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Abstract. This paper deals with the random wave equation on a bounded do-

main with Dirichlet boundary conditions. Randomness arises from the velocity

wave, which is a positive random variable, and the two initial conditions, which
are regular stochastic processes. The aleatory nature of the inputs is mainly

justified from data errors when modeling the motion of a vibrating string. Un-

certainty is propagated from these inputs to the output, so that the solution
becomes a smooth random field. We focus on the mean square contextual-

ization of the problem. Existence and uniqueness of the exact series solution,
based upon the classical method of separation of variables, are rigorously es-

tablished. Exact series for the mean and the variance of the solution process

are obtained, which converge at polynomial rate. Some numerical examples
illustrate these facts.

1. Introduction. The use of models based on partial differential equations is ubiq-
uitous in science [1]. These models depend upon coefficients, boundary values, initial
conditions, etc. that must be set from physical interpretation or from data. Data
are inherently uncertain, due to ignorance of the process under study and measure-
ment errors. Such uncertainty is transmitted to the model parameters; therefore,
randomness should be incorporated from the beginning into the model. A random
partial differential equation problem considers the coefficients, boundary values,
initial conditions, etc. of the deterministic analogue as random variables, regular
stochastic processes or regular random fields. The solution is a regular random
field. Its sample-paths are not the main concern, rather its statistical content is the
main interest (uncertainty quantification) [2, 3, 4, 5].
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Differential equations are based on calculus, which is constructed through the
notion of limit. When the differential equation is considered in a stochastic sense,
one should take into account that, in Probability Theory, there are different notions
of limit: limit almost surely (a.s.), limit in probability, limit in Lebesgue spaces
(statistical moments), etc. A great deal of research has been devoted to random
ordinary and partial differential equations in the Lebesgue sense. Recall that, given
a complete probability space (Ω,F ,P), the Lebesgue space Lp(Ω), 1 ≤ p < ∞,
is the set of random variables U : Ω → R such that ‖U‖p = (E[|U |p])1/p < ∞.
Here E denotes the expectation operator. When p = ∞, ‖U‖∞ = inf{C > 0 :
|U | ≤ C a.s.}. These spaces are Banach. Given a stochastic process, its continuity,
differentiability, Riemann integrability, etc., can be defined in the sense of (Lp(Ω), ‖·
‖p), by considering the corresponding limits. This approach leads to a new random
calculus. Of particular importance is the case p = 2, which gives rise to a Hilbert
space with the inner product (U, V ) 7→ E[UV ]. The random variables in L2(Ω) have
well-defined expectation E and variance V. The calculus in L2(Ω) is called mean
square (m.s.) calculus [2, 6].

In this paper, we deal with the random wave equation on a bounded spatial
domain, [0, L], with Dirichlet boundary conditions:


utt(x, t) = α2uxx(x, t), 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0,

u(x, 0) = f(x), 0 ≤ x ≤ L,
ut(x, 0) = g(x), 0 ≤ x ≤ L.

(1)

The parameter α2 is assumed to be a positive random variable, and it equals the
ratio of the tension and the linear density of the string; physically, α represents the
velocity wave. The boundary conditions in (1) reflect the fact that the string is
held fixed at the endpoints x = 0 and x = L. The initial conditions, f = f(x) and
g = g(x), represent the initial displacement and the initial velocity of each point
on the string. These are assumed to be regular stochastic processes. The space
Cp([0, L]), which shall be used later, denotes the existence of continuous derivatives
on [0, L] up to order p. The solution u(x, t) is a smooth random field. The stochastic
nature of the inputs α2, f(x) and g(x), is mainly justified from measurement errors
when modeling the motion of a vibrating string using real data. Here we treat (1)
in the m.s. sense, namely the partial derivatives are defined by m.s. limits.

Our context should not be confused with the Itô approach for stochastic (par-
tial) differential equations. In the Itô sense, randomness arises from a white noise
perturbation (formal derivative of Brownian motion), which gives rise to a random
field solution that is continuous but nowhere differentiable. The formalization of
these ideas is made through Itô calculus [7, 8, 9].

Problem (1) is a mixed problem whose formal solution can be constructed through
Fourier series, by the classical method of separation of variables [10, 11, 12]. In the
deterministic setting, extensions to (1) have been tackled: time-dependent wave
velocity [13], telegraph equation [14], and retarded wave model [15]. However, in
the random m.s. sense from [2], there is more work to be done. The random heat
equation has been investigated in [16]. To our knowledge, the m.s. treatment of the
method of separation of variables for the wave model (1) has not been conducted
yet.
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The goal of this paper is to rigorously study the stochastic problem (1), by
using m.s. calculus. To this end, in Section 2 we take advantage of the series
representation of the solution, which can be obtained using the classical method
of separation of variables, and then we provide sufficient conditions in order to
guarantee that the solution converges in the m.s. sense. As Section 3 demonstrates,
m.s. convergence is useful to approximate the expectation and the variance of the
solution. Two numerical examples illustrate this fact in Section 4. Finally, Section 5
draws the main conclusions.

2. Main result: sufficient conditions for the existence and uniqueness of
a m.s. solution. According to the deterministic theory, the method of separation
variables can be applied to obtain a formal series solution to the initial-boundary
value problem (1). Solutions of the form u(x, t) = X(x)T (t) are then sought, where
X(x) and T (t) are unknown functions. Afterward, linear superposition generates
the candidate series solution

u(x, t) =

∞∑
n=1

2

L

(∫ L

0

f(y) sin
(nπy
L

)
dy

)
cos
(nπα
L

t
)

sin
(nπx
L

)
+

∞∑
n=1

2

nπα

(∫ L

0

g(y) sin
(nπy
L

)
dy

)
sin
(nπα
L

t
)

sin
(nπx
L

)
. (2)

When α is a random variable and f and g are stochastic processes, such u(x, t) is a
random field. This work is devoted to finding conditions under which u(x, t) defined
by (2) is a m.s. solution to (1) [2]. To do so, the usual operations carried out in
classical calculus need to be rigorously verified using the m.s. calculus.

The following result provides two sets of sufficient conditions so that existence
and uniqueness of m.s. solution to (1) can be guaranteed. It is interesting to
compare both sets of conditions. In the first set of hypotheses (see H1 and H6
down below), it is assumed that the velocity of the wave, α(ω), is bounded above
and bounded away from zero, and the stochastic process g(x), describing the initial
velocity, belongs to C3([0, L]) (see H3). While in the second set of hypotheses, we
remove the condition that α(ω) ≥ α0 a.s., at the expense of assuming the stronger
condition g ∈ C4([0, L]) (see H2’).

Theorem 2.1. Consider the random wave equation (1). Let f = f(x) and g = g(x)
be two stochastic processes on x ∈ [0, L], and let α be a random variable that is
positive a.s. Consider the following two sets of hypotheses:

H1: α(ω) ≥ α0 > 0 a.s., where α0 is constant;
H2: f ∈ C4([0, L]) in the m.s. sense;
H3: g ∈ C3([0, L]) in the m.s. sense;
H4: f(0) = f(L) = 0, f ′′(0) = f ′′(L) = 0 a.s.;
H5: g(0) = g(L) = 0, g′′(0) = g′′(L) = 0 a.s.;
H6: α is bounded a.s.;

and

H1’: f ∈ C4([0, L]) in the m.s. sense;
H2’: g ∈ C4([0, L]) in the m.s. sense;
H3’: f(0) = f(L) = 0, f ′′(0) = f ′′(L) = 0 a.s.;
H4’: g(0) = g(L) = 0, g′′(0) = g′′(L) = 0 a.s.;
H5’: α is bounded a.s.
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If H1–H6 or H1’–H5’ hold, then u, given by (2), is C2([0, L] × [0,∞)) in the m.s.
sense and the unique m.s. solution to (1). The rate of m.s. convergence of (2),
truncated at N terms, is O(N−3). The constant corresponding to O depends on
the magnitude of L, on maxx∈[0,L] ‖f (iv)(x)‖2, maxx∈[0,L] ‖g′′′(x)‖2 (if H1–H6 are

assumed), and maxx∈[0,L] ‖g(iv)(x)‖2 (if H1’–H5’ are assumed).

Proof. Let us first suppose H1–H6. We need to prove that the series u(t, x) is m.s.
convergent. Since ‖ cosU‖∞ ≤ 1 and ‖ sinU‖∞ ≤ 1 for every random variable
U , the convergence of the series depends on the decay of the Fourier coefficients.
Integration by parts in the m.s. sense [2, p. 104], together with H2 and H4, render∫ L

0

f(y) sin
(nπy
L

)
dy =

L4

n4π4

∫ L

0

f (iv)(y) sin
(nπy
L

)
dy. (3)

By [2, p. 102] and H4,∥∥∥∥∥
∫ L

0

f(y) sin
(nπy
L

)
dy

∥∥∥∥∥
2

≤ L4

n4π4

∫ L

0

‖f (iv)(y)‖2dy

≤ L5

n4π4
max
x∈[0,L]

‖f (iv)(x)‖2 = O(n−4). (4)

Analogously, H3 and H5 yield∥∥∥∥∥
∫ L

0

g(y) sin
(nπy
L

)
dy

∥∥∥∥∥
2

≤ L4

n3π3
max
x∈[0,L]

‖g′′′(x)‖2 = O(n−3). (5)

Notice also that, by H1, ∥∥∥∥ 1

α

∥∥∥∥
∞
≤ 1

α0
<∞.

Thus, the n-th term of (2) is dominated, in 2-norm, as O(n−4). Convergence of∑∞
n=1 n

−4 implies that the series (2) converges in the m.s. sense. Note that H6 has
not been used yet.

To differentiate u(x, t) in the m.s. sense, [16, Theorem 3.1] allows for inter-
changing differentiation and series. Notice that cos(nπαt/L), sin(nπx/L) and
sin(nπαt/L) are m.s. differentiable, by [6, Theorem 3.19] (m.s. chain rule). The
series of the partial derivatives of u(x, t) converge uniformly in the m.s. sense, by
Weierstrass M-test. For example, if utt(x, t) is formally written, then using (4) and
(5), the 2-norm of the corresponding series is bounded (except a constant) by

∞∑
n=1

n2‖α‖2∞

∥∥∥∥∥
∫ L

0

f(y) sin
(nπy
L

)
dy

∥∥∥∥∥
2

+

∞∑
n=1

n‖α‖∞

∥∥∥∥∥
∫ L

0

g(y) sin
(nπy
L

)
dy

∥∥∥∥∥
2

= O

( ∞∑
n=1

n−2

)
<∞.

If uxx(x, t) is formally written, the 2-norm of the corresponding series is bounded
(except a constant) by

∞∑
n=1

n2

∥∥∥∥∥
∫ L

0

f(y) sin
(nπy
L

)
dy

∥∥∥∥∥
2

+

∞∑
n=1

n

∥∥∥∥∥
∫ L

0

g(y) sin
(nπy
L

)
dy

∥∥∥∥∥
2

= O

( ∞∑
n=1

n−2

)
<∞.
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These uniform convergences permit differentiating under the summation sign. No-
tice that H6 has been used.

Under H1’–H5’, the same bound (4) holds, by H1’ and H3’ (which are the same
as H2 and H4). Now (5) becomes∥∥∥∥∥

∫ L

0

g(y) sin
(nπy
L

)
dy

∥∥∥∥∥
2

≤ L5

n4π4
max
x∈[0,L]

‖g(iv)(x)‖2 = O(n−4),

by H2’ and H4’. From | sin y| ≤ |y| for all y,∣∣∣∣ 1

nπα
sin
(nπα
L

t
)∣∣∣∣ ≤ t

L
, (6)

for every n. The same reasoning as H1–H6 applies. The n-th term of (2) is domi-
nated, in 2-norm, as O(n−4). Convergence of

∑∞
n=1 n

−4 implies that the series (2)
converges in the m.s. sense. Note that H5’ has not been used yet. This hypothesis
is used to differentiate u(x, t) in the m.s. sense, by [16, Theorem 3.1].

For uniqueness, a similar argument to the energy method from [17, Theorem 3.1]
is used. It is only assumed that α is bounded a.s. Suppose that u1 and u2 are two
smooth solutions to (1). Let v = u1 − u2, which satisfies (1) with f = 0 and g = 0,
i.e., 

vtt(x, t) = α2vxx(x, t), 0 < x < L, t > 0,

v(0, t) = v(L, t) = 0, t ≥ 0,

v(x, 0) = 0, 0 ≤ x ≤ L,
vt(x, 0) = 0, 0 ≤ x ≤ L.

(7)

We shall prove that v = 0 a.s. Let

I(t) =
1

2

∫ L

0

E
[
α2v2

x(x, t) + v2
t (x, t)

]
dx. (8)

Let us first observe that differentiating the first initial condition with respect to x,
v(x, 0) = 0, leads to vx(x, 0) = 0. So, this fact and the second initial condition,
vt(x, 0) = 0, entail that I(0) = 0. This conclusion will be used later on.

The expectation E [·] in expression (8) is well-defined and continuous (hence
integrable), because α is bounded and vx, vt exist and are continuous in the m.s.
sense. By differentiating,

I ′(t) =
1

2

∫ L

0

∂

∂t
E
[
α2v2

x(x, t) + v2
t (x, t)

]
dx

=

∫ L

0

E
[
α2vx(x, t)vxt(x, t) + vt(x, t)vtt(x, t)

]
dx.

Notice that the derivative and the expectation can be interchanged, because the
limit in the derivative is considered in L1(Ω). We have, by integration in L1(Ω)
and integration by parts (taking here into account the last initial condition in (7),
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vt(x, 0) = 0, at x = 0 and x = L),∫ L

0

E
[
α2vx(x, t)vxt(x, t)

]
dx = E

[
α2

∫ L

0

vx(x, t)vxt(x, t)dx

]

= − E

[
α2

∫ L

0

vt(x, t)vxx(x, t)dx

]

= −
∫ L

0

E
[
α2vt(x, t)vxx(x, t)

]
dx.

As a consequence, using that v(x, t) solves (7), one gets

I ′(t) =

∫ L

0

E
[
vt(x, t)

(
vtt(x, t)− α2vxx(x, t)

)]
dx = 0.

This implies that I(t) is constant, and since I(0) = 0, we conclude that I(t) = 0 for
all t. Therefore, from (8), vx = vt = 0 a.s. By the m.s. Barrow’s rule [2, p. 104],

v(x, t) =

∫ x

0

vx(y, t)dy +

∫ t

0

vt(0, s)ds+ v(0, 0) = 0,

as wanted.
Finally, the rate of convergence of (2) is deduced from the fact that the n-th

term of (2) is O(n−4), uniformly on n. We have that

∞∑
n=N

n−4 ≤
∞∑
n=N

∫ n

n−1

x−4dx =

∫ ∞
N−1

x−4dx =
1

3(N − 1)3
,

so the series (2) converges at rate O(N−3).

Remark 1. The following observations concern the hypotheses of Theorem 2.1.

1. No independence between the inputs α, f and g has been assumed, which
confers more generality to Theorem 2.1. This is an important point, since
most of the results on random systems presume independence between the
input random parameters [4, chapter 4].

2. The conditions f(0) = f(L) = 0 and g(0) = g(L) = 0, assumed in hypotheses
H5 and H4’, respectively, have been employed when applying for the first
time the m.s. integration by parts formula in (3) and (5), respectively. But
in addition, it must be noticed that these are also required for the initial and
boundary conditions to be consistent.

3. Let us compare H1–H6 and H1’–H5’. Under H3, the bound in (5) is O(n−3),
instead of O(n−4) as in (4). The terms 1/(nα) in (2) make the complete n-th
terms within the second series of (2) bounded as O(n−4) in m.s. It is used
H1 to avoid α be near 0. In H1’–H5’, α may be near 0 and 1/(nα) be large
towards infinity as α → 0 for a sequence of realizations. Then, the best we
can do is to use the bound (6). To make the complete n-th terms within the
second series of (2) bounded as O(n−4) in 2-norm, we need H2’ instead of
H3. To summarize, there should be a balance between (1/(nα)) sin(nπαt/L)

and
∫ L

0
g(y) sin(nπy/L)dy to achieve the m.s. decay O(n−4). The m.s. decay

O(n−4) for the complete n-th terms within the two series of (2) is necessary
to differentiate twice in m.s. with respect to t and x.
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4. For uniqueness, it is assumed that there are two m.s. solutions u1 and u2, and
it is proved that v = u1 − u2 is 0 a.s. The only hypothesis required is the a.s.
boundedness of α (since it is already supposed the existence of u1 and u2).

3. Approximations of the mean and variance of the solution. So far, we
have established sufficient conditions in order to guarantee that the series (2), which
defines the m.s. solution to problem (1), converges in the m.s. sense. Now, we will
take advantage of the following key properties of this strong stochastic convergence
type to compute reliable approximations of the mean and the variance of the solution
by truncating the series (2).

Lemma 3.1. [2, Theorem 4.3.1] If {UN : N ≥ 0} is a sequence of random variables
in L2(Ω) such that UN → U ∈ L2(Ω) in the m.s. sense, then

E[UN ] −−−−→
N→∞

E[U ] and E[(UN )2] −−−−→
N→∞

E[U2]. (9)

Since the variance can be written as V[UN ] = E[(UN )2]− (E[UN ])2, one also gets

V [UN ] −−−−→
N→∞

V [U ] . (10)

Proposition 1. [2, p. 104]. Let {X(y) : −∞ ≤ a ≤ y ≤ b ≤ +∞} be a m.s.
integrable stochastic process and h(y) a Riemann integrable deterministic function
on y ∈ (a, b). Then

E

[∫ b

a

h(y)X(y)dy

]
=

∫ b

a

h(y)E[X(y)]dy,

where
∫ b
a
h(y)X(y)dy is a m.s. Riemann integral and

∫ b
a
h(y)E[X(y)]dy is an ordi-

nary Riemann integral.

Remark 2. The result given in Proposition 1 can easily be generalized to dimension
n. Later, we will only use the bidimensional case:

E

[∫ b

a

∫ d

c

h1(y)h2(z)X1(y)X2(z)dy dz

]
=

∫ b

a

∫ d

c

h1(y)h2(z)E[X1(y)X2(z)]dy dz.

So, let us denote by uN (x, t) the finite sum defining the truncation of order N
of the series solution (2),

uN (x, t) =

N∑
n=1

2

L

(∫ L

0

f(y) sin
(nπy
L

)
dy

)
cos
(nπα
L

t
)

sin
(nπx
L

)
+

N∑
n=1

2

nπα

(∫ L

0

g(y) sin
(nπy
L

)
dy

)
sin
(nπα
L

t
)

sin
(nπx
L

)
. (11)

Let us assume that (f, g) and α are independent. This is done here for convenience of
notation and easiness of manipulation and calculation [4, chapter 4]. An important
property of independence is the following:

E[H1(f(y))H2(α)] = E[H1(f(y))]E[H2(α)],

E[H1(g(y))H2(α)] = E[H1(g(y))]E[H2(α)],
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for any two Borel measurable real functions H1 and H2 [18, p. 92]. That is, expec-
tations are split. As a consequence, one first obtains

E

[(∫ L

0

f(y) sin
(nπy
L

)
dy

)
cos
(nπα
L

t
)]

= E

[(∫ L

0

f(y) sin
(nπy
L

)
dy

)]
E
[
cos
(nπα
L

t
)]
,

E

[
1

α

(∫ L

0

g(y) sin
(nπy
L

)
dy

)
sin
(nπα
L

t
)]

= E

[(∫ L

0

g(y) sin
(nπy
L

)
dy

)]
E
[

1

α
sin
(nπα
L

t
)]
.

Next, we apply Proposition 1 with a = 0, b = L, h(y) = sin
(
nπy
L

)
and X(y) = f(y)

(X(y) = g(y)) to express the above expectations of the resulting integrals as follows:

E

[(∫ L

0

f(y) sin
(nπy
L

)
dy

)
cos
(nπα
L

t
)]

=

(∫ L

0

E[f(y)] sin
(nπy
L

)
dy

)
E
[
cos
(nπα
L

t
)]
,

E

[
1

α

(∫ L

0

g(y) sin
(nπy
L

)
dy

)
sin
(nπα
L

t
)]

=

(∫ L

0

E[g(y)] sin
(nπy
L

)
dy

)
E
[

1

α
sin
(nπα
L

t
)]
. (12)

Then, taking the expectation operator in expression (11), using its linearity together
with (12), one finally obtains the expectation of the approximation of order N ,
uN (x, t),

E[uN (x, t)] =

N∑
n=1

2

L

(∫ L

0

E[f(y)] sin
(nπy
L

)
dy

)
E
[
cos
(nπα
L

t
)]

sin
(nπx
L

)
+

N∑
n=1

2

nπ

(∫ L

0

E[g(y)] sin
(nπy
L

)
dy

)
E
[

1

α
sin
(nπα
L

t
)]

sin
(nπx
L

)
.

(13)
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On the other hand, simple algebra yields

u2
N (x, t) =

N∑
n,m=1

4

L2

(∫ L

0

∫ L

0

f(y)f(z) sin
(nπy
L

)
sin
(mπz

L

)
dy dz

)
× cos

(nπα
L

t
)

cos
(mπα

L
t
)

sin
(nπx
L

)
sin
(mπx

L

)
+

N∑
n,m=1

4

nmπ2α2

(∫ L

0

∫ L

0

g(y)g(z) sin
(nπy
L

)
sin
(mπz

L

)
dy dz

)
× sin

(nπα
L

t
)

sin
(mπα

L
t
)

sin
(nπx
L

)
sin
(mπx

L

)
+2

N∑
n,m=1

4

Lmπα

(∫ L

0

∫ L

0

f(y)g(z) sin
(nπy
L

)
sin
(mπz

L

)
dy dz

)
× cos

(nπα
L

t
)

sin
(mπα

L
t
)

sin
(nπx
L

)
sin
(mπx

L

)
.

Similarly as we have shown for the expectation of uN (x, t) and using the Remark
2, we obtain

E[u2
N (x, t)] =

N∑
n,m=1

4

L2

(∫ L

0

∫ L

0

E[f(y)f(z)] sin
(nπy
L

)
sin
(mπz

L

)
dy dz

)
×E

[
cos
(nπα
L

t
)

cos
(mπα

L
t
)]

sin
(nπx
L

)
sin
(mπx

L

)
+

N∑
n,m=1

4

nπ2m

(∫ L

0

∫ L

0

E[g(y)g(z)] sin
(nπy
L

)
sin
(mπz

L

)
dy dz

)

×E
[

1

α2
sin
(nπα
L

t
)

sin
(mπα

L
t
)]

sin
(nπx
L

)
sin
(mπx

L

)
+2

N∑
n,m=1

4

Lmπ

(∫ L

0

∫ L

0

E[f(y)g(z)] sin
(nπy
L

)
sin
(mπz

L

)
dy dz

)

×E
[

1

α
cos
(nπα
L

t
)

sin
(mπα

L
t
)]

sin
(nπ
L
x
)

sin
(mπx

L

)
. (14)

For every (x, t), 0 ≤ x ≤ L and t > 0, in Theorem 2.1 we have shown that uN (x, t) is
m.s. convergent to u(x, t) given by (2). Then applying Lemma 3.1 it is guaranteed
that

E[uN (x, t)] −−−−→
n→∞

E[u(x, t)] and E[u2
N (x, t)] −−−−→

N→∞
E[u2(x, t)],

where E[uN (x, t)] and E[u2
N (x, t)] are defined by (13) and (14), respectively, and

E[u(x, t)] and E[u2(x, t)] are given, respectively, by

E[u(x, t)] =

∞∑
n=1

2

L

(∫ L

0

E[f(y)] sin
(nπy
L

)
dy

)
E
[
cos
(nπα
L

t
)]

sin
(nπx
L

)
+

∞∑
n=1

2

nπ

(∫ L

0

E[g(y)] sin
(nπy
L

)
dy

)
E
[

1

α
sin
(nπα
L

t
)]

sin
(nπx
L

)
.

(15)
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and

E[u2(x, t)] =

∞∑
n,m=1

4

L2

(∫ L

0

∫ L

0

E[f(y)f(z)] sin
(nπy
L

)
sin
(mπz

L

)
dy dz

)
×E

[
cos
(nπα
L

t
)

cos
(mπα

L
t
)]

sin
(nπx
L

)
sin
(mπx

L

)
+

∞∑
n,m=1

4

nπ2m

(∫ L

0

∫ L

0

E[g(y)g(z)] sin
(nπy
L

)
sin
(mπz

L

)
dy dz

)

×E
[

1

α2
sin
(nπα
L

t
)

sin
(mπα

L
t
)]

sin
(nπx
L

)
sin
(mπx

L

)
+2

∞∑
n,m=1

4

Lmπ

(∫ L

0

∫ L

0

E[f(y)g(z)] sin
(nπy
L

)
sin
(mπz

L

)
dy dz

)

×E
[

1

α
cos
(nπα
L

t
)

sin
(mπα

L
t
)]

sin
(nπ
L
x
)

sin
(mπx

L

)
. (16)

The approximation of the variance is obtained using (10),

V[uN (x, t)]=E[u2
N (x, t)]−(E[uN (x, t)])

2−−−−→
N→∞

E[u2(x, t)]−(E[u(x, t)])
2

=V[u(x, t)].

(17)
Now, we summarize the main result obtained throughout our previous develop-

ment:

Theorem 3.2. Consider the random wave equation (1). Let f and g be two stochas-
tic processes on [0, L], and let α be a random variable that is positive a.s. Assume
that (f, g) and α are independent. Suppose that H1–H6 or H1’–H5’ hold. Then
the expectation and the variance of the m.s. solution u(x, t), given by (2), are (15)
and (16)–(17), respectively. Given the truncation uN (x, t) (11), the convergence of
E[uN (x, t)] and V[uN (x, t)] towards E[u(x, t)] and V[u(x, t)] is guaranteed. Besides,
the rate of convergence of these statistics is O(N−3).

Proof. The convergence of E[uN (x, t)] and V[uN (x, t)] towards E[u(x, t)] and V[u(x, t)]
is guaranteed by the m.s. convergence; check the development before the theorem.
For the rate of convergence, it suffices to note that the rapidity at which the expec-
tation and the variance converge is inherited by the rapidity of m.s. convergence
(see the part at the end of the proof of Theorem 2.1):

|E[uN (x, t)]− E[u(x, t)]| = |E[uN (x, t)− u(x, t)]| ≤ E[|uN (x, t)− u(x, t)|]
≤ ‖uN (x, t)− u(x, t)‖2 = O(N−3),
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and

|V[uN (x, t)]− V[u(x, t)]|
= |E[u2

N (x, t)]− (E[uN (x, t)])2 − E[u2(x, t)] + (E[u(x, t)])2|
≤ E[|u2

N (x, t)− u2(x, t)|] + |(E[u(x, t)])2 − (E[u(x, t)])2|
= E[|uN (x, t)− u(x, t)||uN (x, t) + u(x, t)|]
+|E[uN (x, t)]− E[u(x, t)]||E[uN (x, t)] + E[u(x, t)]|
≤ ‖uN (x, t)− u(x, t)‖2‖uN (x, t) + u(x, t)‖2
+|E[uN (x, t)]− E[u(x, t)]|(|E[uN (x, t)]|+ |E[u(x, t)]|)
≤ ‖uN (x, t)− u(x, t)‖2(‖uN (x, t)‖2 + ‖u(x, t)‖2)

+|E[uN (x, t)]− E[u(x, t)]|(|E[uN (x, t)]|+ |E[u(x, t)]|)
= O(N−3).

The triangular, Jensen’s and Cauchy-Schwarz inequalities have been utilized.

Remark 3. For simplicity of formulation, reasoning and calculation, it was as-
sumed that (f, g) and α are independent. This assumption, which is usually used
in the study of random systems, permitted splitting the expectation of expressions
involving (f, g, α). Let us point out here the necessary modifications when no inde-
pendence holds. The expressions in (12) become

E

[(∫ L

0

f(y) sin
(nπy
L

)
dy

)
cos
(nπα
L

t
)]

=

(∫ L

0

E
[
f(y) cos

(nπα
L

t
)]

sin
(nπy
L

)
dy

)
,

E

[
1

α

(∫ L

0

g(y) sin
(nπy
L

)
dy

)
sin
(nπα
L

t
)]

=

(∫ L

0

E
[
g(y)

1

α
sin
(nπα
L

t
)]

sin
(nπy
L

)
dy

)
.

Then (13) becomes

E[uN (x, t)] =

N∑
n=1

2

L

(∫ L

0

E
[
f(y) cos

(nπα
L

t
)]

sin
(nπy
L

)
dy

)
sin
(nπx
L

)
+

N∑
n=1

2

nπ

(∫ L

0

E
[
g(y)

1

α
sin
(nπα
L

t
)]

sin
(nπy
L

)
dy

)
sin
(nπx
L

)
.

Similar changes occur for the statistical moment of order two. There is convergence
as N → ∞. Though the theoretical study of the expectation and the variance
can be performed under no independence, numerical calculations may get severely
affected, since the joint distribution of (f, g, α) is needed. The complexity could be
partially lowered if f and α, or g and α, depend on the same random variables ξ,
as the joint distribution of (f, α), or (g, α), would be related to the distribution of
ξ.
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Remark 4. When uncertainties are involved, randomness must be incorporated
into the model from the beginning. It is not convenient to fix average values for the
input parameters and then solve the problem deterministically, since the expectation
of the stochastic process solution (15) does not coincide with the deterministic
solution

∞∑
n=1

2

L

(∫ L

0

E[f(y)] sin
(nπy
L

)
dy

)
cos

(
nπE[α]

L
t

)
sin
(nπx
L

)
+

∞∑
n=1

2

nπ

(∫ L

0

E[g(y)] sin
(nπy
L

)
dy

)
1

E[α]
sin

(
nπE[α]

L
t

)
sin
(nπx
L

)
.

The method that consists in substituting each random input in a random dif-
ferential equation by its mean value is sometimes referred to as dishonest method.
It was first introduced by Keller, [19, Sec. 4.3.2]. A number of contributions have
shown that it does not provide, in general, reliable approximations [20, 21]. It may
provide sufficient approximations only when the uncertainties involved are not high.

The dishonest method is based on the approximation

E[Λ(ξ)] ≈ Λ(E[ξ]),

where ξ is a random variable (the uncertainty) and Λ is a deterministic function.
From the Taylor’s expansion of Λ around the point E[ξ], it is obtained

E[Λ(ξ)] = Λ(E[ξ]) +
Λ′′(E[ξ])

2
V[ξ] +O(S[ξ]),

where S is the skewness. Thus, the approximation presumed by the dishonest
method needs ξ ≈ E[ξ] with high probability.

4. Numerical examples.

Example 1. Fix the string length L = 1. Let f and g have the form f(x) =
ax4(1 − x)3 and g(x) = bx4(1 − x)3. The variables α, a and b are independent
random quantities; α is uniform on [0, 1], a is uniform on [−0.1, 0], and b is triangular
with endpoints [1, 1.5] and mode 1.25. Figure 1 illustrates the approximations
of the expectation and the variance of u(x, t), through (13), (14) and (17). It
is observed that, as the number of series terms N increases, the approximations
become indistinguishable at the scale of the figure.

Figure 2 shows the rate of convergence, in log-log scale. Let NP(N) be the result
of a numerical procedure NP with N terms, which tends to the exact solution e0 as
N →∞. Let p be the order of NP(N) (i.e. |NP(N)− e0| = O(N−p)). Then

lim
N→∞

|NP(N)− e0|
|NP(N)−NP(2N)|

=
2p

2p − 1
.

This is easily proved by expanding NP(N) = e0 + e1N
−p + e2N

−(p+1) + . . .. Thus,
for large N , the error NP(N)−e0 can be examined through the difference NP(N)−
NP(2N).

Example 2. Fix the string length L = 1. Let f(x) = 2
∑∞
n=1 ξn sin(nπx), x ∈ [0, 1],

where ξn = Un/n
10, and Un is exponentially distributed of mean value 1. Due

to the rapid decrease of ξn with n, the process f(x) satisfies the regularity re-
quirements of the theorem. Notice that ξn corresponds to the Fourier coefficient∫ 1

0
f(y) sin(nπy)dy, and the series 2

∑∞
n=1 ξn sin(nπx) is a Karhunen-Loève expan-

sion. The Karhunen-Loève expansion is one of the most widely used techniques to
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Figure 1. Expectation and variance of the solution u(x, t) to (1),
for different space-time points and orders of truncation N of the
series (2). This figure corresponds to Example 1.
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N
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10-8

10-7

10-6

10-5

|[uN (0.5,2)]-[u2 N (0.5,2)]|

Figure 2. Rate of convergence of E[uN (0.5, 2)] and V[uN (0.5, 2)]
with N , where uN (x, t) is the truncation (11) of u(x, t) (2). This
figure corresponds to Example 1.

represent infinite dimensional random processes in random systems [4]. Here we
use it for illustration of our theoretical development. Let g(x) = bx4(1− x)3 and α
be defined as in the previous example; the variables α and b are uniform on [0, 1]
and triangular with endpoints [1, 1.5] and mode 1.25, respectively. All the random
quantities, U1, U2, . . ., α and b, are assumed to be independent. Figure 3 illustrates
the approximations of the expectation and the variance of u(x, t), through (13),
(14) and (17). Figure 4 reports the rate of convergence.

5. Conclusion. We have successfully solved the random wave problem (1) in the
m.s. sense. The approach consists in setting appropriate probabilistic assumptions
on the input terms, so that the formal infinite series solution constructed by the
method of separation of variables is a rigorous m.s. solution. The m.s. convergence
of the series makes it possible to approximate the expectation and the variance
of the solution, at polynomial convergence rate. Our strategy could be applied to
further extensions of (1), namely problems with retarded or fractional terms. Also
of interest would be the study of probability densities.
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Figure 3. Expectation and variance of the solution u(x, t) to (1),
for different space-time points and orders of truncation N of the
series (2). This figure corresponds to Example 2.
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Figure 4. Rate of convergence of E[uN (0.5, 2)] and V[uN (0.5, 2)]
with N , where uN (x, t) is the truncation (11) of u(x, t) (2). This
figure corresponds to Example 2.
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[13] L. Jódar and P. Almenar, Accurate continuous numerical solutions of time dependent mixed

partial differential problems, Computers & Mathematics with Applications, 32 (1996), 5–19.



ON THE RANDOM WAVE EQUATION WITHIN THE MEAN SQUARE CONTEXT 17
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