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Abstract

The spectral Tau method to compute eigenpairs of ordinary differential equations is
implemented as part of the Tau Toolbox - a numerical library for the solution of integro-
differential problems. This mathematical software enables a symbolic syntax to be applied
to objects to manipulate and solve differential problems with ease and accuracy. The li-
brary is explained in detail and its application to various problems is illustrated: numerical
approximations for linear, quadratic, and nonlinear differential eigenvalue problems.

1 Introduction

The spectral Tau method produces, from a truncated series expansion in a complete set of orthog-
onal functions, a polynomial approximate solution for ordinary differential problems. Contrary
to the most common Galerkin method, where the expansion functions must satisfy the boundary
conditions, in the Tau method the coefficients of the series are computed by forcing the differen-
tial problem to be exact at some selected points and additional conditions are set such that the
initial/boundary conditions are exactly satisfied. This approach, introduced by Lanczos, has
also been applied to partial differential equations, integral equations, and integro-differential
problems, but usually on a specific problem or a class of problems.

Applications of the Tau method to solve eigenproblems can be found, at least, since the
1960 decade. In [7] a recursive version of the Tau method, in terms of canonical polynomials,
was used to calculate approximations of the eigenpairs in linear differential problems. In [27]
Orszag solved the Orr-Sommerfeld problem using the Tau method together with the QR matrix
eigenvalue algorithm. In [29, 4] the operational approach of the Tau method was applied in
the solution of differential eigenproblems with nonlinear parameter. Following these pioneering
works, the focus turned to eliminating spurious eigenvalues in the Tau method [40, 12, 24, 8, 6]
and improving the method’s accuracy [9], in particular for certain classes of problems.

Our work follows a different direction as we present a tool to calculate eigenpairs to generic
problems, of any order, with any orthogonal polynomial basis. While solving effectively certain
classes of differential eigenvalue problems is a relevant goal, the main contribution of this paper
is providing a general framework for the solution of such problems and a stable numerical
implementation of the Tau method, ensuring accurate and fast approximate solutions.

The complexity of such a task in delivering this tool appears to lie far beyond the tasks to
which the literature has been addressing, which is why the Tau method has not been explored
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as it should. The implementation relies on mathematical results from approximation theory
to efficiently build the algorithms and on object-oriented programming design to deal with
numerical objects as similarly as possible to symbolic manipulation.

The Tau Toolbox, based on the Tau method and implemented in MATLAB/ Octave, computes
all the eigenvalues (or a subset) and eigenfunctions, if required, efficiently (the need for finding
many eigenvalues has been reported, e.g. in [5, 34]). The evidence for the effectiveness of the tool
as well as the simplicity of its use is highlighted in the Listing 1, where the approximate solution
for the problem y(4)(x) − λy(x) = 0, x ∈ [0, 1], with boundary conditions y(0) = y(1) = 0,
y′(0) = 0, y′′(1) = 0, is achieved with just a solver function, tau.solve. The user only needs to
specify the problem, the domain and the conditions. By default the polynomial approximation
is of degree 32 relying on the Chebyshev basis of the first kind. These defaults can be easily
changed through options.

% set the problem

equation = "diff(y,4)=lambda*y";

domain = [0, 1];

conditions = {"y(0)=0"; "y(1)=0"; "y’(0)=0"; "y’’(1)=0"};

problem = tau.problem(equation, domain, conditions);

% solve the problem

lambda = tau.solve(problem);

Listing 1: Code to compute the solution of a differential eigenvalue problem using Tau Toolbox

(see Example 1).

This software tool has been greatly inspired by the performant Chebfun [11]. This MATLAB
library provides an easy use (for the user perspective) in solving various differential problems
using a Chebyshev spectral collocation approach. It can compute the whole set of eigenvectors
approximating eigenfunctions while providing automatic estimation and control of the eigenvalue
error. This is a relevant feature that will be considered in a new release of Tau Toolbox. For
now, the order of approximation is fixed at the beginning.

The Tau Toolbox implements the spectral Tau method in the spirit originally proposed by
Lanczos [20], whereas Chebfun uses a pseudospectral approach. The main conceptual difference
between Tau and rectangular collocation (used in Chebfun) is that, in the former, differentiation
and integration are simple and sparse, whereas multiplication is messier and dense; in the
latter case, the situation is exactly the opposite [10]. The Tau Toolbox implementation tackles
nonlinear differential problems by linearizing first and discretizing afterwards likewise Chebfun,
which avoids the loss of richness in doing the opposite. Stability in Tau Toolbox is ensured by
profusely using explicit relations for computing the operational matrices and working only within
the orthogonal basis selected (no similarity transformations are performed nor evaluations on
another basis).

Other software packages have been developed over time to solve differential eigenproblems,
namely SLEIGN2 [2], SLEDGE [30], SL02F [32], and MATSLISE [21].

This paper is organized as follows. We first offer an overview of the spectral Tau method,
provide some insights on the numerical implementation of Tau Toolbox and present the tackled
differential eigenproblems. In section 3, we construct the methodology to build the algebraic
formulation and shed light on the numerical techniques used in the solution process. In the
fourth section, we illustrate both the use of the numerical library and its accuracy by solving a
set of various differential problems that require the solution of linear, polynomial and nonlinear
algebraic eigenvalue problems.
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2 Preliminaries

2.1 The spectral Tau method

Spectral methods look for an approximate solution in a space of trial functions imposing the
vanishing of the orthogonal projection of the residual on a finite dimensional subspace spanned
by test functions. While for Galerkin, the most widely used approach, the two sets of functions
are the same, for the Tau method test functions differ from trial functions (Petrov-Galerkin
approch). It is more difficult for the former to cope with complicated boundary conditions since
the trial functions must satisfy the boundary conditions. The latter works by adding more terms
into the expansion.

The Tau method was originally proposed by C. Lanczos [20], initially to solve linear ordinary
differential equations, and afterwards extended to a broad set of problem categories. It became
more well-known from the work of Ortiz and Samara in the eighties [28, 29].

Let D : E 7→ F be an order ν ≥ 0 differential operator, E and F appropriate function spaces,
f ∈ F and let ci : E 7→ R, i = 1, . . . , ν be a set of functionals and σi ∈ R, i = 1, . . . , ν such that
the differential problem {

Dy(x) = f(x)

ci(y) = σi, i = 1, . . . , ν
(1)

is well-posed.
Moreover, let us consider that P, the space of algebraic polynomials, is dense in E and

let P = [P0, P1, . . .]
T be the orthogonal polynomial basis of P associated to the inner product

⟨Pi, Pj⟩ = ∥Pi∥2δi,j , where δi,j is the Kronecker delta function.
For a given natural n > ν, the Tau method looks for an n degree polynomial yn = Pan,

an = [a0, a1, . . . , an, 0, . . .]
T such that{

ci(yn) = σi, i = 1, . . . , ν

⟨Dyn − f, Pi⟩ = 0, i = 0, . . . , n− ν
(2)

If D is, or can be approximated by, an operator of the form

D =
ν∑
i=0

pi
di

dxi
(3)

where pi are polynomials, or polynomial approximations, then (2) implies that Dyn = f + τ ,
where τ is an order n+1− ν polynomial residual. This consideration gave rise to the method’s
name.

An operational formulation, introduced by Ortiz and Samara [29], translates (2) into an
algebraic problem of finding the coefficients of yn. Let M and N be the operational matrices,
depending on P, such that

xP = PM and
d

dx
P = PN, (4)

then the differential operator is cast as

Dyn = PDan, where D =
ν∑
i=0

pi(M)Ni. (5)

Let D(n−ν+1)×(n+1) be the leading (n−ν+1)×(n+1) block of D and Cν×(n+1) the ν×(n+1)
matrix such that Ci,j+1 = ci(Pj), i = 1, . . . , ν, j = 0, . . . , n. Assuming that all functionals ci are
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linear, then the differential problem (2) can be written as[
Cν×(n+1)

D(n−ν+1)×(n+1)

]
an =

[
σ

f

]
(6)

for σ = [σ1, . . . , σν ]
T and f = [f0, . . . , fn−ν ]

T , fi = ⟨f, Pi⟩ /∥Pi∥2. The coefficients of the Tau
residual can be obtained by τ = D(n−ν+2:n+1)×(n+1)an, where D(n−ν+2:n+1)×(n+1), the remaining
block of matrix D, contains the rows corresponding to the coefficients that were not cancelled
[38].

Since the initial/boundary conditions must be always satisfied they are imposed in the first
rows in Tau Toolbox (contrary to the literature where they are placed in the last rows). As
usual in the operational implementation of the Tau method, particularly in Tau Toolbox, the
same set of orthogonal polynomials for both the trial functions and the test functions have
been used. In fact, this option is only justified by a matter of simplicity, since the heart of the
method is in the choice of the set of orthogonal polynomials for test functions. Some authors
have pointed out numerical advantages in other choices, notably in distinct choices for trial and
test functions basis [26], or in the use of bases recombination other than orthogonal polynomials
[15]. Nevertheless, building the operational matrices M and N on the bases that one intends to
consider, the original Tau approach can be easily extended to those Tau method reformulations.
In the Tau Toolbox project, we use explicit formulas to calculate the operational matrices,
which has allowed us to obtain high precision results.

2.2 Numerical implementation

When working with the Tau method, the accuracy achieved evaluating matrix D in (5) is often
neglected. The pioneering literature in this topic [28], proposed the evaluation of the operational
matrices M and N in the polynomial canonical basis followed by a similarity transformation to
get those matrices in the selected orthogonal basis. This procedure has the major disadvantage
of introducing instability for increasing values of n (due to the poor conditioning of the matrices
involved).

Profiting from the three-term recurrence relation characteristic of orthogonal polynomials

xPj = αjPj+1 + βjPj + γjPj−1, j ≥ 0, P0 = 1, P−1 = 0, (7)

similarity transformations are avoided [23]. From (4) we have M = [µi,j ]i,j≥0 and N = [ηi,j ]i,j≥0,

with µi,j = ⟨xPj , Pi⟩ /∥Pi∥2 and ηi,j =
〈
P ′
j , Pi

〉
/∥Pi∥2, and so

xPj =

j+1∑
i=0

µi,jPi, and P
′
j =

j−1∑
i=0

ηi,jPi, j = 0, 1, . . .

Using (7) the elements of matrix M can be explicitly obtained from
µ0,0 = β0, µ1,0 = α0,

µj−1,j = γj , µj,j = βj , µj+1,j = αj , j = 1, 2, . . .

µi,j = 0, |i− j| > 1

(8)

and those of matrix N by recursive formulas
ηi,j+1 =

αi−1ηi−1,j + (βi − βj)ηi,j + γi+1ηi+1,j − γjηi,j−1

αj

ηj,j+1 =
1 + αj−1ηj−1,j

αj

ηi,j = 0, i ≥ j, η0,1 =
1

α0

. (9)
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Furthermore, iterating (9), explicit formulas for the first diagonals of N can be developed

ηj,j+1 =
j + 1

αj
,

ηj,j+2 =
1

αjαj+1

j∑
i=0

(βi − βj+1),

ηj,j+3 =
1

αjαj+1αj+2

j∑
i=0

[(βi − βj+2)(βi − βj+1) + 2αiγi+1 − αj+1γj+2] ,

for j ≥ 0.
Explicit formulas for ηi,j , for the most commonly used orthogonal polynomials can be de-

duced [23] and are exploited in the implementation of Tau Toolbox.
Table 1 presents, for a set of classical orthogonal polynomials, the coefficients for the re-

currence relation (7) and the explicit formulas for the coefficients ηi,j . Since matrix N is upper
triangular with null diagonal, only possibly non-null ηi,j elements, i < j, are presented.

Table 1: Values αj , βj , j = 0, 1, . . . and γj , j = 1, 2, . . . in (8), and values ηi,j , i = 0, 1, . . . , j −
1, j = 1, 2, . . . in (9). δi,j is the Kronecker symbol, 1i,j = (−1)i+j and 2i,j = 1− 1i,j .

Pj orthogonal αj βj γj ηi,j
polynomials i = 0, 1, . . . , j − 1

C
(λ)
j Gegenbauer j+1

2(j+λ) 0 j+2λ−1
2(j+λ) 2i,j(i+ λ)

Tj Chebyshev 1st kind 2δ0,j−1 0 2−1 2i,jj/2
δi,0

Uj Chebyshev 2nd kind 2−1 0 2−1 2i,j(i+ 1)
Vj Chebyshev 3th kind 2−1 1− 2−δ0,j 2−1 2i,j(i+

1
2) + j − i

Wj Chebyshev 4th kind 2−1 2−δ0,j − 1 2−1 (2i,j(i+
1
2) + j − i)1i,j+1

Pj Legendre j+1
2j+1 0 j

2j+1 2i,j(i+
1
2)

Lj Laguerre −j − 1 2j + 1 −j −1
Hj Hermite 2−1 0 2j 2jδj−1−i,0
yj Bessel 1

2j+1 −δ0,j − 1
2j+1 (i− j)(i+ j + 1)(i+ 1

2)1i,j

Matrix D, specifying the differential operator, is built from M and N and the Tau method
can be elegantly applied to differential eigenvalue problems as we will discuss next.

2.3 Differential eigenvalue problems

Let us assume that the differential operator D in (1) depends polynomially on a parameter λ,
so that we can write

D(λ) =
m∑
k=0

λkDk,

where each Dk is a differential operator of the form (3)

Dk =

νk∑
i=0

pk,i
di

dxi
.

Then, with ν = maxk=0,...,m νk, the second set of equations in (2) becomes

m∑
k=0

λk ⟨Dkyn − f, Pi⟩ = 0, i = 0, . . . , n− ν.
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Like in (5), this can be translated into linear algebraic operations on coefficient vectors repre-
sented by matrices

D(λ) =
m∑
k=0

λkDk, where Dk =

νk∑
i=0

pk,i(M)Ni.

This is illustrated, in this paper, with Examples 1-4 in §4.
In a similar way, when in (1) at least one of the linear functionals ci depends on λ, we have

to consider a block C(λ) representing initial or boundary conditions in (6). This is illustrated
with Example 5 in §4.

2.4 Solving the algebraic eigenproblem

As will be explained in more detail in §3, we propose a systematic methodology that consists
in forming a matrix-valued function T that depends on the eigenvalue parameter λ, and then
solve for all (or part) of the eigenvalues and eigenvectors of T (λ). This computation should not
be approached via a root-finder for the scalar equation detT (λ) = 0, unless the problem size
is tiny. Instead, algebraic eigensolvers must be employed that rely on numerically stable linear
algebra algorithms. We next discuss briefly the methods available for both linear and nonlinear
eigenproblems.

The first thing to take into account is that T (λ) is, by construction, a non-symmetric matrix.
Hence, a general algorithm is required and it is not possible to have recourse to specialized
methods that exploit symmetry.

We say the problem is linear if T depends only linearly on the parameter λ, that is, T can
be written as A − λB for two constant matrices A and B. Then the problem is a generalized
matrix eigenvalue problem for the matrix pencil (A,B). The case where B is the identity matrix
is referred to as the standard eigenproblem, but we will see that in the Tau method the simplest
cases do not result in B = I but in B being an identity padded with zeros on the top part. It
is relevant to consider the case where B has zero rows or, more generally, is singular. In that
case, the algebraic eigenproblem has infinite eigenvalues. We can let the eigensolver deal with
such infinite eigenvalues, or handle them separately.

If all eigenvalues (and eigenvectors) must be computed the method of choice is the QZ
algorithm [25]. This algorithm is the one executed if MATLAB’s command eig is issued on a
matrix pencil. On the other hand, if only a subset of eigenvalues is needed, then one of the
many available sparse matrix algorithms [1] must be employed. One possibility is to apply a
Krylov method on the transformed problem

(A− σB)−1Bx = θx,

whose eigenvectors x are the same as the original problem Ax = λBx. With this shift-and-invert
approach, the Krylov method will approximate the eigenvalues λ = σ + θ−1 that are closest to
the shift σ. Examples of restarted Krylov methods are Krylov-Schur and implicitly restarted
Arnoldi. This type of computation is implemented in MATLAB’s command eigs.

In the nonlinear eigenvalue problem, T is either a matrix polynomial or a general nonlinear
matrix-valued function. In the polynomial case, the most commonly used solution strategy is
linearization, in which a linear eigenvalue problem of size d × n, where d is the degree of the
polynomial and n is the dimension of T , is built such that the eigenpairs of T can be directly
extracted from the eigenpairs of this linear eigenproblem. Still, additional numerical ingredients
such as scaling are usually necessary to get a trustworthy computed solution. The MATLAB code
QUADEIG [19] implements such a robust numerical scheme for quadratic polynomials (d = 2).
For higher degree polynomials, MATLAB’s command polyeig provides similar functionality. Note
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that it is also possible to apply a Krylov method to the linearization in order to compute only
a subset of eigenvalues.

For the general nonlinear eigenvalue problem, many different methods have been proposed
that compute a few eigenvalues located inside a given region of the complex plane or closest to a
given target value. In this paper, we will use the NLEIGS method [18], which essentially consists
in two phases: in a first stage, T (λ) is replaced by a carefully chosen rational approximation
QN (λ) that is built in such a way that it interpolates T (λ) at N points in the region of interest.
Then, the second step is to solve the resulting rational eigenvalue problem via linearization, in
a similar way as discussed for matrix polynomials.

3 Proposed methodology

Let Ω be the domain containing the eigenvalues and consider the matrix-valued functions of
the Tau method, C : Ω → Rν×n, representing the (boundary or initial) conditions, and D :
Ω → Rn×n, obtained from the general equation including the differential operator. The general
solution scheme proceeds by stacking these, obtaining a rectangular matrix of size (ν + n) × n
that depends on the parameter λ. For practical purposes, we repartition this matrix

ν

n

[
C(λ)

D(λ)

]
=

[
T (λ)

R(λ)

]
n

ν
(10)

by writing D(λ) =

[
E(λ)
R(λ)

]
, where R(λ) involves the last ν rows, and then defining

T (λ) :=

[
C(λ)
E(λ)

]
. (11)

The n× n eigenvalue problem to be solved is

T (λ)x = 0, x ̸= 0, (12)

that can be linear or nonlinear depending on how C and D are defined. We will use the following
notation for the different cases:

Linear Eigenvalue Problem (LEP) : T (λ) = T0 + T1λ, (13)

Quadratic Eigenvalue Problem (QEP) : T (λ) = T0 + T1λ+ T2λ
2, (14)

Polynomial Eigenvalue Problem (PEP) : T (λ) =

d∑
i=0

Tiλ
i, (15)

Nonlinear Eigenvalue Problem (NEP) : T (λ) =
d∑
i=0

Tifi(λ). (16)

In the above expressions, λ is the eigenvalue, x is the eigenvector, d is the degree of the
matrix polynomial or the number of terms in the NEP case, and fi are scalar functions analytic
in Ω.

In the solution of the linear eigenvalue problem (13) it is relevant to specifically consider the
common case when the boundary conditions do not depend on the eigenvalue. In this case, C(λ)
is constant and hence the upper block of T1 is zero. This implies that T1 is singular, with a null
space of dimension ν, or, equivalently, problem (13) has ν infinite eigenvalues. This is consistent
with the fact that the characteristic equation detT (λ) = 0 has n−ν roots only. In this scenario,
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MATLAB’s command eig on the matrix pencil (T0,−T1) may give slightly inaccurate results, since
it is using the QZ method. To avoid this, we propose two alternative solution schemes.

The first alternative is to solve the equivalent standard eigenvalue problem

−T−1
0 T1x = θx, (17)

and then recover the original eigenvalues as λ = θ−1. This can be implemented with MATLAB’s
command eig(-T0\T1), which involves factorizing matrix T0. From the computed eigenvalues λ,
we must remove the ν largest ones, corresponding to the infinite eigenvalues in exact arithmetic
(or, equivalently, discard ν nearly zero values of θ). If not all eigenvalues are required, then
eigs(T0,-T1,k,0) can be used instead to compute k eigenvalues closest to 0.

The second alternative is to exploit the structure of the matrices, since the upper block of
T1 is zero, [

C01 C02

E01 E02

] [
x1
x2

]
+ λ

[
0 0
E11 E12

] [
x1
x2

]
= 0. (18)

The location of zero blocks enables the solution of the problem via a Schur complement approach,

(E02 − E01C
−1
01 C02)x2 + λ(E12 − E11C

−1
01 C02)x2 = 0, (19)

for non singular ν×ν block C01. After computing x2 from (19), the upper part of the eigenvector
can be obtained as x1 = −C−1

01 C02x2. The advantage of this approach is that only n − ν
eigenvalues are computed, so no eigenvalues must be discarded. Another benefit is that this
scheme can also be extended to the PEP (15) and NEP (16) cases whenever C(λ) does not
depend on λ.

The Schur complement approach (19) avoids numerical difficulties arising from the fact that
T1 is singular. Still, the second matrix of the eigenproblem (18) could be singular if the E12

block is singular, which can happen in some singular Sturm-Liouville equations. In this case,
the problem has λ = ∞ eigenvalues, which in the case of some iterative eigensolvers might result
in contamination of the computed eigenvectors with components lying in the nullspace of the
B-matrix. To avoid these problems, one should solve the eigenproblem with a more elaborate
scheme that includes purification or related techniques [35, 13].

4 Numerical examples

All tests were performed on a laptop with Processor AMD Ryzen 7 4800H, 2900 Mhz, 8 Core(s),
16 Logical Processor(s) and MATLAB Version 9.8, Release R2020a.

Example 1 We address the 4th order Sturm-Liouville equation

d4y

dx4
(x) = λy(x)

for x ∈ [0, 1] with boundary conditions

y(0) = 0, y(1) = 0,
dy

dx
(0) = 0,

d2y

dx2
(1) = 0,

whose exact solution satisfies equation tanh(λ1/4) = tan(λ1/4) [22].
The code for solving this problem is depicted in Listing 2, where the outputs are the eigenval-

ues vector, lambda, the set of associated eigenfunctions, V (a Tau object), and the Tau associated
residual, R (Tau object).
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Table 2: Six smallest eigenvalues computed via Chebyshev-Tau with degree 24 and 48, norm of
the residual and error related with verification equation.

k λk ∥T (λk)·x|λk| ∥ | tanh(λ1/4
k )− tan(λ

1/4
k )|

n = 24
1 2.377210675311166e+02 7.4e-15 4.4e-16
2 2.496487437856829e+03 3.5e-15 3.3e-15
3 1.086758221697888e+04 5.9e-15 5.3e-15
4 3.178009645407464e+04 1.2e-14 1.4e-12
5 7.400084934957961e+04 4.2e-14 4.7e-11
6 1.486344773662659e+05 3.5e-14 5.3e-09

n = 48
1 2.377210675311169e+02 7.5e-15 2.2e-15
2 2.496487437856829e+03 6.1e-15 3.3e-15
3 1.086758221697889e+04 4.5e-15 1.8e-15
4 3.178009645408105e+04 1.6e-14 5.6e-15
5 7.400084934915529e+04 1.2e-14 2.6e-14
6 1.486344772857699e+05 3.4e-14 2.3e-14

% set the problem

equation = "diff(y,4)=lambda*y";

domain = [0, 1];

conditions = {"y(0)=0"; "y(1)=0"; "y’(0)=0"; "y’’(1)=0"};

options = tau.settings(’degree’, 24, ’basis’, ’ChebyshevT’);

problem = tau.problem(equation, domain, conditions, options);

% solve the problem

[lambda, V, R] = tau.eig.LEP(problem);

Listing 2: MATLAB code to compute the solution of Example 1 using Tau Toolbox.

Results for the Chebyshev-Tau polynomial approximation solution with degree 24 and 48
are given in Table 2, and show good accuracy even for the smallest degree.

The computation of the LEP can be done by the MATLAB eig and eigs functions, respectively,
for all the spectrum (dense data) and a subset of the spectrum (sparse data). For the Tau
methodology, matrices are blocked to order n. Internally, tau.eig.LEP, builds the Tau matrix
T and solves the algebraic eigenvalue problem in the form (18) using (19).

To get any matrix, a call to tau.eig.matrix(op, problem), where op stands for matrix
operator T, C, D (or for building block matrices M and N) is enough. In turn, and going in-depth
within the tools available, matrix T can be explicitly built (see (11) and (13)) by executing the
Listing 3.

n = options.n;

nu = problem.nconditions;

% create matrices C, D and build T

C = tau.eig.matrix(’C’, problem);

D = tau.eig.matrix(’D’, problem);

T{1} = [C; D{1}];

T{2} = [zeros(nu, size(D{2}, 2)); D{2}];

Listing 3: MATLAB excerpt to build tau matrix T using Tau Toolbox.
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(a) n1 = 24, n2 = 36
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(b) n1 = 48, n2 = 60

Figure 1: The reciprocal eigenvalue drift ratios 1/δk,nearest (x-marks) and 1/δk,ordinal (circles) on
a logarithmic scale against eigenvalue order k.

The drift concept, heuristically introduced in [3], to distinguish “good” from “bad” computed
eigenvalues is now applied to graphically visualize the differences between two degree approx-
imations n1 and n2, scaled by some measure of the size of the eigenvalues. Figure 1 shows
semilogarithmic plots with the reciprocal of the ordinal difference δk,ordinal ≡ |λn1

k −λn2
k |/σk and

with the reciprocal of the nearest difference (to acommodate clustered eigenvalues)

δk,nearest ≡ min
k∈[1,n2]

|λn1
k − λn2

k |/σk

where σ1 = |λ1−λ2| and σk = 1
2(|λk−λk−1|+|λk+1−λk|), j > 1. The well computed eigenvalues

are those with larger reciprocal drift ratios, so problems only occur for the largest eigenvalues
in magnitude and where the two criteria notably deliver different results (the nearest ratios are
consistently a little larger than the ordinal).

This problem, associated to the free vibration of a thin beam clamped at x = 0 and supported
at x = 1, has exact eigenfunction associated to the eigenvalue λk given by [22]

Yk =

cosh (λ
1/4
k x)− cos (λ

1/4
k x)− cosh (λ

1/4
k )+cos (λ

1/4
k )

sinh (λ
1/4
k )+sin (λ

1/4
k )

(
sinh (λ

1/4
k x)− sin (λ

1/4
k x)

)
2λ

1/2
k

.

Figure 2 plots the residual vectors for the first four eigenvalues using the computed eigenvec-

tors |d
4yn,k

dx4
−λkyn,k|, yn,k =

∑n
i=0 ai,kPi, where Pi stands for the shifted Chebyshev polynomials

of the first kind and ai,k the coefficients of the object component V(k) (Figure 2a) and the

exact eigenfunctions Yk, |d
4Yk
dx4

− λkYk|, k = 1, . . . , 4, (Figure 2b). Both residuals suggest a good
approximation for the eigenpairs.

The Tau residual associated with each computed eigenpair can be plotted by the Tau

Toolbox function plot (see Figure 3). The class tau.polynomial redefines the plot MATLAB

function, enabling it to handle different types of input arguments. If the dominant argument is
a Tau polynomial, MATLAB calls the method defined in the object’s class.

The accuracy in computing the eigenfunctions can be emphasized by estimating the loss
of orthogonality, using a large (n = 240) polynomial degree approximation. Figure 4 shows a
log-linear plot with the absolute values of the scalar products of V(1) and V(j), j = 2, . . . , 120.
For the first modes the departure is close to machine precision and, overall, all within a good
accuracy.
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Figure 2: Absolute value of the residual vectors: (a) eigenmodes yn,k computed with Tau

Toolbox and (b) using the analytical eigenfunctions Yk, k = 1, . . . , 4.
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Figure 3: Tau residual for the eigenfunction corresponding to the smallest eigenvalue in magni-
tude, for n = 24.

Example 2 Let us consider the solution of the Coffey-Evans equation

−d
2y

dx2
(x) + ((β sin 2x)2 − 2β cos 2x)y(x) = λy(x), −π/2 < x < π/2

with boundary conditions y(−π/2) = y(π/2) = 0.
This is a second order Sturm-Liouville problem with non-polynomial coefficients, a particular

case of a (regular) Schrödinger problem with a periodic potential.
For separated boundary conditions it is guaranteed that there are no multiple eigenvalues

[39], but triplets of increasingly tight together eigenvalues are produced for increasing values of
β, which controls the depth of the well potential. This is a challenging and interesting problem
to solve [31]. For β = 30 the difference between the second and fourth eigenvalues, λ2 < λ4, is
under 10−8 (see [16]).

The Tau method expects polynomial coefficients and thus Tau Toolbox provides all nec-
essary approximations. Although the process can be fully automatically done via a call to
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Figure 4: Orthogonality errors (deficiency) of the first eigenvector with respect to the subsequent.

tau.solve (tau.eig.solve or tau.eig.LEP), in the Listing 4 we detail one possible procedure
to approximate the non-polynomial terms. For the Tau polynomial object x, the interpolatory
polynomial approximation pn of beta^2*sin(2*x).^2-2*beta*cos(2*x) is computed. For the
Tau operator object y, diff(y, 2) is the second derivative, which is similar to apply twice the
derivative matrix operator N (see (5)).

n = problem.options.n; nu = problem.nconditions;

% build building blocks

C = tau.matrix(’cond’, problem);

beta = 30;

x = tau.polynomial(options);

pn = @(x) beta^2*sin(2.*x).*sin(2.*x)-2*beta*cos(2.*x);

y = tau.operator(options); lhs = -diff(y, 2) + pn(x)*y;

D = lhs.mat;

% build terms

T{1} = [C; D(1:n-nu, 1:n)]; % independent term

T{2} = [zeros(nu, n); -eye(n-nu, n)]; % term on lambda

% use QZ to solve

[V, D] = eig(T{1}, -T{2}); lambda = diag(D);

[~,p] = sort(abs(lambda));

lambda = lambda(p); V = V(:, p);

Listing 4: Excerpt of MATLAB code to explicitly build the differential problem in Example 2 with
Tau Toolbox.

In the code, we just used QZ algorithm to tackle the problem. Yet, Tau Toolbox provides
several techniques. Table 3 shows the first 10 eigenvalues, for a Chebyshev-Tau approach with
a polynomial of degree 106, using (19). It is worth mentioning that techniques such as split
(perfect shuffle permutation) and deflation are available.

As stated, this problem is challenging since the numerical method must distinguish eigenval-
ues within the triple clusters that arise for increasing values of β. Figure 5a depicts the first 30
eigenvalues and Fig. 5b the three eigenmodes associated with the first triplet (plot(V(3:5)).
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Table 3: Ten smallest eigenvalues computed via Chebyshev-Tau with degree 106.

k λk k λk
n = 106

1 0.000000000000068e+02 6 3.408882998096128e+02
2 1.179463076620689e+02 7 4.452834.452830895823253e+02
3 2.316649292.316649292370212e+02 8 4.452834.452831723066395e+02
4 2.316649292.316649293129615e+02 9 4.452834.452832550313369e+02
5 2.316649292.316649293887466e+02 10 5.444183851493636e+02
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of smallest eigenvalues

Figure 5: Coffey-Evans problem for β = 30 using Chebyshev-Tau.

Numerical results presented in [14] reports that the first of those triplets have 2.31664929 as
its common numeric part and for the eigenvalues in the second triplet it is found the common
numeric part 4.45283, the same exact decimal places we present in Table 3, obtained with Tau

Toolbox.
The scaled differences (or “drift-with-n”) are also used to assess the quality of the computed

eigenvalues for the Coffey Evans problem (see Figure 6).

Table 4: High index eigenvalue computation by different methods, for Coffey-Evans eigenproblem
(Example 2).

λ200
Chebfun [11] 40851.6376440851.6376459609

Chebyshev collocation [14] 40851.6376440851.6376460506
Tau Toolbox 40851.6376440851.6376460506

We can also report that Tau Toolbox is appropriate to accurately evaluate high order eigen-
values. In Table 4, distinct approximations for λ200 are provided, taking n = 400. The ap-
proximation provided by Tau Toolbox is in line with the results with Chebfun [11] and using
Chebyshev collocation [14]. Computation time is negligible: 0.12 seconds are reported to inter-
pret, build and solve the differential eigenvalue problem with the Tau Toolbox using implicitly
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Figure 6: The reciprocal eigenvalue drift ratios 1/δk,nearest (x-marks) and 1/δk,ordinal (circles) on
a logarithmic scale against eigenvalue order k (n1 = 76, n2 = 86).

restarted Arnoldi method and 0.22 seconds to obtain all eigenvalues (QZ).

Example 3 We present now a quadratic eigenvalue problem −y′′(x) = λy(x) + λ2x2y(x), for
x ∈ [−1, 1] with boundary conditions y(−1) = y(1) = 0 (see [29]).

Table 5: Ten smallest eigenvalues in magnitude computed via Chebyshev-Tau with degree 10,
using roots (eigenvalues of the companion matrix) and relative errors with QEP and PEP, for
Example 3.

k λk
∥λQEP

k −λk∥
∥λk∥

∥λPEP
k −λk∥
∥λk∥

1 1.951702296762780 1.14e-15 1.44e-14
2 4.286091310533131 1.45e-15 8.29e-16
3 -6.597087872105731 1.43e-14 9.15e-15
4 -7.036504991248593 2.01e-14 2.57e-14
5 7.544667375997218 1.26e-14 1.53e-14
6 10.199214296244536 2.53e-14 5.42e-14
7 -13.281221649396613 1.93e-13 1.96e-13
8 13.630851375970161 1.93e-13 1.94e-13
9 -13.757341018400584 4.38e-14 3.73e-14
10 16.367795989738894 2.26e-14 7.55e-14

Proceeding in the usual way as in the previous examples, the user only has to specify the
problem. The Tau Toolbox detects the type of problem and solves it, given a basis and a
polynomial degree approximation. For this example, Tau Toolbox can either take quadeig

[19] or MATLAB’s polyeig as solvers, which are implemented, respectively, in tau.eig.QEP and
tau.eig.PEP. Table 5 shows a set of the eigenvalues for this problem using a polynomial
approximation of degree 10. Using symbolic computations, we provide the Tau approximation
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for the roots of the characteristic polynomial and the relative errors for the approximation
obtained with QEP and PEP. The accuracy of the approximations are very good, particularly
for QEP.

Example 4 The Orr-Sommerfeld type equation governs the stability of shear and related flows
and was first solved by (author?) [27] using the spectral Tau method.

The Orr–Sommerfeld equation

d4y

dx4
(x)− 2α2 d

2y

dx2
(x) + α4y(x) = iαRe

[(
U(x)− ω

)(d2y
dx2

(x)− α2y(x)
)
− d2U

dx2
(x)y(x)

]

results from the linearization of the incompressible Navier–Stokes equations, where y is the
potential (or stream function), α the wavenumber, Re the Reynolds number and ω the radian
frequency (growth rate).

The stability problem of interest is that of a plane Poiseuille flow in a channel with stream
velocity in the x direction given by U(x) = 1 − x2 and side walls located at y = ±1. The
boundary conditions are set as y(±1) = dy

dx(±1) = 0. Another usual problem is that of Couette
flow which is driven by the upper boundary being sheared relative to the lower one, U = x.

The computation of the eigenvalues for this problem has already been tackled, among others,
by [4, 33, 9, 37].

Spatial stability calculations, where disturbances are periodic in time (real ω), lead to a
quartic eigenvalue problem (eigenpairs (α, y)) and temporal stability calculations, where α is
fixed and real, lead to a fourth-order generalized eigenvalue problem (eigenpairs (ω, y)).

We consider the plane Poiseuille flow, first with α = 1 and Re = 10000, and compute the
eigenpairs (ω, y). Whenever the imaginary part of ω is positive the base flow is unstable [27].
The Chebyshev approximation to the most unstable mode for several values of the polynomial
approximation is

n ω

40 0.237527301412992 + 0.003741875913493i
60 0.237526488828910 + 0.003739670624833i
80 0.237526488820470 + 0.003739670622979i
100 0.237526488820470 + 0.003739670622980i

Now we consider α = 1.02056 and a Reynolds number Re = 5772.22, close to the critical
value for eigenvalue instability [27]. The spectrum of the Orr–Sommerfeld equation at these
critical values is drawn in Fig. 7, for λ = −iαω.

The rightmost eigenvalue is the most unstable one, and its real part is expected to be zero.
The supremum among the real part of the elements in the spectrum — the spectral abscissa — is
Re(λ1) = 3 ·10−9, using Chebyshev-Tau approximation with n = 100. It has been discussed that
Chebyshev polynomials are better suited for the solution of hydrodynamic stability problems
compared to other sets of orthogonal functions expansions [27], and require less computer time
and storage to achieve good accurate flow simulations. The Tau Toolbox is implemented with
stability concerns: all operations are performed directly on the specific orthogonal basis. For
the case at hand, we registered similar magnitude of the real part of the eigenvalue closest to
zero for several polynomial orthogonal bases (Chebyshev second, third and fourth kind, and
Legendre and Gegenbauer).

The elapsed time to interpret, build and solve the differential eigenvalue problem for a
polynomial approximation of degree 100 is just 0.02 seconds.
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Figure 7: Eigenvalues (λ = −iαω) for the Orr–Sommerfeld problem for Re = 5772.22 and
α = 1.02056 using the Chebyshev basis.

Example 5 The loaded string problem [36] is a boundary value problem related to the vibra-
tion of a string with a load of mass m attached by an elastic spring of stiffness k. We seek λ ∈ I
and nontrivial functions y(x), x ∈ [0, 1], such that

−d
2y

dx2
(x) = λy(x), (20)

with boundary conditions y(0) = 0 and −y′(1) = φ(λ)y(1), where I = (σ,+∞), σ = k/m and
φ(λ) = σmλ/(λ− σ). We consider the particular case with m = 1, k = 1, and hence

φ(λ) =
λ

λ− 1
. (21)

The fact that the boundary condition on the right end of the domain depends on the eigenvalue
via a rational function turns it into a rational eigenvalue problem. This problem can be solved
via linearization, but here we consider a more general approach that can be used for the case of
general nonlinear eigenvalue problems.

The Tau Toolbox includes tau.eig.NEP as a solver, based on a MATLAB implementation1 of
NLEIGS – a class of fully rational Krylov methods for nonlinear eigenvalue problems [18]. This
method is based on rational interpolation followed by linearization, and is appropriate for the
case of nonlinear eigenproblems when the associated nonlinear function has singularities. The
problem is cast in the form F (λ) = T0 + λT1 + λ/(λ− 1)T2 (16).

The exact eigenvalues are given by

λ = ψ(σ) =
2a2 cos(σh) + a1
2b2 cos(σh) + b1

,

1http://twr.cs.kuleuven.be/research/software/nleps/nleigs.php
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where a1 = 2/h, a2 = −1/h, b1 = 4h/6, b2 = h/6, and the σ values are the solutions of (see [36])

tan(σ)

sin(σh)
=
a2 − ψ(σ)b2
φ(ψ(σ))

.

Table 6 reports the six smallest eigenvalues, considering h = 10−4 and a 15th polynomial degree
approximation with Chebyshev-Tau, along with the relative error, ∥λk−ψ(σ)∥

∥λk∥ , and the residual,
∥F (λk)vk∥2

∥F (λk)vk∥F ∥vk∥2 [17].

Table 6: First smallest eigenvalues in magnitude computed via Chebyshev-Tau with degree 15,
for Example 5.

k λk relative error residual

1 0.45731832396312 2.87e-08 2.81e-17
2 4.48202429555980 1.60e-09 5.90e-17
3 24.2187013911745 2.12e-08 2.46e-17
4 63.6900266349135 5.39e-08 4.01e-17
5 122.905311160680 4.10e-08 2.02e-17
6 201.861537085238 1.91e-06 5.09e-17

5 Conclusions

Computing approximate solutions of integro-differential problems can be difficult and time con-
suming, requiring large expertise. The Tau Toolbox is a numerical library that produces ap-
proximate polynomial solutions of integro-differential equations via the Lanczos’ spectral Tau
method. This paper describes the use of the library to solve eigenproblems for linear, quadratic
and nonlinear differential operators, exploring operational matrix formulations obtained directly
on the chosen orthogonal basis.

The library allows the use of classical orthogonal bases, not being limited to the most cur-
rent Chebyshev basis of the first kind. Results are obtained with high accuracy and the user
interface is simple and intuitive. For the moment, it is up to the user to specify the degree of
the polynomial approximation. In future versions, it is planned to adaptively consider the nec-
essary number of terms in the series development to get a solution within a prescribed accuracy.
Furthermore, the use of different bases for the trial and test functions is to be explored.

The software Tau Toolbox is available from Netlib Repository (http://www.netlib.org/
numeralgo/) as the na55 package. The development repository is hosted at https://bitbucket.
org/tautoolbox/tautoolbox/.
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