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Abstract

In recent papers, some fractional Newton-type methods have been proposed by using the Riemann-Liouville and Caputo
fractional derivatives in their iterative schemes, with order 2α or 1+α. In this manuscript, we introduce the Conformable
fractional Newton-type method by using the so-called fractional derivative. The convergence analysis is made, proving
its quadratic convergence, and the numerical results confirm the theory and improve the results obtained by classical
Newton’s method. Unlike previous fractional Newton-type methods, this one involves a low computational cost, and the
order of convergence is at least quadratic.

Keywords: Nonlinear equations, Conformable fractional derivatives, Newton’s method, Quadratic convergence,
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1. Introduction

Fractional calculus is not a recent area of research, as it dates from XVII century. However, in last years it has been
shown as a fruitful source of tools for solving real problems with certain hereditary properties that are successfully
modelled by means of this kind of derivatives [1]. Recently, two fractional Newton-type methods for solving nonlinear
equations f(x) = 0 were designed in [4] with iterative schemes:

xk+1 = xk − Γ(α+ 1)
f(xk)

cDα
a+f(xk)

, k = 0, 1, 2, . . . (1)

and

xk+1 = xk − Γ(α+ 1)
f(xk)

Dα
a+f(xk)

, k = 0, 1, 2, . . . (2)

with Caputo and Riemann-Liouville derivatives respectively, being Γ(α + 1) a damping parameter. The order of con-
vergence of these methods was 2α, being α the order of derivative. Another two fractional Newton-type methods were
proposed the last year in [5] as shown in the following iterative schemes:

xk+1 = xk −
(

Γ(α+ 1)
f(xk)

cDα
a+f(xk)

)1/α

, k = 0, 1, 2, . . . (3)

and

xk+1 = xk −
(

Γ(α+ 1)
f(xk)

Dα
a+f(xk)

)1/α

, k = 0, 1, 2, . . . (4)

by using also Caputo and Riemann-Liouville derivatives respectively. The order of convergence of these methods was
1 + α. When α = 1, we obtain the classical Newton-Raphson method for each case above.

The use of Caputo and Riemann-Liouville fractional derivatives require the evaluation of special functions as Gamma
and Mittag-Leffler functions, which both involve a high computational cost to compute them. Theoretically, the order of
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convergence of these methods tends to be quadratic when α ≈ 1, but in practice, the approximated computational order
of convergence (ACOC, see [6]) is linear if α is different from 1.

In order to design a new iterative scheme improving these aspects, we introduce the conformable fractional derivative,
which is used in the iterative scheme of the fractional Newton-type method proposed in this paper.

The left conformable fractional derivative (see [2, 3]) starting from a of a function f : [a,∞) −→ R of order α ∈ (0, 1],
α, a, x ∈ R, is defined as

(T aαf)(x) = lim
ε−→0

f(x+ ε(x− a)1−α)− f(x)

ε
. (5)

If this limit exists, f is said to be α-differentiable. If, moreover, f is differentiable, then (T aαf)(x) = (x− a)1−αf ′(x). If
f is α-differentiable in (a, b), for some b ∈ R, (T aαf)(a) = lim

x→a+
(T aαf)(x).

The left conformable fractional derivative holds the property of non fractional derivative, T aαC = 0, being C a constant.
Conformable derivative is the most natural definition of fractional derivative, also, it does not require the evaluation of
special functions, which involves a low computational cost compared with existing fractional Newton-type methods. The
following result provides a Taylor power series of f(x) with conformable fractional derivative.

Theorem 1 (Theorem 4.1, [3]). Let f(x) be an infinitely α-differentiable function for α ∈ (0, 1], at the neighborhood of
x0 with conformable derivative starting from x0. The fractional power series for f(x) is:

f(x) =

∞∑
k=0

(T x0
α f)(k)(x0)(x− x0)kα

αkk!
, x0 < x < x0 +R1/α, R > 0, (6)

where (T x0
α f)(k)(x0) is the conformable fractional derivative applied k times.

From (6), another approach is obtained to provide a Taylor power series of f(x), where the conformal derivative starts
at a different point from where it is evaluated, what is more convenient for our purposes.

Theorem 2 (Theorem 4.1, [7]). Let f(x) be an infinitely α-differentiable function for α ∈ (0, 1], at the neighborhood of
a1 with conformable derivative starting from a. The fractional power series for f(x) is:

f(x) = f(a1) +
(T aαf)(a1)δ1

α
+

(T aαf)(2)(a1)δ2
2α2

+R2(x, a1, a), (7)

being δ1 = Hα − Lα, δ2 = H2α − L2α − 2Lαδ1, . . . , and H = x− a, L = a1 − a.

It is easy to prove that δ2 = δ21 , δ3 = δ31 , etc. So, the Taylor power series (7) can be rewritten as

f(x) = f(a1) +
(T aαf)(a1)δ1

α
+

(T aαf)(2)(a1)δ21
2α2

+R2(x, a1, a), (8)

In next section, the conformable fractional Newton-type method is obtained from Taylor power expansion (8). In Section
3, the convergence analysis of the proposed scheme is made, proving its quadratical convergence. Sections 4 and 5 are
respectively devoted to the numerical and stability tests. Finally, some conclusions are stated in Section 6.

2. Deduction of the method

To obtain a fractional Newton-type method from (8), let us regard the approximation of this Taylor power series to
order one evaluated at the solution x̄, as shown in the following expression:

f(x) ≈ f(x̄) +
(T aαf)(x̄)δ1

α
. (9)

Knowing that f(x̄) = 0, and δ1 = Hα −Lα, being H = x− a and L = a1 − a, a1 = x̄, expression (9) can be rewritten as

f(x) ≈ (T aαf)(x̄)

α
[(x− a)α − (x̄− a)α] . (10)

So, from (x̄− a)α, x̄ can be isolated as

x̄ ≈ a+

(
(x− a)α − α f(x)

(T aαf)(x̄)

)1/α

. (11)

2



Considering the iterates xk and xk+1 as approximations of the solution x̄, we obtain the Conformable fractional Newton-
type method as

xk+1 = a+

(
(xk − a)α − α f(xk)

(T aαf)(xk)

)1/α

, k = 0, 1, 2, . . . (12)

Let us call this method TFN. In next Section the order of convergence of this method is proven. This is the first optimal
fractional method according to Kung-Traub’s conjecture (see [8]).

3. Convergence analysis

Theorem 3. Let f : D ⊆ R −→ R be a continuous function in the interval D containing the zero x̄ of f(x). Let (T aαf)(x)
be the conformable fractional derivative of f(x) starting from a, with order α, for any α ∈ (0, 1]. Let us suppose (T aαf)(x)
is continuous and not null at x̄. If an initial approximation x0 is sufficiently close to x̄, then the local order of convergence
of the conformable fractional Newton-type method

xk+1 = a+

(
(xk − a)α − α f(xk)

(T aαf)(xk)

)1/α

, k = 0, 1, 2, . . .

is at least 2, being 0 < α ≤ 1, and the error equation is

ek+1 = α(x̄− a)α−1C2e
2
k +O

(
e2k
)
,

being Cj =
1

j!αj
(T aαf)(j)(x̄)

(T aαf)(x̄)
for j = 2, 3, 4, . . .

Proof. By using the Taylor power expansion (8) of f(xk) around x̄, and regarding xk = ek + x̄,

f(xk) = (T aαf)(x̄)
[
δ1 + C2δ

2
1 + C3δ

3
1

]
+O

(
e4k
)

= (T aαf)(x̄)
[
((ek + x̄− a)α − (x̄− a)α) + C2 ((ek + x̄− a)α − (x̄− a)α)

2

+ C3 ((ek + x̄− a)α − (x̄− a)α)
3
]

+O
(
e4k
)
,

being Cj =
1

j!αj
(T aαf)(j)(x̄)

(T aαf)(x̄)
for j = 2, 3, 4, . . .

Let us notice that the expansion of Newton’s binomial theorem for fractional powers is given by

(x+ y)r =

∞∑
k=0

(
r

k

)
xr−kyk, k ∈ {0} ∪ N,

where the generalized binomial coefficient is (see [9])(
r

k

)
=

Γ(r + 1)

k!Γ(r − k + 1)
, k ∈ {0} ∪ N.

Thus,

f(xk) = (T aαf)(x̄)
[(
α(x̄− a)α−1

)
ek +

(α
2

(α− 1)(x̄− a)α−2 + α2(x̄− a)2α−2C2

)
e2k

+
(α

6
(α− 1)(α− 2)(x̄− a)α−3 + α2(α− 1)(x̄− a)2α−3C2

+ α3(x̄− a)3α−3C3

)
e3k
]

+O
(
e4k
)
.

Knowing that (T aαf)(x) = (x − a)1−αf ′(x), and using again the generalized binomial theorem, the conformal derivative
of f(xk) is developed as

(T aαf)(xk) = (T aαf)(x̄)
[(
α+

(
2α2(x̄− a)α−1C2

)
ek

+
(
2α(α− 1)(α− 2)(x̄− a)−2 + α2(α− 1)(x̄− a)α−2C2 + 3α3(x̄− a)2α−2C3

− α(1− α)2(x̄− a)−2 +
α2

2
(α− 1)(x̄− a)−2

)
e2k

]
+O

(
e3k
)
.
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CFN method TFN method
α x̄ |f(xk+1)| |xk+1 − xk| iter ACOC x̄ |f(xk+1)| |xk+1 − xk| iter ACOC
1 x̄3 4.16 · 10−12 3.47 · 10−8 11 2.00 x̄3 4.16 · 10−12 3.47 · 10−8 11 2.00

0.9 x̄3 7.96 · 10−5 8.11 · 10−9 68 0.98 x̄3 6.18 · 10−13 7.17 · 10−9 11 2.00
0.8 x̄1 1.94 · 10−5 9.99 · 10−9 123 0.99 x̄3 4.18 · 10−12 1.41 · 10−9 11 2.00
0.7 x̄2 1.1 · 10−14 9.94 · 10−9 389 1.00 x̄3 1.6 · 10−12 2.67 · 10−10 11 2.00
0.6 - - - 500 - x̄3 1.6 · 10−12 4.81 · 10−11 11 2.00
0.5 - - - 500 - x̄3 2.26 · 10−12 8.3 · 10−12 11 2.00
0.4 - - - 500 - x̄3 2.91 · 10−9 8.89 · 10−7 10 2.01
0.3 - - - 500 - x̄3 4.62 · 10−10 3.54 · 10−7 10 2.01
0.2 - - - 500 - x̄3 7.36 · 10−11 1.38 · 10−7 10 2.00
0.1 - - - 500 - x̄3 2.26 · 10−12 5.27 · 10−8 10 2.00

Table 1: CFN2 and TFN results for f1(x) with initial estimation x0 = −2.2

Then,
f(xk)

(T aαf)(xk)
= (x̄− a)α−1ek +

(
1

2
(α− 1)(x̄− a)α−2 − α(x̄− a)2α−2C2

)
e2k +O

(
e3k
)
,

and we have

(xk − a)α − α f(xk)

(T aαf)(xk)
= (x̄− a)α + α2(x̄− a)2α−2C2e

2
k +O

(
e3k
)
.

Using again the generalized binomial theorem:(
(xk − a)α − α f(xk)

(T aαf)(xk)

)1/α

= x̄− a+ α(x̄− a)α−1C2e
2
k +O

(
e3k
)
,

and using xk+1 = ek+1 + x̄,
ek+1 + x̄ = a+ x̄− a+ α(x̄− a)α−1C2e

2
k +O

(
e3k
)
.

So, the error equation is
ek+1 = α(x̄− a)α−1C2e

2
k +O

(
e3k
)

and the order of convergence is proven to be at least 2.

In next section we make some numerical tests with several nonlinear equations.

4. Numerical tests

We compare the methods CFN described in (3) and TFN. It is important to point out that, in all tests, a comparison
with the classical Newton-Raphson method is being made when α = 1. We use Matlab R2019b with double precision
arithmetics, |f(xk+1)| < 10−8 or |xk+1−xk| < 10−8 as stopping criterium, and a maximum of 500 iterations. Nevertheless,
only |f(xk+1)| is shown in the tables, as well as the number of iterations, the reached root and the estimated computational
order of convergence (ACOC, see [6]). For CFN method we use a = 0 (as well it was in [5], the program made in [10]
for computing of Gamma function, and the program provided by Igor Podlubny in Mathworks for the calculation of
Mittag-Leffler function is used. For TFN method we consider a = −10 for each test.

In order to compare the performance of the methods, we use four test functions. The first one is f1(x) = −12.84x6 −
25.6x5 + 16.55x4 − 2.21x3 + 26.71x2 − 4.29x − 15.21 with roots x̄1 = 0.82366 + 0.24769i, x̄2 = 0.82366 − 0.24769i,
x̄3 = −2.62297, x̄4 = −0.584, x̄5 = −0.21705 + 0.99911i and x̄6 = −0.21705 − 0.99911i. In Table 1, we can see that
TFN method requires less iterations than CFN method for the same values of α, even less than classical Newton-Raphson
method when α ≤ 0.4, whereas CFN method is not able to converge. It can also be observed that ACOC is 1 if α 6= 1 in
CFN2 method, whereas ACOC keeps being 2 or even greater if α 6= 1 in TFN method.

The second test function is f2(x) = ix1.8− x0.9− 16, with roots x̄1 = 2.90807− 4.24908i and x̄2 = −3.85126 + 1.74602i.
In Table 2 we can observe a similar behavior as in Table 1: TFN method requires less iterations than CFN method for
the same values of α, even less than classical Newton-Raphson method when α ≤ 0.4. We can also see that ACOC is 1 if
α 6= 1 in CFN2 method, whereas ACOC keeps being 2 or even greater than 2 if α 6= 1 in TFN method. Our third test
function is f3(x) = ex−1 with only real root x̄1 = 0. In Table 3 we can see that TFN scheme requires less iterations than
CFN method for the same values of α with best error estimations. Again, ACOC keeps showing quadratic convergence
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CFN method TFN method
α x̄ |f(xk+1)| |xk+1 − xk| iter ACOC x̄ |f(xk+1)| |xk+1 − xk| iter ACOC
1 x̄1 3.3 · 10−14 2.63 · 10−7 8 2.00 x̄1 3.3 · 10−14 2.63 · 10−7 8 2.00

0.9 x̄1 3.41 · 10−7 8.54 · 10−9 53 0.98 x̄1 8.73 · 10−9 1.27 · 10−4 8 2.00
0.8 x̄1 3.21 · 10−6 9.84 · 10−9 209 1.00 x̄1 8.44 · 10−9 1.22 · 10−4 9 2.00
0.7 - - - 500 - x̄1 3.3 · 10−14 4.55 · 10−9 12 2.00
0.6 - - - 500 - x̄2 3.66 · 10−15 3.42 · 10−9 11 2.00
0.5 - - - 500 - x̄2 1.64 · 10−11 6.34 · 10−6 8 2.00
0.4 - - - 500 - x̄2 9.57 · 10−15 2.12 · 10−7 6 2.01
0.3 - - - 500 - x̄2 1.85 · 10−14 4.65 · 10−9 6 2.00
0.2 - - - 500 - x̄2 2.1 · 10−10 2.33 · 10−5 5 1.99
0.1 - - - 500 - x̄2 1.07 · 10−11 5.22 · 10−6 5 2.02

Table 2: CFN2 and TFN results for f2(x) with initial estimation x0 = 0.5

CFN method TFN method
α x̄ |f(xk+1)| |xk+1 − xk| iter ACOC x̄ |f(xk+1)| |xk+1 − xk| iter ACOC
1 x̄1 0 1.52 · 10−8 4 2.00 x̄1 0 1.52 · 10−8 4 2.00

0.9 x̄1 2.61 · 10−9 2.52 · 10−8 8 1.00 x̄1 1.78 · 10−15 1.62 · 10−8 4 2.00
0.8 x̄1 9.56 · 10−9 4.43 · 10−8 10 1.00 x̄1 1.78 · 10−15 1.73 · 10−8 4 2.00
0.7 x̄1 4.6 · 10−9 1.36 · 10−8 13 1.00 x̄1 0 1.84 · 10−8 4 2.00
0.6 x̄1 9.8 · 10−9 2.07 · 10−8 15 1.00 x̄1 1.78 · 10−15 1.95 · 10−8 4 2.00
0.5 x̄1 7.52 · 10−9 1.21 · 10−8 18 1.00 x̄1 1.78 · 10−15 2.08 · 10−8 4 2.00
0.4 x̄1 7.64 · 10−9 9.71 · 10−9 21 1.00 x̄1 0 2.21 · 10−8 4 2.00
0.3 x̄1 9.75 · 10−9 1 · 10−8 24 1.00 x̄1 0 2.34 · 10−8 4 2.00
0.2 x̄1 8.17 · 10−9 6.89 · 10−9 28 1.00 x̄1 3.55 · 10−15 2.49 · 10−8 4 2.00
0.1 x̄1 9.51 · 10−9 6.64 · 10−9 32 1.00 x̄1 5.33 · 10−15 2.64 · 10−8 4 2.00

Table 3: CFN2 and TFN results for f3(x) with initial estimation x0 = 0.2

if α 6= 1 in TFN method. The last function is f4(x) = sin 10x− 0.5x+ 0.2 with real roots x̄1 = −1.4523, x̄2 = −1.3647,
x̄3 = −0.87345, x̄4 = −0.6857, x̄5 = −0.27949, x̄6 = −0.021219, x̄7 = 0.31824, x̄8 = 0.64036, x̄9 = 0.91636, x̄10 = 1.3035,
x̄11 = 1.5118, x̄12 = 1.9756 and x̄13 = 2.0977. In Table 4 can also be observed that TFN method requires less iterations
than CFN method for the same values of α. We can see that ACOC keeps being 2 if α 6= 1 in TFN method, in contrast
with the performance of CFN scheme. In next section we analyze the dependence on initial estimates of CFN and TFN
methods on the same test functions.

5. Numerical stability

In order to study the stability of fractional Newton-type methods tested in Section 4 we analyze the dependence on
initial estimates by using convergence planes as defined in [11].

CFN method TFN method
α x̄ |f(xk+1)| |xk+1 − xk| iter ACOC x̄ |f(xk+1)| |xk+1 − xk| iter ACOC
1 x̄12 1.94 · 10−11 7.01 · 10−7 4 1.99 x̄12 1.94 · 10−11 7.01 · 10−7 4 1.99

0.9 x̄12 2.51 · 10−7 8.57 · 10−9 35 0.98 x̄12 1.92 · 10−11 6.98 · 10−7 4 1.99
0.8 x̄12 1.86 · 10−6 9.65 · 10−9 125 0.99 x̄12 1.9 · 10−11 6.96 · 10−7 4 1.99
0.7 x̄12 1.06 · 10−5 9.99 · 10−9 426 1.00 x̄12 1.89 · 10−11 6.93 · 10−7 4 1.99
0.6 - - - 500 - x̄12 1.87 · 10−11 6.9 · 10−7 4 1.99
0.5 - - - 500 - x̄12 1.85 · 10−11 6.87 · 10−7 4 1.99
0.4 - - - 500 - x̄12 1.84 · 10−11 6.85 · 10−7 4 1.99
0.3 - - - 500 - x̄12 1.82 · 10−11 6.82 · 10−7 4 1.99
0.2 - - - 500 - x̄12 1.81 · 10−11 6.79 · 10−7 4 1.99
0.1 - - - 500 - x̄12 1.79 · 10−11 6.76 · 10−7 4 1.99

Table 4: CFN2 and TFN results for f4(x) with initial estimation x0 = 2
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To construct the convergence planes, we regard the initial estimates in horizontal axis and values of α ∈ (0, 1] in vertical
axis. Each color represents a different solution found, and it is painted in black when no solution was found. Each plane
is made with a 400× 400 grid, a maximum of 500 iteration, and tolerance of 0.001.
In Figures 1, 2 and 4 we can see that TFN method has a much higher percentage of convergence than CFN2 method.
In case of Figure 3, CFN method has a higher percentage of convergence than TFN method due to the values of initial
estimates used are very close to a = −10; the behavior of TFN can be improved by regarding lower values of a.

-2 0 2

0.2

0.4

0.6

0.8

(a) CFN, −3 ≤ x0 ≤ 3, 13.73% conver-
gence

-2 0 2

0.2

0.4

0.6

0.8

(b) TFN, −3 ≤ x0 ≤ 3, 99.92% conver-
gence

Figure 1: Convergence planes of CFN and TFN on f1(x)
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(a) CFN, −6 ≤ x0 ≤ 6, 8.97% convergence

-5 0 5

0.2

0.4

0.6

0.8

(b) TFN, −6 ≤ x0 ≤ 6, 99.74% conver-
gence

Figure 2: Convergence planes of CFN and TFN on f2(x)
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(a) CFN, −10 ≤ x0 ≤ 10, 85.54% conver-
gence

-10 -5 0 5 10
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0.4
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(b) TFN, −10 ≤ x0 ≤ 10, 73.12% conver-
gence

Figure 3: Convergence planes of CFN and TFN on f3(x)
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(a) CFN, −5 ≤ x0 ≤ 5, 8.69% convergence
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(b) TFN, −5 ≤ x0 ≤ 5, 58.21% conver-
gence

Figure 4: Convergence planes of CFN and TFN on f4(x)

6. Concluding Remarks

The first optimal fractional Newton-type method was designed by using Conformable derivative. The fractional deriva-
tive used has the most natural definition, so, in this method the evaluation of special functions is not required. This
involves a low computational cost compared with the existing fractional Newton-type methods. Also, the order of con-
vergence of this method is quadratic, unlike the existing ones. Numerical tests were made, and the dependence on initial
estimates was analyzed, confirming the theoretical results. It can be concluded that this method shows a better numerical
behavior than kind of fractional Newton-type methods previously proposed, even than classical Newton-Raphson method
in some cases. It was also observed that is possible to obtain both, real and complex roots, with real initial estimates, and
that is possible to obtain different roots not only by choosing a different initial estimate, but also by choosing a different
value of α.
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