
Journal of Computational and Applied Mathematics 408 (2022) 114084
Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

NewHermite series expansion for computing thematrix
hyperbolic cosine
E. Defez a,∗, J. Ibáñez a, J. Peinado b, P. Alonso-Jordá b, José M. Alonso c

a Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
b Departamento Sistemas Informáticos y Computación, Universitat Politècnica de València, Camino de Vera
s/n, 46022, Valencia, Spain
c Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera
s/n, 46022, Valencia, Spain

a r t i c l e i n f o

Article history:
Received 27 June 2019
Received in revised form 27 November 2021

Keywords:
Hermite matrix approximation
Matrix hyperbolic cosine
Error analysis
GPU computing

a b s t r a c t

There are, currently, very few implementations to compute the hyperbolic cosine of
a matrix. This work tries to fill this gap. To this end, we first introduce both a new
rational-polynomial Hermite matrix expansion and a formula for the forward relative
error of Hermite approximation in exact arithmetic with a sharp bound for the forward
error. This matrix expansion allows obtaining a new accurate and efficient method for
computing the hyperbolic matrix cosine. We present a MATLAB implementation, based
on this method, which shows a superior efficiency and a better accuracy than other state-
of-the-art methods. The algorithm developed on the basis of this method is also able to
run on an NVIDIA GPU thanks to a MEX file that connects the MATLAB implementation
to the CUDA code.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Functions of a square matrix A frequently arise in many areas of science and technology, especially those that require
the resolution of first and second order differential systems [1, pp. 35–37]. In particular, the hyperbolic matrix functions
cosh (A) and sinh (A), defined in terms of the exponential matrix eA as

cosh (A) =
eA + e−A

2
, sinh (A) =

eA − e−A

2
,

are involved in the solution of coupled hyperbolic systems of partial differential equations [2]. Moreover, we also can
find applicability for these functions in other fields of science and engineering, e.g., communicability analysis in complex
networks [3–6].

A way of computing these matrix functions is to use the well-known relations:

cosh (A) = cos (iA), and sinh (A) = i cos
(
A −

iπ
2
I
)

, i2 = −1,

provided there exists a method to compute cos (A). Notwithstanding, this approach has the disadvantage of requiring
complex arithmetic even when A is a real matrix.

∗ Corresponding author.
E-mail addresses: edefez@imm.upv.es (E. Defez), jjibanez@dsic.upv.es (J. Ibáñez), jpeinado@dsic.upv.es (J. Peinado), palonso@upv.es

(P. Alonso-Jordá), jmalonso@dsic.upv.es (J.M. Alonso).
https://doi.org/10.1016/j.cam.2022.114084
0377-0427/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.cam.2022.114084
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2022.114084&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:edefez@imm.upv.es
mailto:jjibanez@dsic.upv.es
mailto:jpeinado@dsic.upv.es
mailto:palonso@upv.es
mailto:jmalonso@dsic.upv.es
https://doi.org/10.1016/j.cam.2022.114084
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

m
o

1

F
t

a

y

C
a

There exist, however, alternative and more practical ways to evaluate these matrix functions. One of them uses Hermite
atrix polynomials series expansions [7]. Other methods based on Taylor series have been studied to evaluate the action
f these functions on vectors [8,9].

.1. Notation

Throughout this paper, we denote by Cr×r the set of all the complex square matrices of size r . We denote by Θ and I ,
respectively, the zero and the identity matrix in Cr×r . If A ∈ Cr×r , we denote by σ (A) the set of all the eigenvalues of A.
or a real number x, ⌈x⌉ denotes the ceiling function, that is, the least integer greater than or equal to x and ⌊x⌋ denotes
he floor function, that is, the largest integer less than or equal to x.

If f (z) and g(z) are holomorphic functions in an open set Ω of the complex plane, and if σ (A) ⊂ Ω , we denote by f (A)
nd g(A), respectively, the image by the Riesz–Dunford functional calculus of functions f (z) and g(z) acting on the matrix

A, being f (A)g(A) = g(A)f (A) [10, pp. 558]. We say that the matrix A is positive stable if Re(z) > 0 for every eigenvalue
z ∈ σ (A). In this case, let us denote

√
A = A1/2

= exp
(1
2 log (A)

)
the image of the function z1/2 = exp

(1
2 log (z)

)
by

the Riesz–Dunford functional calculus, acting on the matrix A, where log (z) denotes the principal branch of the complex
logarithm.

In this paper, we use consistent matrix norms. In particular, ∥A∥2 is the 2-norm. In tests, we use the 1-norm of a

matrix A ∈ Cr×r defined by ∥A∥1 = sup
x̸=0

∥Ax∥1

∥x∥1
, where ∥·∥1 denotes the vector 1-norm defined as ∥y∥1 = |y1| + · · · + |yr |,

∈ Cr [11, Chapter 2]. When a concrete norm is not indicated in the text, any consistent norm can be applied.
Although originally introduced by Laplace in 1810, Hermite polynomials get their name from the French mathematician

harles Hermite, who wrote about them in 1864. Hermite polynomials and their generalizations are an active research
rea in the field of special functions, and its applications are numerous, see for example the Refs. [12–14].
For a positive stable matrix A ∈ Cr×r , the nth Hermite matrix polynomial is defined in [15] by

Hn(x, A) = n!
⌊
n
2 ⌋∑

k=0

(−1)k
(√

2A
)n−2k

k!(n − 2k)!
xn−2k, (1)

which satisfies the three-term matrix recurrence:

Hn(x, A) = x
√
2AHn−1(x, A) − 2(n − 1)Hn−2(x, A) , n ≥ 1,

H−1(x, A) = Θ , H0(x, A) = I .

⎫⎬⎭ (2)

The following upper bounds of Hermite matrix polynomials,

∥H2n(x, A)∥2 ≤ gn(x) , n ≥ 1,

∥H2n+1(x, A)∥2 ≤ |x|


(
A
2

)−
1
2

2

2gn(x)
n + 1

, n ≥ 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3)

were demonstrated in [16], where the function gn(x) is defined as

gn(x) =
(2n + 1)!22n

n!
exp

(
5
2

∥A∥2 x
2
)

, n ≥ 0. (4)

The Hermite matrix polynomial sequence {Hn(x, A)}n≥0 has the following generating function [15]:

ext
√
2A

= et
2 ∑

n≥0

Hn (x, A)

n!
tn ,

from which we can derive the following expressions for the matrix hyperbolic sine and cosine [17]:

cosh
(
xt

√
2A
)

= et
2 ∑

n≥0

H2n(x, A)
(2n)!

t2n

sinh
(
xt

√
2A
)

= et
2 ∑

n≥0

H2n+1(x, A)
(2n + 1)!

t2n+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , x ∈ R, |t| < ∞. (5)

Recent polynomial and rational developments in series of Hermite polynomials have been obtained in [18]. These
results have led to the development of a more accurate and efficient method, compared with others proposed in the
literature, for the computation of the matrix cosine function. In this paper, we calculate the exact value of the following
Hermite matrix polynomial series:∑ H2n+1(x, A)

(2n)!
t2n := A(x, t; A) , (6)
n≥0

2

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

i

∑
n≥0

H2n+2(x, A)
(2n + 1)!

t2n+1
:= B(x, t; A) , (7)

and ∑
n≥0

H2n+3(x, A)
(2n + 1)!

t2n+1
:= C(x, t; A) , (8)

which result in a new expansion of the hyperbolic matrix cosine in Hermite matrix polynomials. This method aims to
improve the one proposed in [7] and to achieve more accuracy in the results, for a large variety of matrices, with a lower
computational cost in terms of matrix products.

The organization of this paper is as follows. Section 2 presents the proofs for the formulas (6)–(8) introduced in this
paper. Section 3 deals with the new rational-polynomial Hermite matrix expansions for the hyperbolic matrix cosine.
The proposed algorithm and its MATLAB implementation is described in Section 4. The numerical results are exposed in
Section 5. Some final conclusions are given in Section 6.

2. A proof of formulas (6) –(8)

The aim is to calculate the exact value of matrix series A(x, t; A), B(x, t; A) and C(x, t; A) defined by (6)–(8). Next, we
prove that all matrix series are convergent. Taking into account (3), we haveH2n+1(x, A)

(2n)!
t2n

2

≤ |x|


(
A
2

)−
1
2

2

2gn(x)
(n + 1)(2n)!

|t|2n.

Since using (4),
∑
n≥0

gn(x)
(n + 1)(2n)!

|t|2n is convergent for |t| < ∞, the matrix series A(x, t; A) defined by (6) is convergent

n any compact real interval. In the same way, we haveH2n+2(x, A)
(2n + 1)!

t2n+1

2

≤
gn+1(x)
(2n + 1)!

|t|2n+1.

Since using (4),
∑
n≥0

gn+1(x)
(2n + 1)!

|t|2n+1 is convergent for |t| < ∞, the matrix series B(x, t; A) defined by (7) is convergent

in any compact real interval. Analogously and taking into account (3) again, we haveH2n+3(x, A)
(2n + 1)!

t2n+1

2

≤ |x|


(
A
2

)−
1
2

2

2gn+1(x)
(n + 2)(2n + 1)!

|t|2n+1.

Since using (4),
∑
n≥0

gn+1(x)
(n + 2)(2n + 1)!

|t|2n+1 is convergent for |t| < ∞, the matrix series C(x, t; A) defined by (8) is

convergent in any compact real interval. Using now (2), (6) and the fact that H1(x, A) =
√
2Ax, we can write

A(x, t; A) =

(
x
√
2A
)∑

n≥0

H2n(x, A)
(2n)!

t2n − 2
∑
n≥1

(2n)H2n−1(x, A)
(2n)!

t2n

= H1(x, A)e−t2 cosh
(
xt

√
2A
)

− 2t
∑
n≥1

H2n−1(x, A)
(2n − 1)!

t2n−1

= H1(x, A)e−t2 cosh
(
xt

√
2A
)

− 2t
∑
n≥0

H2n+1(x, A)
(2n + 1)!

t2n+1

= H1(x, A)e−t2 cosh
(
xt

√
2A
)

− 2te−t2 sinh
(
xt

√
2A
)

= e−t2
[
H1(x, A) cosh

(
xt

√
2A
)

− 2t sinh
(
xt

√
2A
)]

.

The proof of (7) is similar:

B(x, t; A) =

(
x
√
2A
)∑

n≥0

H2n+1(x, A)
(2n + 1)!

t2n+1
− 2

∑
n≥0

(2n + 1)H2n(x, A)
(2n + 1)!

t2n

= H1(x, A)e−t2 sinh
(
xt

√
2A
)

− 2t
∑ H2n(x, A)

(2n)!
t2n
n≥0

3

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

f

= H1(x, A)e−t2 sinh
(
xt

√
2A
)

− 2te−t2 cosh
(
xt

√
2A
)

= e−t2
[
H1(x, A) sinh

(
xt

√
2A
)

− 2t cosh
(
xt

√
2A
)]

.

Working analogously for (8):

C(x, t; A) = x
√
2A
∑
n≥0

H2n+2(x, A)
(2n + 1)!

t2n+1
− 2

∑
n≥0

(2n + 2)H2n+1(x, A)
(2n + 1)!

t2n+1

= H1(x, A)B(x, t; A) − 2

(∑
n≥0

(2n + 1)H2n+1(x, A)
(2n + 1)!

t2n+1

+

∑
n≥0

H2n+1(x, A)
(2n + 1)!

t2n+1

)

= H1(x, A)B(x, t; A) − 2

(∑
n≥0

H2n+1(x, A)
(2n)!

t2n+1
+ e−t2 sinh

(
xt

√
2A
))

= H1(x, A)B(x, t; A) − 2tA(x, t; A) − 2e−t2 sinh
(
xt

√
2A
)
.

Taking into account the values of A(x, t; A) and B(x, t; A), we get

C(x, t; A) = H1(x, A)B(x, t; A) − 2tA(x, t; A) − 2e−t2 sinh
(
xt

√
2A
)

= e−t2
[(

H1(x, A)2 + (4t2 − 2)I
)
sinh

(
xt

√
2A
)

− 4tH1(x, A) cosh
(
xt

√
2A
)]

.

By (1), we have that H1(x, A) =
√
2Ax,H2(x, A) = 2x2A − 2I , and we can rewrite the last expression of C(x, t; A) in the

orm

C(x, t; A) := e−t2
[(

H2(x, A) + 4t2I
)
sinh

(
xt

√
2A
)

− 4tH1(x, A) cosh
(
xt

√
2A
)]

.

Summarizing, the following result has been established:

Theorem 2.1. Let A ∈ Cr×r be a positive stable matrix, x ∈ R, |t| < +∞. Then∑
n≥0

H2n+1(x, A)
(2n)!

t2n = e−t2
[
H1(x, A) cosh

(
xt

√
2A
)
−2t sinh

(
xt

√
2A
)]

,

∑
n≥0

H2n+2(x, A)
(2n + 1)!

t2n+1
= e−t2

[
H1(x, A) sinh

(
xt

√
2A
)
−2t cosh

(
xt

√
2A
)]

,

∑
n≥0

H2n+3(x, A)
(2n + 1)!

t2n+1
= e−t2

[(
H2(x, A)+4t2I

)
sinh

(
xt

√
2A
)
−4tH1(x, A) cosh

(
xt

√
2A
)]

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)

Having in mind that the Hermite matrix polynomial Hn(x, A) coincides with the Hermite polynomial Hn(x), taking r = 1
and A = 2 (see [15] for more details), we get the following corollary:

Corollary 1. Let {Hn(x)}n≥0 be the sequence of Hermite polynomials, x ∈ R, |t| < +∞. Then∑
n≥0

H2n+1(x)
(2n)!

t2n = e−t2 [H1(x) cosh (2xt)−2t sinh (2xt)] ,

∑
n≥0

H2n+2(x)
(2n + 1)!

t2n+1
= e−t2 [H1(x) sinh (2xt)−2t cosh (2xt)] ,

∑
n≥0

H2n+3(x)
(2n + 1)!

t2n+1
= e−t2

[(
H2(x)+4t2

)
sinh (2xt)−4tH1(x) cosh (2xt)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(10)
Formulas (10) are new in the literature of Hermite polynomials and special functions.

4

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

s

w

s
(

f

4

3. Some new Hermite matrix series expansions for the hyperbolic matrix cosine

Let A ∈ Cr×r be a positive stable matrix. Then the matrix polynomial H1(x, A) =
√
2Ax is invertible if x ̸= 0. Substituting

inh
(
xt

√
2A
)
given in (5) into the first expression of (9), we obtain a new rational expression for the hyperbolic matrix

cosine in terms of Hermite matrix polynomials:

cosh
(
xt

√
2A
)

= et
2

(∑
n≥0

H2n+1(x, A)
(2n)!

(
1 +

2t2

2n + 1

)
t2n
)
[H1(x, A)]−1 ,

x ̸= 0, |t| < +∞.

(11)

Substituting sinh
(
xt

√
2A
)

given in (5) into the second expression of (9) and using the three-term matrix recur-

rence (2), we obtain the expression of cosh
(
xt

√
2A
)
given in (5).

On the other hand, replacing the expression of sin
(
xt

√
2A
)
given in (5) into the third expression of (9), we get another

new rational expression for the hyperbolic matrix cosine in terms of Hermite matrix polynomials:

cosh
(
xt

√
2A
)

=

=
−et

2

4

[∑
n≥0

H2n+3(x, A)
(2n + 1)!

t2n −
(
H2(x, A) + 4t2I

)
⋆

(∑
n≥0

H2n+1(x, A)
(2n + 1)!

t2n+1

)]
[H1(x, A)]−1 ,

x ̸= 0, |t| < +∞. (12)

Comparing (12) with (11), we observe that there is always an extra matrix product when evaluating (12), the matrix
product indicated by the symbol ‘‘⋆". Due to the importance of reducing the number of matrix products, see [19–21] for
more details, we will focus mainly on the expansion (11).

From (1), it follows that, for x ̸= 0:

H2n+1 (x, A) [H1(x, A)]−1
= (2n + 1)!

n∑
k=0

(−1)kx2(n−k)(2A)n−k

k!(2(n − k) + 1)!

= H̃2n+1 (x, A) , (13)

here

H̃n(x, A) = n!
⌊
n
2 ⌋∑

k=0

(−1)k
(√

2A
)n−2k−1

k!(n − 2k)!
xn−2k−1, (14)

o the right hand side of (13) is still defined in the case where matrix A is singular. In this way, we can rewrite the relation
11) in terms of the matrix polynomial H̃2n+1 (x, A) as

cosh
(
xt

√
2A
)

= et
2

(∑
n≥0

H̃2n+1 (x, A)

(2n)!

(
1 +

2t2

2n + 1

)
t2n
)

,

x ∈ R, |t| < +∞.

(15)

Replacing matrix A by A2/2 in (15) we can avoid the square roots of matrices, and taking x = λ, λ ̸= 0, t = 1/λ, we
inally obtain the expression

cosh (A) = e
1
λ2

(∑
n≥0

H̃2n+1
(
λ, 1

2A
2
)

(2n)!λ2n

(
1 +

2
(2n + 1)λ2

))
, 0 < λ < +∞. (16)

. Numerical approximations

Truncating the given series (16) until order m, we obtain the approximation CHm (λ, A) ≈ cosh (A) defined by

CHm (λ, A) = e
1
λ2

(
m∑

n=0

H̃2n+1
(
λ, 1

2A
2
)

(2n)!λ2n

(
1 +

2
(2n + 1)λ2

))
, 0 < λ < +∞. (17)

Now, from the definition (13), it follows that H̃2n+1
(
x, 1

2A
2
)
is given by

H̃2n+1

(
x,

1
2
A2
)

= (2n + 1)!
n∑ (−1)kx2(n−k)

(
A2
)n−k

k!(2(n − k) + 1)!

k=0

5

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084
and, therefore, considering the 2−norm, we find thatH̃2n+1

(
x,

1
2
A2
)

2
≤ (2n + 1)!

n∑
k=0

|x|2(n−k) (A2

2

)n−k

k!(2(n − k) + 1)!

= (2n + 1)!
n∑

k=0

|x|2(n−k)
(A2

1/2
2

)2(n−k)

k!(2(n − k) + 1)!

= (2n + 1)!
n∑

k=0

(
|x|
A2

1/2
2

)2(n−k)

k!(2(n − k) + 1)!
. (18)

If A(k, n) is a matrix in Cr×r , for n ≥ 0, k ≥ 0, then from [22, p. 57] we get that∑
n≥0

∑
k≥0

A(k, n) =

∑
n≥0

n∑
k=0

A(k, n − k). (19)

Indeed, thanks to (19), it can be asserted that

e sinh
(
|x|
A2

1/2
2

)
|x|
A2

1/2
2

=

∑
n≥0

(
|x|
A2

1/2
2

)2n
(2n + 1)!

∑
k≥0

1
k!

=

∑
n≥0

∑
k≥0

(
|x|
A2

1/2
2

)2n
k!(2n + 1)!  

=A(k,n)

=

∑
n≥0

n∑
k=0

(
|x|
A2

1/2
2

)2(n−k)

k!(2(n − k) + 1)!
,

from which it is deduced that

n∑
k=0

(
|x|
A2

1/2
2

)2(n−k)

k!(2(n − k) + 1)!
≤

e sinh
(
|x|
A2

1/2
2

)
|x|
A2

1/2
2

. (20)

If the Expression (20) is multiplied by (2n+ 1)! and the inequality (18) is applied, we finally conclude that, for x ̸= 0,

H̃2n+1

(
x,

1
2
A2
)

2
≤ (2n + 1)!

e sinh
(
|x|
A2

1/2
2

)
|x|
A2

1/2
2

. (21)

Now, the following expression for the approximation error can be obtained:

∥cosh (A) − CHm (λ, A)∥2 ≤ e
1
λ2

∑
n≥m+1

H̃2n+1
(
λ, 1

2A
2
)

2

(2n)!λ2n

(
1 +

2
(2n + 1)λ2

)
(22)

≤

e1+
1
λ2 sinh

(
λ
A2

1/2
2

)
λ
A2

1/2
2

∑
n≥m+1

2n + 1
λ2n

(
1 +

2
(2n + 1)λ2

)
.

For λ > 1, it follows that
2

(2n + 1)λ2 < 1, and

∑
n≥m+1

2n + 1
λ2n

(
1 +

2
(2n + 1)λ2

)
≤ 2

∑
n≥m+1

2n + 1
λ2n

=
4 + (4m + 6)(λ2

− 1)
2m
(

2
)2 ,
λ λ − 1
6

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

t

w

a

Fig. 1. MATLAB code for computing optimal values of λ and z.

hus, from (22) we finally deduce that:

∥cosh (A) − CHm (λ, A)∥2 ≤

e1+
1
λ2 sinh

(
λ
A2

1/2
2

) (
4 + (4m + 6)(λ2

− 1)
)

A2
1/2
2 λ2m+1

(
λ2 − 1

)2 . (23)

From expression (23), we can derive the optimal values (λm, zm) such that

zm = max

⎧⎨⎩z =
A2


2 ;

e1+
1
λ2 sinh

(
λz1/2

) (
4 + (4m + 6)(λ2

− 1)
)

z1/2λ2m+1
(
λ2 − 1

)2 < u

⎫⎬⎭ ,

here u is the unit roundoff in IEEE double precision arithmetic (u = 2−53). The optimal values of z and λ, for each m,
have been obtained with the MATLAB code which appears in Fig. 1. Given the order of the Taylor approximation m, this
code determines all pairs (L, z) so that it is verified that the right hand side of (23) is lower than u, varying L between
a minimum value Lmin and a maximum value Lmax in steps equal to incL. In the same way, the code increments the
z variable from the minimum value zmin to the maximum value zmax by incz, on each iteration. This allows reducing
the search time by choosing appropriately these parameters according to the value of m. The precision to be achieved is
determined by the values of incL and incz. Once all possible pairs have been calculated, the chosen pair is the one that
has a maximum value of z. The results are given in Table 1.

Approximation CHm (see (17)) can be expressed as a polynomial with only even powers of matrix A:

CHm (λ, A) =

m∑
i=0

p(λ)i A2i
=

m∑
i=0

p(λ)i Bi
≡ P (λ)

m (B), (24)

where B = A2. We present Algorithm 1 which computes the hyperbolic cosine of a matrix A by means of the Paterson–
Stockmeyer method [23]. The computational cost of this Algorithm is k + s matrix products, i.e., 2(k + s)n3 flops, where
k represents the position of the vector mk used.

Algorithm 1 Scaling and recovering algorithm for computing C = cosh(A), where A ∈ Cr×r , with mM = 16 the maximum
approximation order allowed.
1: B = A2.
2: Choose optimal values of mk ∈ {2, 4, 6, 9, 12, 16} ⩽ mM and the scaling parameter s ∈ N ∪ {0}.
3: B = 4−sB ▷ Scaling matrix B
4: Choose the corresponding λmk from Table 1.

5: Compute C = P
(λmk)
mk (B) by the Paterson–Stockmeyer method (see [24, Section 2]) .

6: for i = 1 : s do ▷ Recovering the approximation of cosh(A)
7: C = 2C2

− I ▷ Double angle formula of cosh(A)
8: end for

The basic steps of this algorithm are the choosing of mk and s (step 2), the computation of P
(λmk)
mk (B) (a complete study

of how to compute P
(λmk)
mk (B) can be seen in Section 2 from [24]) (step 5), and the recovering (steps 6-7).

Next, let us show how to compute the values of mk and s. If cosh(A) is computed from the Taylor series, then the
bsolute forward error of the Hermite approximation of cosh(A), denoted by Ef , can be computed as

Ef =

cosh(A) − P (λk)
mk (B)

 =


∑

fiBi

 ,
i≥m̂k

7

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

w

Table 1
Values of zmk , λmk and Θmk of the matrix function cosh (A).

mk zmk λmk Θmk

2 1.085438916 × 10−5 3645.569817 1.8509243149007247 × 10−6

4 7.072119354 × 10−2 130.7978189 3.810252709308867 × 10−3

6 1.024769681 × 10−1 31.00030100 8.9416635239106868 × 10−2

9 1.232994877952250 17.607040100 1.1838963351971854 × 100

12 4.840136411698479 10.200005000 5.0162962795121144 × 100

16 16.851353484604754 7.9080200400 1.7588311877511131 × 101

Table 2
Values of m̂k , m̃k , and fmax(mk).

m1 = 2 m2 = 4 m3 = 6 m4 = 9 m5 = 12 m6 = 16

m̂k 1 2 2 4 6 9
m̃k 1 2 3 10 13 17
fmax(mk) 0 0 1.9 × 10−17 5.3 × 10−19 3.1 × 10−26 3.4 × 10−39

where m̂k ≤ mk. If fm̃k is the first value of the above series greater than u, then we obtain the following approximation:

Ef ∼=


∑
i⩾m̃k

fiBi

 .

Table 2 shows values m̂k, m̃k and fmax(mk) = max
{
fi : m̂k ≤ i ≤ m̃k − 1

}
, for each mk ∈ {2, 4, 6, 9, 12, 16}.

The scaling factor s and the order of the Hermite approximation mk are obtained by simplifying the following theorem:

Theorem 4.1 ([25]). Let hl(x) =
∑

i≥l pix
i be a power series with radius of convergence w, h̃l(x) =

∑
i≥l |pi|x

i, B ∈ Cn×n with
ρ(B) < w, l ∈ N and t ∈ N with 1 ⩽ t ⩽ l. If t0 is the multiple of t such that l ⩽ t0 ⩽ l + t − 1 and

βt = max{d1/jj : j = t, l, l + 1, . . . , t0 − 1, t0 + 1, t0 + 2, . . . , l + t − 1},

here dj is an upper bound for ∥Bj
∥, dj ⩾ ∥Bj

∥, then

∥hl(B)∥ ⩽ h̃l (βt) .

If we apply Theorem 4.1 to the series fm̃k (x) =
∑

i⩾m̃k
fixi and f̃m̃k (x) =

∑
i≥m̃k

|fi| xi, then

Ef =
fm̃k (B)

 ⩽ f̃m̃k (βt),

for every t , 1 ≤ t ≤ m̃k. Let Θmk be

Θmk = max

⎧⎨⎩θ ⩾ 0 : f̃m̃k (θ) =

∑
i⩾m̃k

|fi| θ i ⩽ u

⎫⎬⎭ , (25)

then using MATLAB (R2017b) Symbolic Math Toolbox with 200 series terms and a zero finder, we obtained the values
Θmk that verify (25) (see Table 1).

The optimal values mk and s are obtained from the values of βt of Theorem 4.1 and from the values Θmk of Table 1. A
complete study of this question was developed by the authors in [18,24]. Next, we reproduce that study.

Let β
(m̃k)

min = min1⩽t⩽m̃k {βt}. If there exists a value mk ≤ 16 such that β
(m̃k)
min ≤ Θmk , then the forward error Ef is lower

than u. In this case, we choose the lower order mk such that β
(m̃k)
min ≤ Θmk and the scaling factor is s = 0. Otherwise, we

choose the Hermite approximation of order 12 or 16 providing the lower cost, with

s = max

{
0,

⌈
1
2
log

(
β

(m̃k)
min

Θmk

)⌉}
, mk = 12 or 16.

For computing β
(m̃k)
min , we have used the following approximation:

β
(m̃k)
min ≈ max

{
d1/m̃k
m̃k

, d1/(m̃k+1)
m̃k+1

}
,

where dm̃k and dm̃k+1 are bounds of
Bm̃k

 and
Bm̃k+1

, respectively (see (16) from [26]). The bounds dl, l = m̃k, m̃k+1
can be computed using products of norms of matrix powers previously calculated. For example, for m = 6 the powers
k

8

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

T

5

h

5

g
p
f

5

l
d

w

s
T
c
t

g

p

B2 and B3 must be obtained, hence β
(3)
min (m̃k = 3) can be figured as follows

β
(3)
min = max

{B3
1/3,min

{B3
 ∥B∥ ,

B2
2}1/4} .

he algorithm for computing the values m and s is analogous to Algorithm 2 from [24].

. Experiments

In this section, we show the results of numerical accuracy and performance of the proposed algorithm to compute the
yperbolic cosine function. By means of a CUDA implementation, we also show its performance using an NVIDIA GPU.

.1. Numerical experiments

Our MATLAB implementation, named coshmtayher, has been developed by modifying the coshher MATLAB code
iven in [7], by replacing the original Hermite approximation by the new Hermite matrix polynomial developed in this
aper and derived from (16). We have compared the new MATLAB function, coshmtayher, with coshher and funmcosh
unctions defined as:

• coshmtayher: Novel code based on the new developments of Hermite matrix polynomials (16).
• coshher: Code based on the Hermite series for the matrix hyperbolic cosine [7].
• funmcosh: funm MATLAB function to compute matrix functions, such as the matrix hyperbolic cosine.

.2. Experiments description

The tests have been carried out using MATLAB (R2017b) running on an Apple Macintosh iMac 27" (iMac retina 5K 27"
ate 2015) with a quadcore INTEL i7-6700K 4 GHz processor and 16 Gb of RAM. The following tests were made using
ifferent matrices:

(a) Test 1: One hundred diagonalizable 128 × 128 randomly generated real matrices with 1-norm varying from 2.32
to 220.04. These matrices have the form A = VDV T , where D is a diagonal matrix with real eigenvalues and V is an
orthogonal matrix obtained as V = H/

√
128, where H is the Hadamard matrix. The ‘‘exact" matrix hyperbolic cosine

was computed as cosh(A) = V cosh(D)V T (see [1, pp. 10]), by using the MATLAB Symbolic Math Toolbox with 128
decimal digit arithmetic in all the computations.

(b) Test 2: One hundred non-diagonalizable 128 × 128 random real matrices whose 1-norm range from 6.52 to 249.61.
These matrices have the form A = VJV T , where J is a Jordan matrix with real eigenvalues with algebraic multiplicity
varying between 1 and 4, and V is an orthogonal matrix obtained as V = H/

√
128, where H is the Hadamard matrix.

The ‘‘exact" matrix hyperbolic cosine was computed as cosh(A) = V cosh(J)V T .
(c) Test 3: Thirteen test matrices from the Eigtool MATLAB package [27] with size 128 × 128 and thirty-nine matrices

from the matrix function literature with dimensions lower than or equal to 128 from the function matrix of the
Matrix Computation Toolbox [28]. These matrices have been scaled so that they have 1-norm not exceeding 1024.
The ‘‘exact" matrix hyperbolic cosine was obtained by computing first the eigenvalue decomposition of matrix A,
A = VDV−1, by using the MATLAB function eig, and then computing cosh(A) = V cosh(D)V−1, by means of the
MATLAB’s Symbolic Math Toolbox with 128 decimal digit arithmetic in all the computations.

Tables 3 and 4 show, respectively, the computational costs and the algorithm accuracy for the functions under
comparison, i.e. coshmtayher, coshher, and funmcosh, in the three tests described. The algorithm accuracy is tested
by computing the normwise relative error (Er) as

Er =
∥ cosh(A) − c̃osh(A)∥1

∥cosh(A)∥1
,

here c̃osh(A) is the computed solution and cosh(A) is the exact solution.
Table 3 shows the computational costs represented in terms of the number of matrix products (P()) of each code,

ince the cost of the rest of the operations is negligible compared to matrix multiplications for large enough matrices.
he funmcosh routine has no matrix products, but a Real Schur Form reduction as the main cost, with a computational
ost of 28n3 [29] for an n × n matrix. This can be expressed as a minimum of 14 matrix products, having in mind that
he cost of a matrix multiplication is 2n3 [1, p. 336].

Table 4, on the other hand, shows the percentage of cases in which the relative errors of coshmtayher are lower than,
reater than or equal to the relative errors of coshher and funmcosh.
We have plotted in Figs. 2, 3, and 4, for the three tests, respectively, the normwise relative errors (a), the performance

rofiles (b), the ratio of relative errors (c) to show if these ratios are significant:
Er(coshher)/Er(coshmtayher), Er(funmcosh)/Er(coshmtayher),
9

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

m

Table 3
Matrix products (P) for Tests 1, 2, and 3 using coshmtayher, coshher and funmcosh MATLAB functions.

P(coshmtayher) P(coshher) P(funmcosh)

Test 1 971 973 1400
Test 2 976 988 1400
Test 3 310 317 560

Table 4
Relative error comparison between coshmtayher vs coshher (rows 1 to 3) and coshmtayher vs
funmcosh (rows 4 to 6) for Test 1, Test 2 and Test 3. The Table entries show the percentage of cases
in which the relative errors of coshmtayher (New Hermite) are lower than, greater than or equal to
the relative errors of coshher and funmcosh.

Test 1 Test 2 Test 3

Er(coshmtayher)<Er(coshher) 76% 79% 65%
Er(coshmtayher)>Er(coshher) 21% 20% 25%
Er(coshmtayher)=Er(coshher) 3% 1% 10%
Er(coshmtayher)<Er(funmcosh) 100% 100% 97.5%
Er(coshmtayher)>Er(funmcosh) 0% 0% 2.5%
Er(coshmtayher)=Er(funmcosh) 0% 0% 0%

Fig. 2. Experimental results for Test 1.

and the ratio of the matrix products (d):
P(coshher)/P(coshmtayher), P(funmcosh)/P(coshmtayher).
In the performance profile, the α coordinate varies between 1 and 5 in steps equal to 0.1, and the p coordinate is the

probability that the considered algorithm has a relative error lower than or equal to α-times the smallest error over all
ethods. The ratios of relative errors are presented in decreasing order with respect to Er(coshmtayher)/Er(coshher).
10

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

c
c

Fig. 3. Experimental results for Test 2.

The solid lines in Figs. 2(a), 3(a) and 4(a) are the function kcoshu, where kcosh is the condition number of matrix hyperbolic
osine function [1, Chapter 3] and u = 2−53 is the unit roundoff in the double precision floating-point arithmetic. Our
onclusions are:

• Regarding the normwise relative error shown in Figs. 2(a), 3(a) and 4(a), in general, coshmtayher and coshher
functions have a very good numerical stability. This can be appreciated seeing the distance from each matrix
normwise relative error to the cond ∗ u line. In Figs. 2(a) and 3(a), the numerical stability is better because the
relative errors are below the cond ∗ u line.

• The performance profile for the first two tests (Figs. 2(b), 3(b)) shows that accuracy of the coshmtayher and the
coshher methods is similar as α increases. Moreover, both of them have much better accuracy than the funmcosh
method. For the third test, Fig. 4(b) shows that the accuracy of coshmtayher function is considerably better than
the accuracy of coshher function.

• Quantitatively, Table 4 indicates that coshmtayher code offers a relative error lower than coshher function in 76%,
79% and 65% of the cases, respectively, for Tests 1, 2 and 3. Similarly, coshmtayher method improves funmcosh
function in terms of the relative error incurred in the calculation of the 100% of the matrices that comprise Tests 1
and 2, or in the 97.5% of the ones belonging to Test 3. These numerical values are corroborated by the error ratios
depicted in Figs. 2(c), 3(c) and 4(c). As we can notice, this ratio is greater than one for a percentage of matrices that
coincides with the values exposed in Table 4, which obviously indicates that the coshmtayher code is the most
accurate and reliable one. Whereas this error ratio takes values not very far from unity between coshmtayher and
coshher functions for the matrices of the first two Tests, this factor reaches more distant values from unity for
many matrices that are part of Test 3. Special mention deserves the value of this factor between coshmtayher and
funmcosh codes, which takes very high values particularly in the matrices of Test 3. More in detail:
11

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084
Fig. 4. Experimental results for Test 3.

Test 1 (Fig. 2(c)):
Er(coshher) ∈ [0.79 Er(coshmtayher), 3.68 Er(coshmtayher)],
Er(funmcosh) ∈ [22.49 Er(coshmtayher), 523.3 Er(coshmtayher)].

Test 2 (Fig. 3(c)):
Er(coshher) ∈ [0.80 Er(coshmtayher), 2.10 Er(coshmtayher)],
Er(funmcosh) ∈ [19.84 Er(coshmtayher), 238.6 Er(coshmtayher)]

Test 3 (Fig. 4(c)):
Er(coshher) ∈ [0.68 Er(coshmtayher), 199.0 Er(coshmtayher)],
Er(funmcosh) ∈ [0.48 Er(coshmtayher), 6.65e + 15 Er(coshmtayher)].

• As it was shown in Table 3, coshmtayher function has a computational cost significantly lower than funmcosh
code and slightly lower than coshher function. As expected, the numerical tests also confirm this result:

Test 1 (Fig. 2(d)):
P(coshher) ∈ [0.86 P(coshmtayher), 1.20 P(coshmtayher)],
P(funmcosh) ∈ [1.27 P(coshmtayher), 2.80 P(coshmtayher)].

Test 2 (Fig. 3(d)):
P(coshher) ∈ [0.86 P(coshmtayher), 1.20 P(coshmtayher)],
P(funmcosh) ∈ [1.27 P(coshmtayher), 2.80 P(coshmtayher)].

Test 3 (Fig. 4(d)):
P(coshher) ∈ [0.85 P(coshmtayher), 1.29 P(coshmtayher)],
P(funmcosh) ∈ [1.00 P(coshmtayher), 2.80 P(coshmtayher)].
12

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084

g

5

c
a
i
G
b
a

X
N
a

i

t
a
a
c

A

Fig. 5. Execution times (sec.) to compute the matrix hyperbolic cosine in CPU and GPU by means of coshmtayher and coshher codes on randomly
enerated large matrices.

.3. Results in GPU

We have implemented an ‘‘accelerated’’ version that allows to execute our algorithm to compute the matrix hyperbolic
osine on NVIDIA GPUs. Current GPUs are computational devices that allow to boost performance on data parallelism
pplications, i.e. applications that operate over many independent data. This is the case of matrix multiplication, which
s a highly optimized operation for GPUs in its current implementation routine included in the CUBLAS package [30]. Our
PU algorithms are all based on polynomial evaluations which, in turn, results in intensive use of matrix products. The
asic MATLAB algorithm is used in this case with some very costly operations (those based on matrix multiplication)
ddressed to the GPU through CUDA language by a means of implementing a MEX file.
We have carried out our experimental results for this subsection on a computer equipped with two processors Intel

eon CPU E5-2698 v4 @ 2.20 GHz featuring 20 cores each. To obtain the algorithm performance on GPU we used one
VIDIA Tesla P100-SXM2 (Pascal architecture) attached to the PCI of this workstation. This GPU features 3584 CUDA cores
nd 16 GB of memory.
Fig. 5 shows the reduction in execution time when we use a GPU to accelerate the computations. The figure also

ndicates that, for large randomly generated matrices, the former version of the matrix hyperbolic cosine (coshher),
presented in [7], and the new algorithm (coshmtayher) show a similar performance in both the CPU and GPU subsystems.
Experimental results with funmcosh function are not shown in the figure, since they are very large in comparison. For
instance, for a matrix A of order n = 2000, the execution time to obtain cosh(A) is 83 s whilst it is 0.71 s and 0.73 s with
coshmtayher and coshher, respectively.

6. Conclusions

A new polynomial Hermite matrix algorithm has been developed in this work for computing the matrix hyperbolic
cosine. We have implemented a MATLAB routine that is also capable of using an existing GPU in the system. This new
algorithm has been compared with other MATLAB implementations and, at the light of the tests carried out, we have
verified that the new algorithm behaves in a numerically stable manner showing very good results. One of the main
conclusions is that MATLAB implementations based on the Hermite series (coshher and coshmtayher) have turned out
o be much more accurate and efficient than others focused on the funm MATLAB function when using funmcosh code. In
ddition, the new implementation based on Hermite series (coshmtayher), proposed here, offers much better numerical
ccuracy than that of coshher algorithm, which is also based on the Hermite series, with a slightly lower computational
ost in terms of matrix products.

cknowledgments

This work has been partially supported by Spanish Ministerio de Economía, Industria y Competitividad and European
Regional Development Fund (ERDF) grants TIN2017-89314-P and by the Programa de Apoyo a la Investigación y Desarrollo
2018 of the Universitat Politècnica de València, Spain (PAID-06-18) grants SP20180016.
13

E. Defez, J. Ibáñez, J. Peinado et al. Journal of Computational and Applied Mathematics 408 (2022) 114084
References

[1] N.J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA, USA, 2008.
[2] L. Jódar, E. Navarro, A. Posso, M. Casabán, Constructive solution of strongly coupled continuous hyperbolic mixed problems, Appl. Numer. Math.

47 (3–4) (2003) 477–492.
[3] E. Estrada, D.J. Higham, N. Hatano, Communicability and multipartite structures in complex networks at negative absolute temperatures, Phys.

Rev. E 78 (2) (2008) 026102.
[4] E. Estrada, J.A. Rodríguez-Velázquez, Spectral measures of bipartivity in complex networks, Phys. Rev. E 72 (4) (2005) 046105.
[5] E. Estrada, J. Gómez-Gardeñes, Network bipartivity and the transportation efficiency of european passenger airlines, Physica D 323 (2016)

57–63.
[6] J. Kunegis, G. Gröner, T. Gottron, Online dating recommender systems: The split-complex number approach, in: Proceedings of the 4th ACM

RecSys Workshop on Recommender Systems and the Social Web, RSWeb ’12, Association for Computing Machinery, 2012, pp. 37–44.
[7] E. Defez, J. Sastre, J. Ibáñez, J. Peinado, Solving engineering models using hyperbolic matrix functions, Appl. Math. Model. 40 (4) (2016)

2837–2844.
[8] N.J. Higham, P. Kandolf, Computing the action of trigonometric and hyperbolic matrix functions, SIAM J. Sci. Comput. 39 (2) (2017) A613–A627.
[9] A.H. Al-Mohy, A truncated taylor series algorithm for computing the action of trigonometric and hyperbolic matrix functions, SIAM J. Sci.

Comput. 40 (3) (2018) A1696–A1713.
[10] N. Dunford, J.T. Schwartz, Linear Operators, Part I: General Theory, John Wiley & Songs, Inc., 1988.
[11] G.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, Maryland, USA, 2013.
[12] G. Dattoli, C. Cesarano, On a new family of Hermite polynomials associated to parabolic cylinder functions, Appl. Math. Comput. 141 (1) (2003)

143–149.
[13] A. Yari, Numerical solution for fractional optimal control problems by Hermite polynomials, J. Vib. Control 27 (5–6) (2021) 698–716.
[14] D. Masoero, P. Roffelsen, Roots of generalised Hermite polynomials when both parameters are large, Nonlinearity 34 (3) (2021) 1663–1732.
[15] J. Jódar, R. Company, Hermite matrix polynomials and second order matrix differential equations, Approx. Theory Appl. 12 (2) (1996) 20–30.
[16] E. Defez, A. Hervás, L. Jódar, A. Law, Bounding Hermite matrix polynomials, Math. Comput. Modelling 40 (1) (2004) 117–125.
[17] E. Defez, L. Jódar, Some applications of the Hermite matrix polynomials series expansions, J. Comput. Appl. Math. 99 (1) (1998) 105–117.
[18] E. Defez, J. Ibáñez, J. Peinado, J. Sastre, P. Alonso-Jordá, An efficient and accurate algorithm for computing the matrix cosine based on new

Hermite approximations, J. Comput. Appl. Math. 348 (2019) 1–13.
[19] J. Sastre, J. Ibáñez, E. Defez, P. Ruiz, New scaling-squaring taylor algorithms for computing the matrix exponential, SIAM J. Sci. Comput. 37 (1)

(2015) A439–A455.
[20] P. Alonso, J. Peinado, J. Ibáñez, J. Sastre, E. Defez, Computing matrix trigonometric functions with gpus through matlab, J. Supercomput. (2018)

1–14.
[21] J. Sastre, Efficient evaluation of matrix polynomials, Linear Algebra Appl. 539 (2018) 229–250.
[22] E.D. Rainville, Special functions, 1960, 442, New York.
[23] M.S. Paterson, L.J. Stockmeyer, On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM J. Comput. 2 (1) (1973)

60–66.
[24] J. Sastre, J. Ibáñez, P. Alonso, J. Peinado, E. Defez, Two algorithms for computing the matrix cosine function, Appl. Math. Comput. 312 (2017)

66–77.
[25] J. Sastre, J. Ibáñez, P. Ruiz, E. Defez, Efficient computation of the matrix cosine, Appl. Math. Comput. 219 (14) (2013) 7575–7585.
[26] P. Ruiz, J. Sastre, J. Ibáñez, E. Defez, High perfomance computing of the matrix exponential, J. Comput. Appl. Math. 291 (2016) 370–379.
[27] T.G. Wright, Eigtool, version 2.1, URL http://www.comlab.ox.ac.uk/pseudospectra/eigtool.
[28] N.J. Higham, The matrix computation toolbox, URL: http://www.ma.man.ac.uk/higham/mctoolbox.
[29] M.I. Smith, A schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal. Appl. 24 (4) (2003) 971–989.
[30] NVIDIA, CUDA, CUBLAS library, 2009.
14

http://refhub.elsevier.com/S0377-0427(22)00002-4/sb1
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb2
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb2
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb2
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb3
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb3
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb3
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb4
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb5
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb5
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb5
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb6
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb6
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb6
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb7
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb7
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb7
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb8
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb9
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb9
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb9
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb10
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb11
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb12
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb12
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb12
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb13
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb14
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb15
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb16
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb17
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb18
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb18
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb18
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb19
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb19
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb19
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb20
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb20
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb20
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb21
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb22
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb23
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb23
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb23
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb24
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb24
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb24
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb25
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb26
http://www.comlab.ox.ac.uk/pseudospectra/eigtool
http://www.ma.man.ac.uk/higham/mctoolbox
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb29
http://refhub.elsevier.com/S0377-0427(22)00002-4/sb30

	New Hermite series expansion for computing the matrix hyperbolic cosine
	Introduction
	Notation

	A proof of formulas nueva1 –nueva1b
	Some new Hermite matrix series expansions for the hyperbolic matrix cosine
	Numerical approximations
	Experiments
	Numerical experiments
	Experiments description
	Results in GPU

	Conclusions
	Acknowledgments
	References

