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The dynamical behavior of the rational vectorial operator associated with a
multidimensional iterative method on polynomial systems gives us interesting
information about the stability of the iterative scheme. The stability of fixed
points, dynamic planes, bifurcation diagrams, etc. are known tools that pro-
vide us this information. In this manuscript, we introduce a new tool, which we
call isonormal surface, to complement the information about the stability of the
iterative method provided by the dynamical elements mentioned above. These
dynamical instruments are used for analyzing the stability of a parametric fam-
ily of multidimensional iterative schemes in terms of the value of the parameter.
Some numerical tests confirm the obtained dynamical results.
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1 INTRODUCTION

The design of iterative processes for solving nonlinear systems, F(x) = 0, F ∶ D ⊑ Rn → Rn, with n unknowns
and n equations, is an interesting challenge of numerical analysis (see, for example,1,2). Many problems in Science and
Engineering need the solution of a nonlinear system in any step of the process.

In the absence of analytical methods to solve this type of problem, the solutions of these systems must be approached
through iterative fixed-point schemes,

x(k+1) = G
(

x(k)
)
, k = 0, 1, … ,

being x(0) the initial estimation.
The best known method for approximating a solution 𝜉 ∈D is Newton's procedure,

x(k+1) = x(k) − [F′(x(k))]−1F(x(k)), k = 0, 1, …

being F′(x(k)) the Jacobian of function F evaluated in the kth iteration. This method reaches quadratic convergence, under
some conditions.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons, Ltd.

Math Meth Appl Sci. 2022;45:3360–3375.wileyonlinelibrary.com/journal/mma3360

 10991476, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.7695 by U

niversitat Politecnica de V
alencia, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/mma.7695
https://orcid.org/0000-0002-7462-9173
https://orcid.org/0000-0002-9893-0761
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmma.7695&domain=pdf&date_stamp=2021-08-25


In recent literature in this area of research, we can find other methods that reach higher orders (see, for example, previ-
ous studies3-7), and they are designed by using different techniques like: Adomian decomposition,8-10 multidimensional
Steffensen-type schemes,11-16 and weight function techniques.17-19 Once a class of methods has been designed, it is inter-
esting to carry out a multidimensional real dynamical study (see20,21) in order to obtain the values most suitable of the
parameters for setting stable schemes.

In22 presented a family of iterative schemes for solving a nonlinear system F(x) = 0. Being F a real Fréchet differentiable
function and H ∶ Rn×n → Rn×n a matrix weight function with variable t(k) = I−[F′(x(k))]−1[x(k), 𝑦(k);F], where I denotes the
identity matrix of size n×n, the divided difference operator of F on Rn is a mapping [·, ·;F] ∶ Ω×Ω ⊂ Rn × Rn → (Rn)
(see23) such that

[x, 𝑦;F](x − 𝑦) = F(x) − F(𝑦), for any x, 𝑦 ∈ Ω.

Then, the following three-step class of iterative methods is designed:

𝑦(k) = x(k) − [F′(x(k))]−1F(x(k)),
z(k) = 𝑦(k) − H(t(k))[F′(x(k))]−1F(𝑦(k)), (1)

x(k+1) = z(k) − H(t(k))[F′(x(k))]−1F(z(k)), k ≥ 0.

Let X = Rn×n be the Banach space of real square matrices of size n×n, and function H : X→X can be defined in the
way that its Fréchet derivatives satisfies

a. H′(u)(v) = H1uv, where H′ ∶ X → (X) and H1 ∈ R,
b. H′′(u, v)(w) = H2uvw, where H′′ ∶ X × X → (X) and H2 ∈ R,

where (X) denotes the set of linear operators defined in X. When k tends to infinity, variable t(k) tends to the zero matrix
0. So, there exist real H1, H2 such that H can be expanded around 0 as

H(t(k)) = H(0) + H1t(k) + 1
2

H2t(k)2 + O(t(k)3).

The following result was proven in,22 regarding the convergence analysis of (1).

Theorem 1. Let F ∶ D ⊆ Rn → Rn be a sufficiently Fréchet differentiable function in an open neighborhood D of 𝜉 such
that F(𝜉) = 0 and H ∶ Rn×n → Rn×n a sufficiently differentiable matrix function. Assume that F′(x) is nonsingular at
𝜉 and x(0) is an initial estimation close enough to 𝜉. Then, sequence {x(k)}k≥0 obtained from class (1) converges to 𝜉 with
order 6 if H(0) = I,H1 = 2, and |H2| <∞, being its error equation

e(k+1) = 1
4
[
(H2

2 − 22H2 + 120)C5
2 + (−24 + 2H2)C2

2C3C2 + (−20 + 2H2)C3C3
2 + 4C2

3C2
]

e(k)6 + O(e(k)7),

where Cq = 1∕q![F′(𝜉)]−1F(q)(𝜉), q = 2, 3, …

We select a particular weight function H(t) = I + 2t + 1∕2𝛼t2 where 𝛼 ∈ R is a free parameter. This function satisfies
the hypothesis of Theorem 1, and the resulting one-parameter family, called PSH6, is

𝑦(k) = x(k) − [F′(x(k))]−1F(x(k)),

z(k) = 𝑦(k) −
[

I + 2t(k) + 1
2
𝛼t(k)2

]
[F′(x(k))]−1F(𝑦(k)), (2)

x(k+1) = z(k) −
[

I + 2t(k) + 1
2
𝛼t(k)2

]
[F′(x(k))]−1F(z(k)), k ≥ 0.

In Capdevila et al,22 we saw that in PSH6 family, the method obtained with 𝛼 = 0 was the most computationally efficient,
although in practice, other parameter values provided even better results in terms of precision or numerical estimation
of the order of convergence, with the same number of iterations.

This fact leads us to deepen the analysis of the stability of the schemes belonging to that family, with the aim of estab-
lishing which are the 𝛼 values that can provide better results and more stable methods. In the process, we will define a
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new tool that has proven to be very useful in achieving this goal: the isonormal surface. With this tool that we will intro-
duce in Section 2, we will establish the regions of the plane that have the same qualitative behavior (set of initial estimates
that converge to periodic orbits of the same period, regions of chaotic behavior, dense orbits, etc.) which are identified
with different colors for any 𝛼 value selected from the bifurcation diagrams.

Thus, the set formed by the Feigenbaum diagram (or the parameter line) and the isonormal surface provides us accu-
rate and reliable information about the behavior of the members of any kind of iterative methods for solving systems of
nonlinear equations.

Now, let us denote as G a vectorial rational operator. We define the orbit of x(0) as a set of the successive images by G, that
is, {x(0), G(x(0)), … , Gm(x(0))}. Indeed, the dynamical behavior of a point x ∈ Rn can be classified examining its asymptotic
performance, thus the point x∗ such that G(x∗)= x∗ is denominated a fixed point of G. In the same way, a periodic point x
of period k ≥ 1 is one that Gk(x) = x and Gk− p(x) ≠ x, for p < k.

Some results about stability of fixed points are summarized in the next result (24 p. 558).

Theorem 2. Let G ∶ Rn → Rn be 2. Assume x∗ is a period-k point. Let 𝜆1, 𝜆2, … , 𝜆n be the eigenvalues of G′(x∗).

a) If |𝜆j| < 1, ∀j∈ {1, 2, … , n}, then x∗ is attracting.
b) If, at least, one eigenvalue 𝜆j 0 holds |𝜆j 0| > 1, then x∗ is unstable, that is, repelling or saddle.
c) If |𝜆j| > 1, ∀j∈ {1, 2, … , n}, then x∗ is repelling.

Those fixed point whose eigenvalues satisfy |𝜆j| ≠ 1 are called hyperbolic, and they are saddle hyperbolic points if some
of their eigenvalues hold |𝜆j| > 1 and the rest |𝜆i| < 1, i, j∈ {1, 2, … , n}. If a fixed point is not a zero of F ∶ D ⊆ Rn → Rn,
then it is called a strange fixed point, and its stability is classified according to Theorem 2.

Additionally, if x∗ is an attracting fixed point of the rational function G, we can define its basin of attraction (x∗) as
the set of pre-images of any order such that

(x∗) = {x0 ∈ R
n ∶ Gm(x(0)) → x∗,m → ∞}.

And finally, xc ∈ Rn is called critical point if all eigenvalues of G′(xc) are equal to zero. These points are important because
a classic result states that in every basin of attraction of a fixed or periodic point, there is at least one critical point. In fact,
it yields in the immediate basin of attraction, that is, in the same connected component as the periodic or fixed point.
Those critical points different of the roots of F(x) = 0 are called free critical points.

The manuscript is structured as follows: In Section 2, the dynamical behavior of the rational vectorial operator obtained
when family (1) is applied on a polynomial system is analyzed. In Section 3, some numerical tests are presented to confirm
the results obtained in the dynamical section. Finally, some conclusions and the references used in this paper are shown.

2 DYNAMICAL ANALYSIS OF THE CLASS PSH6

We analyze the performance of the vectorial rational function resulting from applying the iterative family PSH6 on the
function p(x) = {x2

1 − 1, x2
2 − 1} for x = (x1, x2) ∈ R2. In order to select the most stable members of this class of iterative

algorithms, we will study the existence of fixed points different from the roots we are looking for with attracting character
or another attracting elements that can be considered pathological.

By applying the iterative expression of PSH6 on the polynomial system p(x) = 0, we obtain its rational multidimensional
operator associated U(x, 𝛼) = {u1(x, 𝛼),u2(x, 𝛼)}, whose jth coordinate is

u𝑗(x, 𝛼) =
1

256x7
𝑗

(
𝛼
(
−1 + x2

𝑗

)4 − 16
(

x2
𝑗 − 5x4

𝑗 + 15x6
𝑗
+ 5x8

𝑗

)
+ 4x2

𝑗

(
𝛼(−1 + x2

𝑗 ) + 16x2
𝑗 (−1 + 3x2

𝑗 )
)

×
(
−1 +

(
1∕65536x14

𝑗

) (
𝛼(−1 + x2

𝑗 )
4 − 16(x2

𝑗 − 5x4
𝑗 + 15x6

𝑗
+ 5x8

𝑗
)
)2
))

, 𝑗 = 1, 2.
(3)

From the last expression, it is possible to formulate the following result about the stability of fixed points related to the
iterative family (2).

Theorem 3. The rational function U(x, 𝛼) associated to the family of iterative methods PSH6 has, as superattracting
fixed points, (1, 1), (1,− 1), (− 1, 1), (− 1,− 1) that are the roots of the polynomial system p(x). Moreover, let us denote by
 the set of all the strange fixed points of U(x, 𝛼). So, it is composed of pairs (li, lj) for i, j ≤ 18, whose entries are the real

CAPDEVILA ET AL.3362
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roots of polynomial

l(t, 𝛼) = − 𝛼3 +
(
𝛼3 − 112𝛼2 + 15104𝛼 + 3190784

)
t18 +

(
9𝛼3 + 32𝛼2 + 80128𝛼 − 2146304

)
t16

+ 4
(
9𝛼3 + 520𝛼2 + 43712𝛼 + 437248

)
t14 + 4

(
21𝛼3 + 1512𝛼2 + 50240𝛼 − 237568

)
t12

+ 2
(
63𝛼3 + 4000𝛼2 + 64640𝛼 + 149504

)
t10 + 2

(
63𝛼3 + 2864𝛼2 + 22912𝛼 − 24576

)
t8

+ 4
(
21𝛼3 + 568𝛼2 + 2112𝛼 + 1024

)
t6 + 12𝛼

(
3𝛼2 + 40𝛼 − 64

)
t4 + 3𝛼2(3𝛼 + 16)t2,

and also  is composed of (± 1, lj) and (li,± 1). Therefore, the number of fixed points included in  depends on 𝛼:

i) There is no real strange fixed point for 𝛼 ∈ (n∗, 0); however, if 𝛼 ∈ (−∞, n∗)∪ (0, m∗), the total amount of
strange fixed points is 12, being n∗ ≈−93.210875 and m∗ ≈ 327.44373142 the only real roots of polynomial
n(t)= t3 − 112t2 + 3190784+ 15104t and m(t) = 100000t9 − 33232500t8 + 162157876t7 − 769658421t6 +
2887352848t5−7815029120t4+14060488832t3−17146950656t2+12837074944t−5333716992, respectively. Indeed,
four of them are repelling, while the eight elements left are saddle points.

ii) If 𝛼 ∈ (m∗,+∞),  is composed of sixty strange fixed points, whose character depends on the value of 𝛼. Therefore,
two different situations can be found regarding their stability:

a) When 𝛼 ∈ (m∗, 𝛼∗), being 𝛼∗ ≈ 369.97117, then  is composed by twelve attracting, sixteen repelling and
thirty-two saddle strange fixed points.

b) Finally, if 𝛼 ∈ (𝛼∗,+∞) then  is composed by twenty repelling and forty saddle fixed points.

Proof. Let us remark that, due to the fact that the polynomial system has separated variables, the coordinates of
U(x, 𝛼) have the same expression with exception of the sub-indices. So, being a fixed point the solution of equation
uj(x, 𝛼)= xj, 𝑗 = 1, 2, we obtain an equivalent form

(
x2
𝑗 − 1

) (
−𝛼3 +

(
𝛼3 − 112𝛼2 + 15104𝛼 + 3190784

)
x18
𝑗
+
(
9𝛼3 + 32𝛼2 + 80128𝛼 − 2146304

)
x16
𝑗

+ 4
(
9𝛼3 + 520𝛼2 + 43712𝛼 + 437248

)
x14
𝑗 + 4

(
21𝛼3 + 1512𝛼2 + 50240𝛼 − 237568

)
x12
𝑗

+ 2
(
63𝛼3 + 4000𝛼2 + 64640𝛼 + 149504

)
x10
𝑗
+ 2

(
63𝛼3 + 2864𝛼2 + 22912𝛼 − 24576

)
x8
𝑗

+ 4
(
21𝛼3 + 568𝛼2 + 2112𝛼 + 1024

)
x6
𝑗
+ 12𝛼

(
3𝛼2 + 40𝛼 − 64

)
x4
𝑗 + 3𝛼2(3𝛼 + 16)x2

𝑗

)
= 0, 𝑗 = 1, 2.

(4)

Then, we state that the values x𝑗 = ±1 satisfy this expression, and (1, 1), (1,− 1), (− 1, 1), (− 1,− 1) are fixed points of
the rational operator U(x, 𝛼) and the roots of p(x), simultaneously. To analyze their stability, we calculate the associate
Jacobian matrix U′(x, 𝛼) of the rational multidimensional operator, with diagonal shape

U ′(x, 𝛼) =
(

J1(x1, 𝛼) 0
0 J2(x2, 𝛼)

)
,

being

J𝑗(x𝑗 , 𝛼) = −
(x𝑗 − 1)5(x𝑗 + 1)5

4194304 x20
𝑗

r(x𝑗), 𝑗 = 1, 2, (5)

and

r(t) = (−1003520 + 15104𝛼 − 112𝛼2 + 𝛼3)t10 + (319488 + 170752𝛼 − 640𝛼2 + 15𝛼3)t8

+ (−53248 − 62208𝛼 − 8416𝛼2 − 70𝛼3)t6 + (11520𝛼 + 3840𝛼2 + 110𝛼3)t4 + (−816𝛼2 − 75𝛼3)t2 + 19𝛼3.
(6)

It is straightforward that J𝑗(±1, 𝛼) = 0 for any 𝛼 and 𝑗 = 1, 2. So, the roots of p(x) are superattracting fixed points as
the eigenvalues of U′((± 1,± 1), 𝛼) are zero.

CAPDEVILA ET AL. 3363
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The rest of fixed points can be found through l(t, 𝛼) by means of s= t2. A ninth degree polynomial is then obtained

L(s) =
(
𝛼3 − 112𝛼2 + 15104𝛼 + 3190784

)
s9 +

(
9𝛼3 + 32𝛼2 + 80128𝛼 − 2146304

)
s8

+ 4
(
9𝛼3 + 520𝛼2 + 43712𝛼 + 437248

)
s7 + 4

(
21𝛼3 + 1512𝛼2 + 50240𝛼 − 237568

)
s6

+ 2
(
63𝛼3 + 4000𝛼2 + 64640𝛼 + 149504

)
s5 + 2

(
63𝛼3 + 2864𝛼2 + 22912𝛼 − 24576

)
s4

+ 4
(
21𝛼3 + 568𝛼2 + 2112𝛼 + 1024

)
s3 + 12𝛼

(
3𝛼2 + 40𝛼 − 64

)
s2 + 3𝛼2(3𝛼 + 16)s − 𝛼3.

The fixed points of U(x, 𝛼) must have real components, which are defined as ±
√

Li, being Li any real and positive
root of L(s). Then, the number of elements of  depends on the number of roots of L(s) that can be simultaneously
real and positive, as well as their combinations with ±1. It can be checked that there is no real positive root of L(s) for
𝛼 ∈ (n∗, 0). Then,

i) Only one real positive root L1 is found if 𝛼 ∈ (−∞, n∗)∪ (0, m∗). In this case, the roots
{
+
√

L1,−
√

L1

}
are denoted

by li, for i∈ {1, 4}, and the members of  are {(l1, l1), (l1, l4), (l4, l1), (l4, l4), (l1,± 1), (± 1, l1), (l4,± 1), (± 1, l4)}. The
information about stability of these fixed points of U(x, 𝛼) can be inferred from the analysis of the absolute value
of the eigenvalues of matrix U′((li, lk)), 𝛼), i, k∈ {1, 4}; these functions of 𝛼 are called stability functions of the
respective fixed points. Due to the nature of the polynomial system, the eigenvalues 𝜆((li, lk), (𝛼)) = J1((li, lk), 𝛼)) =
J2((li, lk), 𝛼) for i, k∈ {1, 4}; however, if any of the components of the fixed point is±1, the corresponding eigenvalue
is always null.
We can see in Figure 1 the values of |𝜆| associated to the Jacobian matrix and evaluated at pairs composed of l1 and
l4. Let us remark that they are greater than one; therefore, the behavior of the strange fixed points (li, lk), i, k∈ {1, 4}
in D is repelling. Indeed, fixed points (li,± 1), (± 1, li), i∈ {1, 4} are saddle points as one of the eigenvalues is zero
and the another one is greater than one.

ii) There exist three real positive roots L1, L2, and L3 for 𝛼 ∈ (m∗,+∞), being n∗ ≈−93.210875 the only real
root of polynomial n(t)= t3 − 112t2 + 3190784+ 15104t and m∗ ≈ 327.44373142 the only real root of m(t) =
100000t9 − 33232500t8 + 162157876t7 − 769658421t6 + 2887352848t5 − 7815029120t4 + 14060488832t3 −
17146950656t2+12837074944t−5333716992. The roots

{
+
√

L1,+
√

L2,+
√

L3,−
√

L1,−
√

L2,−
√

L3

}
are denoted

by li for i∈ {1, 2, 3, 4, 5, 6}. So, the set of all strange fixed points is obtained combining in pairs li, i = 1, 2, … , 6
with themselves and with 1 and −1. In this case, there exist values of 𝛼 that allow some of the fixed points to be
attracting. To calculate them, we solve the equation |𝜆𝑗((li, lk), (𝛼))| = 1, for i, k∈ {1, 2, 3, 4, 5, 6} and 𝑗 = 1, 2. We
found that only strange fixed points (li, lk) with i, k∈ {3, 6} satisfy this equation at 𝛼 =m∗ and 𝛼 = 𝛼∗ ≈ 369.97117.

a) Therefore, they are not hyperbolic for these values of 𝛼 and attracting for 𝛼 ∈ (m∗, 𝛼∗), as can be seen in
Figure 2A. Moreover, the stability of fixed points (li,± 1) or (± 1, lk), for i, k∈ {3, 6} and 𝛼 ∈ (m∗, 𝛼∗), corre-
sponds to a Jacobian matrix whose eigenvalues take values |𝜆1((li,± 1), (𝛼)) |<1 and |𝜆2((li,±1), (𝛼))| = 0
(respectively, |𝜆1(±1, (lk), (𝛼))| = 0 and |𝜆2(± 1, (lk), (𝛼)) | < 1) if 𝛼 ∈ (m∗, 𝛼∗), so they are attracting, or if
𝛼 ∈ (𝛼∗,+∞), then |𝜆1((li,± 1), (𝛼)) | > 1 and |𝜆2((li,±1), (𝛼))| = 0 (respectively, |𝜆1(±1, (lk), (𝛼))| = 0 and|𝜆2(± 1, (lk), (𝛼)) | > 1), and these components of  are saddle points.

b) For 𝛼 ∈ (𝛼∗,∞), all the 36 pairs (li, lj) are repelling fixed points, as absolute values of |𝜆j((li, lk), (𝛼)) |>1, for
i, k∈ {1, 2, 3, 4, 5, 6} and 𝑗 = 1, 2. The stability of one of these fixed points can be inferred from Figure 2B.

Now, the stability of strange fixed points is determined, and we know the range of values of 𝛼 that can be used in order to
avoid attracting strange points. However, there are other attracting elements that should be avoided in order to assure an
stable performance of the iterative methods. As we know that critical points appear in each attracting basin of attraction,
we analyze the existence of critical points different from the roots of p(x) = 0 (called free critical points), depending on
the value of the parameter, in the following statement.

Theorem 4. Let  be the collection of all free real critical points of the rational operator U(x, 𝛼) associated with the
iterative family (2). Then is composed of the pairs (ci, cj), (ci,± 1), and (± 1, cj) for i, j≤10 whose entries different from±1
are the real roots of polynomial r(t) described in (6). The amount of free critical points depends on the value of parameter
𝛼 > 0, as the roots must be real. Therefore, the composition of set  is as follows:
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FIGURE 1 Stability functions |𝜆((l1, l4), 𝛼)| in D. (A) 𝛼 <n∗. (B) 𝛼 ∈ (0, m∗) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Stability diagrams of some strange fixed points for 𝛼 >m∗. (A) |𝜆1((l3, l6), (𝛼))| = |𝜆2((l3, l6), (𝛼))|. (B)|𝜆1((l2, l5), (𝛼))| = |𝜆2((l2, l5), (𝛼))| [Colour figure can be viewed at wileyonlinelibrary.com]

i) If 𝛼 ∈ (0, t∗) being t∗ ≈ 1.578466 the root of polynomial

U(t) = 10800000t11 − 616915125t10 + 147378915264t9 − 3379785435264t8 + 34227036501760t7

= −179620639700992t6 + 585624788819968t5 − 1272823478222848t4 + 1886960251568128t3

= −1870420340899840t2 + 1144029500669952t − 339697553375232,

then  has 12 free critical points.
ii) For 𝛼 ∈ (t∗, 80),  contains 60 free critical points.

iii) If 𝛼 ∈ (80,+∞), then  is composed of 32 free critical points.

Proof. As it has been stated in the proof of Theorem (3), the eigenvalues of Jacobian matrix U′(x, 𝛼) are 𝜆𝑗(x, 𝛼) =
J𝑗(x, 𝛼), for j∈ {1, 2}, that is,

𝜆𝑗(x, 𝛼) = −
(x𝑗 − 1)5(x𝑗 + 1)5

4194304 x20
𝑗

r(x𝑗), 𝑗 = 1, 2, (7)

being

r(t) = (−1003520 + 15104𝛼 − 112𝛼2 + 𝛼3)t10 + (319488 + 170752𝛼 − 640𝛼2 + 15𝛼3)t8

+ (−53248 − 62208𝛼 − 8416𝛼2 − 70𝛼3)t6 + (11520𝛼 + 3840𝛼2 + 110𝛼3)t4 + (−816𝛼2 − 75𝛼3)t2 + 19𝛼3.
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By definition, the critical points are found by solving the equation 𝜆𝑗(x, 𝛼) = 0, for j∈ {1, 2}. It is clear that change
t2 = s reduces to the half the degree of polynomial r(t). Therefore, its positive real roots, denoted by Cj, will derive the
components of the free critical points, obtained as ck = ±

√
C𝑗 . Again, the amount of positive Cj depends on the value

of parameter 𝛼:

i) Forcing the roots of r(s) to be real, no result is found for negative values of 𝛼. Moreover, there exist three real roots
for 𝛼 ∈ (0, t∗), being t∗ ≈ 1.578466 the only real root of polynomial U(t), but only one of them, C1, is positive. Then,
 is composed of (c1, c1), (c1, c4), (c4, c1), and (c4, c4), where c1,4 = ±

√
C1, and also of (cj,± 1) and (± 1, cj), j∈ {1, 4}.

ii) If 𝛼 ∈ (t∗, 80), there exist only three real positive roots of polynomial r(t), C1, C2, and C3. So,  is composed of
elements of kind (ci, cj), where i, j∈ {1, 2, … , 6}, being c1,4 = ±

√
C1, c2,5 = ±

√
C2, and c3,6 = ±

√
C3. Moreover,

mixed points (± 1, cj) and (ci,± 1) where i, j∈ {1, 2, … , 6} also belong to .
iii) Finally, for 𝛼∈ (80,+∞), C1 and C2 are the only two positive real roots of r(t). Then, = {(ci, c𝑗), (ci,±1), (±1, c𝑗) ∶

i, 𝑗 ∈ {1, 2, 3, 4}}, holding 32 different free critical points.

From Theorems 3 and 4, we state that for 𝛼 ∈ (n∗, 0), there exist neither free critical points nor strange fixed points.
Hence, only stable dynamical behaviors can be found for values of the parameter in this interval, that is, for iterative
methods of the class PSH6 with 𝛼 ∈ [n∗, 0]. In Figure 3, some dynamical planes for values of 𝛼 inside this interval can be
observed. These figures have been obtained following the routines described in.25 We have built a mesh with step equal
to 0.01, and every initial estimation is iterated 100 times with an estimation of the error lower than 10−3 as a stopping
criterium.

Each point of the mesh, used as initial estimation, is colored depending on the root (represented with circles) it con-
verges to. The color is brighter when lower is the number of iterations needed. If all the iterations are completed and no
convergence to any roots is reached, then the point is painted in black. We can see in Figure 3 the basins of attraction of
all roots and how the black areas of no convergence (divergence or maximum number of iterations reached) are narrower
as the value of 𝛼 increases. All the dynamical planes in this paper have been made with the same features.

2.1 Finding chaos: New and known tools
Once the most stable area has been detected, our aim is to find the worst areas in terms of convergence to attracting
elements different from the roots of the nonlinear system or even chaos. To get this aim, we take into account the results
of Theorems 3 and 4: for 𝛼 ∈ (t∗, 80) and 𝛼 ∈ (80,+∞), a big amount of free critical and fixed points have been found, some
of the later ones with attracting behavior. The analysis of the performance of the rational function in these areas will yield
a rich dynamical performance.

Due to the existence of critical points in the immediate basin of attraction of any attracting fixed or periodic point (see26),
the analysis of the asymptotic behavior of free critical points gives us relevant information about the performance of the
rational operator and the related class of iterative methods. To study the orbits of critical points, we use the parameter
line, firstly introduced in.27 To plot it, we define a mesh of 500× 500 points in a certain domain of parameter 𝛼. A point of
the mesh is painted in red color if the critical point, evaluated at this value of 𝛼 and used as initial estimation, converges to
any of the roots of the polynomial system before a maximum of 200 iterations; in another case, it is painted in black color.
Each one of these red or black points is thickened by means of a multiplication by the unit interval [0, 1]. The tolerance
for the error estimation is equal to 10−3.

Figure 4A,B shows the limit behavior of the free critical points corresponding to 𝛼 ∈ (t∗, 80). In Figure 4A, desirable
behavior is observed, and free critical points (ci, cj) with i, j∈ {1, 2, 4, 5} converge to any of the roots of polynomial system;
meanwhile, in Figure 4B, unstable behavior is detected for (ci, cj) with i, j∈ {3, 6} around the values 𝛼 ≈ 74, 𝛼 ≈ 77 and
𝛼 ≈ 79 in the parameter line. We make a first approach to the analysis of the unstable behavior in these three dark zones
through the Feigenbaum diagrams. These bifurcation diagrams are obtained using each one of the free critical points of
the rational operator as starting point in a mesh of 3000 subintervals for 𝛼 ∈ (t∗, 80) and observing their performance in
the last 100 of a total amount of 1000 iterations. The bifurcation diagram of critical point (c3, c6) is shown in Figure 5.

Due to the nature of polynomial system p(x), that has separate variables, the coordinate functions of the rational operator
have the same shape and are symmetrical. Taking advantage of this feature, we have plotted in red color the x1 dimension
and in blue color x2, and for the details, we have chosen the positive part in all the cases. In Figure 5A, we observe the
convergence to the roots of p(x) far away of 𝛼 ≈ 74.05 where the unstable behavior lies. Analogous performances appear in
Figure 5C,E, for different scales. On the other hand, in the details given by Figure 5B,D,F, the same pattern of bifurcations
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FIGURE 3 Stable dynamical planes for 𝛼 ∈ [n∗, 0]. (A) 𝛼 = −90. (B) 𝛼 = −5. (C) 𝛼 = −0.1. (D) 𝛼 = 0 [Colour figure can be viewed at
wileyonlinelibrary.com]

as period-doubling cascades, periodical orbits, and chaotical behavior can be observed around 𝛼 ≈ 74.05, 𝛼 ≈ 77.01, and
𝛼 ≈ 79.36, respectively.

On the other hand, in Figure 4C,D, the parameter lines corresponding to the limit performance of the free critical
points with components different from ±1 are shown, for 𝛼 ∈ (80,+∞). Although they have been plotted for pairs (c1, c3)
(Figure 4C) and (c2, c4) (Figure 4D), the rest of pairs have the same behavior. Let us remark that for a wide interval around
𝛼 = 150, only stable behavior is found, and for 𝛼 >m∗, there is no possibility of stable performance, as all critical free
points show black color in the parameter lines. To deepen in these unstable performances, we propose a new tool, based
on the norm of the nonlinear function at the orbit of any initial estimation, for a fixed value of 𝛼.

2.1.1 The new tool: Isonormal surfaces
In Figure 6, the dynamical planes related with the shaded areas found in the parameter lines appear (see Figure 4B),
where the critical points show the unstable behavior for 𝛼 ∈ (t∗, 80).

In Figure 6A, white squares represent the free critical points. Some of them are located in the black
zone where unstable behavior takes place and the rest lie in the basin attraction of the roots of p(x).
In Figure 6B, an infinite number of connected components of the basins of attraction of the roots
can be observed and also the proximity between four critical and four repelling (red circles) that lie
in the Julia set, with coordinates {(− 0.618,− 0.618), (− 0.618, 0.618), (0.618,− 0.618), (0.618, 0.618)} and
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FIGURE 4 Parameter lines of different free critical points for 𝛼 ∈ (t∗, 80) and 𝛼 ∈ (80,+∞). (A) (ci, cj), i, j∈ {1, 2, 4, 5} for 𝛼 ∈ (t∗, 80). (B)
(ci, cj), i, j∈ {3, 6} for 𝛼 ∈ (t∗, 80). (C) (ci, cj), i, j∈ {1, 3} for 𝛼 ∈ (80,+∞). (D) (ci, cj), i, j∈ {2, 4} for 𝛼 ∈ (80,+∞) [Colour figure can be viewed at
wileyonlinelibrary.com]

{(− 0.592,− 0.592), (− 0.592, 0.592), (0.592,− 0.592), (− 0.592, 0.592)}, respectively. We notice the similarity between the
dynamical planes for 𝛼 = 77.03 and 𝛼 = 79.375 shown in Figure 6B,C. Let us remark the large scale involved; this is the
reason why the limit values of critical points and the roots of p(x) are not visible.

To gain more information about the dynamical performance into the black areas, in the designed tool that
we call isonormal surface, every initial estimation of a dynamical plane for a fixed value of 𝛼 is iterated 1000
times, and the Euclidean norm of the last iteration is calculated. Therefore, every point is painted in a differ-
ent color depending on this calculated value of the norm. As a result, certain patterns emerge; see Figure 7.
In this picture, magenta area corresponds to norm equal to

√
2, that is, the basins of attraction of the roots of

system p(x); higher values of the norm yield to orange and yellow areas that correspond to the basins of attrac-
tion of periodical or dense orbits; the yellow area corresponds with the basin of a diagonal orbit with period
16 that has been plotted with blue points and lines in Figure 7A (for 𝛼 = 74.056) and whose elements are
{(− 0.57638250, 0.57679642), (13.31007537,− 12.72354055), (0.57692885,− 0.57638250), (− 12.53925256, 13.31007537),
(− 0.57643677, 0.57692885), (13.23224992,− 12.53925256), (0.57679642,− 0.57643677), (− 12.72354055, 13.23224998),
(− 0.57638250, 0.57679642), (13.31007537,− 12.72354055), (0.57692885,− 0.57638250), (− 12.53925256, 13.31007537),
(− 0.57643677, 0.57692885), (13.23224999,− 12.53925256), (0.57679642,− 0.57643677), (− 12.72354055, 13.23224998),
(− 0.57638250, 0.57679642)}. These elements, that have been obtained numerically from the last iterations of the blue
trajectory, correspond to the elements of the period-doubling cascade obtained in Figure 5B for the specific value of
𝛼 = 74.056. A symmetrical performance can be found in the other diagonal corners. In Figure 7B, a detail of these yellow
areas can be observed, where also small regions of convergence to the roots (in magenta color) or orange areas are found.
These orange areas correspond to the basin of attraction of vertical and horizontal periodical orbits of the same period.
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FIGURE 5 Bifurcation diagrams of critical point (c3, c6). (A) First dark zone for 𝛼 ≈ 74. (B) A detail. (C) Second dark zone for 𝛼 ≈ 77. (D) A
detail. (E) Third dark zone for 𝛼 ≈ 79. (F) A detail [Colour figure can be viewed at wileyonlinelibrary.com]

In Figure 7C,D, the isonormal surface for 𝛼 = 74.06 and a detail, respectively, are represented. With this slight modifi-
cation of the value of 𝛼, the yellow area of periodic behavior has become into a darker area including an strange attractor:
a dense orbit. In Figure 7D, the trajectory of the point (− 0.57638250, 0.57679642) already contained in the last periodic
orbit analyzed has been plotted, and it can be observed that the iterates are filling the corner areas as far as the maximum
number of iterations is reached. For this value of 𝛼, this dense orbit not only fills the diagonal areas shown in Figure 7D
but also the small areas around the points (− 0.5, 0.5) and (0.5,− 0.5) that were also basin of attraction of the periodic orbit
for 𝛼 = 74.056.
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FIGURE 6 Dynamical planes for some 𝛼 ∈ (t∗, 80). (A) 𝛼 = 74.056. (B) 𝛼 = 74.056, a detail. (C) 𝛼 = 77.03. (D) 𝛼 = 79.375 [Colour figure
can be viewed at wileyonlinelibrary.com]

Let us consider now the second interval, (80,+∞), in which the rational function U(x, 𝛼) is expected to have unstable
behavior. According to the fixed point stability Theorem 3, in the domain 𝛼 ∈ (m∗, 𝛼∗) = (327.44373,369.97117), there
are 12 fixed attracting points given by (2.00329, 2.00329), (2.00329,− 2.00329), (− 2.00329, 2.00329), (− 2.00329,− 2.00329)
and their combinations with ±1. We have seen in the parameter planes (Figure 4C,D) that the free critical points converge
to attracting elements different from the roots. In Figure 8, the dynamical planes for the values 𝛼 = 350 and 𝛼 = 370 are
plotted. In the first of them, the basins of attraction of the attracting fixed points can be observed in different colors. In
these basins, the attracting strange fixed points appear as red circles.

When 𝛼 = 370, these points are no longer attracting but repelling. So, they lay in Figure 8B in the black area of the
dynamical plane. However, the strange fixed points that are repelling should appear in the Julia set of the dynamical
plane, that is, in the boundary between different basins of attraction that do not appear as do not correspond to the roots
of the system. These attracting elements must be found in order to fully understand the performance of the methods.
These two cases are representative of the unstable performance of the methods corresponding to values of 𝛼 > 80.

This valuable information can be found in the isonormal surfaces shown in Figure 9. Let us remark that 12 of the strange
fixed points that were attracting for 𝛼 ∈ (m∗, 𝛼∗), after the bifurcation value 𝛼 = 𝛼∗, have not only become repelling but
have created a periodic orbit of period 2, whose elements are very close to the fixed point. Due to the symmetry of the
system, the value of the norm coincides when a change of sign happens in the components of the limit points. So, we

CAPDEVILA ET AL.3370

 10991476, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.7695 by U

niversitat Politecnica de V
alencia, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


FIGURE 7 Isonormal surfaces for several value of 𝛼in(t∗, 80). (A) 𝛼 = 74.056. (B) 𝛼 = 74.056, a detail. (C) 𝛼 = 74.06. (D) 𝛼 = 74.06, a detail
[Colour figure can be viewed at wileyonlinelibrary.com]

study in detail only one of the four regions situated in the “corners” of Figure 9B. It can be seen in Figure 10. In it, on
the different regions defined by the norm of the limit points, three different periodic orbits of period 2 can be observed,
in blue color.

The initial points of these plotted orbits are (2.15, 2.18), (2.17, 1.69), and (1.59, 1.75), and they are in the basin of
attraction of the periodical orbits {(2.034939601034481, 2.045995971020433), (2.045995971020433, 2.034939601034481)},
{(1.0, 2.045995971020433), (1.0, 2.034939601034481)}, and {(2.045995971020433, 1.0), (2.034939601034481, 1.0)}. Let us
notice that no repelling point appears in the Julia set. The reason is the high number of iterations used in the isonormal
surface, 1000. As the Julia set is the unstable manifold, an orbit of an arbitrary initial point close to it will be “repelled”
towards the closer attracting element, in this case any of the periodical orbits. So, even the repelling strange fixed points
appear in the isonormal surface as initial guesses that converge to the periodical orbits.

3 NUMERICAL RESULTS

In this section, the numerical performance depending on 𝛼 of the studied class of iterative methods PSH6 is tested, using
the dynamical information deduced in the previous section. The information regarding its behavior in comparison with
other methods can be found in22 but using values of 𝛼 arbitrarily chosen.
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FIGURE 8 Dynamical planes showing unstable performance. (A) 𝛼 = 350. (B) 𝛼 = 370 [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 9 Isonormal surfaces for values of 𝛼 ∈ (80,+∞). (A) 𝛼 = 350. (B) 𝛼 = 370 [Colour figure can be viewed at wileyonlinelibrary.com]

So, the values of 𝛼 assigned have been chosen taking in account the analysis of parameter lines and bifurcation diagrams
shown in Figures 4 and 5 and the results summarized in Theorems 3 and 4. They are grouped as follows:

1. For values 𝛼 = 0, 𝛼 = −5, and 𝛼 = −90 belonging to the domain [− 93.210875, 0], very stable performance can be
expected according to the stability analysis made.

2. We cannot expect good results for the values 𝛼 = 74.056, 𝛼 = 77.030, and 𝛼 = 79.375 (for which the analysis of critical
point reveals unstable behavior; see Figure 6).

3. Also unstable performance is expected for 𝛼 = 330, 𝛼 = 350, and 𝛼 = 369 (see Figure 8A), belonging to the interval
(327.44373, 369.97117).

4. Finally, for 𝛼 = 370, 𝛼 = 380, and 𝛼 = 390 (see Figure 8B), chosen inside the interval (369.97117,∞), unstable behavior
is supposed to be found, too.

For values of 𝛼 in groups 2–4, a high number of critical points and strange fixed points of different character can be
found according to the stability analysis previously realized.
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FIGURE 10 Isonormal surfaces for 𝛼 = 370, a detail [Colour
figure can be viewed at wileyonlinelibrary.com]

To perform the numerical experiments, we have employed MATLAB computer algebra system with 2000 digits of man-
tissa in variable precision arithmetics. The stopping criterion used is ||x(k+ 1) − x(k)|| < 10−200 or ||F(x(k+ 1)) || < 10−200; the
initial values employed and the searched solutions are symbolized as x(0) and 𝜉, respectively. The implementation of our
method involves the evaluation of a divided difference operator that is calculated by using the first-order estimation of
the Jacobian matrix whose elements are (see23)

[𝑦, x;F]i𝑗 = (𝑓i(𝑦1, … , 𝑦𝑗−1, 𝑦𝑗 , x𝑗+1, … , xm) − 𝑓i(𝑦1, … , 𝑦𝑗−1, x𝑗 , x𝑗+1, … , xm))∕(𝑦𝑗 − x𝑗), 1 ≤ i, 𝑗 ≤ n,

where fi, i = 1, 2, … ,n, are the coordinate functions of the nonlinear function F describing the system to be solved.
We have tested the different iterative methods for solving two nonlinear systems. The information displayed in the

corresponding tables is organized as follows: “Group” and 𝛼 show the number associated to the interval that includes
the particular value of the parameter used; k is the number of iterations needed, whose maximum value is 25 (“NaN”
appears in the table if undefined numeric results appear, such as 0/0); the value of the stopping residuals ||x(k+ 1) − x(k)||
and ||F(x(k+ 1))|| at the last iteration and also the approximated computational order of convergence 𝜌 (defined in),

𝜌 =
ln(||x(k+1) − x(k)||∕||x(k) − x(k−1)||)

ln(||x(k) − x(k−1)||∕||x(k−1) − x(k−2)||)
(if the value of 𝜌 for the last iterations is not stable, then “-” appears in the table). In this way, once the process has
stopped without reaching the maximum number of iterations, it can be checked if the iterative process has reached the
root (||F(x(k+ 1)) || < 10−200 is achieved) or it is only a very slow convergence with a no significant difference between the
two last iterates (||x(k+ 1) − x(k)|| < 10−200 but ||F(x(k+ 1)) || > 10−200).

Example 1. The first nonlinear system, whose solution is 𝜉 = (0.0, 2.0)T , is described as

F1(x1, x2) = (x2
1 + x1x2 + x2

2 − 4, x1 + x1x2 + x2 − 2).

The initial estimation is x(0) = (0.5, 3.0)T , and the results appear in Table 1.
In Table 1, the results of PSH6 on F1(x1, x2) are shown. A good performance is obtained for the iterative schemes in

group 1; all of them converge to the solution in five iterations with very small residual ||F(x(k+ 1))||. As it is expected, after
the maximum number of iterations, no convergence is observed for iterative methods belonging to groups 3 and 4, as can
be observed by the difference between last two iterates (||x(k+ 1) − x(k)||) and the residual (||F(x(k+ 1))||) at the 25th iteration.
In this case, the performance of the members of second group is unexpectedly good, and the computational approximated
order of convergence is unstable for all groups.

Example 2. The second nonlinear function describes a system with solution 𝜉 ≈ (0.5, 0.0,− 0.5236)T,

F2(x1, x2, x3) = (3x1 − cos(x2x3) − 0.5, x2
1 − 81(x2 + 0.1)2 + sin(x3) + 1.06, e−x1x2 + 20x3 +

1
3
(10𝜋 − 3).
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Group 𝜶 k ||x(k+ 1) − x(k)|| ||F(x(k+ 1))|| 𝝆

0.0 5 37.6881× 10−201 0.0 -
1 −5 5 1.3537× 10−177 0.0 -

−90 5 94.5218× 10−66 969.9657× 10−270 -
74.056 5 9.8133× 10−129 0.0 -

2 77.030 5 1.8459× 10−123 0.0 -
79.375 5 15.0742× 10−120 0.0 -
330 25 204.3078× 1030 22.2677× 1063 -

3 350 25 11.5360× 1033 74.2941× 1066 -
369 25 20.0437× 1030 232.2309× 1060 -
370 25 8.9085× 1042 45.9500× 1084 -

4 380 25 339.8792× 1024 67.9344× 1051 -
390 25 8.0623× 1033 38.7626× 1066 -

TABLE 1 Numerical results of different elements of class PSH6 for
F1(x1, x2) and x(0) = (0.5, 3.0)T

Group 𝜶 k ||x(k+ 1) − x(k)|| ||F(x(k+ 1))|| 𝝆

0.0 6 431.6652× 10−177 0.0 5.8341
1 −5 6 409.7626× 10−144 0.0 5.9192

−90 18 1.7141× 10−120 0.0 -
74.056 25 1.2595 538.1906× 10−3 -

2 77.030 3 NaN NaN NaN
79.375 3 NaN NaN NaN
330 3 1.3897× 103 Inf -

3 350 1 NaN NaN NaN
369 1 NaN NaN NaN
370 1 NaN NaN NaN

4 380 1 NaN NaN NaN
390 3 7.4806× 109 Inf -

TABLE 2 Numerical of different elements of class PSH6 for
F2(x1, x2, x3) and x(0) = (1.0, 1.0, 1.0)T

We test the methods on this second system with the initial estimation x(0) = (1.0, 1.0, 1.0)T . The results are provided in
Table 2.

As we expected, a good performance is obtained for the members of the family given by group 1; all of them converge to
the solution in few iterations, being the residual null in all cases. The approximated computational order of convergence
is stable enough to be near the theoretical one in two cases. Regarding the second group, our expectations have been
fulfilled, and no convergence to the solution is obtained after 25 iterations. Similar results are obtained for groups 3 and 4.

4 CONCLUSIONS

When a family of iterative methods is applied on a real vectorial nonlinear problem, a dynamical analysis of the class is
important to avoid chaotical or unstable performance. In this work, we have made a deep dynamical analysis to select the
most stable elements of a parametric family of efficient sixth-order schemes. To get this aim, a new tool has been designed,
the isonormal surface, that allows us to detect the areas of a dynamical plane with the same kind of unstable behavior
and to find areas of chaotic performance, for a fixed value of the parameter. Once the characterization of the members
of the class of iterative methods has been made in terms of their qualitative properties, these results have been checked
with other nonlinear systems, with good results. In the numerical section, the effect of a bad election in the value of the
parameter involved can be observed, due to the unstability or no convergence of the related iterative method in these cases.
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