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Abstract. We study a full randomization of the complete linear differential
equation subject to an infinite train of Dirac’s delta functions applied at dif-

ferent time instants. The initial condition and coefficients of the differential

equation are assumed to be absolutely continuous random variables, while the
external or forcing term is a stochastic process. We first approximate the forc-

ing term using the Karhunen-Loève expansion, and then we take advantage of

the Random Variable Transformation method to construct a formal approxi-
mation of the first probability density function (1-p.d.f.) of the solution. By

imposing mild conditions on the model parameters, we prove the convergence of
the aforementioned approximation to the exact 1-p.d.f. of the solution. All the

theoretical findings are illustrated by means of two examples, where different

types of probability distributions are assumed to model parameters.

1. Introduction. Initially, the classical theory of differential equations with dis-
continuous right-hand side, also termed impulsive differential equations, has been
to a great extend stimulated by the problems coming from Mechanics, Automatic
Control, Electrical Engineering, etc., [18, 23], later applications have been extended
in other areas such as Medicine and Epidemiology [24, 26]. In such types of problems
the right-hand-side function contains discontinuities in the form of finite or infinite
jumps. Depending on the phenomenon under study, jumps may appear at fixed time
instants, such as chemotherapy in cancer treatments [4], or triggered by an event, for
example, in epidemiology [9]. Some of them are related to control problems in mod-
els of species food chain, predator-prey, pest control, diabetes control, and many
others [16, 19, 27]. An excellent recent reference for the study of impulsive systems
is [25]. When these models are applied to real-world problems, their input data
(initial/boundary conditions, forcing/control term and coefficients) need to be set
from experimental data collected via experiments, surveys, etc. These data contain
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uncertainties coming from error measurements (epistemic uncertainty). When the
problem under analysis is very complex, to this source of uncertainty one must add
the one due to the lack of knowledge of certain aspects of the problem (aleatoric
uncertainty). This latter happens when addressing epidemiological models since
the exact measurement of contagion or recovering coefficients is simply unafford-
able. All these facts motivate the study of differential equations with discontinuous
right-hand side with uncertainty.

To introduce and rigorously handling uncertainty in the context of differential
equations, one mainly distinguishes two approaches, Stochastic Differential Equa-
tions (SDEs) and Random Differential Equations (RDEs).

In the setting of SDEs, uncertainty is included by means of a specific stochastic
process with irregular sample behavior. For example, in the case of Itô-type SDEs,
uncertainty is driven by White Noise, that is a Gaussian stochastic process defined
as the generalized derivative (in the sense of the theory of distributions) of the
standard Wiener process (also termed Brownian motion). The rigorous handling
of SDEs requires a special stochastic calculus, called Itô calculus, whose corner-
stone tool is the Itô lemma, that plays the role of chain rule for differentiating
stochastic diffusion processes. The solutions of these SDEs are stochastic processes
with irregular sample paths due to the fact that the trajectories of the Wiener
process are nowhere differentiable [17]. Similarly as it happens with deterministic
differential equations, solving SDEs in an exact way is exceptional [32], so their
mathematical treatment mainly rely on numerical methods [22]. SDEs have been
successfully applied to modelling problems in many areas, particularly in Finance
and Biology [1, 3], and, particularly, impulsive SDEs are applied to solve stochastic
control/stabilization problems in different areas as Engineering and Biology [30, 33].

In the framework of RDEs, uncertainty is directly represented through the input
data of the differential equation and, as a consequence, the initial/boundary condi-
tions, source/control term and/or coefficients are assumed to be random variables
or stochastic process. It must be pointed out that, in contrast to SDEs, the stochas-
tic processes involved in the formulation of the RDE are assumed to have certain
sample regularity properties. For example, strongly irregular stochastic processes,
as the White noise, can not be treated as input data when dealing with RDEs, but
the standard Wiener process is allowed [12, 31]. As it shall be seen later, in this
paper we deal with a RDE whose right-hand side is very irregular, since it involves
impulses, via the Dirac delta distribution, and the standard Wiener process. Fi-
nally, it must be underlined that a major advantage of RDEs over SDEs is that
they permit considering different probabilistic distributions for their input param-
eters rather than assuming a common pattern, like the Gaussian one, implicitly
assumed in the formulation of the aforementioned Itô-type SDEs. This fact may be
crucial to success when applying RDEs to modelling real-world as an alternative to
SDEs. This feature has been recently underlined in different relevant contributions
[2, 20]. To the best of our knowledge, in the setting of impulsive RDEs, the contri-
butions are still scarce and they have mainly focused on theoretical questions about
existence and uniqueness of solutions. For example, in [35] one studies existence,
uniqueness and stability via continuous dependence of weak solutions of neutral par-
tial differential equations using the fixed point theory. In [37], sufficient conditions
for p-moment boundedness of nonlinear impulsive RDEs are presented. Afterwards,
necessary and sufficient conditions for oscillation in mean, p-moment stability and
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p-moment boundedness for second-order linear differential system with random im-
pulses are obtained, by the same authors, in [36]. Additionally, the obtained results
are compared with the corresponding ones for the nonimpulsive differential equa-
tion. In [38] the same type of impulse RDEs is analyzed but assuming that impulses
are driven by the Erlang distribution.

Hereinafter, (Ω,FΩ,P) will denote a complete probability space. The aim of this
paper is to continue contributing the study of impulsive RDEs, but from another
viewpoint, namely, by determining the main probabilistic properties of the solution
stochastic process, say x(t, ω), under mild hypotheses. In particular, as it shall
be motivated later, the computation of the so called first probability density func-
tion (1-p.d.f.), f1(x, t), of the solution stochastic process is of great interest, since
from this deterministic function one can obtain, by integration, all one-dimensional
moments of the solution,

E[(x(t))k] =

∫ ∞
−∞

xkf1(x, t) dx, k = 1, 2, . . . ,

where E[·] denotes the expectation operator. In particular, for k = 1 one obtains
the mean, µx(t) = E[x(t)], and for k = 2, the second-order moment, and hence the

standard deviation σx(t) =
√
E[(x(t))2]− (E[x(t)])2. Besides, fixed α ∈ (0, 1), the

1-p.d.f. permits constructing (1 − α)-confidence intervals, [µx(t̂) − kσx(t̂), µx(t̂) +
kσx(t̂)], at every time instant, say t̂, by determining k > 0 such that

P
[
{ω ∈ Ω : x(t̂;ω) ∈ [µx(t̂)− kσx(t̂), µx(t̂) + kσx(t̂)]}

]
=

∫ µx(t̂)+kσx(t̂)

µx(t̂)−kσx(t̂)

f1(x, t̂) dx = 1− α.

This avoids the use of possible inadequate approximations, such as the 2σ and 3σ-
rules that, guarantee the construction of confidence intervals at 95% (α = 0.05)
and 99% (α = 0.01) confidence intervals only when the solution is Gaussian. The
1-p.d.f. also allows us to determine the probability that the solution lies in any
interval of specific interest, say [x̂1, x̂2], at any time instant t̂,

P
[
{ω ∈ Ω : x(t̂;ω) ∈ [x̂1, x̂2]}

]
=

∫ x̂2

x̂1

f1(x, t̂) dx.

In the setting of RDEs, the computation of the 1-p.d.f. of the solution has been
addressed for different classes of equations including equations with delay and frac-
tional derivatives [5, 6, 8, 13, 14, 15, 21]. In recent contributions, we have extended
the study to a class of first-order linear impulsive RDEs with finite [11] and infi-
nite jumps [10]. In both cases, the impulses represent controls and they are evenly
applied over time via the Heaviside and Dirac’s delta functions, respectively. More-
over, in both papers it is assumed that all model parameters are random variables.

In this paper, we study a generalization of the homogeneous equation addressed
in [10], because we deal with its non-homogeneous formulation by considering that
the source term is a stochastic process (belonging to a space that will be introduced
later), and we then address the computation of the 1-p.d.f. of the solution. As
it shall be seen in the numerical experiments, we allow the source term can be,
for example, the standard Wiener process or Brownian motion, so resulting an
impulsive RDE whose right-hand side has very irregular trajectories, since the Dirac
delta distribution and the Brownian motion are both involved. Specifically, we shall
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study the following impulsive first-order linear RDE with initial condition

dx(t, ω)

dt
= α(ω)x(t, ω)− γ(ω)x(t, ω)

∞∑
i=1

δ(t− Ti) + b(t, ω),

x(0, ω) = x0(ω),

 ω ∈ Ω. (1)

We will assume that the initial condition, x0(ω), the growing rate, α(ω) > 0, and the
intensity of the impulsive effect, γ(ω) > 0, are absolutely continuous random vari-
ables with finite variance (usually referred to as second-order random variables [34,
Ch. 4]) defined on the common complete probability space (Ω,FΩ,P). For the sake
of generality, we will further assume that they have a joint p.d.f., fx0,α,γ(x0, α, γ).
So, independence is not assumed thereafter. Besides,

∑∞
i=1 δ(t − Ti) represents

the infinite train of impulses via the Dirac distribution at the time instants Ti,
i = 1, 2, . . . , and, b(t, ω) is a stochastic process that admits a Karhunen-Loève
expansion (KLE), [29].

For the sake of completeness, we now recall the main definitions and results that
will be required with regard to the stochastic process, b(t, ω) and its KLE. It is as-
sumed that this process belongs to the Hilbert space

(
L2(Ω,L2(T )), || · ||L2(Ω,L2(T ))

)
,

of square integrable stochastic processes, say x : T ×Ω −→ L2(T ), which are defined
in the finite interval T = [t0, T ], T > 0, where the norm is defined by

|| x ||L2(Ω,L2(T ))=

(∫
T
E
[
|x(t, ω)|2

]
dt

)1/2

<∞. (2)

It is assumed that E
[
|x(·, ω)|2

]
<∞ for every t ∈ T , i.e., the stochastic process is

such that for every t ∈ [t0, T ], it becomes a second-order random variable, in other
words, with finite variance. The following result states that every square integrable
stochastic process, x(t, ω), can be expanded in terms of a set of eigenpairs associated
with an homogeneous Fredholm integral equation of the second kind involving the
correlation function of the x(t, ω).

Theorem 1.1. [29, p. 202] Consider a mean square integrable continuous time
stochastic process x ≡ {x(t, ω) : t ∈ T , ω ∈ Ω}, i.e. x ∈ L2(Ω,L2(T )), being µx(t)
and cx(s, t) its mean and covariance functions, respectively. Then,

x(t, ω) = µX(t) +

∞∑
j=1

√
νjφj(t)ξj(ω), ω ∈ Ω, (3)

converges in L2(Ω,L2(T )), being

ξj(ω) :=
1
√
νj
〈x(t, ω)− µX(t), φj(t)〉L2(T ) ,

where 〈u, v〉L2(T ) :=
∫
T u(x)v(x)dx, and {(νj , φj(t)) : j ≥ 1} denote, respectively,

the eigenvalues, with ν1 ≥ ν2 ≥ . . . ≥ 0, and the eigenfunctions of the following
Fredholm integral operator

C(t) :=

∫
T
cx(s, t)f(s)ds, f ∈ L2(T ),

associated to the covariance function cx(s, t). The random variables ξj(ω) are in-
dependent and identically distributed according to a standard Gaussian distribution,
ξj(ω) ∼ N(0, 1).
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In our subsequent development, the role of the KLE is fundamental because it will
allow us to compute the solution of model (1) by requesting that the eigenfunctions
φj(t) have a Laplace transform. This procedure can be applied to any stochastic
process, playing the role of the forcing or source term, b(t, ω), with a KLE in
terms of a set of eigenfunctions admitting a Laplace transform and whose mean
or expectation of b(t, ω) is also Laplace transformable. However, as it has been
previously emphasized, thoroughly analysis of any RDE means not only to compute
its exact or approximate solution stochastic process, but also to determine its 1-
p.d.f. To this end, the following result plays a key role in our subsequent study.

Theorem 1.2. (Random Variable Transformation (RVT) method, [34, pp. 24–25]).
Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two n-dimensional absolutely continu-
ous random vectors. Let g : Rn → Rn be a one-to-one deterministic transformation
of u into v, i.e., v = g(u). Assume that g is continuous in u and has continuous
partial derivatives with respect to u. Then, if fu(u) denotes the joint probabil-
ity density function of vector u, and h = g−1 = (h1(v1, . . . , vn), . . . , hn(v1, . . . , vn))
represents the inverse mapping of g = (g1(u1, . . . , un), . . . , gn(u1, . . . , un)), the joint
probability density function of vector v is given by

fv(v) = fu(h(v))|J |,

where |J | is the absolute value of the Jacobian of mapping h, defined by the deter-
minant

J = det

(
∂h

∂v

)
=


∂h1(v1,...,vn)

∂v1
· · · ∂hn(v1,...,vn)

∂v1
...

. . .
...

∂h1(v1,...,vn)
∂vn

· · · ∂hn(v1,...,vn)
∂vn

 .

Following this approach previously described, the main goal of this paper is to
compute reliable approximations of the 1-p.d.f. of the solution stochastic process
to the random IVP (1). To achieve this objective, we will combine the KLE and
the Random Variable Transformation (RVT) method.

The paper is organized as follows. In Section 2, we construct an approximation
of the 1-p.d.f. of the solution stochastic process of the random initial value problem
(IVP) formulated in (1). For the sake of clarity, this section is divided into two parts.
In Subsection 2.1, we will first take advantage of the KLE of the non-homogeneous
term, b(t), and, secondly, we will apply the Laplace transform, to obtain an explicit
solution of the IVP (1). In Subsection 2.2, we truncate the KLE by retaining N
terms, and we then apply the RVT method to determine an approximation, fN1 (x, t),
to the exact 1-p.d.f., f1(x, t), of the solution stochastic process. In Section 3, we
establish sufficient conditions on the data so that fN1 (x, t)→ f1(x, t) as N →∞ for
each (x, t). Finally, some illustrative examples are shown in Section 4. Conclusions
are drawn in Section 5.

2. Computing the solution stochastic process and the 1-p.d.f. via the
KLE. This section is divided into two subsections. In Subsection 2.1, we solve the
random IVP (1). To this end, we first expand the forcing term, b(t, ω), via the KLE,
and then we apply the Laplace integral transform. The solution is then expressed
in terms of an infinite sum. In Subsection 2.2, we truncate the above mentioned
infinite sum and, afterwards, apply the RVT method to obtain an approximation
of the 1-p.d.f.
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2.1. Solving the model. Let us consider the random IVP (1) and assume that the
non-homogeneous term b(t, ω) is a mean square integrable and continuous stochastic
process, being µb(t) and cb(s, t), its mean and covariance functions, respectively. By
Th. 1.1, b(t, ω) admits a KLE, so the random IVP (1) can be formally represented
as

dx(t, ω)

dt
= α(ω)x(t, ω)− γ(ω)x(t, ω)

∞∑
i=1

δ(t− Ti) + µb(t) +

∞∑
j=1

√
νjφj(t)ξj(ω),

x(0, ω) = x0(ω),


(4)

where the functions φj(t) are described in Th 1.1. The IVP (4) can be solved,
using the Laplace transform, provided φj(t), j = 1, 2, . . . , and the expectation of
b(t, ω), µb(t), admit Laplace transform. As the KLE converges uniformly with
respect to t [29], when taking the Laplace transform in the impulsive RDE of
(4), this integral operator can be interchanged with the infinite sum to solve for
X(s, ω) = L{x(t, ω)}(s), being s the Laplace transform parameter and ω ∈ Ω.
Here, L{x(t, ω)}(s) or X(s, ω) denote the Laplace transform of x(t, ω), for each
ω ∈ Ω. Therefore,

L
{

dx(t, ω)

dt

}
(s) = α(ω)L{x(t, ω)} (s)− γ(ω)

∞∑
i=1

L{x(t, ω)δ(t− Ti)} (s)

+L{µb(t)} (s) +

∞∑
j=1

√
νjξj(ω)L{φj(t)} (s),

i.e., using the properties of the Laplace transform,

sX(s, ω)−x0(ω) = α(ω)X(s, ω)−γ(ω)

∞∑
i=1

e−Tisx(Ti, ω)+Ub(s)+

∞∑
j=1

√
νjξj(ω)Φj(s),

where Ub(s) and Φj(s) denote the Laplace transform of the deterministic functions
µb(t) and φj(t), respectively. Now, we solve for X(s, ω)

X(s, ω) =
x0(ω)

s− α(ω)
− γ(ω)

s− α(ω)

∞∑
i=1

e−Tisx(Ti, ω)

+
1

s− α(ω)
Ub(s) +

∞∑
j=1

√
νjΦj(s)

1

s− α(ω)
ξj(ω).

The solution is finally obtained by taking the inverse Laplace transform,

x(t, ω) = x0(ω)eα(ω)t − γ(ω)

∞∑
i=1

x(Ti, ω)eα(ω)(t−Ti)H(t− Ti)

+(µb ∗ g)(t) +

∞∑
j=1

√
νj(φj ∗ g)(t)ξj(ω)

(5)

where, g(t, ω) = L−1{ 1
s−α(ω)} = eα(ω)t, H(·) denotes the Heaviside function and the

star notation ∗ stands for the convolution of two functions (f ∗ g)(t) =
∫ t

0
f(τ)g(t−

τ)dτ =
∫ t

0
f(t − τ)g(τ)dτ . To complete this solution is necessary to compute the

values of x(Ti, ω), for i = 1, 2, . . . , which is achieved by evaluating the solution
recursively at t = Ti, for i = 1, 2, . . .. To simplify the notation of this evaluation,
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let us first introduce the following notation

CKL(t, ω) := (µb ∗ g)(t, ω) +

∞∑
j=1

√
νj(φj ∗ g)(t, ω)ξj(ω). (6)

Evaluating (5) at t = T1

x(T1, ω) = x0(ω)eα(ω)T1 − γ(ω)x(T1, ω) + CKL(T1, ω),

and solving for x(T1, ω), we obtain,

x(T1, ω) =
x0(ω)eα(ω)T1

1 + γ(ω)
+
CKL(T1, ω)

1 + γ(ω)
.

When evaluating (5) at t = T2 > T1,

x(T2, ω) = x0(ω)eα(ω)T2 − γ(ω)x(T1, ω)eα(ω)(T2−T1) − γ(ω)x(T2, ω) + CKL(T2, ω),

and solving for x(T2, ω), one obtains

x(T2, ω) =
x0(ω)eα(ω)T2

(1 + γ(ω))2
− γ(ω)CKL(T1, ω)eα(ω)(T2−T1)

(1 + γ(ω))2
+
CKL(T2, ω)

1 + γ(ω)
.

In general, we can evaluate (5) at t = Ti, and solve for x(Ti, ω) in terms of the
previous computed values, i.e.

x(Ti, ω) =
x0(ω)eα(ω)Ti

(1 + γ(ω))i
−

i−1∑
j=1

γ(ω)CKL(Tj , ω)eα(ω)(Ti−Tj)

(1 + γ(ω))i−j+1
+
CKL(Ti, ω)

1 + γ(ω)
, i = 1, 2, 3, . . .

After substituting the last expression for the x(Ti, ω) in (5), we obtain the solution
stochastic process,

x(t, ω) = x0(ω)eα(ω)t

(
1− γ(ω)

∞∑
i=1

H(t− Ti)
(1 + γ(ω))i

)

+(γ(ω))2

∞∑
i=1

i−1∑
j=1

CKL(Tj , ω)eα(ω)(t−Tj)

(1 + γ(ω))i−j+1
H(t− Ti)

− γ(ω)

1 + γ(ω)

∞∑
i=1

CKL(Ti, ω)eα(ω)(t−Ti)H(t− Ti) + CKL(t, ω).

(7)

Summarizing, the following result has been established.

Proposition 1. Consider random IVP (1) and assume that b(t, ω) is a mean square
integrable continuous stochastic process, b(t, ω) ∈ L2(Ω,L2(T )), T ⊂ R, such that
the eigenfunctions associated to its Karhunen-Loève expansion and the expectation
of b(t, ω) are Laplace transformable. Then, its solution is given by (7), where the
term CKL(t, ω) is defined by (6) and H(t− Ti) denotes the Heaviside function.

2.2. Approximation of the 1-p.d.f. In this section we will take advantage of the
RVT method to obtain an approximate expression for the 1-p.d.f. of the solution
stochastic process of the random IVP (1) after truncating the KLE given in (7).

Let us consider the first N terms of the series CKL(t, ω) defined in (6), within the

expression given in (7), and let us denote by xN(t, ω)=xN(t;x0(ω),α(ω),γ(ω),ξN(ω)),
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where ξN (ω) = (ξ1(ω), ξ2(ω), . . . , ξN (ω)) the resulting truncated expression of
CKL(t, ω). Then, the formal approximation of the solution (7) can be written as,

xN (t, ω) = x0(ω)eα(ω)t

(
1− γ(ω)

∞∑
i=1

H(t− Ti)
(1 + γ(ω))i

)
+DN (t;α(ω), γ(ω), ξN (ω)) + CNKL(t;α(ω), ξN (ω)),

(8)

where we have shorten the above expression introducing the following notation,

DN(t;α(ω), γ(ω), ξN(ω)) = (γ(ω))2

∞∑
i=1

i−1∑
j=1

CNKL(Tj ;α(ω), ξN(ω))eα(ω)(t−Tj)

(1 + γ(ω))i−j+1
H(t−Ti)

− γ(ω)

1 + γ(ω)

∞∑
i=1

CNKL(Ti;α(ω), ξN (ω))eα(ω)(t−Ti)H(t−Ti),

(9)
and

CNKL(t;α(ω), ξN (ω)) = (µb ∗ g)(t, ω) +

N∑
j=1

√
νj(φj ∗ g)(t, ω)ξj(ω)

= (µb ∗ g)(t, ω) +

∫ t

0

eα(ω)(t−τ)
N∑
j=1

√
νjφj(τ)ξj(ω) dτ,

(10)
where in the last step we have applied the definition of the convolution taking into
account that g(t, ω) = eα(ω)t.

Let us recall that the KLE is defined in a time interval T = [t0, T ] (in our case
with t0 = 0), and within this interval, we apply Dirac’s delta impulses at the times
Ti ∈ T , i = 1, 2, 3, . . . To apply the RVT method, we fix t > 0 in a time interval
[Tn, Tn+1) ⊂ T . Then, xN (t, ω) is expressed as

xN (t, ω) = x0(ω)eα(ω)t

(
1− γ(ω)

n∑
i=1

H(t− Ti)
(1 + γ(ω))i

)
+DN (t;α(ω), γ(ω), ξN (ω)) + CNKL(t;α(ω), ξN (ω)),

because the Heaviside functions become zero after t > Tn+1. If we substitute the
Heaviside functions and perform the finite sum, this expression can be written as

xN (t, ω) =
x0(ω)eα(ω)t

(1 + γ(ω))n
+DN (t;α(ω), γ(ω), ξN (ω)) + CNKL(t;α(ω), ξN (ω)), (11)

where the expression for DN , given in (9), becomes

DN (t;α(ω), γ(ω), ξN (ω)) = (γ(ω))2

n∑
i=1

i−1∑
j=1

CNKL(Tj ;α(ω), ξN (ω))eα(ω)(t−Tj)

(1 + γ(ω))i−j+1

− γ(ω)

1 + γ(ω)

n∑
i=1

CNKL(Ti;α(ω), ξN (ω))eα(ω)(t−Ti).

(12)
Now, we will apply the RVT technique, stated in Th. 1.2, to the approximate

solution of the random IVP (4), which is given by (11), (12) and (10), to obtain its
1-p.d.f.
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Theorem 2.1. Let t > 0 be fixed and the joint p.d.f. of x0, α(ω) > 0, γ(ω) > 0

and ξN (ω), fx0,α,γ,ξN (x0, α, γ, ξ
N ). Assume that the hypotheses of Proposition 1 are

satisfied. Then, the 1-p.d.f. the stochastic process xN (t, ω), given by (11), is

fN1 (x, t) =

∫
RN+2

fx0,α,γ,ξN

(
(x−DN (t;α, γ, ξN )−CNKL(t;α, ξN ))

(1 + γ)n

eαt
, α, γ, ξN

)
× (1 + γ)n

eαt
dα dγ dξN ,

(13)

where CKL(t;α, ξN ) and DN (t;α, γ, ξN ) are given in (10) and (12), respectively.

Proof. Let us define the following map g : RN+3 → RN+3, v = g(u), u =

(x0, α, γ, ξ
N ) ≡ (x0, α, γ, ξ1, . . . , ξN ), i.e. explicitly,

v1 = g1(x0, α, γ, ξ1, . . . , ξN ) =
x0eαt

(1 + γ)n
+DN (t;α, γ, ξN ) + CNKL(t;α, ξN ),

v2 = g2(x0, α, γ, ξ1, . . . , ξN ) = α,
v3 = g3(x0, α, γ, ξ1, . . . , ξN ) = γ,
v4 = g4(x0, α, γ, ξ1, . . . , ξN ) = ξ1,
...

...
...

...
...

vN+3 = gN+3(x0, α, γ, ξ1, . . . , ξN ) = ξN .

Notice that v1 = x is the solution stochastic process. The inverse mapping of g,
g = h−1, is obtained by solving for u,

x0 = h1(v1, v2, . . . , vN+3) = [v1 −DN (t;α, γ, ξN )− CNKL(t;α, ξN )]
(1 + γ)n

eαt
,

α = h2(v1, v2, . . . , vN+3) = v2,
γ = h3(v1, v2, . . . , vN+3) = v3,
ξ1 = h4(v1, v2, . . . , vN+3) = v4,
...

...
...

...
...

ξN = hN+3(v1, v2, . . . , vN+3) = vN+3.

The Jacobian of this mapping is J = ∂x0

∂v1
= (1 + v3)ne−v2t 6= 0 with probability

1 (w.p. 1), since v3 = γ > 0 (notice that here γ denotes the realizations of the
absolutely continuous random variable γ(ω), ω ∈ Ω). The application of the RVT
method, stated in Th. 1.2, allows us to determine the joint p.d.f. of the random
vector v,

fv(v) = fu((x−DN (t; v2, v3,v4)− CNKL(t; v2,v4))(1 + v3)ne−v2t, v2, v3,v4)
×(1 + v3)ne−v2t,

where, for the consistency with the notation, we have introduced the notation v4 :=
(v4, . . . , vN+3) = ξN .

Finally, by marginalizing this expression with respect to α, γ, and ξN , one obtains
the 1-p.d.f. of the stochastic process, xN (t, ω), given in (13).

Remark 1. In the particular case that x0(ω) is independent of α(ω), γ(ω) and

ξN (ω), and that fx0
(x0) and fα,γ,ξN (α, γ, ξN ), denote their respective p.d.f.s, the

1-p.d.f. (13) can be expressed as

fN1 (x, t) = Eα,γ,ξN

[
fx0

(
(x−DN (t;α, γ, ξN )− CNKL(t;α, ξN ))(1 + γ)ne−αt

)
(1 + γ)ne−αt

]
,

(14)

where Eα,γ,ξN [·] denotes the expectation operator with respect to the random vector

(α(ω), γ(ω), ξN (ω)).
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With regard to the integral expression (13), it is important to remark that the
domain of integration is the corresponding subset of RN+2, where the random vector
(α(ω), γ(ω), ξN (ω)) ≡ (α(ω), γ(ω), ξ1(ω), ξ2(ω), . . . , ξN (ω)) takes values for all ω in
Ω. From a computational view point, expression (14), which is given in terms of
the expectation operator, is very useful to calculate the 1-p.d.f. via Monte Carlo
simulations. This key fact will be illustrated in the numerical examples.

3. Convergence of approximations. In this section, we provide sufficient con-
ditions to guarantee the sequence of approximations, fN1 (x, t), given in Th. 2.1 to
the exact 1-p.d.f., f1(x, t), of the solution stochastic process of the random IVP (4)
is a Cauchy sequence, so convergent. For the sake of clarity in the presentation,
we first summarize the hypotheses that will be used throughout our subsequent
presentation as well some results that will be required.

• H1: x0(ω), α(ω) > 0, γ(ω) > 0 are absolutely continuous random variables
belonging to L2(Ω) and b(t, ω) is a mean square integrable continuous stochas-
tic process, i.e, L2(Ω,L2(T )). Notice that, according to Th. 1.1, this entails
the stochastic process b(t, ω) admits a KLE.

• H2: The p.d.f., fx0
(x), of x0(ω) is Lipschitz in R, i.e. there exists L > 0 such

that | fx0
(x1)− fx0

(x2) |≤ L | x1 − x2 |,∀x1, x2 ∈ R.
• H3: The mean µb(t) as well as the eigenfunctions, φj(t), ∀j = 1, 2, 3, . . . ,

associated to the KLE of the stochastic process, b(t, ω), see Th. 1.1, admit
Laplace transform.

• H4: The moment generating function of the positive random variable γ(ω) >
0, ψγ(p) = E[epγ ], exists and is finite in a neighbourhood of p = 0. Notice that
ψγ(p) is just the Laplace transform of its p.d.f., fγ(γ). Recall, this guarantees
the existence of the moments with respect to the origin, E[γ(ω)m] <∞,∀m ∈
N.

• H5: x0(ω) is independent of the random vector (α(ω), γ(ω), ξN (ω)), where

ξN (ω) = (ξ1, . . . , ξN ) denotes the vector of random variables used in the
truncated KLE of the forcing term b(t, ω). Their p.d.f. will be denoted by

fx0
(x0) and fα,γ,ξN (α, γ, ξN ), respectively.

Remark 2. Notice that the condition b(t, ω) ∈ L2(Ω,L2(T )) in hypotheses H1
has been required to apply Th. 1.1; hypothesis H3 is obviously strongly related to
hypothesis H1 and it has been used to apply the Laplace transform when solving the
random IVP (4). The hypothesis H5 has been applied to obtain the representation
of fN1 (x, t) given in Th. 2.1. The usefulness of the rest of hypotheses will be apparent
later.

3.1. Technical results. In the following, we state some useful lemmas that will be
applied in the proof of the main result. The first lemma is a classical result called
the cs– inequality.

Lemma 3.1. [28, p. 157] Let y(ω) and z(ω) be random variables and s ∈ R. Then,

E[|y(ω) + z(ω)|s] ≤ cs(E[|y(ω)|s] + E[|z(ω)|s]), cs =

{
1, if s ≤ 1,

2s−1, if s ≥ 1,

provided the following expectations E[|y(ω)|s] and E[|z(ω)|s] exist.

The following two technical lemmas establish useful inequalities for the difference
between two terms, say N and M , first for the sequence, CNKL(·), given in (10), and
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later for the sequence, DN
KL(·), given in (12), in terms of the corresponding difference

of the truncated KLE, KN (·), of b(t, ω). To avoid using a cumbersome notation,
we will not write the full dependence in terms of the specific random variables
involved in each term, but only the ω-notation, i.e., we will write, for example,
CNKL(t;α(ω), ξN (ω)) ≡ CNKL(t, ω), when denoting a random quantity, while CNKL(t)
will denote its realization.

Lemma 3.2. Let α(ω) > 0 be a random variable and assume that b(t, ω) fulfills hy-

pothesis H1. Let KN (t; ξN (ω)) ≡ µb(t)+
∑N
j=1

√
νjφj(t)ξj(ω) be the truncated KLE

of the stochastic process b(t, ω) ∈ L2(Ω,L2(T )), t ∈ T = [0, T ], defined according to
Th. 1.1. Then,

|CNKL(t, ω)− CMKL(t, ω)| ≤ eα(ω)t

∫ t

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ, (15)

for N > M > 0 positive integers, and each ω ∈ Ω.

Proof. Using the expression of CNKL(t, ω), given in (10), and that α(ω) > 0, ω ≤ ω,
one obtains

|CNKL(t, ω)− CMKL(t, ω)| =

∣∣∣∣∣∣
∫ t

0

eα(ω)(t−τ)
N∑

j=M+1

√
νjφj(τ)ξj(ω)

 dτ

∣∣∣∣∣∣
≤
∫ t

0

eα(ω)(t−τ)
∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))

∣∣∣dτ
≤
∫ t

0

eα(ω)t
∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))

∣∣∣dτ
= eα(ω)t

∫ t

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ.

Next, we present the analogous bound for DN (t, ω) −DM (t, ω) in terms of the
difference, KN (t, ω)−KM (t, ω), of the KLE of b(t, ω), for each ω ∈ Ω.

Lemma 3.3. Let γ(ω) > 0 be a random variable and assume the same hypotheses
as in Lemma 3.2. Then, for DN (t, ω), defined in (12), one satisfies

|DN (t, ω)−DM (t, ω)| ≤(γ(ω))2
n∑
i=1

i−1∑
j=1

eα(ω)(2t−Tj)

∫ Tj

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ

(1 + γ(ω))i−j+1

+
γ(ω)

1 + γ(ω)

n∑
i=1

eα(ω)(2t−Ti)

∫ Ti

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ,

for Ti < T , ω ∈ Ω and t ∈ [0, T ].

Proof. From the definition of DN (t, ω), given in (12), and the result established in
Lemma 3.2, one deduces

|DN (t, ω)−DM (t, ω)| ≤(γ(ω))2
n∑
i=1

i−1∑
j=1

eα(ω)(t−Tj)
∣∣CNKL(Tj , ω)− CMKL(Tj , ω)

∣∣
(1 + γ(ω))i−j+1

+
γ(ω)

1 + γ(ω)

n∑
i=1

eα(ω)(t−Ti)
∣∣CNKL(Ti, ω)− CMKL(Ti, ω)

∣∣,
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≤(γ(ω))2
n∑
i=1

i−1∑
j=1

eα(ω)(2t−Tj)

∫ Tj

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ

(1 + γ(ω))i−j+1

+
γ(ω)

1 + γ(ω)

n∑
i=1

eα(ω)(2t−Ti)

∫ Ti

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ.

The next result establishes a useful bound for an expectation that will appear
later, in terms of the norm of the space L2(Ω,L2(T )), where the KLE of b(t, ω) is
assumed to be convergent (see hypothesis H1).

Lemma 3.4. Let us assume the hypotheses and notation in Lemma 3.2, then(
E

[(∫ t

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ)2

]) 1
2

≤ T 1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM )(ω)‖L2(Ω),L2(T )), t ∈ T = [0, T ].

Proof. We will first apply the Cauchy-Schwarz inequality for integrals. Next, we use
the fact that 0 ≤ t ≤ T and the monotonicity of the expectation operator. After,
we interchange the expectation operator and the integral, to finally recognize the
definition of the norm of the space L2(Ω),L2(T )) (see (2) with T = [t0, T ] = [0, T ]),

E

[(∫ t

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ)2

] 1
2

≤
(
E
[(∫ t

0

12dτ

)(∫ t

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣2 dτ

)]) 1
2

=

(
E
[
t

∫ t

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣2 dτ

]) 1
2

≤ T 1
2

(
E

[∫ T

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣2 dτ

]) 1
2

≤ T 1
2

(∫ T

0

E
[∣∣∣KN (τ ; ξN )−KM (τ ; ξM )

∣∣∣2] dτ

) 1
2

= T
1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω),L2(T )).

This result will be used in Lemma 3.5 and Lemma 3.6 to construct bounds for
the expectations of a product of random variables, which will appear later in the
main result.

Lemma 3.5. Let us assume the hypotheses of Lemma 3.2 and Lemma 3.3, together
with hypothesis H4. Then, for t > 0,

E[|CNKL(t, ω)− CMKL(t, ω)|(1 + γ(ω))2ne−2α(ω)t]

≤ 2(4n−1)/2T 1/2‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω),L2(T ))(1 + E[(γ(ω))4n]).
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Proof. Let us take the expectation operator on both sides of the inequality (15).
The inequality is proved by noticing that α(ω) > 0 and γ(ω) > 0, and applying the
Schwarz inequality,

E[|CNKL(t, ω)− CMKL(t, ω)(1 + γ(ω))2ne−2α(ω)t]

≤ E
[∫ t

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ(1 + γ(ω))2ne−α(ω)t

]
≤ E

[∫ t

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ(1 + γ(ω))2n

]

≤ E

[(∫ t

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ)2

] 1
2

E
[
(1 + γ(ω))4n

] 1
2 .

Applying the Lemma 3.4, the previous inequality became,

E[|CNKL(t, ω)− CMKL(t, ω)|(1 + γ(ω))2ne−2α(ω)t]

≤ T 1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖E

[
(1 + γ(ω))4n

] 1
2 .

(16)

Now, observe that

E
[
(1 + γ(ω))4n

]
≤ 24n−1(1 + E[(γ(ω))4n]) <∞, (17)

where we have applied Lemma 3.1 with s = 4n ≥ 1 and hypothesis H4 to guarantee
the finiteness of the right-hand side term. By combining inequalities (16) and (17),
one gets the result.

Now, we establish a similar result for the expectation of the difference of DN (t, ω)
and DM (t, ω).

Lemma 3.6. Under the hypotheses of Lemma 3.5, one satisfies

E[
∣∣∣DN (t, ω)−DM (t, ω)

∣∣∣ (1 + γ(ω))2ne−2α(ω)t]

≤
n∑
i=1

i−1∑
j=1

T
1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω,L2(T ))E

[
(γ(ω))4(1 + γ(ω))4n−2i+2j−2

] 1
2

+

n∑
i=1

T
1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω,L2(T ))E

[
(γ(ω))2(1 + γ(ω))4n−2

] 1
2 .

Proof. To prove this inequality, we apply Lemma 3.3. Recall that random variable
α(ω) > 0, so e−α(ω)t < 1, t > 0. Now, let us observe that, by the Schwarz’s
inequality for expectations, one gets

E
[∣∣∣DN (t, ω)−DM (t, ω)

∣∣∣ (1 + γ(ω))2ne−2α(ω)t
]

≤ E


(γ(ω))2

n∑
i=1

i−1∑
j=1

eα(ω)(2t−Tj)

∫ Tj

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ

(1 + γ(ω))i−j+1

+
γ(ω)

1 + γ(ω)

n∑
i=1

eα(ω)(2t−Ti)

∫ Ti

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ) (1 + γ(ω))2ne−2α(ω)t

]

=

n∑
i=1

i−1∑
j=1

E
[∫ Tj

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣d τ (γ(ω))2(1 + γ(ω))2n−i+j−1e−α(ω)Tj

]

+

n∑
i=1

E
[∫ Ti

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ γ(ω)(1 + γ(ω))2n−1e−α(ω)Ti

]
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≤
n∑
i=1

i−1∑
j=1

E
[∫ Tj

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ (γ(ω))2(1 + γ(ω))2n−i+j−1

]

+
n∑
i=1

E
[∫ Ti

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ γ(ω)(1 + γ(ω))2n−1

]

≤
n∑
i=1

i−1∑
j=1

E

[(∫ Tj

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ )2

] 1
2

E
[
(γ(ω))4(1 + γ(ω))4n−2i+2j−2

] 1
2

+
n∑
i=1

E

[(∫ Ti

0

∣∣∣KN (τ ; ξN (ω))−KM (τ ; ξM (ω))
∣∣∣dτ )2

] 1
2

E
[
(γ(ω))2(1 + γ(ω))4n−2

] 1
2 .

Notice that to legitimate the application of Schwarz’s inequality, we have implic-
itly used hypothesis H4 for γ(ω). Applying the Lemma 3.4, we obtain

E
[∣∣DN (t, ω)−DM (t, ω)

∣∣ (1 + γ(ω))2ne−2α(ω)t
]

≤
n∑
i=1

i−1∑
j=1

T
1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω,L2(T ))E

[
(γ(ω))4(1 + γ(ω))4n−2i+2j−2

] 1
2

n∑
i=1

T
1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω,L2(T ))E

[
(γ(ω))2(1 + γ(ω))4n−2

] 1
2 .

3.2. Convergence of the sequence of approximations of the 1-p.d.f. In this
section we prove that, under hypotheses H1-H5, the sequence of approximations,
fN1 (x, t), given in (14), is a Cauchy sequence, so convergent. Approximation of
the exact 1-p.d.f., f1(x, t), of the solution stochastic process of the random IVP
(4) will be then obtained by means of the fN1 (x, t), with N large enough, so that
the differences between two consecutive approximations are very similar in order
to achieve convergence. In the examples presented in the next section, this will be
graphically illustrated.

Theorem 3.7. Assume hypotheses H1-H5, ε > 0, J ⊂ R bounded, (x, t) ∈ J ×
[t0, T ] an arbitrary point and N > M positive integers. Then, the sequence of
1-p.d.f., fN1 (x, t), given by (14) is a Cauchy sequence.

Proof. To shorten the expressions, we will omit the arguments of CNKL and DN . Let
ε > 0 and N > M > 0 integers. Expressing the expectation (14) as an integral, let
us consider the following difference,

|fN1 (x, t)− fM1 (x, t)| =∣∣∣∣∫
RN+2

fx0

(
(x−DN − CNKL)(1 + γ)ne−αt

)
fα,γ,ξN (α, γ, ξN )

(1 + γ)n

eαt
dα dγ dξN

−
∫
RM+2

fx0

(
(x−DM − CMKL)(1 + γ)ne−αt

)
fα,γ,ξM (α, γ, ξM )

(1 + γ)n

eαt
dα dγ dξM

∣∣∣∣ .
Notice that, according to Remark 2, here we have implicitly used hypotheses H1,
H3 and H5. In order to write this expression using a common integral, let us first
notice that,

fα,γ,ξM (α, γ, ξM ) =

∫
RN−M

fα,γ,ξN (α, γ, ξN ) dξM+1 · · · dξN ,

and we then substitute it into the previous expression,

|fN1 (x, t)− fM1 (x, t)|
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=

∣∣∣∣∫
RN+2

fx0

(
(x−DN − CNKL)(1 + γ)ne−αt

)
fα,γ,ξN (α, γ, ξN )(1 + γ)ne−αt dαdγ dξN

−
∫
RM+2

fx0

(
(x−DM − CMKL)(1 + γ)ne−αt

)(∫
RN−M

fα,γ,ξN (α, γ, ξN ) dξM+1 · · · dξN

)
(1 + γ)ne−αtdα dγ dξM

∣∣∣
=

∣∣∣∣∫
RN+2

(
fx0

(
(x−DN − CNKL)(1 + γ)ne−αt

)
− fx0

(
(x−DM − CMKL)(1 + γ)ne−αt

))
fα,γ,ξN (α, γ, ξN )(1 + γ)ne−αt dα dγ dξN

∣∣∣ .
Now, we apply the hypothesis H2, to bound the above integral expression in terms
of expectation operator. This permits obtaining

|fN1 (x, t)− fM1 (x, t)|

≤ L
∫
RN+2

∣∣−DN +DM − CNKL + CMKL

∣∣ (1 + γ)ne−αtfα,γ,ξN (α, γ, ξN )

(1 + γ)ne−αt dα dγ dξN

= LE
[∣∣−DN (t, ω) +DM (t, ω)− CNKL(t, ω) + CMKL(t, ω))

∣∣ (1 + γ(ω))2ne−2α(ω)t
]
.

Now, we utilize the triangular inequality, the monotonicity and linearity of the
expectation operator, and we then obtain

|fN1 (x, t)− fM1 (x, t)|

≤ LE
[∣∣∣−DN +DM

∣∣∣ (1 + γ(ω))2ne−2α(ω)t
]

︸ ︷︷ ︸
(I)

+LE
[∣∣∣−CNKL + CMKL

∣∣∣ (1 + γ(ω))2ne−2α(ω)t
]

︸ ︷︷ ︸
(II)

.

Now, we apply Lemma 3.5 for expression (II), and Lemma 3.6 for expression (I)
to obtain

|fN1 (x, t)− fM1 (x, t)|

≤ L
n∑
i=1

i−1∑
j=1

T
1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω,L2(T)) E

[
(γ(ω))4(1 + γ(ω))4n−2i+2j−2

] 1
2︸ ︷︷ ︸

(III)

+ L

n∑
i=1

T
1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω,L2(T)) E

[
(γ(ω))2(1 + γ(ω))4n−2

] 1
2︸ ︷︷ ︸

(IV)

+ 2(4n−1)/2LT
1
2 ‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω,L2(T))(1 + E[(γ(ω))4n]). (18)

Now, we bound term (III) of the above inequality applying first the Schwarz’s
inequality for expectations, and secondly, Lemma 3.1 with s = 8n− 4i+ 4j − 4, we
then obtain,

E[(γ(ω))4(1 + γ(ω))4n−2i+2j−2]
1
2 ≤ E[(γ(ω))8]1/4E[(1 + γ(ω))8n−4i+4j−4]1/4

≤ 28n−4i+4j−5E[(γ(ω))8]1/4(1 + E[(γ(ω))8n−4i+4j−4]) <∞.
Similarly, we can use both the Schwarz’s inequality and Lemma 3.1 with s = 8n−4
to bound expression (IV),

E
[
(γ(ω))2(1 + γ(ω))4n−2

] 1
2 ≤ E

[
(γ(ω))4

]1/4 E [(1 + γ(ω))8n−4
] 1

4

≤ E[(γ(ω))4]1/4(28n−5(1 + E[(γ(ω))8n−4]))1/4 <∞.

Notice that expressions (III) and (IV) are indeed finite because, by hypothesis H4,
the random variable γ(ω) has moments with respect to the origin of any order.
Notice that it also legitimates the previous applications of Schwarz’s inequality.
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Then, each addend of the right-hand side in (18) tends to zero, since, by hypoth-
esis H4, is the product of a bounded quantity by another term that tends to zero,
‖KN (τ ; ξN (ω))−KM (τ ; ξM (ω))‖L2(Ω,L2(T)) → 0, since KN (τ ; ξN (ω)) is the KLE of

b(t, ω)). This indicates that fN1 (x, t) is a Cauchy sequence, so the convergence of
the sequence of approximations for the 1-p.d.f. of the solution stochastic process of
the random IVP (1) is proved.

Remark 3. Notice that in Th. 2.1, the approximation fN1 (x, t) is given in terms

of the joint p.d.f., fx0,α,γ,ξN (x0, α, γ, ξ
N ) of model parameters, while in Th. 3.7 the

p.d.f. fN1 (x, t) is expressed in terms of the product of fx0(x0) by fα,γ,ξN (α, γ, ξN ).
This is legitimated because of hypothesis H5 to represent, according to Remark 1,
fN1 (x, t) via an expectation. Observe that this representation plays a key role in
the proof of Th. 3.7.

4. Numerical examples. In this section, we illustrate the theoretical results es-
tablished in the previous sections by considering two numerical examples. For both
of them, we will compute and plot 2D and 3D graphical representations of the ap-
proximation to the 1-p.d.f., f1(x, t), of the solution stochastic process of the random
IVP (1) given in (13), via fN1 (x, t). To better illustrate the flexibility of the obtained
results, we will carry out computations assuming different probability distributions
for the parameters of the IVP (1), i.e. x0(ω), α(ω) and γ(ω). For the source term,
b(t, ω) ≡W (t, ω), t ∈ T = [t0, T ], we will take, in both examples, a standard Wiener
process or Brownian motion, W (t). Remember that the mean and the covariance
functions of W (t, ω) are, µW (t) = 0 and cW (t) = min(s, t), (s, t) ∈ T × T , re-
spectively [1]. We will take T = [0, T ] = [0, 1] So, the standard deviation function
is σW (t) = t. For the KLE of the standard Wiener process, it is known (see [29,
Ch. 5]) that ξj(ω) are pairwise uncorrelated standard Gaussian random variables,
ξj(ω) ∼ N(0; 1), and the eigenvalues, νj , and eigenfunctions, φj(t), are given by

νj =
4T 2

π2(2j − 1)2
, φj(t) =

√
2

T
sin (kjt) , kj =

(2j − 1)π

2T
, j = 1, 2, . . . , (19)

respectively. Since µb(t, ω) = 0, it clearly admits a Laplace transform as well as the
eigenfunctions φj(t) of b(t, ω). So, hypothesis H3 is satisfied.

To approximate the 1-p.d.f., fN1 (x, t), given in (13), we first need to compute

CKL(t;α(ω), ξN (ω)) and DN (t;α(ω), γ(ω), ξN (ω)), given in (10) and (12), respec-
tively. Likewise, to determine the former term, we need to calculate the convolution
of functions φj(t), j = 1, 2, . . . , N , and g(t, ω) = eα(ω)t, i.e.,

(φj ∗ g)(t, ω) =

∫ t

0

φj(τ)g(t− τ, ω) dτ =

√
2

T

∫ t

0

sin (kjτ)eα(ω)(t−τ) dτ

=

√
2

T

[
Aj(ω)eα(ω)t +Bj(ω) cos(kjt) + Cj(ω) sin(kjt)

]
,

where

Aj(ω) =
kj

(α(ω))2 + k2
j

, Bj(ω) =
−kj

(α(ω))2 + k2
j

, Cj(ω) =
−α(ω)

(α(ω))2 + k2
j

,

and the parameters kj are defined in (19).
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Then,

CNKL(t;α(ω),ξN (ω)) = (µb ∗ g)(t, ω) +

N∑
j=1

√
νj(φj ∗ g)(t, ω)ξj(ω)

=

√
2

T

N∑
j=1

√
νj

(
Aj(ω)eα(ω)t +Bj(ω) cos(kjt) + Cj(ω) sin(kjt)

)
ξj(ω).

This expression is evaluated at t = Ti, i = 1, 2, . . . , n, and then substituted into
(12) to obtain the DN (t;α(ω), γ(ω), ξN (ω)).

In the two examples, we will assume that x0(ω), α(ω), γ(ω) and, the random
variables ξi(ω), i = 1, . . . , N, utilized to represent the standard Wiener process
b(t, ω) := W (t, ω) via its KLE, are independent (indeed, we will take ξi ∼ N(0; 1)
uncorrelated as usual), so hypothesis H5 is guaranteed. Later, when the probability
distributions of x0(ω), α(ω) and γ(ω) had been specified, we will check that they
also satisfy hypothesis H1 and, in the case of γ(ω), also the hypothesis H4.

In the examples, we will present the results graphically to better compare the
approximations of the 1-p.d.f., fN1 (x, t), given by (14), as well as the mean and
the standard deviation, for different orders of the truncation N . For these sta-
tistical moments, we have used that µNX(t) = E[xN (t, ω)] =

∫∞
−∞ xfN1 (x, t) dx and

σNX (t) =
√
V[xN (t, ω)] =

(∫∞
−∞ x2fN1 (x, t) dx− (µNX(t))2

)1/2

, respectively. With

these statistics, we also construct confidence intervals using the 2σ-rule. We point
out that the integrals involved in these formulas have been computed using the
Monte Carlo method with samples of size 106 for each random variable.

Example 1. We will assume that the Dirac’s delta impulses are applied at the
following evenly time instants, T δi = i∆T , i = 1, 2, 3, with ∆T = 1/3. Furthermore,
we will assume that x0(ω), α(ω) and γ(ω) are independent Gaussian distributed
random variables, x0(ω) ∼ N(0.5, 0.06252), α(ω) ∼ N[0.375,1.625](1; 0.06252) and

γ(ω) ∼ N[0.375,1.625](1; 0.06252). Now we check that with this choice of the distri-
butions for x0(ω), α(ω) and γ(ω) hypotheses H1, H2 and H4 fulfil (remember that
we have previously justified hypotheses H3 and H5 hold). The hypothesis H1 is
satisfied since x0(ω), α(ω) and γ(ω) are Gaussian, so having a p.d.f., i.e. absolutely
continuous and with finite variance. Moreover, it is clear that α(ω) and γ(ω) are
both positive because of the interval of truncation where they are defined. At this
point, it is interesting to point out that the interval of truncation has been defined
using the so called kσ–rule with k = 10 that, according to the Bienaymé–Chebyshev
inequality [7], guarantees the truncated distribution contains at least 99% of the
probability density regardless the specific type of the original distribution, however
in our case that we do know the original distribution, it can be directly checked
that the interval of truncation contains 99.999999% of the probability density. As
it has been previously indicated, b(t, ω) is the standard Wiener process, so it be-
longs to L2(Ω,L2(T )). The first derivative of the p.d.f. of x0(ω) is clearly bounded
on the whole real line, hence applying the mean value theorem it is deduced that
it is Lipschitz, and hence hypothesis H2 holds. The moment generating function,
φγ(p) := E[epγ ], of γ(ω) ∼ N[0.375,1.625](1; 0.06252) exists and is finite because γ is
a bounded random variable, therefore hypothesis H4 is satisfied too.

In Figure 1, we show the approximations of the 1-p.d.f., fN1 (x, t), using as orders
of truncation N = 1, 2, 3. They have been computed by expression (14). It is clearly
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Figure 1. 3D-graphical representation of the approximate 1-p.d.f,
fN1 (x, t), of the solution stochastic process of the random IVP (1) for
different orders of truncation N = 1, 2, 3, and impulse applications at
T δi = i∆T , i = 1, 2, 3, with ∆T = 1/3. Example 1.

Figure 2. 2D-graphical representation of the approximate 1-p.d.f.,
fN1 (x, t), of the solution stochastic process of the random IVP (4) for
different orders of truncation, N = 1, 2, 3, 5, and impulse applications at
T δi = i∆T , i = 1, 2, 3, with ∆T = 1/3 at the times instants: t = 1/4,
1/2, 3/4. Example 1.

visualized the effect of the three impulses. Since plots corresponding to N = 2
(central panel) and N = 3 (right panel) are very similar, we deduce that even using
such small values of N the approximations are very good. It is also interesting
to observe that immediately after each one of the three impulse applications, the
approximation of the 1-p.d.f. becomes leptokurtic about the mean, so reducing
the uncertainty (variability) to later increasing again the uncertainty after the next
impulse, as time goes on. This shows the role of impulses as a type of control. In
the long term, the approximations of the 1.p.d.f. flattens, meaning an increase in
the variance.
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Figure 2 allows us to better magnify graphically differences between the approx-
imations of the 1-p.d.f. for different orders of truncation, N = 1, 2, 3, 5. The graph-
ical representations have been plotted at the times, t = 1/4 (left panel), t = 1/2
(central panel), and t = 3/4 (right panel). On the left panel, note that the densities
differ from each other more notoriously. However, as time increases, those differ-
ences narrow, as observed in the central and right panels. Also, as time increases,
the densities are very similar for truncation orders starting at N = 2. This is in full
agreement with the results observed in Figure 1.

In Figure 3, we show graphically comparisons among the approximations for dif-
ferent orders of truncation, N , of the expectation, µNx (t) (left panel) and standard
deviation, σNx (t) (central panel). From the plot corresponding to the expectation
(left panel), we can observe that it does not practically change as N increases from
1 to 3, so showing that a good approximation of the mean is obtained even using
N = 1. Differences are more notorious with regard to the standard deviation when
comparing the approximations of order N = 1 against N = 2, 3, being these two
last ones very similar. This shows that reliable approximations of the standard
deviation are obtained with N = 3. In the right panel, we show confidence in-
tervals constructed according to the 2σ-rule, taking N = 3, [µ3

x − 2σ3
x], when the

approximations of the mean and standard deviations are reliable.

Figure 3. Comparison of the approximations of expectation, µNx (left
panel) and standard deviation, σNx (central panel), of the solution sto-
chastic process using different orders of truncation, N = 1, 2, 3, for
t ∈ [0, 1]. Confidence intervals constructed according to the 2σ-rule
are shown taking N = 3, [µ3

x − 2σ3
x, µ

3
x + 2σ3

x] (right panel). Example 1.

Example 2. In this example, we use the same conditions as in Example 1,
but changing the probability distributions of random variables by x0(ω) ∼ N(0.5;
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√
0.0252) (Gaussian), α(ω) ∼ B(2, 8) (Beta) and γ(ω) ∼ Exp(1) (Exponential). No-

tice that the positiveness of α(ω) ∼ B(2, 8) (Beta) and γ(ω) ∼ Exp(1) is guaranteed
by definition, and hence hypothesis H1 holds. Hypotheses H2 and H4 fulfil using
the same reasoning exhibited in Example 1. In Figure 4, we show 3D-graphical
representations of the approximate 1-p.d.f., fN1 (x, t), using as orders of truncation
N = 1 (left panel), N = 2 (central panel) and N = 3 (right panel). Comparing the
plots shown in Figures 1 and 4, we can observe that uncertainty increases faster as
the time goes on with the distributions chosen in Example 1. From the plots we
can observe that the 1-p.d.f.s are very similar, so the approximation retained by the
truncation of order N = 1 seems to be quite good. However, differences between
different orders of truncation are better magnified in Figure 5, where 2D-graphical
representations of the approximations are shown at the time instants t = 1/4 (left
panel), t = 1/2 (central panel) and t = 3/4 (right panel). From these plots we can
see that approximations are closer as t increases, but being sensitively different for
t = 1/4.

Figure 4. 3D-graphical representation of the approximate 1-p.d.f,
fN1 (x, t), of the solution stochastic process of the random IVP (4) for
different orders of truncation N = 1, 2, 3, and impulses at T δi = i∆T ,
i = 1, 2, 3, with ∆T = 1/3. Example 2.

In Figure 6, we show comparisons among the approximations of the expectation,
µNx (left panel) and standard deviation, σNx (central panel) of the solution stochastic
process using different orders of truncation N = 1, 2, 3. We can observe that the
approximations of the mean are very good even taking N = 1, while differences
appear for the approximations of the standard deviation for the order of truncation
N = 1 and for N = 2, 3. On the right panel, confidence intervals for N = 3 (when
the approximations of the mean and the variance are very good), [µ3

x−2σ3
x, µ

3
x+2σ3

x],
are shown.

5. Conclusions. In this paper we have studied a full randomization of a class of
impulsive random differential equations by assuming that the initial condition and
the coefficients of the model are random variables, while the source/external term
is a stochastic process admitting a Karhunen-Loève expansion satisfying mild hy-
potheses. Impulses are given by means of an infinite train of Dirac’s delta functions
applied at specific time instants. Our probabilistic analysis is very general in the
sense that under mild hypotheses on the model inputs, the obtained results permit
considering for the external input even stochastic processes whose trajectories are
very irregular including the standard Wiener process or Brownian motion. A key
point of our approach is that we provide reliable approximations of the first prob-
ability density function of solution stochastic process instead of computing, as is



IMPULSIVE LINEAR RDES FORCED BY PROCESSES KL-EXPANSIONS 21

Figure 5. 2D-graphical representation of the approximate 1-p.d.f.,
fN1 (x, t), of the solution stochastic process of the random IVP (4) for
different orders of truncation, N = 1, 2, 3, 5, and impulses at T δi = i∆T ,
i = 1, 2, 3, with ∆T = 1/3 at the times instants t = 1/4, 1/2, 3/4.
Example 2.

more usual, approximations of the first moments (mean and variance) of the solu-
tion. We think that the ideas exhibited in the paper may be useful to study more
complex impulsive random differential equations in future works, and then they can
contribute to open new avenues in the study of random dynamical systems in the
theory of control.
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[12] J. Cortés, L. Jódar and L. Villafuerte, Mean square numerical solution of random differential
equations: Facts and possibilities, Comput. Math. Appl., 53 (2007), 1098–1106.

[13] J.-C. Cortés, A. Navarro-Quiles, J.-V. Romero and M.-D. Roselló, Computing the probability
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