may cause medical complica- 

ions to the mother and fetus. It is likely to disappear after preg- 

ancy, but the affected women and their children have a higher 

isk of developing type 2 diabetes in the future. Treatment for 

iabetes is a healthy lifestyle, which includes exercise, a healthy 

iet, maintain a normal body weight, avoid tobacco, regular 
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mailto:jpaez@espol.edu.ec
mailto:karuniaputra@uni-koblenz.de
mailto:cap@isep.ipp.pt
mailto:clabursi@upv.es
https://doi.org/10.1016/j.chaos.2021.111716


s

l

s

l

4

i

T

1

t

l

c

n

i

t

5

A

l

i

m

n

d

m

t

o

[

l

t

d

L

t

p

s

f

a

H

T

f

m

h

[

w

g

l

p

t

t

c

u

t

c

t

o

v

i

a

c

a

H

o

b

t

u

t

b

M

m

p

l

o

l

t

m

e

r

m

t

a

g

a

fi

t

l

k

n

p

e

o

a

T

a

d

t

T

t

1

w

a

h

m

t

J

r

t

i

4

o

a

t

t

v

A

v

c

a

s

g

a

v

r

p

i

d

S

I

l

e

r

creening, and medication and/or insulin to restore blood glucose 

evels [2].  

The number of people with diabetes is dramatically increasing 

ince 1980 from 108 million to 422 million in 2014. The preva- 

ence of diabetes in adults has almost doubled in this period, from 

.7% to 8.5%. This increase is more severe in the middle- and low- 

ncome countries due to bad economics and health systems [3] . 

he death rate attributed to diabetes is high, with an estimated 

.6 million diabetic deaths in 2016. This corresponds to nearly the 

otal number of deaths due to high blood glucose in people be- 

ow 70 years old. In 2016, the World Health Organization (WHO) 

onsidered diabetes the seventh leading cause of death. The recent 

umber from 2019 unraveled approximately 463 million adults liv- 

ng with diabetes, and this number is predicted to tragically rise 

o 700 million by 2045. People living with T1D are approximately 

%-10% of the total number of diabetics. In the United States of 

merica, 1.6 million people have T1D, and is estimated a 5 mil- 

ion new diagnosis of T1D by 2050. Two hundred thousand Amer- 

can children and teenagers have T1D. In the United Kingdom, 3.7 

illion people have diabetes, of which 10% are of type 1. Twenty 

ice thousand children have T1D [4] . T1D prevalence and inci- 

ence are also increasing worldwide, which will cause an even 

ajor burden to low and middle-income countries [5] . There is, 

hough, a globally agreed target to halt the rise in diabetes and 

besity by 2025, which may help prevent these horrible numbers 

3,6] . 

The human immunodeficiency virus (HIV) is a lentivirus, be- 

onging to the family of Retroviridae . Typical viruses are charac- 

erized by a long incubation period (months, or years) and in- 

uce a broader range of pathologies in several animal species. 

entiviruses are one of the most used vectors for gene transfer due 

o their flexible genome and transducing properties. HIV attacks 

referentially the CD4 + T cells, major components of our immune 

ystem. This unbalances the immune system, undermining an ef- 

ective response to pathogens. Over time, opportunistic infections 

nd/or cancers develop, defining the last stage of the infection by 

IV, which is called Acquired Immune deficiency Syndrome (AIDS). 

here is no cure for HIV infection currently; nevertheless, HIV in- 

ection is considered a chronic disease. The substantial develop- 

ent of medicines, called antiretroviral therapies (ARTs), has given 

ope to HIV patients, who can now live longer and healthier lives 

7] .

In 2020, an estimated 37.7 million people were living with HIV

orldwide [8] , of which 25.4 million are in the WHO African Re- 

ion. Only 27.5 million had access to ART. More than 36 mil- 

ion died from AIDS till now. In 2020, more than 1.5 million peo- 

le were diagnosed with HIV infection. AIDS-related diseases con- 

ributed to 680 0 0 0 deaths. HIV prevention methods and interven- 

ions vary according to the patient and include male and female 

ondoms, the use of ART and pre-exposure prophylaxis (PrEP), vol- 

ntary male medical circumcision (VMMC), behavior change in- 

erventions to reduce the number of sexual partners, the use of 

lean needles and syringes, opiate substitution therapy, and the 

reatment of HIV-infected people, to reduce viral load and, thus, 

nward transmission. Although the efficacy and diversity of pre- 

ention measures, the new infections among adults is not decreas- 

ng globally. Three main reasons are behind this, starting from the 

bsence of a strong political commitment, inadequate information 

ampaigns about sexual behavior, reproductive needs and rights, 

nd weak systematic implementation of prevention measures [9] . 

Diabetes (type 2) has a higher prevalence among pre-ART 

IV-infected patients. Moreover, more educated, hypertensive, and 

bese HIV-infected adults are also more prone to have type 2 dia- 

etes, as co-morbidity [10] . In this scope, in the last few decades, 

he application of statistical mathematical models has increased to 

nderstand the dynamics of type 2 diabetes and HIV infection bet- 
2

er [11–13] . Nevertheless, the literature on models discussing the 

ehavior of HIV-infection dynamics and T1D is scarce. In 2007, 

ahaffy et al. [14] propose a model for the dynamics of the im- 

une response in autoimmune diabetes (T1D). The authors ex- 

lain T-cell activation as an increasing function of the autoantigen 

evel, whereas decreasing levels lead to the production of mem- 

ry cells. Moreover, high β-cells death rates increase autoantigen 

evels, which turn off memory cells production, leading to less ac- 

ivated T cells. After clearance of the peptide, the production of 

emory cells is recovered, and the cycle repeats. Magombedze 

t al. [15] formulate a mathematical model that incorporates the 

ole of cytotoxic T cells and regulatory T cells in T1D diabetes. Nu- 

erical results indicate that high levels of regulatory T cells reduce 

he activity of auto-reactive T cells, permitting β-cells to replenish 

nd allow insulin production. In 2012, Marinkovic et al. [16] sug- 

est a model for the dynamics of DM, which includes metabolism 

nd the immune system at early stages of the disease. The model 

ts well clinical and non-clinical data and suggests that ampli- 

ude and duration of autoimmune response may explain β-cell 

oss. The authors in [17] perform the bifurcation analysis for a 

nown mathematical model for the early stages of T1D. Several in- 

ovative treatment strategies are proposed, such as increasing the 

hagocytic ability of resting or activated macrophages. Carvalho 

t al [18] describe a non-integer order model for T1D, focusing 

n the role of macrophages from non-obese diabetic (NOD) mice 

nd from control (Balb/c) mice in triggering autoimmune T1D. 

he results obtained showed persistence of inflammation for NOD 

nd control mice, for smaller values of the order of the fractional 

erivative. This adds richness to the behavior of the model since 

his is not observed for the integer-order model. In the literature, 

1D diabetes was reported to develop in HIV-infected patients af- 

er immune restoration during antiretroviral therapy [19,20] . In 

998 [19] , the authors report an 18-year-old HIV-infected teenager 

ho developed new-onset insulin-dependent diabetes mellitus in 

ssociation with anemia. The authors pinpoint the progression of 

yperglycemia associated with a rapid increase in insulin require- 

ent, as indicative of insulin resistance. In [20] , antibodies to glu- 

amic acid decarboxylase, were detected in three HIV patients in 

apan, with no prior T1D disease, at a time when CD4 cell counts 

ose abruptly. It is believed that immune restoration turns pa- 

ients vulnerable to T1D. In 2015, another case study was reported 

n [21] . This described the clinical outcome of a previously healthy 

0-year-old man infected with HIV and then developed newly- 

nset T1D after immune restoration following antiretrovial ther- 

py. The authors refer to ethnicity as a preponderant factor for

his diagnosis, highlighting Japanese people as more susceptible

han white patients. Shimoyama et al. [22] describe the sudden de- 

elopment of fulminant T1D (FT1D) in a patient diagnosed with 

IDS. FT1D is defined by the abrupt onset of insulin-deficient se- 

ere hyperglycemia, diabetic ketoacidosis (DKA), high serum pan- 

reatic enzyme levels, and no diabetes-related autoantibodies. The 

uthors discuss HIV/AIDS and FT1D association, the FT1D onset de- 

pite negative CMV antigenemia, and the cause of severe hypo- 

lycemia during the course of FT1D. Recently, in 2020 [23] , the 

uthors report the case of an older African American man who de- 

eloped T1D in a state of immune reconstitution after antiretrovi- 

al therapy. 

With the aforementioned ideas in mind, in this paper, we pro- 

ose a within-host mathematical model for the dynamics of T1D 

n HIV-infected patients. In Section 2 , we describe the ordinary 

ifferential equations com posing the model. This is followed in 

ection 3 , by the study of the qualitative properties of the model. 

n Section 4 , we investigate the dynamical behavior of the equi- 

ibria under variation of relevant disease control parameters. We 

nd this work with the main conclusions of this study and future 

esearch lines. 
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. Description of the model

The model is composed by the concentration of healthy CD4 + T
ells T , infected CD4 + T cells I, HIV viruses V , resting macrophages

, activated macrophages M a , infected macrophages M i , apoptotic 

-cells B a , necrotic β-cells B n and cytokines C. The model is an 

daptation of a basic HIV model and a macrophage-induced in- 

ammation model [24,25] . The basic HIV model consists of three 

ompartments, one for the CD4 + T cells population, one for the 

nfected CD4 + T cells population, and another one for the HIV vi- 

al load [24] . During HIV infection, macrophages can also be in- 

ected by HIV [26] , thus we have added equations modeling this 

ehaviour in our derived model. The macrophages-induced inflam- 

ation model, proposed in [25] , tries to provide a biological expla- 

ation to the triggering of autoimmune T1D in non-obese diabetic 

ice (NOD). Its derivation considers the slower activation rate of 

acrophages in NOD, when compared to control (Balb/c) mice, as 

he major responsible for the onset of T1D. Thus, the authors quan- 

ify variables from the Copenhagen model [27] , based on parame- 

ers coming from experimental data for the two groups of mice, 

evise it to obtain a reasonable model. They conclude the apop- 

otic wave may induce inflammatory response in NOD but not in 

alb/c mice, since macrophages are extremely fast in clearing that 

ave in the later. Clinically, the literature is scarce in evidence of 

he development of T1D in HIV infected patients. There is solely 

 handful of cases concerning the onset of T1D in HIV infected 

atients after immune restoration. To the best of our knowledge, 

here are no published references on mathematical models of this 

pidemiological phenomenon. In the derivation of our model, we 

onsider the well-known model of the within-host dynamics of 

IV, considering CD4 + T cells, and we add to it macrophages. To 

his sub-model, we agglutinate the dynamics of the model devel- 

ped in [25] for the onset of T1D diabetes in mice. We consider 

he neonatal wave, W (t) , for two main reasons. This wave is ob- 

erved in neonatal babies [28] , and, second, it is known that an 

dult will have in his body both newborn and older beta cells [29] .

hus, we are assuming an analogous phenomenon as the one seen 

n mice, with the addition of the T cells. I.e., a unique conjunc- 

ion of the increase in CD4 + T cells counts, resulting from immune 

estoration, and the macrophages immune roles would trigger a 

neonatal” wave, inducing inflammation and self antigen presen- 

ation, and prompting T1D in HIV infected patients after immune 

estoration. We proceed with the details of the derived equations 

elow. 

Healthy T cells T are created at thymus with a rate s ( Eq. (2.2) ).

hey can also generate from the proliferation of existing T cells. 

his is represented by a logistic function in which p is the max- 

mum proliferation rate and T max is the T cells maximum den- 

ity. T cells are removed at rate δ1 . T cells are infected by HIV at

 rate kV T and move to the class of infected T cells I ( Eq. 2.3 ).

everse transcriptase inhibitor efficacy is included in the CD4 + 

 cells equations by the parameter 0 ≤ εRT ≤ 1 . One means 100% 

reatment efficacy. HIV-infected T cells I are removed at rate δ2 . 

he viruses V are produced by the infected CD4 + T cells I and 

nfected macrophages M i with bursting sizes N 1 and N 2 , respec- 

ively ( Eq. (2.4) ). The factor (1 − εP ) reduces viral load due to the

rotease inhibitor efficacy 0 ≤ εP ≤ 1 . The viruses are removed at 

 rate c. The resting macrophages M enter the tissue at a con- 

tant rate J, and leave randomly with mean residence time 1 /δ3 

 Eq. (2.5) ). They are activated through contact with apoptotic cells 
3

 a at a rate g. Activated macrophages M a recruit macrophages to 

he tissue at a rate b ( Eq. (2.6) ). They can be infected by HIV at a

ate m and move to the infected class M i as well as die at a rate

4 . The infected macrophages M i are removed at rate δ5 ( Eq. (2.7) ). 

arameters e i for i = 1 , 2 , 3 model the crowding effects, described

y reduced entry and/or increased efflux of macrophages from tis- 

ue at high densities. The β-cells’ cytokine-induced apoptosis elim- 

nation rate is represented by a Michäelis-Menten saturated func- 

ion of C, with a maximal rate A max , and a half-max cytokine con- 

entration k c ( Eq. 2.8 ). Apoptotic β-cells B a follow a neonatal wave 

 (t) = 4 × 10 

7 exp 

[
−
(

t − 9

3 

)2 
]

(2.1) 

nd are removed by resting, activated, and infected T cells and 

acrophages, at rates f 1 , f 2 , and f 3 , respectively. They become 

ecrotic β- cells B n at a rate δ6 ( Eq. (2.9) ). The cytokines C are

roduced by the necrotic cells B n and the healthy and infected T 

ells as well as activated and infected macrophages at a rate α, and 

re removed at a rate δ7 ( Eq. (2.10) ). The nonlinear system of dif- 

erential equations describing the dynamics of the model is given 

y 

dT 

dt 
= s + pT 

(
1 − T

T max 

)
− δ1 T − k (1 − εRT ) V T , (2.2) 

dI 

dt 
= k (1 − εRT ) V T − δ2 I, (2.3) 

dV 

dt 
= N 1 δ2 (1 − εP ) I + N 2 δ5 (1 − εP ) M i − cV, (2.4) 

dM 

dt 
= J + (δ4 + b) M a − δ3 M − gMB a − e 1 M(M + M a + M i ) , (2.5) 

dM a 

dt 
= gMB a − δ4 M a − e 2 M a (M + M a + M i ) − kM a V, (2.6) 

dM i 

dt 
= kM a V − e 3 M i (M + M a + M i ) − δ5 M i , (2.7) 

dB a 

dt 
= W (t) + 

A max C

k c + C 
− f 1 ( T + M ) B a

− f 2 M a B a − f 3 ( I + M i ) B a − δ6 B a , (2.8) 

dB n 

dt 
= δ6 B a − f 1 ( T + M ) B n − f 2 M a B n − f 3 ( I + M i ) B n , (2.9) 

dC 

dt 
= αB n (T + I + M a + M i ) − δ7 C. (2.10) 

The schematic diagram of model (2.2) –(2.10) can be found in 

ig. 2.1 . 



Fig. 2.1. Schematic transmission diagram describing the model (2.2) –(2.10) .
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. Qualitative properties of the model

A short observation to the model (2.2) –(2.10) suggests that ev- 

ry unit normal of the boundary of the nonnegative nonant R 

9 + 
ossesses a right-to-obtuse angle against the vector field at the 

orresponding boundary. This leads to nonnegative trajectories of 

he model system for all time providing that the initial condition 

s also nonnegative. Along with the invariance, this section is de- 

oted to analyzing the behavior of the model system after long 

ime whereby the neonatal wave for apoptotic β-cells turns to be 

egligible, i.e., W � 0 . In this case, the asymptotic behavior of the 

odel (2.2) –(2.10) becomes independent of W . In the sequel, we 

ill see at least numerically that the model system (2.2) –(2.10) ad- 

its four equilibria, namely disease-free, T1D-free, HIV-free, and 

1D and HIV coexistence equilibria. Due to complexity, in what 

J (E DFE ) = 

⎛ ⎜ ⎜ ⎜⎜ ⎜ ⎜ ⎜ ⎜⎜ ⎝

J 11 0 J 13 0 

0 −δ2 −J 13 0 

0 J 32 −c 0 

0 0 −m 1 M 0 −δ3 − 2 e 1 M 0

0 0 0 0 −
0 0 0 0 

0 0 0 0 

0 0 0 0 
0 0 0 0 0

4

follows we can only afford explicit formulations of the disease- 

ree and T1D-free equilibrium. 

.1. Disease-free equilibrium 

Our main goal here is to see mathematically, to what extent 

everse transcriptase inhibitor and protease inhibitor may be able 

o drive the system solutions toward the disease-free equilibrium 

 DFE = (T 0 , 0 , 0 , M 0 , 0 , 0 , 0 , 0 , 0) . 

ccording to (2.2) , the equilibrium state T 0 satisfies − p 
T max

T 2 + (p −
1 ) T + s = 0 . This is a parabolic function with two real-valued roots

f opposed signs. Clearly is one positive equilibrium state present. 

imilarly, one real positive root M 0 of −e 1 M 

2 − δ3 M + J = 0 also

xists. The Jacobian matrix of the vector field evaluated at the 

isease-free equilibrium takes the form 

 0 0 0 0 

 0 0 0 0 

 J 36 0 0 0 

5 −e 1 M 0 −gM 0 0 0 

e 2 M 0 0 gM 0 0 0 

 −δ5 − e 3 M 0 0 0 0 

 0 J 77 0 

A max 

k c
 0 δ6 − f 1 (T 0 + M 0 ) 0 

 0 0 αT 0 −δ7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



w

εP ) ,

J
 

(T 0 + M 0 ) . 

S ion evaluated at its positive root, it obviously holds J 11 < 0 . Using the 

c le that the following are the eigenvalues of the Jacobian matrix in the 

o he remaining eigenvalues are those of (
r igenvalues by the trace, and all the eigenvalues have negative real parts 

p es positive coefficients of the characteristic polynomial, providing that 

t positive value at zero, is increasing and convex on the positive abscissa, 

a ding statements about the determinants can be translated as follows: 

s  are formed in case 

R

(3.1) 

a

R

] · A max

k c δ7 

+ δ6

< 1 , (3.2) 

r  the configuration of a saddle node, making one disease a source of 

e

 following way. For example, the expression k (1 − εRT ) T 0 appears as an 

i he virus lifespan. Therefore, the first expression in R 

2 
HD 

, k (1 − εRT ) T 0 /c, 

r  virus cell per average virus lifespan, when all T cells are still healthy. 

S mber of new virus cells generated by one apoptotic T cell per average 

i c average of different proportions that were equipped by different time 

s he same way as in [35] , which characterize certain thresholds at which 

t  statuses. 

 both inhibitors does not guarantee the local stability of E DFE unless 

t sed below one. 

3

E

ntually released from T1D infection but remains HIV-viremic. As also 

h ase inhibitor and protease inhibitor may play a considerable role in 

s stancy of I 1 and V 1 , it holds according to (2.3) and (2.4) that 

(3.3) 

w

V (3.4) 
here 

J 11 = −2 

pT 0 
T max 

+ (p − δ1 ) , J 13 = −k (1 − εRT ) T 0 , J 32 = N 1 δ2 (1 −

 36 = N 2 δ5 (1 − εP ) , J 45 = δ4 + b − e 1 M 0 , J 77 = −δ6 − f 1

ince J 11 returns from the derivative of a concave quadratic funct

ofactor method for the determinant of J (E DFE ) − λ id , it is verifiab

rder of reading: J 11 , −δ3 − 2 e 1 M 0 , −δ4 − e 2 M 0 , and −δ5 − e 3 M 0 . T

−δ2 −J 13

J 32 −c

)
and 

( 

J 77 0 

A max

k c
δ6 − f 1 (T 0 + M 0 ) 0 

0 αT 0 −δ7

)
,

espectively. The first matrix gives the negative summation of the e

roviding that the determinant is positive. The second matrix giv

he determinant is also positive. Accordingly, the trinomial takes a 

nd therefore can only have roots of negative real parts. The prece

table submanifolds around E DFE in the (I, V ) - and (B a , B n , C) -space

 

2 
HD := 

k (1 − εRT ) T 0
c 

· N 1 δ2 (1 − εP )

δ2 

= 

k (1 − εRT ) 
[

(p−δ1 )+ 
√ 

(p−δ1 ) 2 +4 ps/T max 

2 p/T max

]
c 

· N 1 δ2 (1 − εP )

δ2 

< 1 

nd 

 

3 
TD := 

αT 0 
f 1 (T 0 + M 0 ) 

· A max 

k c δ7

· δ6

f 1 (T 0 + M 0 ) + δ6 

= 

α

[
(p − δ1 ) +

√
(p − δ1 ) 2 + 4 ps/T max 

2 p/T max 

]

f 1 

[
(p − δ1 ) + 

√
(p − δ1 ) 2 + 4 ps/T max 

2 p/T max 
+ 

−δ3 +
√

δ2 
3 

+ 4 e 1 J

2 e 1 

· δ6 

f 1 

[
(p − δ1 ) + 

√
(p − δ1 ) 2 + 4 ps/T max 

2 p/T max 
+ 

−δ3 +
√

δ2 
3 

+ 4 e 1 J

2 e 1 

]
espectively. When one inequality changes in direction, E DFE is in

ndemicity. 

One can biologically understand all the above expressions in the

nflow in the compartment I where V = 1 and T = T 0 , and 1 /c as t

epresents the number of newly infected T cells generated by one

imilarly, the second expression N 1 δ2 (1 − εP ) /δ2 represents the nu

nfected cell’s lifespan. The square and cubic root take the geometri

cales. All these basic reproductive numbers have been defined in t

he disease-free equilibrium is at the interface of different stability

To our aim for this section, observe that even εRT = εP = 1 from

he basic reproductive number related to T1D, R TD , is also suppres

.2. T1D-Free equilibrium 

This equilibrium, henceforth denoted by 

 T1D = (T 1 , I 1 , V 1 , M 1 , 0 , 0 , 0 , 0 , 0) , 

refers to a state where an HIV patient with co-morbidity is eve

ighlighted previously, we would like to see if reverse transcript

teering the model dynamics toward this equilibrium. From the con

I 1 
V 1 

= 

c 

N 1 δ2 (1 − εP ) 
= 

k (1 − εRT ) T 1
δ2 

,

hich gives us T 1 . From (2.2) and T 1 , we get 

 1 = 

s
T 1

+ p 
(
1 − T 1 

T max

)
− δ1 

k (1 − ε ) 
.

RT 

5



N ate V 1 can be negative when εRT and εP are relatively large. Finally, 

E
 

M + J = 0 . Under similar notations as before, the Jacobian matrix of the 

v

J

0 0 0 

0 0 0 

0 0 0 

−gM 1 0 0 

gM 1 0 0 

0 0 0 

J 77 0 

A max 

k c
δ6 J 88 0 

0 α(T 1 + I 1 ) −δ7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.5) 

J 32 = N 1 δ2 (1 − εP ) , 

J  1 V 1 , J 45 = δ4 + b − e 1 M 1 , 

J  1 ) − f 3 I 1 , J 88 = J 77 + δ6 . 

E x < 0 . 

written in terms of block matrices as follows 

J (3.6) 

columns of the Jacobian matrix. Since (
i

d et B 1 · J 44 · det B 5 . 

e of B 1 and B 5 . The block matrix B 1 has positive coefficients of the 

c  constant term, which is given by J 

2 
13 
J 32 V 1 /T 1 − J 11 cδ2 − J 11 J 13 J 32 = 

J l system acquires a stable submanifold around the T1D-free equilibrium 

i to the contribution of T1D. The eigenvalues are J 55 , −δ5 − e 3 M 1 , and 

t(
T nomial, providing that its determinant is positive or 

R

(3.7) 

w

V
 

= 

c 

N 1 δ2 (1 − εP ) 
V 1 . 

eases (decreases) by increasing (decreasing) εRT and εP when R TT ≤ 1 

a rtant biological interpretation. By increasing the efficacies of reverse 

t tment intensities, we aim to suppress the HIV virus population to a 

c o a state where the patient is free from T1D. In the next section, we 
ote that E T1D is not always biologically relevant as the st

q. (2.5) returns a positive M 1 that solves the equation −e 1 M 

2 − δ3

ector field evaluated at the T1D-free equilibrium reads as 

 (E T1D ) = 

⎛⎜ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J 11 0 J 13 0 0 0 

−J 13 
V 1
T 1

−δ2 −J 13 0 0 0 

0 J 32 −c 0 0 J 36 

0 0 −m 1 M 1 J 44 J 45 −e 1 M 1

0 0 0 0 J 55 0 

0 0 0 0 kV 1 −δ5 − e 3 M 1

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

where 

J 11 = −2 

pT 1 
T max 

+ (p − δ1 ) − k (1 − εRT ) V 1 , J 13 = −k (1 − εRT ) T 1 ,

 36 = N 2 δ5 (1 − εP ) , J 44 = −δ3 − 2 e 1 M 1 − m

 55 = −δ4 − e 2 M 1 − kV 1 , J 77 = −δ6 − f 1 (T 1 + M

qs. (3.3) and (3.4) evoke cδ2 = −J 13 J 32 and J 11 = −s/T 1 − pT 1 /T ma

For the sake of abbreviation, the preceding Jacobian matrix is re

 (E T1D ) = 

( 

B 1 0 B 2 

B 3 J 44 B 4

0 0 B 5 

)
.

Note that the first block matrix B 1 spans the first three rows and 

B 3 

0 

)
B 

−1 
1 = 0 , 

t thus holds 

et J (E T1D ) = det B 1 · det 

{(
J 44 B 4 

0 B 5 

)
−
(

B 3 

0 

)
B 

−1 
1 

(
0 B 2

)}
= d

The eigenvalues of the Jacobian matrix are then J 44 and thos

haracteristic polynomial without further confirmation except the

 

2 
13 J 32 V 1 /T 1 . This is indeed a positive number. Therefore, the mode

n the (T , I, V ) -space. Moreover, the block matrix B 5 corresponds 

hose of 
 

J 77 0 

A max

k c
δ6 J 88 0 

0 α(T 1 + I 1 ) −δ7 

)
.

his matrix possesses positive coefficients of the characteristic poly

 

3 
TT := 

α(T 1 + I 1 )

−J 88

· A max

k c δ7

· δ6

−J 77

= 

α(T 1 + I 1 ) 

f 1 (T 1 + M 1 ) + f 3 I 1 
· A max

k c δ7

· δ6

f 1 (T 1 + M 1 ) + f 3 I 1 + δ6 

= 

α
[

cδ2

k (1 −εRT ) N 1 δ2 (1 −εP ) 
+ I 1
]

f 1 

[
cδ2

k (1 −εRT ) N 1 δ2 (1 −εP ) 
+ 

−δ3 +
√ 

δ2 
3
+4 e 1 J

2 e 1

]
+ f 3 I 1

· A max 

k c δ7

· δ6 

f 1 

[
cδ2

k (1 −εRT ) N 1 δ2 (1 −εP ) 
+ 

−δ3 +
√ 

δ2 
3
+4 e 1 J

2 e 1

]
+ f 3 I 1 + δ6

< 1 

here 

 1 = 

[
sk (1 −εRT ) N 1 δ2 (1 −εP ) 

cδ2
+ p 
(
1 − cδ2

T max k (1 −εRT ) N 1 δ2 (1 −εP ) 

)
− δ1 

k (1 − εRT ) 

]
and I 1

As we will see later by some numerical investigation, R TT incr

nd when R TT shortly exceeds 1. This finding draws out an impo

ranscriptase inhibitor and protease inhibitor under improved trea

onsiderably harmless level. However, this also hampers setting t
6



w  T1D and HIV infection. Of further particular interest in the numerical 

s ow of coexistence before improving both inhibitors brings the patient 

s  may drive a certain state to fall within this window and thus raise 

c

3

 substitutions from vanishing the vector field of the system (2.2) –(2.10) 

r f a continuum of positive solutions arises from the T1D-free equilibrium 

E ing phenomenon. The previous section hints that R TT � = 1 makes the 

J lar if R TT = 1 . Crandall and Rabinowitz in [36, Theorem 1.2] guarantee 

t ( E T1D , R TT = 1 ) . Our next task is to make sure that the latter is 

i rd the positive nonant in a neighborhood of E T1D . 

 give us 

T

I  from 0 to a small positive value. Eq. (2.2) also returns 

V  i + O 

( ∥∥∥∥( M i 

V − V 1 

)∥∥∥∥2
)

,

w  continuous persistence of infected macrophages. The preceding two

e  

(| M i | 2 
)
. In return, the infected T cells also undergo changes in density 

a

I .

O ff between recruitment rate and proliferation of the healthy T cells as 

w satisfy according to (2.5) 

−
w

M
 e 1 [ J + (δ4 + b) M a ] 

 

g 

(
δ3 −
√

4 Je 1 + δ2 
3 

)
2 e 1 
√

4 Je 1 + δ2 
3 

B a 

L the rise of M i and B a , but increase on the rise of M a . 

) . Substituting the previous results to (2.6) –(2.10) , we obtain 

︸
w ing the negative diagonal entries of B 5 . In line with [35] , F corresponds 

t s. Due to complexity, we shall digress the explicit formulation of the 

q

I (3.8) 

a

ϕ (3.9) 
ill see that this action indeed increases the risk of coexistence of

tudy is to determine the ‘thickness’ of such an intermediate wind

uccessfully toward an HIV-free equilibrium. Incorrect treatments

areful practical considerations. 

.3. T1D–HIV Coexistence equilibrium 

We argue that computing a coexistence equilibrium under direct

eturns complications. Our alternative way departs from analyzing i

 T1D and determining which conditions lead to such a branch

acobian matrix non-singular. Moreover, the matrix becomes singu

hat ( E T1D , R TT � = 1 ) can never be a branching point, except 

ndeed a branching point and that the branching solutions go towa

In a sufficiently close neighborhood of E T1D , (2.3) and (2.4)

 = 

δ2 I 

k (1 − εRT ) V 

= 

δ2 

k (1 − εRT ) 
·
[

c 

N 1 δ2 (1 − εP ) 
− N 2 δ5 (1 − εP )

N 1 δ2 (1 − εP ) V 

M i 

]
= T 1 − δ2 N 2 δ5 

k (1 − εRT ) N 1 δ2 

[
1 

V 1 

− V − V 1

V 

2
1 

+ O(| V − V 1 | 2 )
]

M i 

= T 1 − δ2 N 2 δ5 

k (1 − εRT ) N 1 δ2 V 1 

M i + O 

( ∥∥∥∥( M i 

V − V 1 

)∥∥∥∥2
)

.

t means that the equilibrium state T decreases from T 1 as M i rises

 = 

s
T

+ p 
(
1 − T 

T max

)
− δ1 

k (1 − εRT ) 
= V 1 + 

δ2 N 2 δ5 

k (1 − εRT ) N 1 δ2 V 1 

[
s

T 2
1

+ p
T max

k (1 − εRT ) 

]
M

hich indicates that the virus cells increase in density under the

quations evoke V − V 1 = O ( | M i | ) , making the higher order terms O
ccording to 

 = 

k (1 − εRT ) 

δ2 

T V = I 1 + 

N 2 δ5

N 1 δ2 V 1 

[
s

T 1
+ pT 1

T max

k (1 − εRT ) 
− V 1

]
M i + O 

(| M i | 2
)

bserve that the fate of the infected T cells counts on the tradeo

ell as the presence of virus. Now the equilibrium state M should 

e 1 M 

2 − (δ3 + gB a + e 1 M a + e 1 M i ) M + J + (δ4 + b) M a = 0

hose positive root is given by 

 = 

(δ3 + gB a + e 1 M a + e 1 M i ) −
√

(δ3 + gB a + e 1 M a + e 1 M i ) 2 + 4

−2 e 1

= M 1 + 

2 b + δ3 + 2 δ4 −
√

4 Je 1 + δ2 
3 

2 

√
4 Je 1 + δ2 

3 

M a + 

δ3 −
√

4 Je 1 + δ2 
3 

2 

√
4 Je 1 + δ2 

3 

M i +

+ O 

⎛ ⎝ 

∥∥∥∥∥
( 

M a

M i 

B a 

) 

∥∥∥∥∥
2
⎞⎠ .

ooking at the numerical values from Table 1 , M shall decrease on 

For the sake of abbreviation, let us denote I := (M a , M i , B a , B i , C

B 5 ︷︷︸
F−V 

I + F 2 (I) + O 

(‖ 

I ‖ 

3 
)

= 0 

here B 5 is given as in (3.6) and V denotes the diagonal matrix tak

o new infection terms in the five states while V to net transition

uadratic term F 2 for the moment. Denoting 

˜ 
 := VI 

nd multiplying the preceding equation with −1 , we obtain

( ̃  I ) := 

˜ I − FV −1 ˜ I − F 2 ( ̃  I ) + O 

(‖ ̃

 I ‖ 

3 
)

= 0 
7



T quation in [37,38] . To guarantee the existence of a coexistence equilib- 

r h point of (3.9) . Since ϕ : � → R 

5 is a polynomial on an open neigh- 

b nt in the codomain of ϕ such that q / ∈ ϕ(∂�) , where ∂� denotes the 

b  ∅ or all points ˜ I ∗ ∈ ϕ 

−1 (q ) return invertible ∇ ˜ I ϕ( ̃  I ∗) . Otherwise, q is

c

B
r , ‖ q − ˜ q ‖ < inf s ∈ ϕ(∂�) ‖ q − s ‖ (3.10) 

d point q . When especially ˜ I = 0 is isolated in the neighborhood �, the 

m

i (3.11) 

d  to [37,38] , (R TT = 1 , ̃  I = 0) is a branching point when ind (ϕ, 0) changes 

v

lues 0 of algebraic multiplicity 2 also simple eigenvalues R TT and 

R λk ) > 0 for all the aforementioned eigenvalues λk . The preceding result

s ers always returns a positive number. In case R TT > 1 , it is not difficult 

t ecify � to span a sufficiently small range from 

˜ I = 0 and R TT � = 1 such

t becomes isolated in � by the non-singularity of id − FV −1 . The index

o

i

T

itive, indicating a continuum of coexistence equilibria. The idea follows 

f will extend the local branch up to the boundary of �. After division by 

R

1 (3.12) 

T anch takes off in the increment of R TT (in case positive, returning a 

f  a backward bifurcation). Owing to this expansion, the branch 

˜ I takes 

t

I (3.13) 

f  two expressions in the coefficient of −FV −1 and Eq. (3.9) to have 

0  ψ 2 ε 
2 + O(ε 3 ) 

]
O

F (3.14) 

T R TT , which is unique up to scalar multiplication. For further use, let us 

r tor. They are given by 

ψ

r
� 
1 

from the left such that [
︸ (3.15) 

T

R (3.16) 

T plified in such a way that the sign is apparent due to the complexity 

o ters except εRT and εP according to Tab. 1 , which is then in line with 

t d with the local behavior of both R TT around 1 and the corresponding 

e hich R varies around 1. 
he format of Eq. (3.9) fits into the canonical form of bifurcation e

ium, the point (R TT = 1 , ̃  I = 0) is first checked for being a branc

orhood � of ˜ I = 0 , it holds that ϕ ∈ C ∞ (�) . Let q ∈ R 

5 be a poi

oundary of �. The point q is said to be regular if either ϕ 

−1 (q ) =
alled critical . The map B : C 1 (�) × � × R 

5 → Z given by 

(ϕ, �, q ) := 

{∑
˜ I ∗∈ ϕ −1 (q ) sign det ∇ ˜ I ϕ( ̃  I ∗) , q regular

B(ϕ, �, ̃  q ) , q critical , ˜ q regula

efines the Brouwer degree of ϕ in � with respect to a reference 

ap 

nd (ϕ, 0) := B(ϕ, �, 0) 

efines the index of ϕ at the isolated singular value ˜ I = 0 . According

alue around R TT = 1 . 

In case R TT < 1 , the fact that the matrix FV −1 has eigenva

 TT · (−1 / 2 ± √ 

3 i/ 2) yields det ∇ ˜ I ϕ(0) = det ( id − FV −1 ) = 
k (1 −
tems from the fact the multiplication of complex conjugate numb

o show under the same way that det ∇ ˜ I ϕ(0) < 0 . Now we can sp

hat ϕ( ̃  I ) = ϕ(0) + ∇ ˜ I ϕ(0) · ˜ I + O(‖ ̃  I ‖ 2 ) ≈ ˜ I − FV −1 ˜ I , i.e., ˜ I = 0 

f ϕ at the singular value ˜ I = 0 is then given by 

nd (ϕ, 0) = sign det ∇ ˜ I ϕ(0) =
{

1 , R TT < 1 

−1 , R TT > 1 

.

his confirms that (R TT = 1 , ̃  I = 0) is indeed a branching point. 

Our next step is to see if the local branch around E T1D is pos

rom taking an asymptotic expansion of R TT from 1 [39,40] , which 

 TT , the expansion takes the form 

 = 

1

R TT 

+ 

R 

R TT 

ε + O(ε 2 ) , 0 < ε � 1 .

he coefficient of the first-order term R will determine if the br

orward bifurcation) or in the decrement of R TT (in case negative,

he expression 

˜ 
 = ψ 1 ε + ψ 2 ε 

2 + O(ε 3 ) 

or yet unknown ψ 1 and ψ 2 . Now we can substitute the preceding

 = 

[
ψ 1 ε + ψ 2 ε 

2 + O(ε 3 ) 
]

−
[ 

1

R TT 

+ 

R 

R TT 

ε + O(ε 2 ) 
]
FV −1 

[
ψ 1 ε +

− F 2 
(
ψ 1 ε + ψ 2 ε 

2 + O(ε 3 ) 
)

+ O(ε 3 ) . 

n vanishing the first-order term ( ε), we obtain 

V −1 ψ 1 = R TT ψ 1 .

his implies that ψ 1 is the right eigenvector of FV −1 associated to 

eveal the explicit formulations of the right as well as left eigenvec

 1 = 

⎛⎜ ⎜⎜⎜⎝
R 

−2 
TT

· A max

k c δ7
· gM 1

−J 77

R 

−3 
TT

· kV 1
−J 55

· A max 

k c δ7
· gM 1

−J 77 

R 

−1 
TT

· A max

k c δ7

R TT · −J 88

α(T 1 + I 1 ) 
1 

⎞⎟⎟⎟⎟⎠ and ξ1 = 

⎛⎜⎜ ⎜⎝ 

0 

0 

R 

−1 
TT

· δ6

−J 77

R TT · −J 88

α(T 1 + I 1 ) 
1 

⎞⎟⎟⎟⎠
espectively. 

To reveal R , we can multiply the second-order term ( ε 2 ) with ξ

ξ� 
1 − 1 

R TT 

ξ� 
1 FV −1 

]
︷︷ ︸
=0

ψ 2 − R ξ� 
1 ψ 1 − ξ� 

1 F 2 (ψ 1 ) = 0 . 

his results in 

 = −ξ� 
1 F 2 (ψ 1 ) 

ξ� 
1 
ψ 1 

.

he preceding expression may look simple, however cannot be sim

f F 2 . We reduce the degree of analyticity by fixing all the parame

he aim of this section. Since the asymptotic expansion is concerne

quilibria, it suffices to check the value of R for ε and ε from w
RT P TT 
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Fig. 3.1. Numerical values of R on the regime 0 . 93 ≤ R TT ≤ 1 . 1 and on two domain snippets of (εRT , εP ) . The entire regime has been checked for the positivity of R . 

od of (εRT , εP ) where R TT = 1 . The asymptotic expansions (3.12) –(3.13) 

u  initial direction ψ 1 and so does R TT , as ε slightly increases from 0. 

P e of a unique positive local branch 

I (3.17) 

T  in the direction of increasing R TT from 1. Due to complexity, this sec- 

t ocal stability as a subject of numerical bifurcation analysis in Section 4 . 

F substitute an equilibrium with a certain ε from (3.17) to the Jacobian 

m  a , M i , and B a , again, in terms of ε. In return, the Jacobian matrix also 

f E T1D ) (matrix coefficient of ε 0 ), which apparently has negative first 

f ove one and use Roché’s Theorem for the characteristic polynomial of 

t -half plane in C except the one that corresponds to R TT . Showing the 

n  of a simple eigenvalue of a perturbed matrix [41] . The final step is to 

fi ε. 

3

 reverse transcriptase inhibitor and protease inhibitor is more effective 

i r as the T1D-free equilibrium E T1D is concerned, we have seen 

t s εRT and εP increase simultaneously. Therefore, increasing εRT and εP 

i discovering coexistence. Suppose that εRT is increased from its current 

v RT . Accordingly, the ratio (εRT + εεRT ) /εRT = 1 + ε gives the comparison 

b  ε serves as the gain percentage. Note that the increase by percentage 

i  may live in disparate scales. Applying the partial changes to both εRT 

a  new values. The explicit formula in (3.7) also hints that R TT = R TT (u ) 

w s 

 

′ 
TT (u )(1 − εP )

 TT (εRT , εP ) 
εRT ε + O(ε 2 ) ,

 

(u )(1 − εRT )

 TT (εRT , εP ) 
εP ε + O(ε 2 ) .

W ms of ε in the above expressions take the lead in determining the loss 

o rder of the gain percentage ε to the decrement of εRT than εP in the 

r∣∣∣∣  (1 − εRT ) εP ⇐⇒ εRT > εP . (3.18) 

T  gain percentage the first-order elasticity indices . Based on (3.18) , our 

m everse transcriptase inhibitor and protease inhibitor at the same level, 

i l values of the first-order elasticity indices in Fig. 3.2 . Having positive

i ncreases in the direction of increasing both εRT and εP . The elasticity

i  10% in εRT , the reproduction number R TT experiences an increase of

a

Fig. 3.1 graphically guarantees the positivity R in a neighborho

nder a positive R thus indicate that ˜ I increases with a positive

utting back the original variable I = V −1 ˜ I , we obtain the existenc

 = V −1 ψ 1 ε + O(ε 2 ) where ∂ R TT 
I | R TT =1 = 

V −1 ψ 1 

R 

> 0 .

his indicates the coexistence of T1D and HIV infection equilibrium

ion scopes out only the existence of this equilibrium, leaving the l

or interested readers, an idea for proving the local stability is to 

atrix. The state values of T , V , I, M can be found from those of M

orms an asymptotic expansion of ε with the leading order J (

our eigenvalues for a sufficiently small ε. We can perturb R TT ab

he Jacobian matrix such that all eigenvalues stay in the open left

egative real part of this last eigenvalue requires Taylor expansion

nd a negative upper bound of the expansion in the first-order of 

.4. What drives to T1D & HIV infection coexistence the most 

This section is devoted to determining which treatment between

n reducing the HIV viral load, before T1D–HIV coexistence. As fa

hat the state T 1 increases while V 1 and I 1 walk toward vanishing a

s ‘good’ in terms of reducing the viral load but ‘bad’ in terms of 

alue to a certain percentage ε. This is equivalent to εRT �→ εRT + εε
etween the values of εRT posterior and prior to the change, where

s more technically sound for a general comparison as parameters

nd εP , the response variable R TT = R TT (εRT , εP ) in turn perturbs to

here u := (1 − εRT )(1 − εP ) . Taking Taylor expansions of R TT yield

R TT (εRT + εεRT , εP ) 

R TT (εRT , εP ) 
= 1 + 

∂ εRT 
R TT (εRT , εP )

R TT (εRT , εP ) 
εRT ε + O(ε 2 ) = 1 − R

R
R TT (εRT , εP + εεP ) 

R TT (εRT , εP ) 
= 1 + 

∂ εP 
R TT (εRT , εP )

R TT (εRT , εP ) 
εP ε + O(ε 2 ) = 1 − R 

′ 
TT

R
hen the gain percentage ε is sufficiently small, the first-order ter

r gain in R TT . In other words, R TT is more sensitive in the first-o

egime 

−R 

′ 
TT (u )(1 − εP )

R TT (εRT , εP ) 
εRT 

∣∣∣∣ > ∣∣∣∣−R 

′ 
TT (u )(1 − εRT )

R TT (εRT , εP ) 
εP 

∣∣∣∣⇐⇒ (1 − εP ) εRT >

he literature, e.g. [42,43] , often calls the first-order terms of the

odel highlights the importance of maintaining the efficacies of r

.e., εRT = εP . For the sake of the reader, we present the numerica

ndex values on the regime R TT < 1 leads to conclude that R TT i

ndex ∂ εRT 
R TT εRT / R TT = 2 . 5 means that under the increase of ε =

pproximately 25% from its current value.
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Fig. 3.2. Numerical values of the first-order elasticity indices ∂ εRT 
R TT εRT / R TT (panel a) and ∂ εP 

R TT εP / R TT (panel b) on the domain snippet (εRT , εP ) ∈ [0 . 6 , 0 . 7] 2 where R TT < 1 . 

The other parameter values are given in Table 1 .

Table 2.1

Parameters used in the numerical simulations model (2.2) –(2.10) .

Parameter Value Units Reference

s 1.0 × 10 4 ml −1 day −1 [30]

p 0.03 day −1 [31]

T max 1.5 × 10 6 ml −1 [31]

δ1 0.01 day −1 [30]

δ2 0.8 day −1 [32]

δ3 0.8 day −1 [25]

δ4 0.1 day −1 [25]

δ5 0.1 day −1 [33]

δ6 0.5 day −1 [25]

δ7 25.0 day −1 [25]

c 23.0 day −1 [30]

k 3.92 × 10 −9 ml day −1 [30]

N 1 2.8 × 10 3 ———– [34]

N 2 1.0 × 10 3 ———– [33]

J 5.0 × 10 4 ml −1 day −1 [25]

b 0.09 day −1 [25]

g 1.0 × 10 −5 ml −1 day −1 [25]

f 1 2.0 × 10 −6 ml −1 day −1 [25]

f 2 1.0 × 10 −6 ml −1 day −1 [25]

f 3 1.5 × 10 −4 ml −1 day −1 [25]

e 1 1.0 × 10 −8 day −1 [25]

e 2 8.0 × 10 −8 day −1 [25]

e 3 8.0 × 10 −8 day −1 [25]

A max 2.0 × 10 5 ml −1 day −1 [25]

k c 1.5 × 10 −2 ———– [25]

α 2.56 × 10 −11 day −1 [25]

εRT [0,1] ———– Varied

εP [0,1] ———– Varied

4 ollowing methods

ior of both disease-free (i.e. with no HIV) and endemic equilibria when 

t εP , which represent the efficacy of reverse transcriptase inhibitors (RTI) 

a  is to reduce the HIV viral load below the limit of detection (50 HIV-1 

R carrying out this analysis, it is convenient to introduce a re-scaling of 

t

= 

M

T max 
, ˜ M a := 

M a

T max 
,

= 

C

T max 
, ˜ s := 

s 

T max 
,

= e 1 · T max , ˜ e 2 := e 2 · T max ,

= f 1 · T max ,
˜ f 2 := f 2 · T max ,

d variables and parameters shown above, but the results will be pre- 

s hand, for the purpose of investigating the effect of the HIV treatment 
. Numerical investigation of the HIV-diabetes model via path-f

In this section, our main concern will be to investigate the behav

he main disease control parameters are varied. These are εRT and 

nd protease inhibitors (PI) treatment, respectively, whose purpose

NA copies/ml blood, for the US-RT-PCR assay). Moreover, before 

he model (2.2) as specified below: 

˜ T := 

T 

T max 
, ˜ I := 

I

T max 
, ˜ V := 

V

T max 
, ˜ M :

˜ M i := 

M i

T max 
, ˜ B a := 

B a

T max 
, ˜ B n := 

B n

T max 
, ˜ C :

˜ k := k · T max ,
˜ J := J 

T max 
, ˜ g := g · T max , ˜ e 1 :

˜ e 3 := e 3 · T max ,
˜ A max := 

A max

T max 
, ˜ k c := 

k c

T max 
, ˜ f 1 :˜ f 3 := f 3 · T max , ˜ α := α · T max . 

The numerical investigation will be carried out using the scale

ented in the original scales for the sake of clarity. On the other 
10



o  introduce certain solution measures that will help quantify the pres- 

e 0 , M 

0 , M 

0 
a , M 

0 
i 
, B 0 a , B 

0 
n , C 

0 
)

is an (biologically meaningful) equilibrium of 

s

M  

)2
, (4.1) 

w ending on whether the above introduced quantities are different from 

z

merical study of the disease-free and endemic equilibria of the HIV- 

d he main control parameters affect the stability of the equilibria of the 

m t of the numerical investigation is assumed to be a diabetes-free state 

w 4.1 , which depicts the dynamical response of the T1D-HIV model (2.2)- 

( ne), with εP = εRT = 0 (i.e. no HIV treatment). For the given parameter 

s  disease-free steady state, that is, with no HIV and no type 1 diabetes 

( gressiveness of the diseases, simulated by a growth in the cytokines 

p  infection rate k (from 3 . 92 × 10 −9 to 6 . 67 × 10 −8 ), the system settles 

d ution is represented by the dashed line in Fig. 4.1 , and will be used as 

t

V described above, obtained for k = 6 . 67 × 10 −8 and α = 2 . 71 × 10 −11 . 

W IV treatment based on reverse transcriptase inhibitors, controlled by 

t y state with respect to this parameter is shown in Fig. 4.2 . As can be 

s HIV, measured by the quantity M HIV 

defined in (4.1) . Moreover, panel 

( uantifies the presence of T1D in the system. These two pictures thus

i ersists. If εRT is increased, a critical value εRT ≈ 0 . 9093 (labeled BP1 in

t ity and a another state emerges, with both HIV and type 1 diabetes in 

t e latter disease as a result of the HIV treatment. This critical behavior 

F

d

H

T

n the system (controlled by the parameters εP and εRT ), we will

nce of HIV and type 1 diabetes in the model. Suppose 
(
T 0 , I 0 , V 

ystem (2.2)-(2.10). Then we define 

 HIV 

= 

√ (
I 0 
)2 + 

(
V 

0 
)2 + 

(
M 

0 
i 

)2
, M T1D 

= 

√ (
B 

0 
a 

)2 + 

(
B 

0 
n 

)2 + 

(
C 0

hich will be used to identify different (co)inf ection scenarios, dep

ero or not. 

After these preliminary remarks, we can now carry out the nu

iabetes model (2.2)-(2.10). Specifically, we will investigate how t

odel via the continuation platform COCO [44] . The starting poin

here HIV is present in the body. This scenario is simulated in Fig. 

2.10), computed for the parameter values given in Table 1 (solid li

et, the assumed (nonzero) initial conditions lead the system to a

T1D). If now the underlying patient suffers an increase in the ag

roduction rate α (from 2 . 56 × 10 −11 to 2 . 71 × 10 −11 ) and the HIV

own to a steady state with HIV in the body and no T1D. This sol

he starting point for our numerical investigation. 

Let us begin our study with the T1D-free equilibrium with HI

e will investigate first how this equilibrium is affected by the H

he parameter εRT ∈ [0 , 1] . The numerical continuation of the stead

een from panel (a), a low value of εRT allows a high presence of 

c) displays the behavior of M T1D 

(also defined in (4.1) ), which q

ndicate that for low levels of HIV treatment the original situation p

he figure) is detected, where the T1D-free equilibrium loses stabil

he system, meaning that the underlying patient has developed th
ig. 4.1. Dynamical response of the T1D-HIV model (2.2)-(2.10), computed for the parameter values given in Table 1 (solid line), with εP = εRT = 0 (no HIV treatment). The 

ashed line corresponds to the case k = 6 . 67 × 10 −8 and α = 2 . 71 × 10 −11 . The picture shows time series for healthy CD4 + T cells ( T (t) ), HIV-infected CD4 + T cells ( I(t) ), 

IV viral concentration ( V (t) ), apoptotic β-cells ( B a (t) ), necrotic β-cells ( B n (t) ) and cytokines ( C(t) ). Both numerical simulations are computed with the initial conditions

 (0) = 1 . 35 × 10 6 , I(0) = 1 . 50 × 10 2 , V (0) = 7 . 50 × 10 3 , M(0) = 4 . 50 × 10 4 , M a (0) = 3 . 00 × 10 4 , M i (0) = 45 , B a (0) = 1 . 20 × 10 3 , B n (0) = 1 . 50 × 10 2 , C(0) = 9 . 60 × 10 −4 . 
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Fig. 4.2. Numerical continuation of equilibria of the T1D-HIV model (2.2)-(2.10) with respect to εRT and εP using the parameter values employed in Fig. 4.1 , with k = 

6 . 67 × 10 −8 and α = 2 . 71 × 10 −11 . Stable and unstable equilibria are depicted with solid and dashed lines, respectively. The vertical axes present the solution measures 

defined in (4.1) . During the computations, a series of branching points are detected for εRT ≈ 0 . 9093 (BP1), εRT ≈ 0 . 9098 (BP2), εRT ≈ 0 . 9123 (BP3) (depicted in panels (a) and 

(c)) and εP ≈ 0 . 9093 (BP4), εP ≈ 0 . 9098 (BP5), εP ≈ 0 . 9105 (BP6) (depicted in panels (b) and (d)). 

c lso known in the Mathematical Biology field as a forward bifurcation 

[ cy of HIV presence in the system as εRT grows, with a critical value 

ε  way, the bifurcation points BP1 and BP3 define a coexistence window 

f rs from two diseases (HIV and T1D), with T1D developed as a product 

o er values of εRT the system dynamics is now characterized by a steady 

s scenario is encountered if now εRT is set to zero and εP is allowed to 

v  (b) and (d). 

ontrolled by the parameters εP and εRT . For both type of treatments, 

h w where coexistence takes place, due to which a patient may be in 

d  critical window is characterized by two branching points, for instance 

t e system equilibria can be classified into three regimes as the control 

p nd HIV-free with T1D. 

ed above, we will carry out a two-parameter continuation with respect 

t g. 4.2 (a), which define the boundary points of the above mentioned 

r 3 (a)) labeled � 1 and � 2 corresponding to the numerical continuation of 

t  the parameter space εRT − εP locally into three regions: T1D-free with 

H IV-free with T1D (plotted in blue), as described earlier. This means, for 

i me combination of ( εRT , εP ), we can determine before hand which of 

t erefore, depending on a particular profile of a patient a treatment can 

b ing type 1 diabetes should receive a treatment taken from the yellow 

r way from the red area corresponding to the coexistence scenario. To 

i esponding to the test points P1 ( εRT = 0 . 897 , εP = 0 . 1 , yellow region), 

P  0 . 13 , blue region). As can be seen from the time plots in Fig. 4.3 (b), 

t V treatment is not sufficiently strong in order to reduce the viral load, 

d ersistence, while the state variables related to T1D decay to zero. The 

t se numerical simulation is plotted in black. In this case we can observe 

a  at the price of having developed type 1 diabetes. For the third point 

( but the T1D levels become even higher than in the previous two cases, 

s

orresponds to a branching point (of transcritical type) [45,46] , a

47,48] . On the other hand, Fig. 4.2 (a) reveals a decreasing tenden

RT ≈ 0 . 9123 (BP3), where the HIV viral load becomes zero. In this

or HIV and T1D, εRT ∈ (0 . 9093 , 0 . 9123) , in which the patient suffe

f the HIV treatment. As can be seen in panels (a) and (c), for high

tate with type 1 diabetes and no HIV in the body. An analogous 

ary freely, i.e., HIV is treated using protease inhibitors, see Fig. 4.2

As observed in Fig. 4.2 , the HIV viral load can be effectively c

owever, our numerical investigation established a critical windo

anger owing to the presence of both diseases (HIV and T1D). This

he ones labeled BP1 and BP3 shown in Fig. 4.2 (a). In this way, th

arameters εP , εRT vary: T1D-free with HIV, HIV-T1D coexistence a

In order to gain further insight into the system regimes discuss

o εP and εRT of the branching points BP1 and BP3 shown in Fi

egimes. In this way, we can compute two curves (shown in Fig. 4.

he branching points BP1 and BP3, respectively. These curves divide

IV (plotted in yellow), HIV-T1D coexistence (plotted in red) and H

nstance, that if we choose a specific treatment represented by so

he possible disease scenarios will be expected in the long run. Th

e decided. For instance, an HIV-patient with high risk of develop

egion shown in Fig. 4.3 (a), with the operation point reasonably a

llustrate this, three sample cases are simulated in Fig. 4.3 (b), corr

2 ( εRT = 0 . 899 , εP = 0 . 115 , red region) and P3 ( εRT = 0 . 901 , εP =
he predicted behavior is confirmed. At P1 (red time series) the HI

ue to which the system settles down to a steady state with HIV p

reatment provided by the test point P2 lies in the red region, who

 significant reduction in the HIV presence in the body, however,

lying in the blue region) HIV is effectively eradicated, as expected, 

ee the time plot in blue depicted in Fig. 4.3 (b). 
12



Fig. 4.3. (a) Two-parameter continuation of the branching point BP1 (curve labeled � 1 ) and BP3 (curve labeled � 2 ) found in Fig. 4.2 (a), with respect to εRT and εP . The

resulting curves divide the parameter space into three regions: one with HIV and no diabetes (yellow), one corresponding to HIV-diabetes coexistence (red) and one with

diabetes and no HIV (blue). (b) System responses obtained at the test points P1 ( εRT = 0 . 897 , εP = 0 . 1 , red curve), P2 ( εRT = 0 . 899 , εP = 0 . 115 , black curve) and P3 ( εRT = 0 . 901 , 

εP = 0 . 13 , blue curve). The right column of panel (b) shows enlargements of the boxed windows displayed on the left column. All numerical simulations are computed 

with the initial conditions T (0) = 1 . 29 × 10 6 , I(0) = 5 . 40 × 10 2 , V (0) = 1 . 65 × 10 4 , M(0) = 5 . 25 × 10 4 , M a (0) = 4 . 80 × 10 4 , M i (0) = 4 . 50 × 10 3 , B a (0) = 2 . 40 × 10 3 , B n (0) = 

4 . 35 × 10 2 , C(0) = 6 . 60 × 10 −3 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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. Concluding remarks

In this work we proposed a within-host model for the dynam- 

cs of T1D in HIV-infected patients, after immune restoration, and 

nder HAART. The analysis of the model consisted in the study of 

he qualitative properties of the model. This was followed by the 

umerical simulations, in which was evaluated the response of the 

ystem as main control parameters, namely the effectiveness of the 

ntiviral drugs reverse transcriptase inhibitors ( εRT ) and protease 

nhibitors ( εP ), were varied. The main goal was to reduce the HIV 

iral load below the limit of detection (50 HIV-1 RNA copies/mL 

lood). The one-parameter bifurcation analysis revealed the pres- 

nce of branching points (BP1 and BP3) of transcritical (or forward) 

ype, as εRT and εP varied. Furthermore, the bifurcating points BP1 

nd BP3 define a coexistence window, suggesting T1D developed as 
 product of the HIV treatment, which led to immune restoration. 

During the numerical continuation in COCO, we have also mon- 
tored the behavior of T1D variables of interest, namely the cy- 
okine concentration ( C), the concentration of apoptotic β-cells ( Ba  ) 

nd the concentration of necrotic β-cells ( B n ). Results show that 

he RTI and PI drugs influence the dynamics of T1D related cells 

apoptotic and necrotic β-cells) and HIV. This suggests an associ- 

tion between HIV and T1D variables, which may provide useful 

nsights for clinical practice, namely to devise adequate treatment 

rotocols, according to patients’ profiles. As a last comment, we 

hould mention that this is a very simple model, which by itself 

uggests an association between ART treatment and the develop- 

ent of T1D. Nevertheless, the analysis is preliminary and clinical 

rials should be devised to provide real data to be fitted by the 

roposed model. 
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