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ABSTRACT 

Terrestrial laser scanning (TLS) is a measurement technique that has become popular in the last decades. 
Measurement results, usually as a point cloud, contain many points measured. When the TLS technique is used 
to determine terrain surface (e.g., by determining terrain profiles), one should realize that some points 
measured do not concern the terrain surface itself, but trees, shrubs, or generally the vegetation cover. 
Considering terrain surface determination, they should be regarded as outliers. Some other observations can 
also be outliers of different origins; for example, they might be disturbed by gross errors. We should consider 
such observation types when the data are processed. Two leading solutions in such a context are data cleaning 
and the application of robust estimation methods. Robust M-estimation is the most popular for the latter 
approach. As an alternative, one can also consider the application of Msplit estimation, in which the functional 
model is split into two competing ones. Hence, the paper aims to analyze how Msplit estimation can assess vertical 
terrain displacement based on terrain profile determination from TLS data. We consider processing data in 
separate sets (two measurement epochs) or one combined set, a natural approach in Msplit estimation. The 
analyses based on simulated TLS data proved that the first solution seems better. Furthermore, the application 
of Msplit estimation can also provide more satisfactory results than the classical methods used in such a context. 

 
I. INTRODUCTION 

Laser scanning, as a very popular measurement 
technique, has found many applications in the last 
decades, e.g., in measuring vegetation, mining 
displacements, cultural heritage sites, urban 
environments, buildings, or other objects (Gordon and 
Lichti, 2007; Wang and Hsu, 2007; Spaete et al., 2011; 
Rodríguez-Gonzálvez et al., 2017; Crespo-Peremarch et 
al., 2018; Matwij et al., 2021). Depending on what 
platform a laser scanner is installed, one can distinguish 
airborne laser scanning (ALS), terrestrial laser scanning 
(TLS), or mobile laser scanning (MLS) (Kuzia, 2016). As a 
typical measurement result, a point cloud contains 
many points measured that are the basis for further 
processing. In this paper, we consider the 
determination of the terrain surface, by determining 
terrain profiles, from such a TLS result. One should 
realize some measured points do not concern the 
terrain surface itself but, for example, vegetation cover 
(trees, shrubs, etc.), small animals (e.g., birds), or other 
obstacles. If we focus on terrain surface determination, 
they should be regarded as so-called positive outliers 
(Matkan et al., 2014; Carrilho et al., 2018). Outlying 
observations might also have other origins, such as 
multipath distance ranging, leading to negative outliers. 
In some sense, both groups might be considered 
observations disturbed by gross errors. We should 
consider the possible occurrence of such observations 

when processing TLS point clouds. Two main solutions 
in such a context are data cleaning or application of 
robust estimation methods, which are well-known in 
surveying engineering (Hodges and Lehmann, 1963; 
Baarda, 1968; Pope, 1976; Gui and Zhang, 1998; Huber 
and Ronchetti, 2009; Duchnowski, 2013; Ge et al., 2013; 
Lehmann, 2013). As an alternative, one can also 
consider the application of Msplit estimation. That novel 
development of M-estimation assumes that the 
functional model is split into two or more competitive 
ones (Wiśniewski, 2009; 2010). Such an estimation 
method allows us automatically isolate observation 
subsets and estimate their location parameters. That 
feature might be advisable when processing TLS point 
clouds that include outliers (Wyszkowska et al., 2021). 

The paper’s main aim is to analyze how Msplit 
estimation can be used to assess vertical terrain 
displacement from estimated terrain profiles based on 
TLS data. We assume two measurement epochs in such 
a context, hence two observation sets. We compare 
two approaches: processing data separately (related to 
each measurement epoch) or in one combined set, a 
natural approach in Msplit estimation. We apply two 
main variants of Msplit estimation, i.e., the squared Msplit 
estimation, the basic variant, and the absolute Msplit 
estimation, which was introduced to be less sensitive to 
outliers than the first variant (Wyszkowska and 
Duchnowski, 2019). For the sake of comparison, we also 
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use the following classical methods: the least-squares 
method, and two variants of robust M-estimation, i.e., 
the Huber method and the Tukey method. The example 
M-estimation methods differ from each other in 
general features of the influence functions. The Tukey 
influence function has rejection points in contrast to the 
Huber method (Gui and Zhang, 1998; Ge et al., 2013). 

 

II. GENERAL ASSUMPTIONS 

While processing or adjusting geodetic observations, 
we usually apply the conventional linear functional 
model given as follows (Eq. 1): 

 
 y AX v  (1) 

 
where y = vector of observations  

 A = known matrix of coefficients  
 X = vector of parameters  
 v = vector of measurement errors  
 
Assuming the same accuracy for each observation, 

hence the weight matrix P is equal to the identity 
matrix, and additionally, that A is full column rank, the 

least-squares estimator (LS) ˆ
LSX  of the vector of 

parameters can be written as (Eq. 2): 
 

 
1

ˆ T T
LSX A A A y  (2) 

 
Similar formula can be written for the M-estimate of 

the parameter vector when referring to the iteratively 
reweighted least squares (Eq. 3): 

 

 
1

ˆ T T
MX A WA A Wy  (3) 

 
where W = diagonal matrix of weights for which 

   ˆ( )iii
w vW  

ˆ( )iw v  = weight function related to particular 

M-estimation variant 

 îv  = standardized error of ith observation 

  ii  = ith diagonal element of matrix 

 
The form of the weight function depends on the 

chosen M-estimation variant. In the Huber method it 
holds that (e.g., Yang, 1994; Ge et al., 2013) (Eq. 4): 
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where k = positive constant, equals to 2, 2.5 or 3 

In this paper, we assume the constant 2k . The 
Tukey weight function is given as (Gui and Zhang, 1998; 
Ge et al., 2013) (Eq. 5): 
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For the unknown variance, the constant k is usually 

assumed equal to 6. 
M-estimates of the parameter vector are determined 

in the iterative process. The end of the iterative process 
is when the estimated vector of the parameters is not 
changing between the iteration steps. 

Msplit estimation has a different fundamental 
assumption. The functional model from Equation 1 is 
split into two competitive ones (Wiśniewski, 2009; 
Wyszkowska and Duchnowski, 2019) (Eq. 6): 

 

(1) (1)

(2) (2)

 
    

y AX v
y AX v

y AX v
 (6) 

 
where X(m) = version of vector of parameters 

 v(m) = version of vector of measurement 
errors 

 m = 1 or 2  
 

The main difference between the models of 
Equations 2 and 6 is that we assume two versions of the 
parameter vector in the latter model; however, the 
observation vector remains the same. Thus, each 

observation can be described as either (1)X  or (2)X . 

Such a situation might stem from the theoretical origin 
of observations as realizations of two different random 
variables (which differ from each other in location 

parameters, here (1)X  and (2)X ). The observation 

division into two subsets is automatic, and it is 
performed during the estimation process. 

Thus, the goal of Msplit estimation is to estimate (1)X  

and (2)X . It can be done by solving the optimization 

problem with the following general form of the 
objective function (Wiśniewski, 2009) (Eq. 7): 

 

    


(1) (2) (1) (2)
1

, ,
n

i i
i

v vX X  (7) 

 

The component functions   (1) (2),i iv v  might have 

different forms depending on the estimation variant. In 
the case of the squared Msplit estimation (SMS), it holds 

that    2 2
(1) (2) (1) (2),i i i iv v v v  as for the absolute Msplit 

estimation (AMS)   (1) (2) (1) (2),i i i iv v v v . The 

difference between these two functions results in the 
general features of the Msplit estimation variants and a 
scheme of the iterative process. In the case of SMS 
estimation, the estimates can be computed by using the 
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modified Newton method, the so-called traditional 
iterative process (Wiśniewski, 2009) (Eq. 8): 
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where   ( )mdX  = increment to vector of parameters  

   ( ) ( ) (1) (2)(1) (2), 2 ,m
T

mH X X A w v v A  = Hessian 

   (1) (2( ) ( ) (1) (2 () ) ), 2 ,T
m m mg X X A w v v v  = gradient 

        ( ) (1) (2) ( ) 1(1) 1(2) ( ) (1) (2), diag , ,..., ,m m m n nw v v w v vw v v  

= matrix of the weight function  ( ) (1) (2),m i iw v v   

 diag  = diagonal matrix 

 
The weight functions stem from the functions 

  (1) (2),i iv v  by holding the following relations 

(Wiśniewski, 2009) (Eq. 9): 
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where the influence functions   (1) (1) (2),i iv v  and 

  (2) (1) (2),i iv v  are defined as (Eq. 10): 
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Hence, for SMS estimation, it holds that (Eq. 11): 
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In the case of AMS estimation, we use the parallel 

iterative process conducted in the following way 
(Wyszkowska and Duchnowski, 2019) (Eq. 12): 
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(12) 

The respective Hessians and gradients are computed 
as in Equation 7 and by applying the following weight 
functions resulting from Equation 9 (Wyszkowska and 
Duchnowski, 2019) (Eq. 13): 
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where c = assumed small positive constant 
 

Both iterative processes end when the gradients are 
equal to zero, in other words when both estimated 
vectors of the parameters are not changing between 
the iteration steps. More information about iterative 
processes of Msplit estimation can be found in 
(Wyszkowska and Duchnowski, 2020). 

 

III. NUMERICAL EXAMPLE 

The methods introduced in the previous section are 
now applied to process simulated TLS data to 
determine vertical displacements of terrain. 

Let us assume a terrain profile of 50 m long, which is 
measured at two epochs. The observation sets are 
simulated by taking all theoretical heights of the terrain 
profile at the first epoch equal to 0 m. We assume some 
vertical movements of the terrain, which can be 
described by the following heights of the terrain profile 
at the second epoch: 0.005 m at a distance  0 mD , 

0.008 m at  10 mD , 0.005 m at  30 mD , and 0.006 m 

at  40 mD . It allows us to describe the complete 

profile in the second epoch by the third-degree 
polynomial with the following coefficients: 

  7
(3) 5.83 10a ,    5

(2) 3.83 10a ,   4
(1) 6.25 10a  

and   3
(0) 5 10a . Then, let us simulate 500 

observations, TLS points, at each measurement epoch. 
The measurement errors are assumed to be normally 

distributed   6 20m,4 10 mN . We also assume that 

some observations might be affected by gross errors 
generated from the uniform distribution in the interval 
from 0.005 m to 0.050 m. Thus, we assume that all 
outliers are positive. 

In this section, we consider the following variants of 
the observation set: 

 Variant I – lack of outliers in epochs I and II. 
 Variant II – 10% outliers in epochs I and II. 
 Variant III – 10% outliers in epoch I, 30% outliers 

in epoch II. 
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Observation sets for these variants are presented in 
Figures 1-3. The top panel of each figure shows 
observations from the measurement epoch I; the 
middle panel – observations from the measurement 
epoch II, and the bottom panel – observations from 
both epochs (the combined set). 

 

 
Figure 1. Observation sets for Variant I. 

 

First, let the polynomial coefficients be estimated in 
each epoch separately. Then, one can compute the 
estimated profile heights (every meter) at each epoch. 
It allows us to calculate the terrain displacements 
obtained by subtracting the respective point heights. 
Note that in the case of Msplit estimation, we always get 
two competitive solutions in each epoch. 

Considering the terms of the case at hand (mainly, the 
terrain profile estimation), the polynomial in which the 
graph is located lower is taken as the Msplit solution. The 
second solution describes the location of outliers, and 
here is omitted. 

The results are presented in Figure 4: Variant I in the 
top panel, Variant II in the middle panel, and Variant III 
in the bottom panel. All estimation methods provide 
very similar and correct results for the first two variants. 

It is noteworthy that even LS estimation seems to show 
robustness against outliers. It stems from the character 
of outlying observations (they are spread over the 
whole profile randomly and uniformly). The results 
obtained in each epoch, which are not presented here, 
are disturbed by outliers significantly; however, after 
subtracting results from two epochs, such an effect is 
eliminated, resulting in the correct estimation of terrain 
displacements. The significant differences between 
different method applications are in Variant III. LS 
estimation, both M-estimation variants, and SMS 
estimation do not cope with the different shares of 
outlying observations in both measurement epochs. 
Robust M-estimation cannot deal with 30% outliers at 
the second measurement epoch. Only AMS estimation 
provides correct results in such a case. Thus, it 
predominates over conventional robust M-estimation 
for a higher percentage of outliers. AMS estimation also 
provides better results than SMS estimation. 

 

 
Figure 2. Observation sets for Variant II. 

 

The graphical interpretation provides only a general 
comparison between the methods. The minor 
differences between the estimation results (especially 
in Variants I and II) are unnoticeable. To describe the 
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results more detailedly, let us assess how the estimated 
displacements fit into the simulated ones. The fit 
accuracy can be evaluated by using the root-mean-

square deviation  ˆRMSD H  in the following form 

(Wyszkowska et al., 2021) (Eq. 14): 
 

 
 2

0

ˆΔ Δ

ˆΔ

n

i i
i

H H

RMSD H
n







 
(14) 

 

where  ˆΔ iH  = estimated displacements 

ΔHi = simulated displacements 
n = 51 = number of points for which 
displacements are calculated for distances

1 mjD j     0, ..., 50j .   

 

 
Figure 3. Observation sets for Variant III. 

 

RMSDs for Variants I-III are presented in Table 1. 
When there are no outliers, LS estimation provides the 
best results; however, the results of robust M-
estimation variants are only a little bit worse. The 
results of Msplit estimation variants are also comparable 

(especially for AMS estimation). LS estimation provides 
the least accurate outcomes in Variant II, whereas other 
methods give similar accuracy. In the case of Variant III, 
the results of AMS estimation are significantly better 
than the results of other variants considered. Note that 
robust M-estimation and SMS estimation give 
outcomes that are less accurate than the results of LS 
estimation. It means that those methods have not 
coped with 30% outliers in the second epoch 
definitively. 

 
Table 1. RMSDs of estimated displacements [mm] 

Variant
 

LS Huber Tukey SMS AMS

I 0.29 0.33 0.30 0.50 0.43
II 0.38 0.20 0.13 0.25 0.15
III 5.62 5.63 5.68 10.13 0.16

 

 
Figure 4. Estimated vertical terrain displacement (between 

values from two sets) for different variants. 
 

In many practical applications of Msplit estimation, we 
apply only one observation set, namely the set 
consisting of two (or more) observation groups. Such an 
approach is natural for Msplit estimation and advisable 
in many surveying problems (Błaszczak-Bąk et al., 2015; 
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Nowel, 2019; Guo et al., 2020; Wyszkowska et al., 
2021). It could also be involved in deformation analysis 
(Zienkiewicz, 2015; 2019). Let us use that way in the 
present example. Thus, we apply the combined sets 
(presented in the bottom panels of Figures 1-3) to 
obtain Msplit estimates of the polynomial coefficients in 
one estimation process. The obtained competitive 
solutions refer to both epochs, respectively. One could 
evaluate the estimated terrain displacement using 
Equation 14. Table 2 presents RMSDs of the fit of the 
estimated displacements to the simulated ones. 

 
Table 2. RMSDs of estimated displacements from the 

combined observation set [mm] 

Variant 
 

SMS AMS 

I 15.17 10.88 
II 26.32 1.82 
III 28.87 21.18 

 
The obtained values clearly indicate that the 

estimation based on the combined observation sets 
provides much less accurate results. It might seem that 
SMS and AMS estimation cannot deal with outliers. 
However, results obtained in Variant I are also very 
poor. It means that the “separation” between regular 
observations from the first and the second epochs, 
respectively, is not enough to be easily detected. Thus, 
the estimation process is disturbed, resulting in the low 
accuracy of the final outcomes. Probably, if the terrain 
displacements were more significant (in comparison to 
the measurement accuracy), the Msplit estimation would 
provide better results. 

 

IV. CONCLUSIONS 

Msplit estimation is a modern method dedicated to 
processing observation sets consisting of two (or more) 
observation groups. For that reason, it is applied to TLS, 
or more generally LiDAR, data processing. On the other 
hand, the method might also be used for deformation 
analysis. This paper answers the question is the method 
applicable in determining vertical terrain displacement 
from TLS data. From a theoretical point of view, there 
are no obstacles. It is shown that such an approach 
seems interesting and advisable, mainly when some 
outlying observations might occur. It is essential 
because outliers often concern TLS point clouds. 
Usually, observations of such a type do not result from 
gross errors but mismeasured points (measurement of 
different objects, obstacles, or surfaces that we are not 
interested in). 

The presented example proves that Msplit estimation, 
especially AMS estimation, could be an alternative to 
classical methods. It can cope with a higher share of 
outliers than robust M-estimation can. The condition is 
that we should have a priori information about the 
location of a line or a surface under investigation. In the 
case of TLS data, we almost always know which 
estimated line or surface (from two competitive 

variants) we should choose as the final outcome. For 
example, here, we always choose the lower estimated 
line, which concerns the terrain profile for sure. 

The paper also checks two approaches to processing 
TLS data from two epochs by applying Msplit estimation. 
There is no doubt that processing observation sets from 
both epochs separately is a much better approach than 
using the combined observation set. 
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