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Abstract

Generalization, also called anti-unification, is the dual of unification.
Given terms t and t′, a generalization is a term t′′ of which t and t′ are
substitution instances. The dual of a most general unifier (mgu) is that
of least general generalization (lgg). In this thesis, we extend the known
untyped generalization algorithm to, first, an order-sorted typed setting
with sorts, subsorts, and subtype polymorphism; second, we extend it to
work modulo equational theories, where function symbols can obey any
combination of associativity, commutativity, and identity axioms (includ-
ing the empty set of such axioms); and third, to the combination of both,
which results in a modular, order-sorted equational generalization algo-
rithm. Unlike the untyped case, there is in general no single lgg in our
framework, due to order-sortedness or to the equational axioms. Instead,
there is a finite, minimal set of lggs, so that any other generalization has
at least one of them as an instance. Our generalization algorithms are
expressed by means of inference systems for which we give proofs of cor-
rectness. This opens up new applications to partial evaluation, program
synthesis, data mining, and theorem proving for typed equational rea-
soning systems and typed rule-based languages such as ASF+SDF, Elan,
OBJ, Cafe-OBJ, and Maude.

This thesis also describes a tool for automatically computing the gen-
eralizers of a given set of structures in a typed language modulo a set
of axioms. By supporting the modular combination of associative, com-
mutative and unity (ACU) equational attributes for arbitrary function
symbols, modular ACU generalization adds enough expressive power to
ordinary generalization to reason about typed data structures such as
lists, sets and multisets. The ACU generalization technique has been
generally and efficiently implemented in the ACUOS system and can be
easily integrated with third-party software.

Keywords: least general generalization, rule–based languages, equa-
tional reasoning
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Resumen

La generalización, también denominada anti-unificación, es la operación
dual de la unificación. Dados dos términos t y t′, un generalizador es un
término t′′ del cual t y t′ son instancias de sustitución. El concepto dual
del unificador más general (mgu) es el de generalizador menos general
(lgg). En esta tesina extendemos el conocido algoritmo de generalización
sin tipos a, primero, una configuración order-sorted con sorts, subsorts
y polimorfismo de subtipado; en segundo lugar, la extendemos para so-
portar generalización módulo teoŕıas ecuacionales, donde los śımbolos de
función pueden obedecer cualquier combinación de axiomas de asociativi-
dad, conmutatividad e identidad (incluyendo el conjunto vaćıo de dichos
axiomas); y, en tercer lugar, a la combinación de ambos, que resulta en
un algoritmo modular de generalización order-sorted ecuacional. A difer-
encia de las configuraciones sin tipos, en nuestro marco teórico en general
el lgg no es único, que se debe tanto al tipado como a los axiomas ecua-
cionales. En su lugar, existe un conjunto finito y mı́nimo de lggs, tales
que cualquier otra generalización tiene a alguno de ellos como instancia.
Nuestros algoritmos de generalización se expresan mediante reglas de in-
ferencia para las cuales damos demostraciones de corrección. Ello abre
la puerta a nuevas aplicaciones en campos como la evaluación parcial, la
śıntesis de programas, la mineŕıa de datos y la demostración de teoremas
para sistemas de razonamiento ecuacional y lenguajes tipados basados
en reglas tales como ASD+SDF, Elan, OBJ, CafeOBJ y Maude.

Esta tesis también describe una herramienta para el cómputo au-
tomatizado de los generalizadores de un conjunto dado de estructuras
en un lenguaje tipado módulo un conjunto de axiomas dado. Al sopor-
tar la combinación modular de atributos ecuacionales de asociatividad,
conmutatividad y existencia de elemento neutro (ACU) para śımbolos
de función arbitrarios, la generalización ACU modular aporta suficiente
poder expresivo a la generalización ordinaria para razonar sobre estruc-
turas de datos tipadas tales como listas, conjuntos y multiconjuntos. La
técnica ha sido implementada con generalidad y eficiencia en el sistema
ACUOS y puede ser fácilmente integrada con software de terceros.
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Introduction

Generalization is a formal reasoning component of many symbolic frame-
works, including theorem provers, and automatic program analysis, syn-
thesis, verification, compilation, refactoring, test case generation, learn-
ing, specialisation, and transformation techniques see, e.g., (Gallagher,
1993; Muggleton, 1999; Boyer and Moore, 1980a; Pfenning, 1991; Lu
et al., 2000; Kitzelmann and Schmid, 2006; Bulychev et al., 2010; Kut-
sia et al., 2011). Generalization, also called anti-unification, is the dual
of unification. Given terms t and t′, a generalization of t and t′ is a
term t′′ of which t and t′ are substitution instances. The dual of a most
general unifier (mgu) is that of a least general generalization (lgg), that
is, a generalization that is more specific than any other generalization.
Whereas unification produces most general unifiers that, when applied
to two expressions, make them equivalent to the most general common
instance of the inputs (Lassez et al., 1988), generalization abstracts the
inputs by computing their most specific generalization. As in unifica-
tion, where the most general unifier (mgu) is of interest, in the sequel we
are interested in the least general generalization (lgg) or, as we shall see
for the order-sorted, equational case treated in this article, in a minimal
and complete set of lggs, which is the dual analogue of a minimal and
complete set of unifiers for equational unification problems (Baader and
Snyder, 1999).

As an important application, generalization is a relevant component
for ensuring termination of program manipulation techniques such as au-
tomatic program analysis, synthesis, specialisation and transformation,
in automatic theorem proving, logic programming, typed lambda calcu-
lus, term rewriting, etc. For instance, in the partial evaluation (PE) of
logic programs (Gallagher, 1993), the general idea is to construct a set of
finite (possibly partial) deduction trees for a set of initial function calls
(i.e., generic function calls using logical variables), and then extract from
those trees a new program P that allows any instance of the initial calls
to be executed. To ensure that the partially evaluated program P covers
all the possible initial function calls, most PE procedures recursively add
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other function calls that show up dynamically during the process of con-
structing the deduction trees for the set of calls to be specialized. This
process could go on forever by adding more and more function calls that
have to be specialized and thus it requires some kind of generalization in
order to enforce the termination of the process: if a call occurring in P
that is not sufficiently covered by the program embeds an already eval-
uated call, then both calls are generalized by computing their lgg and
the specialization process is restarted from the generalized call, ensuring
that both calls will be covered by the new resulting partially evaluated
program.

The computation of lggs is also central to most program synthesis
and learning algorithms such as those developed in the area of induc-
tive logic programming (Muggleton, 1999), and also to conjecture lem-
mas in inductive theorem provers such as Nqthm (Boyer and Moore,
1980b) and its ACL2 extension (Kaufmann et al., 2000). In the liter-
ature on machine learning and partial evaluation, least general gener-
alization is also known as most specific generalization (msg) and least
common anti–instance (lcai) (Mogensen, 2000). Least general general-
ization was originally introduced by Plotkin in (Plotkin, 1970), see also
(Reynolds, 1970). Actually, Plotkin’s work originated from the consider-
ation in (Popplestone, 1969) that, since unification is useful in automatic
deduction by the resolution method, its dual might prove helpful for in-
duction. Anti-unification is also used in test case generation techniques
to achieve appropriate coverage (Belli and Jack, 1998). Applications of
generalization to invariant generation and software clone detection are
described in (Bulychev et al., 2010). Suggestion for auxiliary lemmas in
equational inductive proofs, computation of construction laws for given
term sequences, and learning of screen editor command sequences by
using generalization are discussed in (Burghardt, 2005).

To the best of our knowledge, most previous generalization algorithms
assume an untyped setting ; two notable exceptions are the generalization
in the higher-order setting of the calculus of constructions of (Pfenning,
1991) and the order-sorted feature term generalization of (Aı̈t-Kaci, 1983;
Aı̈t-Kaci and Sasaki, 2001). However, many applications, for example to
partial evaluation, theorem proving, and program learning, for typed
rule-based languages such as ASF+SDF (Bergstra et al., 1989), Elan
(Borovanský et al., 2002), OBJ (Goguen et al., 2000), CafeOBJ (Dia-
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conescu and Futatsugi, 1998), and Maude (Clavel et al., 2007), require
a first-order typed version of generalization which does not seem to be
available: we are not aware of any existing algorithm. Moreover, sev-
eral of the above-mentioned languages have an expressive order-sorted
typed setting with sorts, subsorts (where subsort inclusions form a par-
tial order and are interpreted semantically as set-theoretic inclusions of
the corresponding data sets), and subsort-overloaded function symbols
(a feature also known as subtype polymorphism), so that a symbol, for
example +, can simultaneously exist for various sorts in the same subsort
hierarchy, such as + for natural, integers, and rationals, and its seman-
tic interpretations agree on common data items. Because of its support
for order-sorted specifications, our generalization algorithm can be ap-
plied to generalization problems in all the above-mentioned rule-based
languages.

Also, quite often all the above mentioned applications of generaliza-
tion may have to be carried out in contexts in which the function symbols
satisfy certain equational axioms. For example, in rule-based languages
such as ASF+SDF (Bergstra et al., 1989), Elan (Borovanský et al., 2002),
OBJ (Goguen et al., 2000), CafeOBJ (Diaconescu and Futatsugi, 1998),
and Maude (Clavel et al., 2007) some function symbols may be declared
to obey given algebraic laws (the so-called equational attributes of as-
sociativity and/or commutativity and/or identity in OBJ, CafeOBJ and
Maude), whose effect is to compute with equivalence classes modulo such
axioms while avoiding the risk of non–termination. Similarly, theorem
provers, both general first-order logic ones and inductive theorem provers,
routinely support commonly occurring equational theories for some func-
tion symbols such as associativity-commutativity. Again, our generaliza-
tion algorithm applies to all such typed languages and theorem provers
because of its support for associativity and/or commutativity and/or
identity axioms.

Surprisingly, unlike order-sorted unification, equational unification,
and order-sorted equational unification, which all the three have been
thoroughly investigated in the literature —see, e.g., (Siekmann, 1989;
Baader and Snyder, 1999; Schmidt-Schauss, 1986; Meseguer et al., 1989;
Smolka et al., 1989)— to the best of our knowledge there seems to be no
previous, systematic treatment of order-sorted generalization, equational
generalization, and order-sorted equational generalization, although some
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order-sorted cases and some unsorted equational cases have been studied
(see below).

To better motivate our work, let us first recall the standard general-
ization problem. Let t1 and t2 be two terms. We want to find a term s
that generalizes both t1 and t2. In other words, both t1 and t2 must be
substitution instances of s. Such a term is, in general, not unique. For
example, let t1 be the term f(f(a, a), b) and let t2 be f(f(b, b), a). Then
t = x trivially generalizes the two terms, with x being a variable. An-
other possible generalization is f(x, y), with y being also a variable. The
term f(f(x, x), y) has the advantage of being the most ‘specific’ or least
general generalization (lgg) (modulo variable renaming). Moreover, if we
have order-sorted information in such a way that constant a is of sort
A, constant b is of sort B, but symbol f has two definitions C × C → C
and D× D → D where A and B are subsorts of C and D, then there are
four least general generalizations f(f(x:C, x:C), y:C), f(f(x:C, x:C), y:D)
f(f(x:D, x:D), y:C), and f(f(x:D, x:D), y:D). If we have equational prop-
erties for symbol f , for instance f being associative and commutative,
and we disregard order-sorted information, then there are two least gen-
eral generalizations f(x, x, y) and f(a, b, y), which are incomparable us-
ing associativity and commutativity. Finally, if we combine order-sorted
information and equational properties, then there are six least general
generalizations f(a, b, y:C), f(a, b, y:D), f(x:C, x:C, y:C), f(x:C, x:C, y:D)
f(x:D, x:D, y:C), and f(x:D, x:D, y:D).

The extension of the generalization algorithm to deal with order-
sorted functions and equational theories is nontrivial, because of two im-
portant reasons. First, as we mentioned the existence and uniqueness of a
least general generalization is typically lost. There is a finite and minimal
set of least general generalizations for two terms, so that any other gener-
alization has at least one of those as an instance. Such a set of lggs is the
dual analogue of a minimal and complete set of unifiers for non-unitary
unification algorithms, such as those for order-sorted unification, e.g.,
(Schmidt-Schauss, 1986; Meseguer et al., 1989; Smolka et al., 1989), and
for equational unification, see, e.g., (Baader and Snyder, 1999; Siekmann,
1989). Second, similarly to the case of equational unification (Siekmann,
1989), computing least general generalizations modulo an equational the-
ory E is a difficult task due to the combinatorial explosion. Depending
on the theory E, a generalization problem may be undecidable, and even



List of Figures xv

if it is decidable, may have infinitely many solutions.
This article develops several generalization algorithms: an order-

sorted generalization algorithm, a modular E–generalization algorithm,
and the combined version of both algorithms. In this article, we do
not address the E-generalization problem in its fullest generality. Our
modular E–generalization algorithm works for a parametric family of
theories (Σ, E) such that any binary function symbol f ∈ Σ can
have any combination of the following axioms: (i) associativity (Af )
f(x, f(y, z)) = f(f(x, y), z); (ii) commutativity (Cf ) f(x, y) = f(y, x),
and (iii) identity (Uf ) for a constant symbol, say, e, i.e., f(x, e) = x and
f(e, x) = x. In particular, f may not satisfy any such axioms, which when
it happens for all binary symbols f ∈ Σ gives us the standard, syntactic
(order-sorted) generalization algorithm as a special case. As it is usual in
current treatments of different formal deduction mechanisms, and has be-
come standard for the dual case of unification algorithms since Martelli
and Montanari —see, e.g., (Martelli and Montanari, 1982; Jouannaud
and Kirchner, 1991)— we specify each generalization process by means
of an inference system rather than by an imperative-style algorithm.

Our contribution and plan of the thesis

After some preliminaries, we recall in Chapter 1 a syntactic unsorted
generalization algorithm as a special case to motivate later extensions.
The main contributions of the thesis can be summarized as follows:

1. An order-sorted generalization algorithm (in Chapter 2). If two
terms are related in the sort ordering (their sorts are both in the
same connected component of the partial order of sorts), then there
is in general no single lgg, but the algorithm computes a finite
and minimal set of least general generalizations, so that any other
generalization has at least one of those as an instance. Such a
set of lggs is the dual analogue of a minimal and complete set of
unifiers for non-unitary unification algorithms, such as those for
order-sorted unification.

2. A modular equational generalization algorithm (in Chapter 3). In-
deed, we provide different generalization algorithms —one for each
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kind of equational axiom— but the overall algorithm is modular in
the precise sense that the combination of different equational ax-
ioms for different function symbols is automatic and seamless: the
inference rules can be applied to generalization problems involving
each symbol with no need whatsoever for any changes or adapta-
tions. This is similar to, but much simpler and easier than, modular
methods for combining E-unification algorithms, e.g., (Baader and
Snyder, 1999). To the best of our knowledge, ours are the first
equational least general generalization algorithms in the literature.
An interesting result is that associative generalization is finitary,
whereas associative unification is infinitary.

3. An order-sorted modular equational generalization algorithm (in
Chapter 4), which combines and refines the inference rules given in
Chapters 2 and 3.

4. Formal correctness, completeness, and termination results for all
the above generalization algorithms.

5. In Chapter 5, we present the ACUOS system, an implementation
of the order-sorted, modular equational generalization algorithm
described in Chapter 4. Working with the tool is further illustrated
in the example work session described in the Appendix A.

6. Finally, we present some conclusions and directions for future work
in Chapter 6.

This paper is an extended and improved version of (Alpuente et al.,
2009b,a) which unifies both, the order-sorted generalization of (Alpuente
et al., 2009b) and the equational generalization of (Alpuente et al., 2009a)
into a novel and more powerful, combined algorithm. The proposed
algorithms should be of interest to developers of rule-based languages,
theorem provers and equational reasoning programs, as well as program
manipulation tools such as program analyzers, partial evaluators, test
case generators, and machine learning tools, for (order-sorted) declar-
ative languages and reasoning systems supporting commonly occurring
equational axioms such as associativity, commutativity and identity in
a built–in and efficient way. For instance, this includes many theorem
provers, and a variety of rule-based languages such as ASF+SDF, OBJ,
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CafeOBJ, Elan, and Maude. Since the many-sorted and unsorted set-
tings are special instances of the order-sorted case, our algorithm applies
a fortiori to those less expressive settings.

Related work

Generalization goes back to work of Plotkin (Plotkin, 1970), Reynolds
(Reynolds, 1970), and Huet (Huet, 1976) and has been studied in detail
by other authors; see for example the survey (Lassez et al., 1988). Plotkin
(Plotkin, 1970) and Reynolds (Reynolds, 1970) gave imperative–style al-
gorithms for generalization, which are both essentially the same. Huet’s
generalization algorithm (Huet, 1976), formulated as a pair of recursive
equations, cannot be understood as an automated calculus due to some
implicit assumptions in the treatment of variables. A deterministic re-
construction of Huet’s algorithm is given in (Østvold, 2004) which does
not consider types either. A many-sorted generalization algorithm was
presented in (Frisch and Jr., 1990) that is provided with the so-called
S-sentences, which can be seen as a logical notation for encoding tax-
onomic (or ordering) information. Anti-unification for unranked terms,
which differ from the standard ones by not having fixed arity for function
symbols, and for finite sequences of such terms (called hedges) is inves-
tigated in (Kutsia et al., 2011); efficiency of the algorithm is improved
by imposing a rigidity function that is a parameter of the improved al-
gorithm. The algorithm for higher-order generalization in the calculus of
constructions of (Pfenning, 1991) does not consider order-sorted theories
or equational axioms either, and for any two higher-order patterns, either
there is no lgg (because the types are incomparable), or there is a unique
lgg.

The significance of equational generalization was already pointed out
by Pfenning in (Pfenning, 1991): “It appears that the intuitiveness of gen-
eralizations can be significantly improved if anti–unification takes into
account additional equations which come from the object theory under
consideration. It is conceivable that there is an interesting theory of
equational anti–unification to be discovered”. However, to the best of
our knowledge, we are not aware of any existing equational generaliza-
tion algorithm modulo the combination of associativity, commutativity



xviii List of Figures

and identity axioms. Actually, equational generalization has been abso-
lutely neglected, except for the theory of associativity and commutativity
(Pottier, 1989) (in french) and for commutative theories (Baader, 1991).
For the commutative case, (Baader, 1991) shows that all commutative
theories are of generalization type ‘unitary’, but no generalization algo-
rithm is provided. Pottier (Pottier, 1989) provides (unsorted) inference
rules which mechanize generalization in AC theories, but these rules do
not apply to the separate cases of C or A alone, nor to arbitrary combina-
tions of the C, A, and U axioms. Finally, (Burghardt, 2005) presented a
specially tailored algorithm that uses grammars to compute a finite rep-
resentation of the (usually infinite) set of all E-generalizations of given
terms, provided that E leads to regular congruence classes, which hap-
pens when E is the deductive closure of finitely many ground equations.
However, as a natural consequence of representing equivalence classes of
terms as regular tree grammars, the result of the E-generalization process
is not a term, but a regular tree grammar of terms.

Least general generalization in an order-sorted typed setting was first
investigated in (Aı̈t-Kaci, 1983). A generalization algorithm is proposed
in (Aı̈t-Kaci, 1983) for feature terms, which are sorted, possibly nested,
attribute-based structures which extend algebraic terms by relaxing the
fixed arity and fixed indexing constraints. This is done by adding fea-
tures (or attribute labels) to a sort as argument indicators. Feature
terms (previously known as indexed terms or Ψ-terms) were originally
proposed as flexible record structures for logic programming and then
used to describe different data models, including attributed typed ob-
jects, in rule-based languages which are oriented towards applications to
knowledge representation and natural language processing.

Since functor symbols of feature terms are ordered sorts, a feature
term can be thought of as a type template which represents a set-denoting
sort. By choosing to define types to be terms, and the type classification
ordering to be term instantiation, the resulting type system is a lattice
whose meet operation (i.e., greatest lower bound) w.r.t. the subsumption
relation induced by the subset ordering (term instantiation) is first-order
unification, and whose join operation (i.e., least upper bound) is first-
order generalization. This model is familiar to Prolog programmers but
unlike any other type system available in typed languages. Moreover,
by considering a partial order on functors, the set of sorts is also given
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a pre-order structure. Intuitively, a feature term S is subsumed by a
feature term T if S contains more information than T , or, equivalently, S
denotes a subset of T . Under this subsumption order, the set of all feature
terms is a prelattice provided the sort symbols are ordered as a lattice.
Generalization is then defined as computing greater lower bounds in the
prelattice of feature terms. The lgg of feature terms is also described in
(Plaza, 1995). We also refer to (Plaza, 1995) for an account of several
variants of feature descriptions, as used in computational linguistics and
related areas, where generalization is recast as the retrieval of common
structural similarity.

A rich description level is achieved when types are viewed as con-
straints. In this context, terms can be thought of as “crystallized” sin-
taxes that dissolve into a semantically equivalent conjunction of elemen-
tary constraints, best defined as a “soup”, thanks to the conjuntion being
associative and commutative. In the constraint setting, feature terms cor-
respond to order-sorted feature (OSF) constraints in solved form (a nor-
mal form). Generalization in the OSF foundation is investigated in (Aı̈t-
Kaci and Sasaki, 2001), where an axiomatic definition of feature term
generalization is provided, together with its operational realization. In
the axiomatic definition, generalization is presented as an OSF-constraint
construction process: the information conveyed by OSF terms is given
an alternative, syntactic presentation by means of a constraint clause,
and generalization is then defined by means of OSF clause generalization
rules.

The lattice of partially ordered type structures of (Aı̈t-Kaci, 1983;
Aı̈t-Kaci and Sasaki, 2001) and the order-sorted equational setting of
rewriting logic (Meseguer, 1997) differ in several aspects and are in-
comparable, i.e., one is not subsumed into the other. The differences,
explained below, are based on term representation, sort structure, and
algebraic axioms. The order-sorted type structure is much simpler and
typically finite, whereas the association of a type to each feature term
makes the set of types infinite. In the much simpler order-sorted setting,
only the subsort relations between basic sorts need to be explicitly con-
sidered, although implicitly each term with variables can be interpreted
set-theoretically as the set of its substitution instances. Obviously, by
an encoding of first order terms as feature-terms —the features simply
being argument positions, e.g., the term f(t1, .., tn) if and only if the fea-
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ture term f(1 ⇒ t1, .., , n ⇒ tn)— the order-sorted syntactic algorithm
presented in (Alpuente et al., 2009b) could be seen as a special case of
(Aı̈t-Kaci, 1983). However, feature types can also be expressed as alge-
braic types if we supply the missing constructors for attributes, which
are called implicit constructors in (Smolka and Aı̈t-Kaci, 1989). This en-
coding was used to develop a framework, based on equational constraint
solving, where feature term unification and order-sorted term unification
coexist. Thus, each term representations can be encoded into the other.

On the other hand, as already hinted at above, the sort structure is
different in both approaches and, thus, the algorithm presented in (Aı̈t-
Kaci, 2007) is different of what we present here. In (Aı̈t-Kaci and Sasaki,
2001), least upper bounds (lubs) are canonically represented as disjunc-
tive sets of maximal terms: if one wants to specify that an element is of
sort A or B when no explicit type symbol is known as their lub, then
this element is induced to be of type A ∨ B. Instead, in an order-sorted
setting (Goguen and Meseguer, 1992; Meseguer, 1998) the sort structure
is much simpler, namely a (typically finite) poset as opposed to an infi-
nite lattice. Yet, under the easily checkable assumption of preregularity
(or E-preregularity for equational axioms E of associativity and/or com-
mutativity and/or identity), each term (resp. each E-equivalence class
of terms) has a least sort possible, see (Goguen and Meseguer, 1992),
and (Clavel et al., 2007, 22.2.5). Furthermore, unlike in the feature term
case, there is no global assumption of a top sort, although each connected
component in the poset of sorts can be conservatively extended with a
top sort for that component (the so-called kinds, see (Meseguer, 1998;
Clavel et al., 2007) and the Preliminaries). This means that certain gen-
eralization problems are regarded as incoherent and have no solution.
For example, there is no generalization for the terms x:Bool, and y:Nat,
assuming that the connected components of sorts for numbers (where
Nat is one of the sorts) and truth values (where Bool is another sort) are
disjoint. Thus, the sort structure contains different assumptions in each
approach.

Finally, even if the comma (conjunction) is handled in the OSF as
an associative-commutative operator, the OSF does not support the def-
inition of operators with combinations of algebraic properties such as
commutativity, associativity and identity, while each operator in our
order-sorted setting can have any desired combination of these algebraic
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properties.



xxii List of Figures



Preliminaries

We follow the classical notation and terminology from (TeReSe, 2003) for
term rewriting and from (Meseguer, 1997; Goguen and Meseguer, 1992)
for order-sorted equational logic.

We assume an order-sorted signature Σ with a finite poset of sorts
(S,≤) and a finite number of function symbols. We furthermore assume
a kind-completed signature such that: (i) each connected component in
the poset ordering has a top sort, and for each s ∈ S we denote by [s]
the top sort in the connected component of s, (i.e., if s and s′ are sorts
in the same connected component, then [s] = [s′]); and (ii) for each
operator declaration f : s1× . . .× sn → s in Σ, there is also a declaration
f : [s1]× . . .× [sn]→ [s] in Σ.

We assume pre-regularity of the signature Σ: for each operator dec-
laration f : s1 × . . . × sn → s, and for the set Sf containing sorts s′

appearing in operator declarations of the form f : s′1, . . . , s
′
n → s′ in Σ

such that si ≤ s′i for 1 ≤ i ≤ n, then the set Sf has a least sort. The
unique least sort of each Σ-term t is denoted by LS(t). Therefore, the top
sort in the connected component of LS(t) is denoted by [LS(t)]. Since
the poset (S,≤) is finite and each connected component has a top sort,
given any two sorts s and s′ in the same connected component, the set of
least upper bound sorts of s and s′, although non necessarily a singleton
set, always exists and is denoted by LUBS(s, s′).

Throughout this paper, we assume that Σ has no ad-hoc operator
overloading, i.e., any two operator declarations for the same symbol f
with equal number of arguments, f : s1×. . .×sn → s and f : s′1×. . .×s′n →
s′, must necessarily have [s1] = [s′1], . . . , [sn] = [s′n], [s] = [s′].

We assume an S-sorted family X = {Xs}s∈S of disjoint variable sets
with each Xs countably infinite. We write the sort associated to a variable
explicitly with a colon and the sort, i.e., x:Nat. A fresh variable is a
variable that appears nowhere else. TΣ(X )s is the set of terms of sort s,
and TΣ,s is the set of ground terms of sort s. We write TΣ(X ) and TΣ for
the corresponding term algebras. For a term t, we write Var(t) for the
set of all variables in t. We assume that TΣ,s 6= ∅ for every sort s.
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The set of positions of a term t, written Pos(t), is represented as a
sequence of natural numbers, e.g. 1.2.1. The set of non-variable positions
is written PosΣ(t). The root position of a term is Λ. The subterm of t
at position p is t|p and t[u]p is the term t where t|p is replaced by u. By
root(t) we denote the symbol occurring at the root position of t.

A substitution σ is a mapping from a finite subset of X , written
Dom(σ), to TΣ(X ). The set of variables introduced by σ is Ran(σ). The
identity substitution is id. Substitutions are homomorphically extended
to TΣ(X ). The application of a substitution σ to a term t is denoted by
tσ. The restriction of σ to a set of variables V is σ|V . Composition of
two substitutions is denoted by juxtaposition, i.e., σσ′(X) = σ′(σ(X)) for
any variable X. We call a substitution σ a renaming if there is another
substitution σ−1 such that (σσ−1)|Dom(σ) = id. Substitutions are sort–
preserving, i.e., for any substitution σ, if X ∈ Xs, then Xσ ∈ TΣ(X )s.
We assume substitutions are idempotent, i.e., σ(X) = σ(σ(X)) for any
variable X.

A Σ-equation is an unoriented pair t = t′. An equational theory
(Σ, E) is a set of Σ-equations. An equational theory (Σ, E) is regular if
for each t = t′ ∈ E, we have Var(t) = Var(t′). Given Σ and a set E of
Σ-equations, order-sorted equational logic induces a congruence relation
=E on terms t, t′ ∈ TΣ(X ), see (Goguen and Meseguer, 1992; Meseguer,
1997).

The E-subsumption preorder ≤E (simply ≤ when E is empty) holds
between t, t′ ∈ TΣ(X ), denoted t ≤E t′ (meaning that t is more general
than t′ modulo E), if there is a substitution σ such that tσ =E t′; such
a substitution σ is said to be an E-matcher for t′ in t. The E-renaming
equivalence t 'E t′ (or ' if E is empty), holds if there is a renaming θ
such that tθ =E t

′. We write t <E t
′ (or < if E is empty) if t ≤E t′ and

t 6'E t′.



1
Syntactic Least General

Generalization

In order to better present our work, in this chapter we revisit untyped
generalization (Plotkin, 1970; Reynolds, 1970; Huet, 1976) and formal-
ize the lgg computation by means of a new inference system that will
be useful in our subsequent extension of this algorithm to the order–
sorted setting given in Chapter 2 and to the equational setting given in
Chapter 3. Throughout this chapter, we assume unsorted terms, i.e.,
t ∈ TΣ(X ), with an unsorted signature Σ. This can be understood as the
special case of having only one sort.

Most general unification of a (unifiable) set M of terms is the least up-
per bound (most general instance, mgi) of M under the standard instan-
tiation quasi-ordering ≤ on terms given by the relation of being “more
general” (i.e., s is an instance of t, written t ≤ s, iff there exists θ such
that tθ = s). Formally,

instances(M) = {t′ ∈ TΣ(X ) | ∀t ∈M, t ≤ t′}

and

mgi(M) = s ∈ instances(M) s.t. ∀t′ ∈ instances(M), s ≤ t′.

Least general generalization, lgg, of M corresponds to the greatest lower
bound, i.e.,

generalizations(M) = {t′ ∈ TΣ(X ) | ∀t ∈M, t′ ≤ t}

and

lgg(M) = s ∈ generalizations(M) s.t. ∀t′ ∈ generalizations(M), t′ ≤ s.
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The non-deterministic generalization algorithm λ of Huet (Huet,
1976) is as follows; also treated in detail in (Lassez et al., 1988). Let
Φ be any bijection between TΣ(X ) × TΣ(X ) and a set of variables V .
The recursive function λ on TΣ(X )×TΣ(X ) that computes the lgg of two
terms is given by:

• λ(f(s1, . . . , sm), f(t1, . . . , tm)) = f(λ(s1, t1), . . . , λ(sm, tm)), for f ∈
Σ

• λ(s, t) = Φ(s, t), otherwise.

Central to this algorithm is the global function Φ that is used to guarantee
that the same disagreements are replaced by the same variable in both
terms. Different choices of Φ may result in different generalizations that
are equivalent up to variable renaming.

In the following, we provide a novel set of inference rules for com-
puting the (syntactic) least generalization of two terms, first proposed
in (Alpuente et al., 2009b), that uses a local store of already solved gen-
eralization sub-problems. The advantage of using such a store is that,
differently from the global repository Φ, our stores are local to the com-
putation traces. This non–globality of the stores is the key for effectively
computing a complete and minimal set of least general generalizations
in both, the order–sorted extension and the equational generalization al-
gorithm developed in this work. A different formulation by means of
inference rules is given in (Pottier, 1989), where the store is not explicit
in the configurations but is implicitly kept within the constraint and sub-
stitution components, which is less intuitive and causes the accumulation
of a lot of bindings for many variables with the same instantiations.

In our formulation, we represent a generalization problem between

terms s and t as a constraint s
x
, t, where x is a fresh variable that stands

for a tentative generalization of s and t. By means of this representation,
any generalization w of s and t is given by a suitable substitution θ such
that xθ = w.

We compute the least general generalization of s and t, written
lgg(s, t), by means of a transition system (Conf,→) (Plotkin, 2004) where
Conf is a set of configurations and the transition relation → is given by
a set of inference rules. Besides the constraint component, i.e., a set of

constraints of the form ti
xi
, ti′ , and the substitution component, i.e., the
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Decompose
f ∈ (Σ ∪ X )

〈f(t1, . . . , tn)
x
, f(t′1, . . . , t

′
n) ∧ CT | S | θ〉 →

〈t1
x1
, t′1 ∧ . . . ∧ tn

xn
, t′n ∧ CT | S | θσ〉

where σ = {x 7→ f(x1, . . . , xn)}, x1, . . . , xn are fresh variables, and
n ≥ 0

Solve
root(t) 6= root(t′) ∧ @y : t

y

, t′ ∈ S

〈t
x
, t′ ∧ CT | S | θ〉 → 〈CT | S ∧ t

x
, t′ | θ〉

Recover
root(t) 6= root(t′)

〈t
x
, t′ ∧ CT | S ∧ t

y

, t′ | θ〉 → 〈CT | S ∧ t
y

, t′ | θσ〉
where σ = {x 7→ y}

Figure 1.1: Rules for least general generalization

partial substitution computed so far, configurations also include the extra
constraint component that we call the store.

Definition 1.0.1 A configuration 〈CT | S | θ〉 consists of three com-

ponents: (i) the constraint component CT, i.e., a conjuntion s1

x1
, t1 ∧

. . .∧sn
xn
, tn that represents the set of unsolved constraints, (ii) the store

component S, that records the set of already solved constraints, and (iii)
the substitution component θ, that consists of bindings for some variables
previously met during the computation.

Starting from the initial configuration 〈t
x
, t′ | ∅ | id〉, configurations are

transformed until a terminal configuration of the form 〈∅ | S | θ〉, i.e.,
a normal form w.r.t. the inference system, is reached. Then, the lgg of
t and t′ is given by xθ. As we shall see, θ is unique up to renaming.

Given a constraint t
x
, t′, we call x an index variable or a variable at the

index position of the constraint. Given a set C of constraints, each of the

form t
x
, t′ for some t, t′, and x, we define the set of index variables as

Index(C) = {y ∈ X | ∃u
y

, v ∈ C}.
The transition relation → is given by the smallest relation satisfying

the rules in Figure 1.1. In this paper, variables of terms t and t′ in a
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generalization problem t
x
, t′ are considered as constants, and are never

instantiated. The meaning of the rules is as follows.

• The rule Decompose is the syntactic decomposition generating
new constraints to be solved.

• The rule Solve checks that a constraint t
x
, t′ ∈ CT with root(t) 6=

root(s), is not already solved. If not already there, the solved

constraint t
x
, t′ is added to the store S.

• The rule Recover checks if a constraint t
x
, t′ ∈ CT with root(t) 6=

root(t′), is already solved, i.e., if there is already a constraint t
y

, t′ ∈
S for the same pair of terms (t, t′) with variable y. This is needed
when the input terms of the generalization problem contain the
same generalization subproblems more than once, e.g., the lgg of
f(f(a, a), a) and f(f(b, b), a) is f(f(y, y), a).

Example 1.0.2
Consider the terms t = f(g(a), g(y), a) and t′ = f(g(b), g(y), b). In
order to compute the least general generalization of t and t′, we ap-
ply the inference rules of Figure 1.1. The substitution component in
the final configuration obtained by the lgg algorithm is θ = {x 7→
f(g(x4), g(y), x4), x1 7→ g(x4), x2 7→ g(y), x5 7→ y, x3 7→ x4}, hence the
computed lgg is xθ = f(g(x4), g(y), x4). The execution trace is showed
in Figure 1.2. Note that variable x4 is repeated, to ensure that the least
general generalization is obtained.

1.1 Termination and Confluence

Termination of the transition system (Conf,→) is straightforward.

Theorem 1.1.1 (Termination) Every derivation stemming from an

initial configuration 〈t
x
, t′ | ∅ | id〉 using the inference rules of Figure 1.1

terminates with a configuration 〈∅ | S | θ〉.
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lgg(f(g(a), g(y), a), f(g(b), g(y), b))
↓ Initial Configuration

〈f(g(a), g(y), a)
x

, f(g(b), g(y), b) | ∅ | id〉
↓ Decompose

〈g(a)
x1

, g(b) ∧ g(y)
x2

, g(y) ∧ a
x3

, b | ∅ | {x 7→ f(x1, x2, x3)}〉
↓ Decompose

〈a
x4

, b ∧ g(y)
x2

, g(y) ∧ a
x3

, b | ∅ | {x 7→ f(g(x4), x2, x3), x1 7→ g(x4)}〉
↓ Solve

〈g(y)
x2

, g(y) ∧ a
x3

, b | a
x4

, b | {x 7→ f(g(x4), x2, x3), x1 7→ g(x4)}〉
↓ Decompose

〈y
x5

, y ∧ a
x3

, b | a
x4

, b | {x 7→ f(g(x4), g(x5), x3), x1 7→ g(x4), x2 7→ g(x5)}〉
↓ Decompose

〈a
x3

, b | a
x4

, b | {x 7→ f(g(x4), g(y), x3), x1 7→ g(x4), x2 7→ g(y), x5 7→ y}〉
↓ Recover

〈∅ | a
x4

, b | {x 7→ f(g(x4), g(y), x4), x1 7→ g(x4), x2 7→ g(y), x5 7→ y, x3 7→ x4}〉

Figure 1.2: Computation trace for the (syntactic) generalization of terms
f(g(a), g(y), a) and f(g(b), g(y), b)

Proof. Let |u| be the number of symbol occurrences in the syntactic
object u. Since the minimum of |t| and |t′| is an upper bound to the
number of times that the inference rule Decompose of Figure 1.1 can be
applied, and the application of rules Solve and Recover strictly decreases
the size |CT | of the CT component of the lgg configurations at each step,
then any derivation necessarily terminates.

Note that the inference rules of Figure 1.1 are non–deterministic (i.e.,
they depend on the chosen constraint of the set CT ). However, in the
following we show that they are confluent up to variable renaming (i.e.,
the chosen transition is irrelevant for computation of terminal configu-
rations). This justifies the well-known fact that the least general gener-
alization of two terms is unique up to variable renaming (Lassez et al.,
1988). In order to prove the confluence up to renaming of the calculus,
let us first demonstrate an auxiliary result stating that only (indepen-
dently) fresh variables y appear in the index positions of the constraints
in CT and S components of lgg configurations.

Lemma 1.1.2 (Uniqueness of Generalization Variables) Let

t, t′ ∈ TΣ(X ) and x ∈ X . For every derivation 〈t
x
, t′ | ∅ | id〉 →∗
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〈CT | S | θ〉 stemming from the initial configuration 〈t
x
, t′ | ∅ | id〉 using

the inference rules of Figure 1.1, and for every u
y

, v ∈ CT (similarly

u
y

, v ∈ S), the variable y does not appear in any other constraint in

CT or S, i.e., there are no u′, v′ ∈ TΣ(X ) such that u′
y

, v′ ∈ CT or

u′
y

, v′ ∈ S.

Proof. By induction on the length n of the sequence 〈t
x
, t′ | ∅ | id〉 →n

〈CT | S | θ〉. If n = 0, then the conclusion follows, since CT = t
x
, t′

and S = ∅. If n > 0, then we split the derivation into 〈t
x
, t′ | ∅ |

id〉 →n−1 〈CT ′ | S ′ | θ′〉 → 〈CT | S | θ〉 and we consider each inference
rule of Figure 1.1 separately:

• Decompose. Here CT ′ = f(t1, . . . , tn)
x
, f(t′1, . . . , t

′
n) ∧ CT ′′, S =

S ′, CT = t1
x1
, t′1 ∧ . . . ∧ tn

xn
, t′n ∧ CT ′′, and θ = θ′σ where σ =

{x 7→ f(x1, . . . , xn)}, x1, . . . , xn are fresh variables, and n ≥ 0. By
induction hypothesis, x does not appear in CT ′′ and S ′. Thus, it
folllows that x1, . . . , xn do not appear in CT and S.

• Solve. Here CT ′ = t
x
, t′ ∧ CT ′′, CT = CT ′′, S = S ′, θ = θ′, and

the conclusion follows by induction hypothesis, since x does not
appear in CT ′ and S ′.

• Recover. Here CT ′ = t
x
, t′ ∧ CT ′′, CT = CT ′, S ′ = t

y

, t′ ∧ S ′′,
S = S ′, θ = θ′σ, σ = {x 7→ y}, and the conclusion follows by
induction hypothesis, since both x and y do not appear in CT ′ and
S ′.

Now we are ready to demonstrate the confluence of the lgg computa-
tions.

Theorem 1.1.3 (Confluence) The set of derivations stemming from

any initial configuration 〈t
x
, t′ | ∅ | id〉 using the inference rules of Fig-

ure 1.1 contain a unique solution 〈∅ | S | θ〉 up to renaming.
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Proof. Given a configuration 〈t
x
, t′ ∧ CT | S | θ〉, there is only one

possible transition step applicable to t
x
, t′ thanks to the non-overlapping

inference rules of Figure 1.1. Thus, we must consider the case of having
two constraints with the corresponding transitions.

Given any configuration 〈t1
y

, t2∧ t′1
y′

, t′2∧CT | S | θ〉 stemming from

the initial configuration 〈t
x
, t′ | ∅ | id〉, we analyse each possible inference

rule application to both t1
y

, t2 and t′1
y′

, t′2; we underline the relation →
with the name of the inference rule used for transformation.

• If Decompose is applied to at least one of t1
y

, t2 and t′1
y′

, t′2, then
there is no interaction between the constraints, since the Decom-
pose rule is not recording information in the store S, and the conclu-
sion follows from the uniqueness of index variables (Lemma 1.1.2).
That is, given two inference steps

〈t1
y

, t2 ∧ t′1
y′

, t′2 ∧ CT | S | θ〉 → 〈t′1
y′

, t′2 ∧ CT1 | S1 | θ1〉

and

〈t1
y

, t2 ∧ t′1
y′

, t′2 ∧ CT | S | θ〉 → 〈t1
y

, t2 ∧ CT2 | S2 | θ2〉,

then there are two configurations 〈CT12 | S12 | θ12〉 and 〈CT21 |
S21 | θ21〉 such that

〈t′1
y′

, t′2 ∧ CT1 | S1 | θ1〉 → 〈CT12 | S12 | θ12〉,

〈t1
y

, t2 ∧ CT2 | S2 | θ2〉 → 〈CT21 | S21 | θ21〉,

and 〈CT12 | S12 | θ12〉 ' 〈CT21 | S21 | θ21〉. That is, there is a
renaming substitution between both configurations thanks to the
uniqueness of added index variables.

• If Recover is applied to at least one of t1
y

, t2 and t′1
y′

, t′2, we have the
same conclusion, since the Recover rule is not recording information
in the store S.
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• If t1 = t′1 and t2 = t′2, then the application of the inference rule

Solve to t1
y

, t2 disables the application of the inference rule Solve

to t′1
y′

, t′2 but enables the application of the inference rule Recover

to t′1
y′

, t′2. That is, given the two inference steps

〈t1
y

, t2 ∧ t1
y′

, t2 ∧ CT | S | θ〉 →Solve 〈t1
y′

, t2 ∧ CT | S ∧ t1
y

, t2 | θ〉

and

〈t1
y

, t2 ∧ t1
y′

, t2 ∧CT | S | θ〉 →Solve 〈t1
y

, t2 ∧CT | S ∧ t1
y′

, t2 | θ〉,

we have that

〈t1
y′

, t2 ∧ CT | S ∧ t1
y

, t2 | θ〉 →Recover 〈CT | S ∧ t1
y

, t2 | θ〉

and

〈t1
y

, t2 ∧ CT | S ∧ t1
y′

, t2 | θ〉 →Recover 〈CT | S ∧ t1
y′

, t2 | θ〉.

Thus, 〈CT | S ∧ t1
y

, t2 | θ〉 ' 〈CT | S ∧ t1
y′

, t2 | θ〉 and the
conclusion follows.

1.2 Correctness and Completeness

Before proving correctness and completeness of the above inference rules,
we introduce the auxiliary concepts of a conflict position and of conflict
pairs, and three auxiliary lemmas. Also, note that for a given constraint

t
x
, t′, the variable x is a valid generalization of t and t′, though generally

not the least one.
The first lemma states that the range of the substitutions partially

computed at any stage of a generalization derivation coincides with the
set of the index variables of the configuration.
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Lemma 1.2.1 Given terms t and t′ and a fresh variable x such that

〈t
x
, t′ | ∅ | id 〉 →∗ 〈CT | S | θ〉 using the inference rules of Figure 1.1,

then Index(S ∪ CT ) ⊆ Ran(θ), and Ran(θ) = Var(xθ).

Proof. Immediate by construction.

The following lemma establishes an auxiliary property that is useful
for defining the notion of a conflict pair of terms.

Lemma 1.2.2 Given terms t and t′ and a fresh variable x, 〈t
x
, t′ | ∅ |

id 〉 →∗ 〈u
y

, v ∧ CT | S | θ〉 using the inference rules of Figure 1.1 iff
there exists a position p of t and t′ such that t|p = u, t′|p = v, and
∀p′ < p, root(t|p′) = root(t′|p′).

Proof. Straightforward by successive application of the inference rule
Decompose of Figure 1.1.

The notion of a conflict pair is the key idea for our generalization
proof schema.

Definition 1.2.3 (Conflict Position/Pair) Given terms t and t′, a
position p ∈ Pos(t) ∩ Pos(t′) is called a conflict position of t and t′ if
root(t|p) 6= root(t′|p) and for all q < p, root(t|q) = root(t′|q). Given
terms t and t′, the pair (u, v) is called a conflict pair of t and t′ if there
exists at least one conflict position p of t and t′ such that u = t|p and
v = t′|p.

The following lemma states the appropriate connection between the
constraints in a derivation and the conflict pairs of the initial configura-
tion.

Lemma 1.2.4 Given terms t and t′ and a fresh variable x, 〈t
x
, t′ | ∅ |

id 〉 →∗ 〈CT | u
y

, v ∧ S | θ〉 using the inference rules of Figure 1.1 iff
there exists a conflict position p of t and t′ such that t|p = u and t′|p = v.
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Proof. (⇒) If u
y

, v ∈ S, then there must be two configurations 〈u
y

, v∧
CT1 | S1 | θ1〉, 〈CT2 | u

y

, v ∧ S2 | θ2〉 such that

〈t
x
, t′ | ∅ | id 〉

→∗ 〈u
y

, v ∧ CT1 | S1 | θ1〉

→ 〈CT2 | u
y

, v ∧ S2 | θ2〉
→∗ 〈∅ | S | θ〉,

u
y

, v 6∈ S1, u
y

, v 6∈ CT2, and root(u) 6= root(v). By Lemma 1.2.2, there
exists a position p of t and t′ such that t|p = u and t′|p = v. Since
root(u) 6= root(v), p is a conflict position.

(⇐) By Lemma 1.2.2, there is a configuration 〈u
y

, v ∧ CT1 | S1 | θ1〉
such that 〈t

x
, t′ | ∅ | id 〉 →∗ 〈u

y

, v ∧ CT1 | S1 | θ1〉, u
y

, v 6∈ S1,
and root(u) 6= root(v). Then, the inference rule Solve is applied, i.e.,

〈u
y

, v ∧ CT1 | S1 | θ1〉 → 〈CT1 | u
y

, v ∧ S1 | θ1〉 and the constraint u
y

, v
will be part of S in the final configuration 〈∅ | S | θ〉.

The following lemma establishes the link between the substitution
component of a terminal configuration (simply called “computed substi-
tution” from now on) and a proper generalization term.

Lemma 1.2.5 Given terms t and t′ and a fresh variable x, 〈t
x
, t′ | ∅ |

id 〉 →∗ 〈C | S | θ〉 using the inference rules of Figure 1.1 iff xθ is a
generalization of t and t′.

Proof. By structural induction on the term xθ. If xθ = x, then θ = id
and the conclusion follows. If xθ = f(u1, . . . , uk), then the Decompose
inference rule is applied and we have that t = f(t1, . . . , tk) and t′ =
f(t′1, . . . , t

′
k). By induction hypothesis, ui is a generalization of ti and

t′i, for each i. Now, if there is no variable shared between two different
ui, then the conclusion follows. Otherwise, for each variable z shared

between two different terms ui and uj, there is a constraint w1

z
, w2 ∈ S

and, by Lemma 1.2.4, there are conflict positions pi in ti and t′i, and pj
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in tj and t′j such that ti|pi = tj|pj and t′i|pi = t′j|pj . Thus, the conclusion
follows.

Finally, correctness and completeness are proved as follows.

Theorem 1.2.6 (Correctness and Completeness) Given terms t

and t′ and a fresh variable x, u is the lgg of t and t′ iff 〈t
x
, t′ | ∅ |

id〉 →∗ 〈∅ | S | θ〉 using the inference rules of Figure 1.1 and u ' xθ.

Proof. We rely on the already known existence and uniqueness of the
lgg of t and t′ (Lassez et al., 1988) and reason by contradiction. Consider

the normalizing derivation 〈t
x
, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉. By Lemma

1.2.5, xθ is a generalization of t and t′. If xθ is not the lgg of t and t′

up to renaming, then there is a term u which is the lgg of t and t′ and a
substitution ρ which is not a variable renaming such that xθρ = u. By
Lemma 1.2.1, Ran(θ) = Var(xθ), hence we can choose ρ with Dom(ρ) =
Var(xθ). Now, since ρ is not a variable renaming, either:

1. there are variables y, y′ ∈ Var(xθ) and a variable z such that yρ =
y′ρ = z, or

2. there is a variable y ∈ Var(xθ) and a non-variable term v such that
yρ = v.

In case (1), there are two conflict positions p, p′ for t and t′ such that
u|p = z = u|p′ and xθ|p = y and xθ|p′ = y′. In particular, this means
that t|p = t|p′ and t′|p = t′|p′ . But this is impossible by Lemmas 1.2.4
and 1.2.1. In case (2), there is a position p such that xθ|p = y and p is
neither a conflict position of t and t′ nor it is under a conflict position of
t and t′. Since this is impossible by Lemmas 1.2.4 and 1.2.1, the claim is
proved.

Let us mention that the generalization algorithm can also be used to
compute (thanks to associativity and commutativity of symbol ∧) the
lgg of an arbitrary set of terms by successively computing the lgg of two
elements of the set in the obvious way.
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2
Order–sorted Least General

Generalizations

In this chapter, we generalize the unsorted generalization algorithm pre-
sented in Chapter 1 to the order-sorted setting.

We consider two terms t and t′ having the same top sort, i.e.,
[LS(t)] = [LS(t′)]. Otherwise they are incomparable and no general-

ization exists. Starting from the initial configuration 〈t
x:[s]

, t′ | ∅ | id〉
where [s] = [LS(t)] = [LS(t′)], configurations are transformed until a ter-
minal configuration 〈∅ | S | θ〉 is reached. In the order–sorted setting,
the lgg, in general, is not unique. Each terminal configuration 〈∅ | S | θ〉
provides an lgg of t and t′ given by (x:[s])θ. A substitution δ is called
downgrading if each binding is of the form x:s 7→ x′:s′, where x and x′

are variables and s′ ≤ s.
The transition relation → is given by the smallest relation satisfying

the rules in Figure 2.1. The meaning of these rules is as follows.

• The rule Decompose is the syntactic decomposition generating
new constraints to be solved. Fresh variables are initially assigned
a top sort, which will be appropriately “downgraded” when neces-
sary.

• The rule Recover reuses a previously solved constraint, similarly
to to the corresponding unsorted rule of Figure 1.1.

• The rule Solve checks that a constraint t
y

, t′ ∈ C, with root(s) 6=
root(t), is not already solved. Then the solved constraint t

y

, t′ is
added to the store S, and the substitution {x 7→ z} is composed
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Decompose
f ∈ (Σ ∪ X ) ∧ f : [s1]× . . .× [sn]→ [s]

〈f(t1, . . . , tn)
x:[s]

, f(s1, . . . , sn) ∧ C | S | θ〉 →

〈t1
x1:[s1]

, s1 ∧ . . . ∧ tn
xn:[sn]

, sn ∧ C | S | θσ〉
where σ = {x:[s] 7→ f(x1:[s1], . . . , xn:[sn])}, x1:[s1], . . . , xn:[sn] are fresh
variables, and n ≥ 0

Solve

root(t) 6= root(t′) ∧ s′ ∈ LUBS(LS(t), LS(t′)) ∧ @y @s′′ : t
y:s′′

, t′ ∈ S

〈t
x:[s]

, t′ ∧ C | S | θ〉 → 〈C | S ∧ t
z:s′

, t′ | θσ〉

where σ = {x:[s] 7→ z:s′} and z:s′ is a fresh variable.

Recover
root(t) 6= root(t′)

〈t
x:[s]

, t′ ∧ C | S ∧ t
y:s′

, t′ | θ〉 → 〈C | S ∧ t
y:s′

, t′ | θσ〉

where σ = {x:[s] 7→ y:s′}

Figure 2.1: Rules for order–sorted least general generalization.

with the substitution part, where z is a fresh variable with sort in
the LUBS of the least sorts of both terms. Note that this is the only
additional source of non-determinism (besides the choice of the con-
straint to work on) in our inference rules, in contrast to Figure 1.1.
This extra non–determinism causes our rules to be non–confluent
in general. However, this is essential for our algorithm to work,
since different final configurations 〈∅ | S1 | θ1〉, . . . , 〈∅ | Sn | θn〉
correspond to different (least general) generalizations xθ1, . . . , xθn.

Example 2.0.7
Let t = f(x:A) and t′ = f(y:B) be two terms where x and y are variables
of sorts A and B, respectively, and assume the sort hierarchy that is
shown in Figure 2.3. The typed definition of f is f : E → E. Starting

from the initial configuration 〈f(x:A)
z:E
, f(y:B) | ∅ | id 〉, we apply the

inference rules of Figure 2.1 and the substitutions obtained by the lgg
algorithm are θ1 = {z:E 7→ f(z2:C), z1:E 7→ z2:C} and θ2 = {z:E 7→
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lgg(f(x:A), f(y:B))
↓ Initial Configuration

〈f(x:A)
z:E
, f(y:B) | ∅ | id〉

↓ Decompose

〈x:A
z1:E

, y:B | ∅ | {z:E 7→ f(z1:E)}〉
↙ Solve ↘

〈∅ | x:A
z2:C

, y:B | {z:E 7→ f(z2:C), z1:E 7→ z2:C}〉 〈∅ | x:A
z3:D

, y:B | {z:E 7→ f(z3:D), z1:E 7→ z3:D}〉

Figure 2.2: Computation trace for the order–sorted generalization of
terms f(x) and f(y)

A

C D

E

B

Figure 2.3: Sort hierarchy

f(z3:D), z1:E 7→ z3:D}. Note that θ1 and θ2 are incomparable, so that
we have two posible lggs where (z:E)θ1 = f(z2:C) and (z:E)θ2 = f(z3:D).
The computation of both solutions is illustrated in Figure 2.2.

2.1 Termination and Confluence

Termination of the transition system (Conf,→) is straightforward.

Theorem 2.1.1 (Termination) Every derivation stemming from an

initial configuration 〈t
x:s
, t′ | ∅ | id 〉 using the inference rules of Figure 2.1

where s = [LS(t)] = [LS(t′)] terminates with a configuration 〈∅ | S | θ〉.

Proof. Similar to the proof of Theorem 1.1.1.
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The transition system (Conf,→) is no longer confluent, as shown in
Example 2.0.7. However, confluence can be recovered under appropriate
conditions.

Definition 2.1.2 (Top-sorted Constant) Given an order-sorted sig-
nature Σ, we say that a constant c : nil → s is top-sorted if s = [s].

Definition 2.1.3 (Top-sorted Variable) A variable x:s is called top-
sorted if s = [s].

Definition 2.1.4 (Top-sorted Term) A term t is called top-sorted if
every variable and every constant in t are top-sorted.

The following result uses the assumption of a kind-completed order-
sorted signature described in the Preliminaries.

Lemma 2.1.5 Given a top-sorted term t, LS(t) = [LS(t)].

Proof. By structural induction on t. The cases when t is a variable or
a constant are straightforward. If t = f(t1, . . . , tn), then by induction
hypothesis, LS(t1) = [LS(t1)], . . . , LS(tn) = [LS(tn)], and given that
f : [s1]× · · · × [sn]→ [s], we have that LS(t) = [LS(t)].

Lemma 2.1.6 Given two top-sorted terms t, t′, LUBS(LS(t), LS(t′)) =
LS(t) = LS(t′) = [LS(t)] = [LS(t′)].

Proof. By Lemma 2.1.5, LS(t) = [LS(t)] and LS(t′) = [LS(t′)] and,
since [LS(t)] is the top sort in the connected component, we conclude that
LUBS(LS(t), LS(t′)) = {LS(t)} = {LS(t′)}.

Theorem 2.1.7 (Confluence) The set of derivations stemming from

an initial configuration 〈t
x:s
, t′ | ∅ | id 〉 using the inference rules of Fig-

ure 2.1 where t and t′ are top-sorted terms and s = [LS(t)] = [LS(t′)],
contain a unique solution 〈∅ | S | θ〉 up to renaming.

Proof. Similar to the proof of Theorem 1.1.3, but taking into account
that Lemma 2.1.6 ensures that there is no non-determinism involved in
the application of the inference rule Solve.
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2.2 Order-sorted lgg computation by subsort
specialization

Even if the set of least general generalizations of two terms is not gen-
erally a singleton, there is still a unique top-sorted generalization that
can just be specialized into the appropriate subsorts. This enables a dif-
ferent approach to computing order-sorted least general generalizations
by just removing sorts (i.e., upgrading variables to top sorts) in order
to compute (unsorted) lgg’s, and then obtaining the right subsorts by
a suitable post-processing. Obviously, the set of inference rules of Fig-
ure 2.1 has a better performance than this alternative method of first
upgrading variables, computing the standard lggs, and then downgrad-
ing variables, since the inference rules of Figure 2.1 detect sort-based
failures much earlier. Indeed, we do not use this approach in practice,
but we only use it for the proofs of correctness and completeness of the
inference rules given in Section 2.3 below. Note that this proof schema
for correctness and completeness of inference rules is useful here for the
order-sorted generalization and also for the order-sorted E-generalization
of Chapter 4 below.

To simplify our notation, in the following we write t[u]p1,...,pn instead
of ((t[u]p1) · · · )[u]pn . The notion of conflict pair of Definition 1.2.3 can be
extended to the order-sorted case in the obvious way, since two variables
of different sorts having the same name, e.g. x:s1 and x:s2, are considered
to be different.

Definition 2.2.1 (Top-sorted Generalization) Given terms t and t′

such that
[LS(t)] = [LS(t′)], let (u1, v1), . . . , (uk, vk) be the conflict pairs of t
and t′, and for each such conflict pair (ui, vi), let pi1, . . . , p

i
ni

be the corre-
sponding conflict positions (i.e., t|pij = ui and t′|pij = vi for 1 ≤ j ≤ ni),

and let si = [LS(ui)] = [LS(vi)]. The top-sorted generalization of t and
t′ is defined by

tsg(t, t′) = ((t[x1:s1]p11,...,p1n1
) · · · )[xk:sk]pk1 ,...,pknk

where x1:s1, . . . , xk:sk are fresh variables.
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Example 2.2.2
Let us consider the terms t = f(x:A) and t′ = f(y:B) of Example 2.0.7.
We have that tsg(t, t′) = f(z:E), since there is only one conflict pair
(x:A, y:B) and [A] = [B] = E.

Once the unique top-sorted lgg is generated, the order-sorted lgg’s
are obtained by subsort specialization.

Definition 2.2.3 (Sort-specialized Generalization) Given terms t
and t′ such that [LS(t)] = [LS(t′)], let (u1, v1), . . . , (uk, vk) be the con-
flict pairs of t and t′. We define

sort-down-subs(t, t′) = {ρ | Dom(ρ) = {x1:s1, . . . , xk:sk}
∧ ∀1 ≤ i ≤ k, ρ(xi:si) = xi:s

′
i

∧ s′i ∈ LUBS(LS(ui),LS(vi))}

where all the xi:s
′
i are fresh variables. The set of sort-specialized gen-

eralizations of t and t′ is defined as ssg(t, t′) = {tsg(t, t′)ρ | ρ ∈
sort-down-subs(t, t′)}.

Example 2.2.4
Continuing Example 2.2.2, we have that ssg(t, t′) = {f(z:C), f(z:D)},
with sort-down-subs(t, t′) = {{x:E 7→ z:C}, {x:E 7→ z:D}}.

The following result establishes that sort-specialized generalization
and the order-sorted least general generalization do coincide.

Theorem 2.2.5 Given terms t and t′ such that [LS(t)] = [LS(t′)], it
holds that 1) tsg(t, t′) is a generalization of t and t′, and 2) ssg(t, t′)
provides a minimal and complete set of order-sorted lggs.

Proof. It is immediate that tsg(t, t′) is a generalization of t and t′, since
for each conflict pair (s, s′), the term tsg(t, t′) contains a variable at the
corresponding conflict position of t and t′ which has the top sort associ-
ated to s and s′.

We prove that sgg(t, t′) provides a minimal complete set of order-
sorted lggs by contradiction. First, let us prove that it is complete by
assuming that there is a generalization u of t and t′ s.t. there is no
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u′ ∈ ssg(t, t′) with u ≤ u′. By definition of tsg(t, t′), we either have that
u ≤ tsg(t, t′) or tsg(t, t′) ≤ u. If u ≤ tsg(t, t′), there must be a term
u′ ∈ ssg(t, t′) such that u ≤ u′. If tsg(t, t′) ≤ u, then at least one of
the variables xi:si of a conflict pair must have been instantiated with a
variable z:s such that s ≤ si, but then there must be a term u′ ∈ ssg(t, t′)
such that u ≤ u′. Thus, the conclusion follows.

Second, let us prove that it is minimal by assuming that there are
two generalizations u, u′ of t and t′ s.t. u ∈ ssg(t, t′), u′ ∈ ssg(t, t′),
and u < u′. If u < u′, then at least one of the variables xi:si of u
corresponding to a conflict pair (ui, vi) must have been instantiated with
a variable x′i:s

′
i of u′ such that s′i < si, which is impossible by definition

of LUBS(LS(ui),LS(vi)).

2.3 Correctness and Completeness of the
order-sorted lgg calculus

Before proving correctness and completeness of the order-sorted lgg cal-
culus given in Figure 2.1, we provide some auxiliary notions and lemmata.

The first lemma links the constraints with positions in terms t and t′

of a generalization problem.

Lemma 2.3.1 Given terms t and t′ such that [s] = [LS(t)] = [LS(t′)],

and a fresh variable x:[s], 〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈u
y:[s′]

, v ∧ CT | S | θ〉
using the inference rules of Figure 2.1 iff there exists a position p of t
and t′ such that t|p = u and t′|p = v, and [s′] = [LS(u)] = [LS(v)].

Proof. Straightforward by successive application of the Decompose in-
ference rule of Figure 2.1.

The following lemma links constraints already solved (and thus saved
in the store) with conflict positions of terms t and t′ of a generalization
problem.
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Lemma 2.3.2 Given terms t and t′ such that [s] = [LS(t)] = [LS(t′)],

and a fresh variable x:[s] such that 〈t
x:[s]

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉

using the inference rules of Figure 2.1, the constraint u
y:s′

, v belongs
to S iff there exists a conflict pair (u, v) of t and t′ such that s′ ∈
LUBS(LS(u),LS(v)).

Proof. (⇒) If u
y:s′

, v ∈ S, then there must be a sort s′′ and two config-

urations 〈u
y:s′′

, v ∧ CT1 | S1 | θ1〉, 〈CT2 | u
y:s′

, v ∧ S2 | θ2〉 such that

〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈u
y:s′′

, v ∧ CT1 | S1 | θ1〉

→ 〈CT2 | u
y:s′

, v ∧ S2 | θ2〉 →∗ 〈∅ | S | θ〉,

u
y:s′′

, v 6∈ S1, u
y:s′

, v 6∈ CT2, s′ ≤ s′′, and root(u) 6= root(v). By Lemma
2.3.1, there exists a position p of t and t′ such that t|p = u, t′|p = v,
and s′′ = [LS(u)] = [LS(v)]. Since root(u) 6= root(v), p is a conflict
position. Then, by application of the inference rule Solve, we have that
s′ ∈ LUBS(LS(u),LS(v)).

(⇐) By Lemma 2.3.1, there exist a sort [s′′] and a configuration

〈u
y:[s′′]

, v ∧CT1 | S1 | θ1〉 such that 〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈u
y:[s′′]

, v ∧CT1 |

S1 | θ1〉, u
y:s′′

, v 6∈ S1, and root(u) 6= root(v). Then, the inference rule

Solve is applied, i.e., 〈u
y:[s′′]

, v∧CT1 | S1 | θ1〉 → 〈CT1 | u
y:s′

, v∧S1 | θ1〉,

and s′ ∈ LUBS(LS(u),LS(v)). Thus, the constraint u
y:s′

, v will be part
of S in the final configuration 〈∅ | S | θ〉.

Lemma 2.3.3 Given terms t and t′ such that [s] = [LS(t)] = [LS(t′)],

for all S and θ such that 〈t
x:[s]

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉 using the
inference rules of Figure 2.1, there exists a downgrading substitution δ
such that tsg(t, t′)δ = (x:[s])θ.

Proof. By successive application of the Decompose inference rule of Fig-
ure 2.1.
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Theorem 2.3.4 (Correctness and Completeness) Given terms t
and t′ such that [s] = [LS(t)] = [LS(t′)], and a fresh variable x:[s], it
holds that u is an order-sorted lgg of t and t′ iff there exists S and θ such

that 〈t
x:[s]

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉 using the inference rules of Figure 2.1
and u ' (x:[s])θ.

Proof. We reason by contradiction.
(⇒) Let us consider a store S and substitution θ such that there

is no term u and renaming ρ with uρ = (x:[s])θ. By Theorem 2.2.5,
tsg(t, t′) ≤ u with a downgrading substitution δu, i.e., tsg(t, t′)δu = u.
By Lemma 2.3.3, tsg(t, t′) ≤ (x:[s])θ with a downgrading substitution δ,
i.e., tsg(t, t′)δ = (x:[s])θ. Since (x:[s])θ and u are not renamed variants
and both terms are sort-specializations of tsg(t, t′), there must be one
binding x:[s] 7→ x′:s′ in δ and one binding x:[s] 7→ x′′:s′′ in δu s.t. either
s′ < s′′, s′′ < s′, or [s′] 6= [s′′]. But all three possibilities are impossible
by construction, since s′ < s′′ contradicts the fact that u is a lgg, s′′ < s′

contradicts Lemma 2.3.2, and [s′] 6= [s′′] contradicts both that u is a lgg
of t and t′ and Lemma 2.3.2.

(⇐) This case can be proven similarly.
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3
Least General Generalizations

modulo E

When we have an equational theory E, the notion of least general gener-
alization has to be broadened, because, there may exist E-generalizable
terms that do not have any (syntactic) least general generalization. Sim-
ilarly to the dual case of E-unification, we have to talk about a set of
least general E-generalizations (Baader, 1991).

For a set M of terms, we define the set of most specific generalizations
of M modulo E as the set of maximal lower bounds of M under <E, i.e.,
lggE(M) = {u | ∀m ∈M,u ≤E m ∧ @u′ (u <E u

′ ∧ ∀m ∈M,u′ ≤E m)}.

Example 3.0.5
Consider terms t = f(a, a, b) and s = f(b, b, a) where f is associative
and commutative, and a and b are constants. Terms u = f(x, x, y) and
u′ = f(x, a, b) are generalizations of t and s but they are not comparable,
i.e., no one is an instance of the other modulo the AC axioms of f .

3.1 Recursively enumerating the least general
generalizations modulo E

Given a finite set of equations E, and two terms t and s, we can always
recursively enumerate the set that is by construction a complete set of
generalizations of t and s. For this, we only need to recursively enumerate
all pairs of terms (u, u′) with t =E u and s =E u

′ and compute lgg(u, u′).
Of course, this set genE(t, s) may easily be infinite. However, if the
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theory E has the additional property that each E-equivalence class is
finite and can be effectively generated, then the above process becomes a
terminating algorithm, generating a finite complete set of generalizations
of t and s.

In any case, for any finite set of equations E, we can always mathemat-
ically characterize a minimal complete set of E-generalizations, namely
the set lggE(t, s) defined as follows. Roughly speaking, the minimal and
complete set lggE(t, s) is just the minimal set than can be obtained from
a complete (generally non-minimal) set genE(t, s) by filtering only the
maximal elements of the set with regard to the ordering <E, as also noted
in (Pottier, 1989).

Definition 3.1.1 Let t and s be terms and let E be an equational the-
ory. A complete set of generalizations of t and s modulo E, denoted by
genE(t, t′), is defined as follows:

genE(t, t′) = {v | ∃u, u′, t =E u, t
′ =E u

′, v ∈ lgg(u, u′)}.

The set of least general generalizations of t and s modulo E is defined as
follows:

lggE(t, s) = maximal<E
(genE(t, s))

where maximal<E
(S) = {s ∈ S | @s′ ∈ S : s <E s′}. Lggs are equiva-

lent modulo renaming and, therefore, we remove from lggE(t, t′) renamed
versions (modulo E) of terms.

Our modular E-generalization algorithm defined below computes a
complete set of generalizations, i.e., the set genE(t, t′), that must be fil-
tered out to obtain the least general generalizations, i.e., the set lggE(t, t′).
Let us prove that the set genE(t, t′) is a complete set of E-lggs.

Lemma 3.1.2 Given terms t and t′ in an equational theory E, if u is
an lgg modulo E of t and t′, then there exists u′ ∈ genE(t, t′) such that
u′ 'E u.

Proof. By contradiction. Let u be a lgg of t and s modulo E and assume
that there is no u′ ∈ genE(t, t′) such that u′ 'E u. Since u ≤E t and
u ≤E s, there exist substitutions σt and σs such that uσt =E t and
uσs =E s. But then, u ∈ lgg(uσt, uσs) (i.e., without making use of the
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equations E) and, by definition, u ∈ genE(t, s), which contradicts the
assumption.

Now, the minimality and completeness result for lggE(t, t′) follows
straightforwardly.

Theorem 3.1.3 Given terms t and t′ in an equational theory E,
lggE(t, t′) is a minimal, correct, and complete set of lggs modulo E of
t and t′ (up to renaming).

Proof. Lemma 3.1.2 ensures that genE(t, t′) is a complete set of lggs.
Minimality of the set lggE(t, t′) is ensured by maximality of the relation
<E.

However, note that in general the relation t <E t′ is undecidable, so
that the above set, although definable at the mathematical level, might
not be effectively computed. Nevertheless, when: (i) each E-equivalence
class is finite and can be effectively generated, and (ii) there is an E-
matching algorithm, then we also have an effective algorithm for com-
puting lggE(t, s), since the relation t ≤E t′ is precisely the E-matching
relation.

In summary, when E is finite and satisfies conditions (i) and (ii), the
above definitions give us a feasible, although horribly inefficient, pro-
cedure to compute a finite, minimal, and complete set of least general
generalizations lggE(t, s), because the cardinality of the E-equivalence
classes can be exponential in the size of their elements, as in the case of
associative-commutative theories (Pottier, 1989): for instance, if f is AC,
then the class E for f(a1, f(a2, ..., f(an−1, an)...)) has (2n− 2)!!/((n− 1)!
elements. This naive algorithm could be used when E consists of asso-
ciativity and/or commutativity axioms for some functions symbols, be-
cause such theories (a special case of our proposed parametric family of
theories) all satisfy conditions (i)–(ii). However, when we add identiy ax-
ioms, E-equivalence classes become infinite, so that the above approach
no longer gives us a lgg algorithm modulo E.

In the following sections, we do provide a modular, minimal, termi-
nating, sound, and complete algorithm for equational theories containing
different axioms such as associativity, commutativity, and identity (and
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their combinations). This algorithm computes the set genE(t, t′) modulo
E and renaming. The set lggE(t, s) of least general E-generalizations
can be computed as in Definition 3.1.1. That is: first a complete set of
E-generalizations is computed by the inference rules given below, and
then they are filtered to obtain lggE(t, s) by using the fact that, for all
theories E in the parametric family of theories we consider in this paper,
there is a matching algorithm modulo E that provides the relation <E.
We consider that a given function symbol f in the signature Σ obeys a
subset of axioms ax(f) ⊆ {Af , Cf , Uf}. In particular, f may not satisfy
any such axioms, i.e., ax(f) = ∅. Note that, technically, variables of the
original terms are handled in our rules as constants, thus without any
attribute, i.e., for any variable x ∈ X, we consider ax(x) = ∅.

Let us provide our inference rules for equational generalization in a
stepwise manner. First, ax(f) = ∅ in Section 3.2, then, ax(f) = {Cf} in
Section 3.3, then, ax(f) = {Af} in Section 3.4, then, ax(f) = {Af , Cf}
in Section 3.5, and finally, Uf ∈ ax(f) in Section 3.6. In each section,
proofs of correctness and completeness are very similar to the ones in
Section 1.2 and, thus, we define a key notion of conflict pair for each
equational property (i.e., commutative conflict pairs, associative conflict
pairs, associative-commutative conflict pairs, and identity conflict pairs)
which is the basis for our overall proof scheme. For readability, we have
provided complete proofs, even if they are in several aspects similar and
differ mainly in the different conflict pair notions, which make it impos-
sible to structure the proof in a parametric way.

3.2 Basic inference rules for least general E–
generalization

Let us start with a set of basic rules that are the equational version of
the syntactic generalization rules of Chapter 1. The rule DecomposeE
applies to function symbols obeying no axioms, ax(f) = ∅. Specific rules
for decomposing constraints involving terms that are rooted by symbols
obeying equational axioms, such as ACU and their combinations, are
given below.

Concerning the rules SolveE and RecoverE, the main difference w.r.t.
the corresponding syntactic generalization rules given in Chapter 1 is in
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DecomposeE
f ∈ (Σ ∪ X ) ∧ ax(f) = ∅

〈f(t1, . . . , tn)
x
, f(t′1, . . . , t

′
n) ∧ CT | S | θ〉 →

〈t1
x1
, t′1 ∧ . . . ∧ tn

xn
, t′n ∧ CT | S | θσ〉

where σ = {x 7→ f(x1, . . . , xn)}, x1, . . . , xn are fresh variables, and
n ≥ 0

SolveE

f = root(t) ∧ g = root(t′) ∧ f 6= g ∧ Uf 6∈ ax(f) ∧ Ug 6∈ ax(g) ∧ @y : t
y

, t′ ∈E S

〈t
x
, t′ ∧ CT | S | θ〉 → 〈CT | S ∧ t

x
, t′ | θ〉

RecoverE
root(t) 6= root(t′) ∧ ∃y : t

y

, t′ ∈E S

〈t
x
, t′ ∧ CT | S | θ〉 → 〈CT | S | θσ〉

where σ = {x 7→ y}

Figure 3.1: Basic inference rules for least general E–generalization

the fact that the checks to the store consider the constraints modulo E:

in the rules below, we write (t
y

, t′) ∈E S to express that there exists

u
y

, u′ ∈ S such that t =E u and t′ =E u
′.

Finally, regarding the rule SolveE, note that this rule cannot be ap-

plied to any constraint t
x
, s such that either t or s are rooted by a func-

tion symbol f with Uf ∈ ax(f). For function symbols with an identity
element, a specially–tailored rule ExpandU is given in Section 3.6 that

gives us the opportunity to solve a constraint (conflict pair) f(t1, t2)
x
, s,

such that root(s) 6= f , with a generalization f(y, z) more specific than

x, by first introducing the constraint f(t1, t2)
x
, f(s, e).

Termination, correctness and completeness of the basic algorithm are
straightforward by reasoning similarly to the syntactic case of Chapter 1.

Theorem 3.2.1 (Termination) Given an equational theory (Σ, E), Σ-
terms t and t′ such that every symbol in t and t′ is free, and a fresh vari-

able x, every derivation stemming from an initial configuration 〈t
x
, t′ | ∅ |

id〉 using the inference rules of Figure 3.1 terminates with a configuration
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〈∅ | S | θ〉.

Proof. It follows directly from Theorem 1.1.1.

Theorem 3.2.2 (Correctness and Completeness) Given an equa-
tional theory (Σ, E), Σ-terms t and t′ such that every symbol in t and
t′ is free, and a fresh variable x, then u ∈ genE(t, t′) iff there is u′ in

{xθ | 〈t
x
, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using the inference rules of Fig-

ure 3.1 such that u ' u′.

Proof. It follows directly from Theorem 1.2.6.

Note that the basic inference rules of Figure 3.1 are confluent when
E = ∅, according to Theorem 1.1.3, but the inference system of Chapter 4
combining free, commutative, associative, and associative-commutative
operators with and without an identity element is not generally confluent,
and different final configurations 〈∅ | S1 | θ1〉, . . . , 〈∅ | Sn | θn〉 correspond
to different (least general) generalizations xθ1, . . . , xθn.

3.3 Least general generalization modulo C

In this section we extend the basic set of equational generalization rules
by adding a specific inference rule DecomposeC , given in Figure 3.2, for
dealing with commutativity function symbols. This inference rule re-
places the syntactic decomposition inference rule for the case of a binary
commutative symbol f , i.e., the two possible rearrangements of the terms
f(t1, t2) and f(t′1, t

′
2) are considered. Just notice that this rule is (don’t

know) non-deterministic, hence all four combinations must be explored.

Example 3.3.1
Let t = f(a, b) and s = f(b, a) be two terms where f is commuta-
tive, i.e., ax(f) = {Cf}. By applying the rules SolveE, RecoverE, and
DecomposeC above, we end in a terminal configuration 〈∅ | S | θ〉, where
θ = {x 7→ f(b, a), x3 7→ b, x4 7→ a}, thus we conclude that the lgg modulo
C of t and s is xθ = f(b, a).
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DecomposeC

Cf ∈ ax(f) ∧ Af 6∈ ax(f) ∧ i ∈ {1, 2}

〈f(t1, t2)
x
, f(t′1, t

′
2) ∧ CT | S | θ〉 → 〈t1

x1
, t′i ∧ t2

x2
, t′(i mod 2)+1 ∧ CT | S | θσ〉

where σ = {x 7→ f(x1, x2)}, and x1, x2 are fresh variables

Figure 3.2: Decomposition rule for a commutative function symbol f

Termination is straightforward.

Theorem 3.3.2 (Termination) Given an equational theory (Σ, E), Σ-
terms t and t′ such that every symbol in t and t′ is free or commutative,
and a fresh variable x, every derivation stemming from an initial config-

uration 〈t
x
, t′ | ∅ | id〉 using the inference rules of Figures 3.1 and 3.2

terminates with a configuration 〈∅ | S | θ〉.

Proof. Similar to the proof of Theorem 1.1.1 by considering the two
possible rearrangements of each term.

In order to prove correctness and completeness of the lgg calculus
modulo C, similarly to Definition 1.2.3 we introduce the auxiliary concept
of commutative conflict pair, and prove some useful results for this case.

First, we prove an auxiliary result stating that only (independently)
fresh variables y appear in the index positions of the constraints in CT
and S components of lgg configurations.

Lemma 3.3.3 (Uniqueness of Generalization Variables) Lemma

1.1.2 holds for t
x
, t′ when the symbols in t, t′ are free or commutative,

for the inference rules of Figures 3.1 and 3.2.

The first lemma states that the range of the substitutions partially
computed at any stage of a generalization derivation coincides with the
set of the index variables of the configuration.

Lemma 3.3.4 Given terms t and t′ such that every symbol in t and

t′ is free or commutative, and a fresh variable x such that 〈t
x
, t′ | ∅ |

id 〉 →∗ 〈CT | S | θ〉 using the inference rules of Figures 3.1 and 3.2,
then Index(S ∪ CT ) ⊆ Ran(θ), and Ran(θ) = Var(xθ).
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Proof. Immediate by construction.

The following lemma establishes an auxiliary property that is useful
for defining the notion of a commutative conflict pair of terms. The depth
of a position is defined as depth(Λ) = 0 and depth(i.p) = 1 + depth(p);
in other words, it is the length of the sequence p. Given a position p
with depth n, p|k is the (prefix) position p at depth k ≤ n, i.e., p|0 = Λ,
(i.p)|k = i.(p|k−1) if k > 0. For instance, for p = 1.2.1.3, p|3 = 1.2.1.

Lemma 3.3.5 Given terms t and t′ such that every symbol in t and

t′ is free or commutative, and a fresh variable x, 〈t
x
, t′ | ∅ | id 〉 →∗

〈u
y

, v ∧ CT | S | θ〉 using the inference rules of Figures 3.1 and 3.2
iff there exist a position p ∈ Pos(t) and a position p′ ∈ Pos(t′) such
that t|p = u, t′|p′ = v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i).

Proof. Straightforward by successive application of the inference rule
Decompose of Figure 1.1 and the inference rule DecomposeC of Figure
3.2.

Definition 3.3.6 (Commutative Conflict Pair) Given terms t and
t′ such that every symbol in t and t′ is free or commutative, the pair (u, v)
is called a commutative conflict pair of t and t′ iff u 6=E v and there exist
at least one position p ∈ Pos(t) and at least one position p′ ∈ Pos(t′)
such that t|p = u, t′|p′ = v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i).

The following lemma states the appropriate connection between the
constraints in a derivation and the commutative conflict pairs of the
initial configuration.

Lemma 3.3.7 Given terms t and t′ such that every symbol in t and t′

is free or commutative, and a fresh variable x, 〈t
x
, t′ | ∅ | id 〉 →∗ 〈CT |

u
y

, v ∧ S | θ〉 using the inference rules of Figures 3.1 and 3.2 iff (u, v) is
a commutative conflict pair of t and t′.
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Proof. (⇒) If u
y

, v ∈ S, then there must be two configurations 〈u
y

, v∧
CT1 | S1 | θ1〉, 〈CT2 | u

y

, v ∧ S2 | θ2〉 such that

〈t
x
, t′ | ∅ | id 〉

→∗ 〈u
y

, v ∧ CT1 | S1 | θ1〉

→ 〈CT2 | u
y

, v ∧ S2 | θ2〉
→∗ 〈∅ | S | θ〉,

u
y

, v 6∈ S1, u
y

, v 6∈ CT2, and root(u) 6= root(v). By Lemma 3.3.5, there
exists a position p ∈ Pos(t) and a position p′ ∈ Pos(t′) such that t|p = u,
t′|p′ = v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p), root(t|p|i) =
root(t′|p′|i). Therefore, (u, v) is a commutative conflict pair.

(⇐) By Lemma 3.3.5, there is a configuration 〈u
y

, v ∧ CT1 | S1 | θ1〉
such that 〈t

x
, t′ | ∅ | id 〉 →∗ 〈u

y

, v ∧ CT1 | S1 | θ1〉, u
y

, v 6∈ S1,
and root(u) 6= root(v). Then, the inference rule Solve is applied, i.e.,

〈u
y

, v ∧CT1 | S1 | θ1〉 → 〈CT1 | u
y

, v ∧ S1 | θ1〉 and u
y

, v will be part of
S in the final configuration 〈∅ | S | θ〉.

The following lemma establishes the link between the computed sub-
stitution and a proper generalization term.

Lemma 3.3.8 Given terms t and t′ such that every symbol in t and

t′ is free or commutative, and a fresh variable x, 〈t
x
, t′ | ∅ | id 〉 →∗

〈C | S | θ〉, using the inference rules of Figures 3.1 and 3.2 iff xθ is a
generalization of t and t′ modulo commutativity.

Proof. By structural induction on the term xθ. If xθ = x, then θ = id
and the conclusion follows. If xθ = f(u1, . . . , uk) and f is free, then
the inference rule DecomposeE of Figure 3.1 is applied and we have that
t = f(t1, . . . , tk) and t′ = f(t′1, . . . , t

′
k). If xθ = f(u1, . . . , uk) and f

is commutative, then the inference rule DecomposeC of Figure 3.2 is
applied and we have that either: (i) t = f(t1, t2) and t′ = f(t′1, t

′
2), or

(ii) t = f(t1, t2) and t′ = f(t′2, t
′
1), or (iii) t = f(t2, t1) and t′ = f(t′1, t

′
2),

or (iv) t = f(t2, t1) and t′ = f(t′2, t
′
1). By induction hypothesis, ui is
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a generalization of ti and t′i, for each i. Now, if for each pair of terms
in u1, . . . , uk there are no shared variables, then the conclusion follows.
Otherwise, for each variable z shared between two different terms ui and

uj, there is a constraint w1

z
, w2 ∈ S and, by Lemma 3.3.7, there is a

commutative conflict pair (w1, w2) in ti and t′i. Thus, the conclusion
follows.

Finally, correctness and completeness are proved as follows.

Theorem 3.3.9 (Correctness and Completeness) Given an equa-
tional theory (Σ, E), Σ-terms t and t′ such that every symbol in t and
t′ is free or commutative, and x a fresh variable, then u ∈ genE(t, t′) iff

there is u′ in {xθ | 〈t
x
, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using the inference

rules of Figures 3.1 and 3.2 such that u 'E u′.

Proof. By contradiction. By Lemma 3.3.8, xθ is a generalization of t
and t′. If xθ is not a generalization of t and t′ up to renaming, then
there is a term u which is a generalization of t and t′ and a substitution ρ
which is not a variable renaming such that xθρ =E u. By Lemma 3.3.4,
Ran(θ) = Var(xθ), hence we can choose ρ with Dom(ρ) = Var(xθ).
Since ρ is not a variable renaming, either:

1. there are variables y, y′ ∈ Var(xθ) and a variable z such that yρ =
y′ρ = z, or

2. there is a variable y ∈ Var(xθ) and a non-variable term v such that
yρ = v.

In case (1), there are two positions p, p′ in u such that u|p = z = u|p′ .
Moreover, there is a position q in xθ such that (xθ)|q = y and the pair
(y, z) is a conflict pair of xθ and u. Similarly there is a position q′ in xθ
such that (xθ)|q′ = y′ and the pair (y′, z) is a conflict pair of xθ and u.
But this also means that there is a position qt in t such that t|qt = w1

and the pair (w1, z) is a conflict pair of t and u; and there is a position
q′t′ in t′ such that t|q′

t′
= w2 and the pair (w2, z) is a conflict pair of t′

and u. But this is impossible by Lemmas 3.3.7 and 3.3.4. In case (2),
there is a position p such that (xθ)|p = y and, since yρ = v and v is a
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non-variable term, then p is not involved in any conflict pair of t and t′.
But this is again impossible by Lemmas 3.3.7 and 3.3.4.

We recall again that in general the inference rules of Figures 3.1 and
3.2 together are not confluent, and different final configurations 〈∅ | S1 |
θ1〉, . . . , 〈∅ | Sn | θn〉 correspond to different generalizations xθ1, . . . , xθn.

3.4 Least general generalization modulo A

In this section we provide a specific inference rule DecomposeA for han-
dling function symbols obeying the associativity axiom (but not the com-
mutativity one). A specific set of rules for dealing with AC function
symbols is given in the next section.

The DecomposeA rule is given in Figure 3.3. We use flattened versions
of the terms which use poly-variadic versions of the associative symbols,
i.e., being f an associative symbol, with n arguments, and n ≥ 2, flat-
tened terms are canonical forms w.r.t. the set of rules given by the
following rule schema

f(x1, . . . , f(t1, . . . , tn), . . . , xm)→ f(x1, . . . , t1, . . . , tn, . . . , xm) n,m ≥ 2

Given an associative symbol f and a term f(t1, . . . , tn) we call f -alien
terms (or simply alien terms) to those terms among t1, . . . , tn that are
not rooted by f . In the following, being f an associative poly-varyadic
symbol, by convention f(t) represents the term t itself, since symbol f
needs at least two arguments. The inference rule of Figure 3.3 replaces
the syntactic decomposition inference rule for the case of an associative
function symbol f , where all prefixes of t1, . . . , tn and t′1, . . . , t

′
m are con-

sidered. Note that this rule is (don’t know) non-deterministic, hence all
possibilities must be explored.

This inference rule for associativity is better than generating all terms
in the corresponding equivalence class, as explained in Chapter 3, since
we will eagerly stop the computation whenever we find a constraint

t
x
, f(t1, . . . , tn) such that root(t) 6= f without considering all the combi-

nations in the equivalence class of f(t1, . . . , tn).
We give the rule DecomposeA for the case when, in the generalization

problem f(t1, ..., tn)
x
, f(s1, ..., sm), we have that n ≥ m. For the other
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DecomposeA

Af ∈ ax(f) ∧ Cf 6∈ ax(f) ∧m ≥ 2 ∧ n ≥ m ∧ k ∈ {1, . . . , (n−m) + 1}

〈f(t1, . . . , tn)
x
, f(t′1, . . . , t

′
m) ∧ CT | S | θ〉 →

〈f(t1, . . . , tk)
x1
, t′1 ∧ f(tk+1, . . . , tn)

x2
, f(t′2, . . . , t

′
m) ∧ CT | S | θσ〉

where σ = {x 7→ f(x1, x2)}, and x1, x2 are fresh variables

Figure 3.3: Decomposition rule for an associative (non–commutative)
function symbol f

lggE(f(f(a, c), b), f(c, b)), with E = {Af}
↓ Initial Configuration

〈f(a, c, b)
x

, f(c, b) | ∅ | ∅〉
↙ DecomposeA ↘

〈a
x1

, c ∧ f(c, b)
x2

, b | ∅ | {x 7→ f(x1, x2)}〉 〈f(a, c)
x3

, c ∧ b
x4

, b | ∅ | {x 7→ f(x3, x4)}〉
↓ Solve ↓ Solve

〈f(c, b)
x2

, b | a
x1

, c | {x 7→ f(x1, x2)}〉 〈b
x4

, b | f(a, c)
x3

, c | {x 7→ f(x3, x4)}〉
↓ Solve ↓ Decompose

〈∅ | a
x1

, c ∧ f(c, b)
x2

, b | {x 7→ f(x1, x2)}〉 〈∅ | f(a, c)
x3

, c | {x 7→ f(x3, b), x4 7→ b}〉
↘ maximal<A ↙
{x 7→ f(x3, b), x4 7→ b}

Figure 3.4: Computation trace for the A–generalization of terms
f(f(a, c), b) and f(c, b)).

way around, i.e., n < m, a similar rule would be needed, that we omit
since it is entirely similar. The following example illustrates the least
general generalization modulo A.

Example 3.4.1
Let t = f(f(a, c), b) and t′ = f(c, b) be two terms where f is associa-
tive, i.e., ax(f) = {Af}. By applying the rules SolveE, RecoverE, and
DecomposeA above, we end in a terminal configuration 〈∅ | S | θ〉, where
θ = {x 7→ f(x3, b), x4 7→ b}, thus we obtain that the lgg modulo A of t
and t′ is f(x3, b). The computation trace is shown in Figure 3.4.

Note that in the example above there is a unique lgg modulo A,
although this is not true for some generalization problems as witnessed
by the following example.
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Example 3.4.2
Let t = f(f(a, a), f(b, b)) and t′ = f(f(b, b), b) be two terms where f is
associative, i.e., ax(f) = {Af}. By applying the rules SolveE, RecoverE,
and DecomposeA above, we end in two terminal configurations 〈∅ | S1 |
θ1〉 and 〈∅ | S2 | θ2〉, where θ1 = {x 7→ f(f(x, x), y)} and θ2 = {x 7→
f(f(y, b), b)}. Both are more general terms.

Termination is straightforward.

Theorem 3.4.3 (Termination) Given an equational theory (Σ, E), Σ-
terms t and t′ such that every symbol in t and t′ is free or associative,
and x a fresh variable, every derivation stemming from an initial config-

uration 〈t
x
, t′ | ∅ | id〉 using the inference rules of Figures 3.1 and 3.3

terminates with a configuration 〈∅ | S | θ〉.

Proof. Similar to the proof of Theorem 1.1.1 by simply considering the
flattened versions of the terms.

In order to prove correctness and completeness of the lgg calculus modulo
A, similarly to Definitions 1.2.3 and 3.3.6, we introduce the auxiliary
concept of an associative conflict pair, and prove some related, auxiliary
results.

First, we prove an auxiliary result stating that only (independently)
fresh variables y appear in the index positions of the constraints in CT
and S components of lgg configurations.

Lemma 3.4.4 (Uniqueness of Generalization Variables) Lemma
1.1.2 holds

for t
x
, t′ when the symbols in t, t′ are free or associative, for the

inference rules of Figures 3.1 and 3.3.

The lemma below states that the range of the substitutions partially
computed at any stage of a generalization derivation coincides with the
set of the index variables of the configuration.

Lemma 3.4.5 Given terms t and t′ such that every symbol in t and

t′ is free or associative, and a fresh variable x such that 〈t
x
, t′ | ∅ |

id 〉 →∗ 〈CT | S | θ〉 using the inference rules of Figures 3.1 and 3.3,
then Index(S ∪ CT ) ⊆ Ran(θ), and Ran(θ) = Var(xθ).
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Proof. Immediate by construction.

The following lemma establishes an auxiliary property that is useful
for defining the notion of an associative conflict pair of terms. Note that
the notation p|i for accessing the symbol at depth i of the position p of
a term t is still valid for flattened terms.

Lemma 3.4.6 Given flattened terms t and t′ such that every symbol in

t and t′ is free or associative, and a fresh variable x, 〈t
x
, t′ | ∅ | id 〉 →∗

〈u
y

, v ∧ CT | S | θ〉 using the inference rules of Figures 3.1 and 3.3 iff
there exists a position p ∈ Pos(t) and a position p′ ∈ Pos(t′) such that
either:

1. t|p = u, t′|p′ = v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i);

2. t|p = u, v = f(v1, . . . , vn), t′|p′ =
f(w1, . . . , wm, v1, . . . , vn, w

′
1, . . . , w

′
m′), f is associative,

depth(p) = depth(p′) + 1, and ∀1 ≤ i ≤ depth(p′),
root(t|p|i) = root(t′|p′|i);

3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm, u1, . . . , un, w
′
1, . . . , w

′
m′),

t′|p′ = v, f is associative, depth(p′) = depth(p) + 1, and ∀1 ≤
i ≤ depth(p), root(t|p|i) = root(t′|p′|i); or

4. u = f(u1, . . . , uk), t|p = f(x1, . . . , xm1 , u1, . . . , uk), v =
f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm2 , v1, . . . , vn), f is associative,
depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p), root(t|p|i) =
root(t′|p′|i).

Proof. Straightforward by successive application of the inference rule
Decompose of Figure 1.1 and the inference rule DecomposeA of Figure
3.3.

Definition 3.4.7 (Associative Conflict Pair) Given flattened terms
t and t′ such that every symbol in t and t′ is free or associative, the pair
(u, v) is called an associative conflict pair of t and t′ iff there exist at
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least one position p ∈ Pos(t) and at least one position p′ ∈ Pos(t′) such
that either:

1. t|p = u, t′|p′ = v, u 6=E v, depth(p) = depth(p′), and ∀1 ≤ i ≤
depth(p), root(t|p|i) = root(t′|p′|i); or

2. t|p = u, v = f(v1, . . . , vn), t′|p′ =
f(w1, . . . , wm, v1, . . . , vn, w

′
1, . . . , w

′
m′), f is associative,

root(u) 6= f , depth(p) = depth(p′) + 1, and ∀1 ≤ i ≤ depth(p′),
root(t|p|i) = root(t′|p′|i); or

3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm, u1, . . . , un, w
′
1, . . . , w

′
m′),

t′|p′ = v, f is associative, root(v) 6= f , depth(p′) = depth(p) + 1,
and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

Note that the least general generalization of terms f(a, c, d, b) and
f(a, e, e, b) is f(a, x1, x2, b) instead of f(a, x1, b), which may seem the
most natural choice. Only when the number of elements is different, a
variable takes care of one element of the shortest list and the remaining
elements of the longer list, e.g., the least general generalization of terms
f(a, c, d, b) and f(a, e, e, e, e, b) is again f(a, x1, x2, b), where x2 takes care
of d and f(e, e, e).

The following lemma states the appropriate connection between the
constraints in a derivation and the associative conflict pairs of the initial
configuration.

Lemma 3.4.8 Given flattened terms t and t′ such that every symbol in

t and t′ is free or associative, and a fresh variable x, 〈t
x
, t′ | ∅ | id 〉 →∗

〈CT | u
y

, v ∧ S | θ〉 using the inference rules of Figures 3.1 and 3.3 iff
(u, v) is an associative conflict pair of t and t′.

Proof. (⇒) If u
y

, v ∈ S, then there must be two configurations 〈u
y

, v∧
CT1 | S1 | θ1〉, 〈CT2 | u

y

, v ∧ S2 | θ2〉 such that

〈t
x
, t′ | ∅ | id 〉

→∗ 〈u
y

, v ∧ CT1 | S1 | θ1〉

→ 〈CT2 | u
y

, v ∧ S2 | θ2〉
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→∗ 〈∅ | S | θ〉,

u
y

, v 6∈ S1, u
y

, v 6∈ CT2, and root(u) 6= root(v). By Lemma 3.4.6, there
exist a position p ∈ Pos(t) and a position p′ ∈ Pos(t′) such that either:

1. t|p = u, t′|p′ = v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i); or

2. t|p = u, v = f(v1, . . . , vn), t′|p′ =
f(w1, . . . , wm, v1, . . . , vn, w

′
1, . . . , w

′
m′), f is associative,

depth(p) = depth(p′) + 1, and ∀1 ≤ i ≤ depth(p′),
root(t|p|i) = root(t′|p′|i); or

3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm, u1, . . . , un, w
′
1, . . . , w

′
m′),

t′|p′ = v, f is associative, depth(p′) = depth(p) + 1, and ∀1 ≤
i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

Note that, since root(u) 6= root(v), the fourth case of Lemma 3.4.6 is not
possible. Therefore, either (u, v) (or (u, f(v1, . . . , vn))) is an associative
conflict pair.

(⇐) By Lemma 3.4.6, there is a configuration 〈u
y

, v ∧ CT1 | S1 | θ1〉
such that 〈t

x
, t′ | ∅ | id 〉 →∗ 〈u

y

, v ∧ CT1 | S1 | θ1〉, u
y

, v 6∈ S1,
and root(u) 6= root(v). Then, the inference rule Solve is applied, i.e.,

〈u
y

, v ∧CT1 | S1 | θ1〉 → 〈CT1 | u
y

, v ∧ S1 | θ1〉 and u
y

, v will be part of
S in the final configuration 〈∅ | S | θ〉.

Finally, the following lemma establishes the link between the com-
puted substitution and a proper generalization term.

Lemma 3.4.9 Given flattened terms t and t′ such that every symbol in

t and t′ is free or associative, and a fresh variable x, 〈t
x
, t′ | ∅ | id 〉 →∗

〈C | S | θ〉 using the inference rules of Figures 3.1 and 3.3 iff xθ is a
generalization of t and t′ modulo associativity.

Proof. By structural induction on the term xθ (or u). If xθ = x, then
θ = id and the conclusion follows. If xθ = f(u1, . . . , uk) and f is free,
then the inference rule DecomposeE of Figure 3.1 is applied and we have
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that t = f(t1, . . . , tk) and t′ = f(t′1, . . . , t
′
k). If xθ = f(u1, . . . , uk) and

f is associative, then the inference rule DecomposeA of Figure 3.3 is
applied and we have that t = f(u1, . . . , un), t′ = f(v1, . . . , vm), and
k = min(n,m). Let us consider the different values for k, n and m.

• If k = n = m, then by induction hypothesis ti is a generalization
of ui and vi, for each i ∈ {1, . . . , k}. Now, if there are no shared
variables among all ti, then the conclusion follows. Otherwise, for
each variable z shared between two different terms ti and tj, there

is a constraint w1

z
, w2 ∈ S and, by Lemma 3.4.8, there is a conflict

pair (w1, w2) in ti and t′i. Thus, the conclusion follows.

• If k = n and ` = m − n, then there is an element j ∈ {1, . . . , k}
such that by induction hypothesis ti is a generalization of ui and vi
for each i < j, tj is a generalization of uj and f(vj, . . . , vj+`), and ti
is a generalization of ui and vi+` for each i > j. Now, if there are no
shared variables among all ti s.t. i 6= j, then the conclusion follows.
Otherwise, for each variable z shared between two different terms

ti1 and ti2 s.t. i1 6= j and i2 6= j, there is a constraint w1

z
, w2 ∈ S

and, by Lemma 3.4.8, there is a conflict pair (w1, w2) in ti and t′i.
Thus, the conclusion follows.

Finally, correctness and completeness are proved as follows.

Theorem 3.4.10 (Correctness and Completeness) Given an equa-
tional theory (Σ, E), and flattened Σ-terms t and t′ such that every
symbol in t and t′ is free or associative, and a fresh variable x, then

u ∈ genE(t, t′) iff there is u′ in {xθ | 〈t
x
, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using

the inference rules of Figures 3.1 and 3.3 such that u 'E u′.

Proof. Similar to Theorem 3.3.9.

Recall that the inference rules of Figures 3.1 and Figure 3.3 to-
gether are not confluent, so that different final configurations 〈∅ | S1 |
θ1〉, . . . , 〈∅ | Sn | θn〉 correspond to different generalizations xθ1, . . . , xθn.
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DecomposeAC

{Af , Cf} ⊆ ax(f) ∧ n ≥ m ∧ {i1, . . . , im−1}]̄{im, . . . , in} = {1, . . . , n}

〈f(t1, . . . , tn)
x
, f(t′1, . . . , t

′
m) ∧ C | S | θ〉 →

〈ti1
x1
, t′1 ∧ . . . ∧ tim−1

xm−1

, t′m−1 ∧ f(tim , . . . , tin)
xm
, t′m ∧ C | S | θσ〉

where σ = {x 7→ f(x1, . . . , xm)}, and x1, . . . , xm are fresh variables

Figure 3.5: Decomposition rule for an associative–commutative function
symbol f

3.5 Least general generalization modulo AC

In this section we provide a specific inference rule DecomposeAC for han-
dling function symbols obeying both the associativity and commutativity
axioms. Note that we use again flattened versions of the terms, as in the
associative case of Section 3.4. Actually, by considering AC function
symbols as varyadic functions with no ordering among the arguments,
an AC term can be represented by a canonical representative (Hullot,
1980; Eker, 2003) such that =AC is decidable.

The new decomposition rule for the AC case is similar to the de-
compose inference rule for associative function symbols, except that all
permutations of f(t1, . . . , tn) and f(s1, . . . , sm) are considered. As be-
fore, the AC generalization of t and s are the maximal elements w.r.t.

<AC of the normal forms of t
x
, t′ w.r.t. the new extended generalization

calculus. Just notice that this rule is (don’t know) non-deterministic,
hence all possibilities must be explored.

Similarly to the rule DecomposeA, we give the rule DecomposeAC for

the case when, in the generalization problem f(t1, ..., tn)
x
, f(s1, ..., sm),

we have that n ≥ m. For the other way around, i.e., n < m, a similar rule
would be needed, that we omit since it is entirely similar. To simplify, we
write {i1, . . . , ik}]̄{ik+1, . . . , in} = {1, . . . , n} to denote that the sequence
{i1, . . . , in} is a permutation of the sequence {1, . . . , n} and, given an
element k ∈ {1, . . . , n}, we split the sequence {i1, . . . , in} in the two
parts, {i1, . . . , ik} and {ik+1, . . . , in}.
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lggE(f(a, f(a, b)), f(f(b, b), a)), with E = {Cf , Af}
↓ Initial Configuration

〈f(a, a, b)
x

, f(b, b, a) | ∅ | id〉
↙ DecomposeAC (Other permutations are not shown) ↘

〈a
x1

, b ∧ a
x2

, b ∧ b
x3

, a |∅ |{x 7→f(x1, x2, x3)}〉 〈a
x4

, b ∧ a
x5

, a ∧ b
x6

, b |∅ |{x 7→f(x4, x5, x6)}〉
↓ Solve ↓ Solve

〈a
x2

, b ∧ b
x3

, a | a
x1

, b | {x 7→ f(x1, x2, x3)}〉 〈a
x5

, a ∧ b
x6

, b | a
x4

, b | {x 7→ f(x4, x5, x6)}〉
↓ Recover ↓ Decompose

〈b
x3

, a | a
x1

, b | {x 7→ f(x1, x1, x3), x2 7→ x1}〉 〈b
x6

, b | a
x4

, b | {x 7→ f(x4, a, x6), x5 7→ a}〉
↓ Solve ↓ Decompose

〈∅ | a
x1

, b ∧ b
x3

, a | {x 7→ f(x1, x1, x3), x2 7→ x1}〉 〈∅ | a
x4

, b | {x 7→ f(x4, a, b), x5 7→ a, x6 7→ b}〉
↘ maximal<AC ↙

{x 7→ f(x1, x1, x3), x2 7→ x1} and {x 7→ f(x4, a, b), x5 7→ a, x6 7→ b}

Figure 3.6: Computation trace for the AC–generalizations of terms
f(a, f(a, b)) and f(f(b, b), a).

Example 3.5.1
Let t = f(a, f(a, b)) and s = f(f(b, b), a) be two terms where f is asso-
ciative and commutative, i.e., ax(f) = {Af , Cf}. By applying the rules
SolveE, RecoverE, and DecomposeAC above, we end in two terminal
configurations whose respective substitution components are θ1 = {x 7→
f(x1, x1, x3), x2 7→ x1} and θ2 = {x 7→ f(x4, a, b), x5 7→ a, x6 7→ b}, thus
we compute that the lggs modulo AC of t and s are f(x1, x1, x3) and
f(x4, a, b). The corresponding computation trace is shown in Figure 3.6.

Termination is straightforward.

Theorem 3.5.2 (Termination) Given an equational theory (Σ, E), Σ-
terms t and t′ such that every symbol in t and t′ is free or associative-
commutative, and x is a variable, every derivation stemming from an

initial configuration 〈t
x
, t′ | ∅ | id〉 using the inference rules of Figures 3.1

and 3.5 terminates with a configuration 〈∅ | S | θ〉.

Proof. Similar to the proof of Theorem 1.1.1.

In order to prove correctness and completeness of the lgg calculus
modulo AC, similarly to Definitions 1.2.3, 3.3.6, and 3.4.7, we introduce
the auxiliary concept of an associative-commutative conflict pair, and
prove the appropriate auxiliary results.
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First, we prove an auxiliary result stating that only (independently)
fresh variables y appear in the index positions of the constraints in CT
and S components of lgg configurations.

Lemma 3.5.3 (Uniqueness of Generalization Variables) Lemma

1.1.2 holds for t
x
, t′ when the symbols in t, t′ are free or associative-

commutative, for the inference rules of Figures 3.1 and 3.5.

The lemma below states that the range of the substitutions partially
computed at any stage of a generalization derivation coincides with the
set of the index variables of the configuration.

Lemma 3.5.4 Given terms t and t′ such that every symbol in t and
t′ is free or associative-commutative, and a fresh variable x such that

〈t
x
, t′ | ∅ | id 〉 →∗ 〈CT | S | θ〉 using the inference rules of Figures 3.1

and 3.5, then Index(S ∪ CT ) ⊆ Ran(θ), and Ran(θ) = Var(xθ).

Proof. Immediate by construction.

The following lemma establishes an auxiliary property that is useful
for defining the notion of an associative-commutative conflict pair of
terms.

Lemma 3.5.5 Given flattened terms t and t′ such that every symbol
in t and t′ is free or associative-commutative, and a fresh variable x,

〈t
x
, t′ | ∅ | id 〉 →∗ 〈u

y

, v ∧ CT | S | θ〉 using the inference rules of
Figures 3.1 and 3.5 iff there exist a position p ∈ Pos(t) and a position
p′ ∈ Pos(t′) such that either:

1. t|p = u, t′|p′ = v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i); or

2. t|p = u, v = f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm), f is associative-
commutative, for each i ∈ {1, . . . , n} there is j ∈ {1, . . . ,m} s.t.
vi =E wj, depth(p) = depth(p′) + 1, and ∀1 ≤ i ≤ depth(p′),
root(t|p|i) = root(t′|p′|i); or
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3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm), t′|p′ = v, f is associative-
commutative, for each j ∈ {1, . . . ,m} there is i ∈ {1, . . . , n} s.t.
wj =E vi, depth(p′) = depth(p) + 1, and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i).

Proof. Straightforward by successive application of the inference rule
Decompose of Figure 1.1 and the inference rule DecomposeAC of Figure
3.5.

Definition 3.5.6 (Associative-commutative Conflict Pair) Given
flattened
terms t and t′ such that every symbol in t and t′ is free or associativ-com
mutative, the pair (u, v) is called an associative conflict pair of t and t′

iff there exist at least one position p ∈ Pos(t) and at least one position
p′ ∈ Pos(t′) such that either:

1. t|p = u, t′|p′ = v, u 6=E v, depth(p) = depth(p′), and ∀1 ≤ i ≤
depth(p), root(t|p|i) = root(t′|p′|i); or

2. t|p = u, v = f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm), f is associative-
commutative, for each i ∈ {1, . . . , n} there is j ∈ {1, . . . ,m} s.t.
vi =E wj, u 6=E v, depth(p) = depth(p′) + 1, and ∀1 ≤ i ≤
depth(p′), root(t|p|i) = root(t′|p′|i); or

3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm), t′|p′ = v, f is associative-
commutative, for each j ∈ {1, . . . ,m} there is i ∈ {1, . . . , n} s.t.
wj =E vi, u 6=E v, depth(p′) = depth(p)+1, and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i).

The following lemma states the appropriate connection between the
constraints in a derivation and the associative-commutative conflict pairs
of the initial configuration.

Lemma 3.5.7 Given flattened terms t and t′ such that every symbol
in t and t′ is free or associative-commutative, and a fresh variable x,

〈t
x
, t′ | ∅ | id 〉 →∗ 〈CT | u

y

, v ∧ S | θ〉 using the inference rules of
Figures 3.1 and 3.5 iff (u, v) is an associative-commutative conflict pair
of t and t′.
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Proof. Similar to the proof of Lemma 3.4.8 but using Lemma 3.5.5 in-
stead of Lemma 3.4.6 and Definition 3.5.6 instead of Definition 3.4.7.

The following lemma establishes the link between the computed sub-
stitution and a proper generalization term.

Lemma 3.5.8 Given flattened terms t and t′ such that every symbol in t

and t′ is free or associative-commutative, and a fresh variable x, 〈t
x
, t′ |

∅ | id 〉 →∗ 〈C | S | θ〉 using the inference rules of Figures 3.1 and 3.5 iff
xθ is a generalization of t and t′ modulo associativity-commutativity.

Proof. Similar to the proof of Lemma 3.4.9 but using Lemma 3.5.7 in-
stead of Lemma 3.4.8 and Definition 3.5.6 instead of Definition 3.4.7.

Finally, correctness and completeness are proved as follows.

Theorem 3.5.9 (Correctness and Completeness) Given an equa-
tional theory (Σ, E), flattened Σ-terms t and t′ such that every symbol in
t and t′ is free or associative-commutative, and a fresh variable x, then

u ∈ genE(t, t′) iff there is u′ in {xθ | 〈t
x
, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using

the inference rules of Figures 3.1 and 3.5 such that u 'E u′.

Proof. Similar to Theorem 3.3.9.

Recall that the inference rules of Figures 3.1 and 3.5 together are not
confluent, so that different final configurations 〈∅ | S1 | θ1〉, . . . , 〈∅ | Sn |
θn〉 correspond to different generalizations xθ1, . . . , xθn.

3.6 Least general generalization modulo U

Finally, let us introduce the inference rule of Figure 3.7 for handling func-
tion symbols f which have an identity element e. This rule considers the
identity axioms in a rather lazy or on-demand manner to avoid infinite
generation of all the elements in the equivalence class. The rule corre-
sponds to the case when the root symbol f of the term t in the left–hand
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ExpandU
root(t) ≡ f ∧ Uf ∈ ax(f) ∧ root(t′) 6= f ∧ t′′ ∈ {f(e, t′), f(t′, e)}

〈t
x
, t′ ∧ CT | S | θ〉 → 〈t

x
, t′′ ∧ CT | S | θ〉

Figure 3.7: Inference rule for expanding function symbol f with identity
element e

side of the constraint t
x
, s has e as an identity element. A companion

rule for handling the case when the root symbol f of the term t′ in the
right–hand side has e as an identity element is omitted, since that is
entirely similar.

Example 3.6.1
Let t = f(a, b, c, d) and s = f(a, c) be two terms where
ax(f) = {Af , Cf , Uf}. By applying the rules SolveE,
RecoverE, DecomposeAC , and ExpandU above, we
end in a terminal configuration 〈∅ | S | θ〉, where
θ = {x 7→ f(a, f(c, f(x5, x6))), x1 7→ a, x2 7→ f(c, f(x5, x6)), x3 7→
c, x4 7→ f(x5, x6)}, thus we compute that the lgg modulo ACU of t and
s is f(a, c, x5, x6). The computation trace is shown in Figure 3.8.

Note that in the example above there is a unique lgg modulo U,
although this is not true for some generalization problems as witnessed
by the following example.

Example 3.6.2
Let t = f(f(a, a), f(b, a)) and t′ = f(f(b, b), a) be two terms such that
{Af , Uf} ⊆ ax(f). We end in two terminal configurations 〈∅ | S1 | θ1〉
and 〈∅ | S2 | θ2〉, where θ1 = {x 7→ f(f(x, x), f(y, a))} and θ2 = {x 7→
f(y, f(b, a))}. Both are more general terms.

Termination is slightly more difficult when there are symbols with
identities.

Theorem 3.6.3 (Termination) Given an equational theory (Σ, E), Σ-
terms t and t′ such that every symbol in t and t′ is free or with identity
element e, and a fresh variable x, every derivation stemming from an
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lggE(f(a, b, c, d), f(a, c)), with E = {Cf , Af , Uf}
↓ Initial Configuration

〈f(a, b, c, d)
x

, f(a, c) | ∅ | id〉
↓ DecomposeAC (Other permutations are not shown)

〈a
x1

, a ∧ f(b, c, d)
x2

, c | ∅ | {x 7→ f(x1, x2)}〉
↓ Decompose

〈f(b, c, d)
x2

, c | ∅ | {x 7→ f(a, x2), x1 7→ a}〉
↓ ExpandU

〈f(b, c, d)
x2

, f(c, e) | ∅ | {x 7→ f(a, x2), x1 7→ a}〉
↓ DecomposeAC (Other permutations are not shown)

〈c
x3

, c ∧ f(b, d)
x4

, e | ∅ | {x 7→ f(a, f(x3, x4)), x1 7→ a, x2 7→ f(x3, x4)}〉
↓ Decompose

〈f(b, d)
x4

, e | ∅ | {x 7→ f(a, f(c, x4)), x1 7→ a, x2 7→ f(c, x4), x3 7→ c}〉
↓ ExpandU

〈f(b, d)
x4

, f(e, e) | ∅ | {x 7→ f(a, f(c, x4)), x1 7→ a, x2 7→ f(c, x4), x3 7→ c}〉
↓ DecomposeAC (Other permutations are not shown)

〈b
x5

, e ∧ d
x6

, e |∅ |{x 7→f(a, f(c, f(x5, x6))), x1 7→a, x2 7→f(c, f(x5, x6)), x3 7→c, x4 7→f(x5, x6)}〉
↓ Solve

〈d
x6

, e | b
x5

, e | {x 7→ f(a, f(c, f(x5, x6))), x1 7→ a, x2 7→ f(c, f(x5, x6)), x3 7→c, x4 7→f(x5, x6)}〉
↓ Solve

〈∅ |b
x5

, e ∧ d
x6

, e |{x 7→f(a, f(c, f(x5, x6))), x1 7→a, x2 7→f(c, f(x5, x6)), x3 7→c, x4 7→f(x5, x6)}〉
↓ maximal<ACU

{x 7→ f(a, f(c, f(x5, x6))), x1 7→ a, x2 7→ f(c, f(x5, x6)), x3 7→ c, x4 7→ f(x5, x6)}

Figure 3.8: Computation trace for the ACU–generalization of terms
f(a, b, c, d) and f(a, c).

initial configuration 〈t
x
, t′ | ∅ | id〉 using the inference rules of Figures 3.1

and 3.7 terminates with a configuration 〈∅ | S | θ〉.

Proof. Let |u| be the number of symbol occurrences in the syntactic
object u. Let k be the minimum of |t| and |t′|. k is an upper bound to
the number of times that the inference rule DecomposeE of Figure 3.1
can be applied. Let k be the maximum of |t| and |t′|. Since the inference
rule ExpandU adds a symbol f with an identity to one side of a constraint
only when the other side already has such a symbol, k − k is an upper
bound to the number of times that the inference rule ExpandU followed
by a decomposing rule of Figure 3.1 (or Figures 3.2, 3.3, and 3.5) can be
applied. Finally, the application of rules SolveE and RecoverE strictly
decreases the size |CT | of the CT component of the lgg configurations
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at each step, hence the derivation terminates.

In order to prove correctness and completeness, we introduce the auxil-
iary concepts of an identity conflict pair, similarly to Definitions 1.2.3,
3.3.6, 3.4.7, and 3.5.6, plus some auxiliary results.

First, we prove an auxiliary result stating that only (independently)
fresh variables y appear in the index positions of the constraints in CT
and S components of lgg configurations.

Lemma 3.6.4 (Uniqueness of Generalization Variables) Lemma

1.1.2 holds for t
x
, t′ when the symbols in t, t′ are free or with identity

element e, for the inference rules of Figures 3.1 and 3.7.

The lemma below states that the range of the substitutions partially
computed at any stage of a generalization derivation coincides with the
set of the index variables of the configuration.

Lemma 3.6.5 Given terms t and t′ such that every symbol in t and
t′ is free or with identity element e, and a fresh variable x such that

〈t
x
, t′ | ∅ | id 〉 →∗ 〈CT | S | θ〉 using the inference rules of Figures 3.1

and 3.7, then Index(S ∪ CT ) ⊆ Ran(θ), and Ran(θ) = Var(xθ).

Proof. Immediate by construction.

The following lemma establishes an auxiliary property that is useful
for defining the notion of an identity conflict pair of terms.

Lemma 3.6.6 Given terms t and t′ such that every symbol in t and t′

is free or with identity element e, and a fresh variable x, then 〈t
x
, t′ | ∅ |

id 〉 →∗ 〈u
y

, v ∧ CT | S | θ〉 using the inference rules of Figures 3.1 and
3.7 iff there exist a position p ∈ Pos(t) and a position p′ ∈ Pos(t′) such
that either:

1. t|p = u, t′|p′ = v, ∀1 ≤ i ≤ min(depth(p), depth(p′)), root(t|p|i) =
root(t′|p′|i), and
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• if p ≥ p′, then ∀i ∈ {depth(p′), . . . , depth(p)}, root(t|p|i) = f
s.t. f has identity element e, or

• if p′ > p, then ∀i ∈ {depth(p), . . . , depth(p′)}, root(t′|p′|i) = f
s.t. f has identity element e; or

2. t|p = u, v = e, p′ = p|depth(p)−1, root(t|p′) = f s.t. f has identity
element e, and ∀1 ≤ i ≤ depth(p′), root(t|p|i) = root(t′|p′|i); or

3. u = e, t′|p′ = v, p = p′|depth(p′)−1, root(t′|p) = f s.t. f has identity
element e, and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

Proof. Straightforward by successive application of the inference rule
Decompose of Figure 1.1 and the inference rule DecomposeU of Figure
3.7.

Definition 3.6.7 (Identity Conflict Pair) Given terms t and t′ such
that every symbol in t and t′ is free or with identity element e, the pair
(u, v) is called an identity conflict pair of t and t′ iff there exist at least
one position p ∈ Pos(t) and at least one position p′ ∈ Pos(t′) such that
either:

1. t|p = u, t′|p′ = v, u 6=E v, ∀1 ≤ i ≤ min(depth(p), depth(p′)),
root(t|p|i) = root(t′|p′|i), and

• if p ≥ p′, then ∀i ∈ {depth(p′), . . . , depth(p)}, root(t|p|i) = f
s.t. f has identity element e, or

• if p′ > p, then ∀i ∈ {depth(p), . . . , depth(p′)}, root(t′|p′|i) = f
s.t. f has identity element e; or

2. t|p = u, v = e, u 6=E e, p′ = p|depth(p)−1, root(t|p′) = f s.t.
f has identity element e, and ∀1 ≤ i ≤ depth(p′), root(t|p|i) =
root(t′|p′|i); or

3. u = e, t′|p′ = v, v 6=E e, p = p′|depth(p′)−1, root(t′|p) = f s.t. f has
identity element e, and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

The following lemma states the appropriate connection between the
constraints in a derivation and the identity conflict pairs of the initial
configuration.
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Lemma 3.6.8 Given terms t and t′ such that every symbol in t and t′ is

free or has an identity element, and a fresh variable x, 〈t
x
, t′ | ∅ | id 〉 →∗

〈CT | u
y

, v ∧ S | θ〉 using the inference rules of Figures 3.1 and 3.7 iff
(u, v) is an identity conflict pair of t and t′.

Proof. Similar to the proof of Lemma 3.4.8 but using Lemma 3.6.6 in-
stead of Lemma 3.4.6 and Definition 3.6.7 instead of Definition 3.4.7.

The following lemma establishes the link between the computed sub-
stitution and a proper generalization term.

Lemma 3.6.9 Given terms t and t′ such that every symbol in t and t′ is

free or has an identity element, and a fresh variable x, 〈t
x
, t′ | ∅ | id 〉 →∗

〈C | S | θ〉, using the inference rules of Figures 3.1 and 3.7 iff xθ is a
generalization of t and t′ modulo identity.

Proof. Similar to the proof of Lemma 3.4.9 but using Lemma 3.6.8 in-
stead of Lemma 3.4.8 and Definition 3.6.7 instead of Definition 3.4.7.

Finally, correctness and completeness are proved as follows.

Theorem 3.6.10 (Correctness and Completeness) Given an equa-
tional theory (Σ, E), Σ-terms t and t′ such that every symbol in t
and t′ is free or has an identity element, and a fresh variable x, then

u ∈ genE(t, t′) iff there is u′ in {xθ | 〈t
x
, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using

the inference rules of Figures 3.1 and 3.7 such that u 'E u′.

Proof. Similar to Theorem 3.3.9.

Recall that the inference rules of Figures 3.1 and Figure 3.7 together
are not confluent, hence different final configurations 〈∅ | S1 | θ1〉, . . . , 〈∅ |
Sn | θn〉 correspond to different generalizations xθ1, . . . , xθn. Note that if
the symbol f has an identity element e and is commutative or associative-
commutative, then it is not necessary to consider both forms f(t′, e) and
f(e, t′) in Figure 3.7.
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3.7 A general ACU-generalization method

For the general case when different function symbols satisfying different
associativity and/or commutativity and/or identity axioms are consid-
ered, we can use the inference rules above all together (inference rules
of Figures 3.1, 3.2, 3.3, 3.5, and 3.7) with no need whatsoever for any
changes or adaptations.

The key property of all the above inference rules is their locality : they
are local to the given top function symbol in the left term (or right term
in some cases) of the constraint they are acting upon, irrespective of
what other function symbols and what other axioms may be present in
the given signature Σ and theory E. Such a locality means that these
rules are modular, in the sense that they do not need to be changed
or modified when new function symbols are added to the signature and
new A, and/or C, and/or U axioms are added to E. However, when
new axioms are added to E, some rules that applied before (for example
decomposition for an f which before satisfied ax(f) = ∅, but now has
ax(f) 6= ∅) may not apply, and, conversely, some rules that did not apply
before now may apply (because new axioms are added to f). But the
rules themselves do not change! They are the same and can be used
to compute the set of lggs of two terms modulo any theory E in the
parametric family IE of theories of the form E =

⋃
f∈Σ ax(f), where

ax(f) ⊆ {Af , Cf , Uf}. Termination of the algorithm is straightforward.

Theorem 3.7.1 (Termination) For an equational theory (Σ, E) with
E ∈ IE, two Σ-terms t and t′, and a fresh variable x, every derivation

stemming from an initial configuration 〈t
x
, t′ | ∅ | id〉 using the inference

rules of Figures 3.1, 3.2, 3.3, 3.5, and 3.7 terminates with a configuration
〈∅ | S | θ〉.

The correctness and completeness of our algorithm is ensured by:

Theorem 3.7.2 (Correctness and Completeness) Given an equa-
tional theory (Σ, E) with E ∈ IE, Σ-terms t and t′, and a fresh variable x,

then u ∈ genE(t, t′) iff there is u′ in {xθ | 〈t
x
, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉}

using the inference rules of Figures 3.1, 3.2, 3.3, 3.5, andffl 3.7 such that
u 'E u′.



4
Order-Sorted Least General

Generalizations modulo E

In this chapter, we generalize the unsorted modular equational general-
ization algorithm presented in Chapter 3 to the order-sorted setting.

First of all, we assume that a kind-completed, pre-regular, order-
sorted signature (Σ, S, <) has the same equational attributes for over-
loaded symbols, i.e., for any two operator declarations of symbol f with
arity n, f : s1 × . . .× sn → s and f : s′1 × . . .× s′n → s′ such that si ≤ si
for 1 ≤ i ≤ n, if an equation t = t′ is applicable to f : s1 × . . .× sn → s,
it must also be applicable to f : s′1 × . . .× s′n → s′.

As in Chapter 2, we consider two terms t and t′ having the same
top sort, otherwise they are incomparable and no generalization ex-

ists. Starting from the initial configuration 〈t
x:[s]

, t′ | ∅ | id〉 where
[s] = [LS(t)] = [LS(t′)], configurations are transformed until a terminal
configuration 〈∅ | S | θ〉 is reached. Also, as in Chapter 3, when different
function symbols satisfying different associativity and/or commutativity
and/or identity axioms are considered, we can use the inference rules of
Figures 4.1, 4.2, 4.3, 4.4, and 4.5 all together.

Note that we have just followed the same approach of Chapter 2
and extended the inference rules of Figures 3.1, 3.2, 3.3, 3.5, and 3.7 to
Figures 4.1, 4.2, 4.3, 4.4, and 4.5 provided below.

4.1 Termination

Termination is straightforward.
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DecomposeE
f ∈ (Σ ∪ X ) ∧ ax(f) = ∅ ∧ f : [s1]× . . .× [sn]→ [s]

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
n) ∧ CT | S | θ〉 →

〈t1
x1:[s1]

, t′1 ∧ . . . ∧ tn
xn:[sn]

, t′n ∧ CT | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s1], . . . , xn:[sn])}, x1:[s1], . . . , xn:[sn] are fresh
variables, and n ≥ 0.

SolveE
f = root(t) ∧ g = root(t′) ∧ f 6= g ∧ Uf 6∈ ax(f) ∧ Ug 6∈ ax(g)∧

∧s′ ∈ LUBS(LS(t), LS(t′)) ∧ @y @s′′ : t
y:s′′

, t′ ∈E S

〈t
x:[s]

, t′ ∧ CT | S | θ〉 → 〈CT | S ∧ t
z:s′

, t′ | θ〉

where σ = {x:[s] 7→ z:s′} and z:s′ is a fresh variable.

RecoverE
root(t) 6= root(t′) ∧ ∃y : t

y:s′

, t′ ∈E S

〈t
x:[s]

, t′ ∧ CT | S | θ〉 → 〈CT | S | θσ〉

where σ = {x:[s] 7→ y:s′}

Figure 4.1: Basic inference rules for least general E–generalization

DecomposeC

f : [s]× [s]→ [s] ∧ Cf ∈ ax(f) ∧ Af 6∈ ax(f) ∧ i ∈ {1, 2}

〈f(t1, t2)
x:[s]

, f(t′1, t
′
2) ∧ CT | S | θ〉

→ 〈t1
x1:[s]

, t′i ∧ t2
x2:[s]

, t′(i mod 2)+1 ∧ CT | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], x2:[s])}, and x1:[s], x2:[s] are fresh variables

Figure 4.2: Decomposition rule for a commutative function symbol f
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DecomposeA

f : [s]× [s]→ [s] ∧ Af ∈ ax(f) ∧ Cf 6∈ ax(f) ∧
m ≥ 2 ∧ n ≥ m ∧ k ∈ {1, . . . , (n−m) + 1}

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
m) ∧ CT | S | θ〉

→ 〈f(t1, . . . , tk)
x1:[s]

, t′1 ∧ f(tk+1, . . . , tn)
x2:[s]

, f(t′2, . . . , t
′
m) ∧ CT | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], x2:[s])}, and x1:[s], x2:[s] are fresh variables

Figure 4.3: Decomposition rule for an associative (non–commutative)
function symbol f

DecomposeAC

f : [s]× [s]→ [s] ∧ {Af , Cf} ⊆ ax(f) ∧ n ≥ m ∧
{i1, . . . , im−1}]̄{im, . . . , in} = {1, . . . , n}

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
m) ∧ C | S | θ〉

→ 〈ti1
t′1:[s]

, t′1 ∧ . . . ∧ tim−1

xm−1:[s]

, t′m−1 ∧ f(tim , . . . , tin)
xm:[s]

, t′m ∧ C | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], . . . , xm:[s])}, and x1:[s], . . . , xm:[s] are fresh
variables

Figure 4.4: Decomposition rule for an associative–commutative function
symbol f

ExpandU

f : [s]× [s]→ [s]∧
Uf ∈ ax(f) ∧ root(t) ≡ f ∧ root(s) 6= f ∧ t′′ ∈ {f(e, t′), f(t′, e)}

〈t
x:[s]

, t′ ∧ CT | S | θ〉 → 〈t
x:[s]

, t′′ ∧ CT | S | θ〉

Figure 4.5: Inference rule for expanding function symbol f with identity
element e
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Theorem 4.1.1 (Termination) Given a kind-completed, pre-regular,
order-sorted equational theory (Σ, E) with the same equational attributes
for overloaded symbols, terms t and t′, and a fresh variable x, every

derivation stemming from an initial configuration 〈t
x
, t′ | ∅ | id〉 using

the inference rules of Figures 4.1, 4.2, 4.3, 4.4, and 4.5 terminates with
a configuration 〈∅ | S | θ〉.

Proof. Similar to the proofs of Theorems 1.1.1 and 3.6.3.

4.2 Correctness and Completeness

In order to prove correctness and completeness, Definitions 3.3.6, 3.4.7,
3.5.6, and 3.6.7 for E-conflict pairs are extended to the order-sorted case
in the obvious way; recall that variables with the same name but different
sorts, e.g. x:A and x:B, are considered as different variables.

We follow the same proof schema of Section 2.2 and define order-
sorted E-lgg computation by subsort specialization. That is, to compute
generalizations by removing sorts (i.e., upgrading variables to top sorts),
computing (unsorted) E-lggs, and then obtaining the right subsorts by
a suitable post-processing. This approach is not used in practice, it is
used only for the proofs of correctness and completeness of the inference
rules.

First, for generalization in the modulo case, we introduce a special no-
tation for subterm replacement when we have associative or associative-
commutative conflict pairs.

Definition 4.2.1 (A-Subterm Replacement) Given two flattened
terms t and t′ and an associative conflict pair (u, v) with conflict po-
sitions p ∈ Pos(t) and p′ ∈ Pos(t′) such that t|p = u, v = f(v1, . . . , vn),
t′|p′ = f(w1, . . . , wm, v1, . . . , vn, w

′
1, . . . , w

′
m′), and f is associative, we

write t[[x:s]]p and t′[[x:s]]p′ to denote the terms t[[x:s]]p = t[x:s]p and
t′[[x:s]]p′ = t′[f(w1, . . . , wm, x:s, w′1, . . . , w

′
m′)]p′.

Definition 4.2.2 (AC-Subterm Replacement) Given two flattened
terms t and t′ and an associative-commutative conflict pair (u, v) with
conflict positions p ∈ Pos(t) and p′ ∈ Pos(t′) such that t|p = u, v =
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f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm), f is associative-commutative, for
each i ∈ {1, . . . , n} there is j ∈ {1, . . . ,m} s.t. vi =E wj, we write
t[[x:s]]p and t′[[x:s]]p′ to denote the terms t[[x:s]]p = t[x:s]p and t′[[x:s]]p′ =
t′[f(w′1, . . . , w

′
k, x:s)]p′ where {w′1, . . . , w′k} = {w ∈ {w1, . . . , wm} | @i ∈

{1, . . . , n}, w =E vi}.

As in Section 2.2, we define order-sorted E-lgg computation by sub-
sort specialization using a top-sorted generalization (see Definition 2.2.1)
and a sort-specialized generalization (see Definition 4.2.4).

Definition 4.2.3 (Top-sorted Equational Generalization) Given
a kind-
completed, pre-regular, order-sorted equational theory (Σ, E) with
the same equational attributes for overloaded symbols, and flat-
tened Σ-terms t and t′ such that [LS(t)] = [LS(t′)], let (u1, v1), . . . ,
(uk, vk) be the E-conflict pairs of t and t′, and for each such conflict
pair (ui, vi), let (pi1, . . . , p

i
ni
, qi1, . . . , q

i
ni

) be the corresponding E-conflict
positions, and let si = [LS(ui)] = [LS(vi)]. We define the term denoting
the top order-sorted equational least general generalization as

tsgE(t, t′) = ((t[[x1:s1]]p11,...,p1n1
) · · · )[[xk:sk]]pk1 ,...,pknk

where x1:s1, . . . , xk:sk are fresh variables.

The order-sorted equational lgg’s are obtained by subsort specializa-
tion.

Definition 4.2.4 (Sort-specialized Equational Generalization)
Given a
kind-completed, pre-regular, order-sorted equational theory (Σ, E)
with the same equational attributes for overloaded symbols, and flat-
tened Σ-terms t and t′ such that [LS(t)] = [LS(t′)], let (u1, v1), . . . ,
(uk, vk) be the conflict pairs of t and t′. We define

sort-down-subsE(t, t′) = {ρ | Dom(ρ) = {x1:s1, . . . , xk:sk}
∧ ∀1 ≤ i ≤ k, ρ(xi:si) = xi:s

′
i

∧ s′i ∈ LUBS(LS(ui),LS(vi))}

where all the xi:s
′
i are fresh variables. The set of sort-specialized

E-generalizations is defined as ssgE(t, t′) = {tsgE(t, t′)ρ | ρ ∈
sort-down-subsE(t, t′)}.
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Now, we prove that sort-specialized E-generalizations are the same
as order-sorted E-lggs.

Theorem 4.2.5 Given a kind-completed, pre-regular, order-sorted equa-
tional theory (Σ, E) with the same equational attributes for overloaded
symbols, and flattened Σ-terms t and t′ such that [LS(t)] = [LS(t′)],
tsgE(t, t′) is a order-sorted equational generalization of t and t′, and
lggE(t, t′) provides a minimal complete set of order-sorted equational lggs.

Proof. Similar to the proof of Theorem 2.2.5.

Finally, we prove the correctness and completeness of the order-
sorted, equational generalization algorithm.

Theorem 4.2.6 (Correctness and Completeness) Given a kind-
completed,
pre-regular, order-sorted equational theory (Σ, E) with the same equa-
tional attributes for overloaded symbols, flattened Σ-terms t and t′ such
that [s] = [LS(t)] = [LS(t′)], and a fresh variable x:[s], u ∈ lggE(t, t′) is an

order-sorted equational lgg of t and t′ iff 〈t
x:[s]

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉
using the inference rules of Figures 4.1, 4.2, 4.3, 4.4, and 4.5 for some
S and θ and u 'E (x:[s])θ.

Proof. Similar to the proof of Theorem 2.3.4.
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The ACUOS System

This chapter presents ACUOS, an optimized implementation of the order-
sorted modular ACU least general generalization algorithm that we for-
malized in Chapter 4. The tool consists of about a thousand lines of
code written in the high-performance Maude equational programming
language (Meseguer, 1992), taking advantage of its powerful reflective
capabilities to express inference rules and encode terms.

The ACUOS system integrates three different front-ends: (i) a Maude
meta-level function, which provides direct access to the complete back-
end functionality; (ii) a Full Maude user level command, which liberates
the user from ancillary low-level technicalities; and (iii) a Web interface
that enables the use of the tool directly from a Web browser. Both
the application source code and the ACUOS Web interface are publicly
available at http://safe-tools.dsic.upv.es/acuos.

5.1 Algorithmic improvements

In order to optimize the tool performance, we have introduced a num-
ber of significant improvements w.r.t. the original algorithm of (Alpuente
et al., 2012). First, the inference rules have been carefully encoded as a
memoization-based, recursive procedure that does not carry any configu-
ration store and avoids unnecessary re-computations. We also identified
the inference rules that are confluent and encoded them as Maude equa-
tions (instead of rules), highly reducing the search space as well as the
memory usage due to the different treatment of rules and equations in
Maude (Clavel et al., 2007). Finally, unlike the original algorithm, the
sort information is not incrementally computed but is more efficiently

http://safe-tools.dsic.upv.es/acuos
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introduced into the solution by a suitable and inexpensive sorting post-
processing.

5.2 Architecture

The tool takes as input two input structures (terms) and a Maude mod-
ule that specifies the signature for the function symbols involved. The
architecture of ACUOS, which is depicted in Figure 5.1, comprises the
following modules:

(i) Pre-processing. The input Maude specification and the input
terms are lifted to the meta-level. Using their meta-level repre-
sentation, an initial configuration for the generalization procedure
is built that is lifted to the meta-level again so that Maude’s meta-
level search operators can be used to find all ACU generalizers.

(ii) Search for candidates. Maude’s metaSearch function is used to
compute the final configurations of the recursive generalization pro-
cedure.

(iii) Order-sorting addition. Unresolved conflict pairs are substi-
tuted by fresh variables. If there is more than one possible sort
for a given variable, each of them gives rise to a different candi-
date.

(iv) Normalization. A deterministic variable renaming algorithm that
reduces term equality modulo renaming to syntactic equality is
applied. As a result, a complete and finite (although not minimal)
set of valid generalizers is delivered.

(v) Minimization post-processing. The candidate set is minimized
according to the instantiation ordering, producing the set of least
general, order-sorted ACU generalizers of the input terms.
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Figure 5.1: Architecture of the ACUOS system

5.3 Interface

ACUOS comes with an intuitive Web user interface based on the AJAX
technology, which allows the tool to be used through a Java Web appli-
cation (see Appendix A for details). The back-end of the tool has been
implemented as a Maude meta-level function named metaGeneralize,
which computes the set of generalizers of two terms in a given signature.
For convenience, we also provide a Full Maude (Clavel et al., 2007) ex-
tension that offers a user-level command (get lggs), allowing the user
to harness the full power of the tool while being liberated from ancillary
meta-level technicalities.

For instance, consider the following Full Maude1 module:

(mod fACU-OS is

sorts E A B C D Empty .

subsort Empty < A B .

subsort A < C D .

subsort B < C D .

subsort C < E .

subsort D < E .

op a : -> A .

op b : -> B .

op c : -> C .

op d : -> D .

op e : -> Empty .

op f : Empty Empty -> Empty [assoc comm id: e] .

1We refer the reader to (Clavel et al., 2007) for Maude and Full Maude syntax.
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op f : A A -> A [assoc comm id: e] .

op f : B B -> B [assoc comm id: e] .

op f : E E -> E [assoc comm id: e] .

endm)

This module is automatically extended to its kind-complete version by
Maude. It defines five constants a, b, c, d, e and four binary symbols
sharing the same name f but with different signatures corresponding
to the subsort structure of Figure 2.3. All four versions of symbol f
(plus its kind extension f : [E] → [E]) are associative-commutative and
with identity symbol the constant e. Now, we can type the following
generalization problem in Full Maude obtaining the six possible order-
sorted E-lggs.

(get lggs in fACU-OS : f(b,b,a) =? f(a,a,b) .)

Lgg 1

f(X1:C,b,a)

Lgg 2

f(X1:D,b,a)

Lgg 3

f(X1:C,X1:C,X3:C)

Lgg 4

f(X1:C,X1:C,X3:D)

Lgg 5

f(X1:D,X1:D,X3:C)

Lgg 6

f(X1:D,X1:D,X3:D)

No more lgg.

5.4 Generalizing data structures

As mentioned above, the generalization problem for two terms t1 and
t2 consists in finding their least general generalization (lgg), i.e., the
least general term t such that both t1 and t2 are instances of t un-
der appropriate substitutions. For instance, the term siblings(X,Y)
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is a generalization of siblings(john,sam) and siblings(tom,sam),
but their least general generalizer is siblings(X,sam). We also re-
call that generalizer terms are not always linear: the generaliza-
tion of siblings(john,john,sam) and siblings(tom,tom,sam) is
siblings(X,X,sam), not siblings(X,Y,sam).

While ordinary, syntactic generalization is useful for some applica-
tions, it suffers two important limitations. First, it cannot generalize
common data structures such as records, lists, sets, and multisets. For in-
stance, given a record structure r(field1 : v1, field2 : v2, . . . , f ieldn : vn),
we want to recognize the tuple (field1 : v1, ..., f ieldn : vn) of the record
fields irrespectively of the ordering of the elements; or more formally, two
record structures are equal if they are equal modulo the commutativity
and associativity of the tuple constructor (, ). The problem is similar for
lists (concatenation is associative with unity nil), multisets (insertion is
associative-commutative with unity ∅), or sets (insertion is associative-
commutative-idempotent with unity ∅).

Let us introduce the constants john, sam, peter, tom, and
mary and consider a relation symbol siblings whose only argu-
ment is a tuple of such constants that we build by using the tu-
ple constructor (, ) as explained above. If we consider the sym-
bol (, ) to be commutative (C), the terms siblings(john,sam)

and siblings(sam,tom) can be generalized modulo commutativity as
siblings(X,sam); if the symbol (, ) is associative2 (A), the terms
siblings(tom,sam,john) and siblings(john,sam,mary,peter) can
be generalized as siblings(X,sam,Y); if the symbol (, ) is both asso-
ciative and commutative (AC), then the lgg is siblings(john,sam,Y);
and if we additionally endow the symbol (, ) with an identity element
(ACU), so that two structures can be paired at any size by just intro-
ducing as many unity elements as needed into the structures, then the
corresponding lgg would be siblings(john,sam,X,Y).

The second problem with ordinary generalization is that it does not
cope with types and subtypes, which can further increase the number
of solutions. For instance, assume that the constants john, sam, peter,
and tom belong to type Male and that mary, joan belong to type Female.
Also assume that Male, Female are subtypes of the type Person that

2When we work modulo associativity, the term f(a,b,c) is a shorthand for
f(f(a,b),c).
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is used for the elements of the relation siblings. Then, for the case
where (, ) is AC, the terms siblings(john,sam,mary,peter,chris)

and siblings(tom,sam,john,joan) have two least general gener-
alizers instead of one: siblings(john,sam,X:Male,Y:People) and
siblings(john,sam,X:Female,Y:People).

As has been shown, order-sorted modular ACU least general gener-
alization provides a solution for these two classical limitations of gener-
alization while remaining decidable3. In consequence, the extension to
generalization presented in this thesis offers a significant increase in the
ability to reason about common data structures in a natural way, thus
opening up new applications for typed equational reasoning systems and
typed rule-based languages such as ASF+SDF, Elan, OBJ, Cafe-OBJ,
and Maude, where some function symbols may be declared to obey given
algebraic laws (the so-called equational attributes) of associativity and/or
commutativity and/or identity.

5.5 Experiments

We have tested our tool with several generalization problems that can be
found at the ACUOS Web site and within the distributed package. This
also includes the generalization of XML schemata, that can be naturally
interpreted as terms built using associative-commutative operators with
unbounded arity, which we modeled by using ACU constructor symbols
in Maude as well.

With regard to the time required to achieve the lggs, and considering
the combinatorial complexity of the ACU generalization problem, our
implementation is reasonably time efficient. For example, running the
tool for the siblings example described in the previous section –with
ACU rewrites– took less than 10−2 second (480.000 rewrites per second
on standard hardware, 2.26GHz Intel Core 2 Duo with 8Gb of RAM
memory). The elapsed times for the Rutherford example described in
Figure A.1 in Appendix A are obviously higher but still cogent, due to
the encoding of higher-order generalization as first order generalization
that we used.

3As demonstrated by Theorem 4.1.1
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In order to facilitate the understanding, a typical generalization ses-
sion is provided in Appendix A.
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6
Conclusions and future work

Generalization is a formal reasoning component of many symbolic frame-
works. Order-sorted modular ACU generalization extends ordinary gen-
eralization with subtypes and the capability to endow each function sym-
bol with any combination of associativity, commutativity, and identity
axioms, making it possible to reason about records, lists, sets and multi-
sets of data elements, atoms or rules.

In this thesis, we have presented an order-sorted, modular equational
generalization algorithm that computes a minimal and complete set of
least general generalizations for two terms modulo any combination of
associativity, commutativity and identity axioms for the binary symbols
in the theory. Our algorithm is directly applicable to any many-sorted
and order-sorted declarative language and equational reasoning system
(and also, a fortiori, to untyped languages and systems which have only
one sort). As shown in the examples, the algorithms we propose are
effective to compute E-generalizations, which would be unfeasible in a
näıve way.

In our own work, we plan to use the proposed order-sorted equational
generalization algorithm as a key component of a narrowing-based partial
evaluator (PE) for programs in order-sorted rule-based languages such as
OBJ, CafeOBJ, and Maude. This will make available for such languages
useful narrowing–driven PE techniques developed for the untyped setting
in, e.g., (Alpuente et al., 1998a,b, 1999; Albert et al., 1999). We are also
considering adding this generalization mechanism to an inductive theo-
rem prover such a Maude’s ITP (Clavel and Palomino, 2005) to support
automatic conjecture of lemmas. This will provide a typed analogue of
similar automatic lemma conjecture mechanisms in untyped inductive
theorem provers such as Nqthm (Boyer and Moore, 1980b) and its ACL2
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successor (Kaufmann et al., 2000).



Appendices





A
A Generalization Session with

ACUOS

In this appendix, we reproduce a typical session with the ACUOS system,
using its Web front-end to analyze and extract structural commonalities
between two patterns in different domains of interest.

Solar System
mass(sun) ;
mass(planet) ;
distant(sun,planet) ;
mass(x) ∧ mass(y) ⇒ gravity(x,y) ;
gravity(x,y) ⇒ attraction(x,y)

Rutherford Atom
charge(electron) ;
charge(nucleus) ;
distant(electron,nucleus) ;
charge(y) ∧ charge(x)⇒ coulomb(x,y) ;
coulomb(x,y) ⇒ attraction(x,y)

Background Knowledge
distant is commutative
∧ is associative-commutative
_;_ is associative-commutative with unity symbol ∅
sun, planet, nucleus, and electron: Elem,
distant, gravity, attraction, charge, coulomb :
Elem × Elem → Atom.
Atom < Conj .
Rule < Model .
∧: Conj × Conj → Conj.
⇒: Conj × Atom → Rule.
; : Model × Rule → Model.

Generalization
P(X) ;
P(Y) ;
distant(X,Y) ;
P(x) ∧ P(y) ⇒ Q(x,y) ;
Q(x,y) ⇒ attraction(x,y)

Figure A.1: A formalization of the Rutherford analogy (fragment)

As a motivating example, consider the Rutherford analogy of Fig-
ure A.1, where we provide a (term) representation for the solar system
and the Rutherford model for the atom. Assuming the equational prop-
erties for the symbols given in Figure A.1, by using ACUOS we can
automatically deduce a generalization of both models also shown in Fig-
ure A.1, where variables introduced by generalization are written in up-
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percase and are different from specification variables written in lowercase.
The detailed Maude representation for the Rutherford’s analogy prob-

lem sketched in Figure A.1 is as follows. First, we define a module
RUTHERFORD-SYNTAX that specifies the sorts and equational attributes
for all symbols in the domain. Maude syntax is almost self-explanatory,
using explicit keywords such as fmod, sort, and op to respectively in-
troduce a module, sort, and operator. The keywords assoc, comm, and
id indicate associativity, commutativity, and unity of an operator. Note
that we simply encode both models of the Rutherford’s analogy as Maude
terms using the meta-representation described in the module RUTHERFORD
-SYNTAX, which avoids the need for higher-order generalization.

fmod RUTHERFORD-SYNTAX is

sort HOTerm . subsort Operator < HoTerm .

op _[_] : Operator HOTermList -> HOTerm .

sort HOTermList . subsort HOTerm < HOTermList .

op _,_ : HOTermList HOTermList -> HOTermList [assoc] .

sort Operator .

ops mass sun planet distant gravity attraction

coulomb electron nucleus x y : -> Operator .

sort Conj . subsort HOTerm < Conj .

op _/\_ : Conj Conj -> Conj [assoc comm] .

sort Rule . subsort HOTerm < Rule .

op _=>_ : Conj HOTerm -> Rule .

sort Model . subsort HOTerm < Model .

op _;_ : Model Model -> Model [assoc comm id: empty] .

endfm

fmod RUTHERFORD-DOMAINS is

--- Omitted for brevity

--- Contains definitions for:

--- solar-system-domain

--- atom-domain

endfm
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The ACUOS on-line Web session starts by loading the Maude module
that contains a (meta-level representation of the) formal specification of
the considered domains. The specification can be directly pasted into the
input form, loaded from a file in the user’s machine, or recovered from the
gallery of examples provided by the Web interface. For this example we
have chosen the latter option. In Figure A.2 below, the ACUOS system
is fed with this simple specification of the Rutherford’s analogy.

The next action must be to enter the terms to be generalized. Then,
the model analogy is automatically computed by simply generalizing
these terms modulo the sort structure and the equational properties as-
sociated to the symbols given in the module RUTHERFORD-SYNTAX. For
simplicity, we have defined two aliases for these models in the specifica-
tion itself: solar-system-domain and atom-domain. The process ends
by clicking in the “Generalize!” button, which runs the ACUOS tool on
the provided input.

The generalization call that it is internally made is as follows:

metaGeneralize(

upModule(’RUTHERFORD-SYNTAX, true),

upTerm(mass [sun] ;

mass [planet] ;

distant [sun, planet] ;

mass [x] /\ mass [y] => gravity [x,y] ;

gravity [x,y] => attraction [x,y]),

upTerm(charge [electron] ;

charge [nucleus] ;

distant [nucleus, electron] ;

charge [x] /\ charge [y] => coulomb [x,y] ;

coulomb [x,y] => attraction [x,y])

) .

As a result, our tool produces a new term which generalizes the two
input terms, i.e., common patterns are preserved while discrepancies are
removed, thereby obtaining an analogy between the two domains of in-
terest. The resulting least general generalizer of the two terms is shown
with sugared syntax in Figure A.1.
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Figure A.2: The input form of the ACUOS generalization Web tool
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