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Abstract

This paper is devoted to study random linear control systems where the initial condition, the
final target, and the elements of matrices defining the coefficients are random variables, while
the control is a stochastic process. The so-called Random Variable Transformation technique is
adapted to obtain closed-form expressions of the probability density functions of the solution and
of the control. The theoretical findings are applied to study the dynamics of a damped oscillator
subject to parametric noise.

Keywords: random control systems, Random Variable Transformation technique, first
probability density function, random damped linear oscillators.

1. Introduction and motivation1

Control theory is an interdisciplinary field of engineering and mathematics, which deals with2

the behavior of dynamic systems [1, 2]. Stochastic control is a subfield of control theory that stud-3

ies the existence of uncertainty in the observations or in the noise that drives the evolution of the4

system [3]. The key role played by randomness in control problems has been extensively studied5

in a number of scientific fields including mechanics [4], communications [5], neural networks6

[6], learning control [7], nonlinear neutral stochastic functional integrodifferential equations with7

infinite delay [8], etc.8

A finite dimensional linear control system of dimension n ∈ N is given by9 {
x′(t) = Ax(t) + B u(t), 0 < t ≤ T,
x(0) = x0,

(1)
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where x(t) ∈ Rn is the solution of the system, x0 ∈ Rn is the initial state, A is a deterministic10

n × n matrix containing the free dynamic part, B is a deterministic n ×m matrix, with m ∈ N and11

m ≤ n, and u(t) is the control vector, which has dimension m. In this paper, we are interested in12

studying controllable systems, where any final state, x1 ∈ Rn, can be reached from every initial13

state, x0, in a finite time T > 0, i.e. given any initial condition x0, x(T ) = x1.14

This contribution is aimed at solving, from a probabilistic point of view, the following control15

problem with uncertainties16 {
x′(t, ω) = A(ω)x(t, ω) + B(ω) u(t, ω), 0 < t ≤ T,
x(0, ω) = x0(ω), (2)

where all the input parameters, Ai j(ω), Bik(ω), 1 ≤ i, j ≤ n and 1 ≤ k ≤ m, defining the en-17

tries of the random matrices A(ω) and B(ω), respectively, the starting initial condition, x0(ω) =18 [
x0

1(ω), . . . , x0
n(ω)

]>
, and the final target, x1(ω) =

[
x1

1(ω), . . . , x1
n(ω)

]>
, are assumed to be ab-19

solutely continuous random variables (RVs) defined on a common complete probability space20

(Ω,F ,P). Here the superscript > stands for the transpose operator. In order to provide as much21

generality as possible throughout our analysis, hereinafter we will assume that the joint probabil-22

ity density function (PDF) of the random vector (x0(ω), x1(ω), A(ω), B(ω)) is fx0,x1,A,B(x0, x1, A, B).23

When convenient, hereinafter, we will short the notation of PDFs. For example, the PDF of a24

RV, say A, will be denoted by fA instead of fA(a). So, the above PDF fx0,x1,A,B(x0, x1, A, B) will25

be written as fx0,x1,A,B. As previously indicated, throughout our subsequent study all the entries26

of matrices A(ω) and B(ω) are assumed RVs, but, as it shall be explained later, our analysis can27

be adapted to study other scenarios where only a few of their components are RVs.28

In [9] we solved problem (1) considering a first scenario where only x0 and/or x1 was/were29

absolute continuous RVs, since in this case we can take advantage of the well known Kalman’s30

controllability condition: If A and B are matrices whose elements are deterministic, a necessary31

and sufficient condition for (A, B) to be controllable is given by32

rank(C) = rank
(
B|AB| · · · |An−1B

)
= n.

Here, C is called the Kalman’s controllability matrix and its dimension is n × nm [10, 9, 11].33

Now, from the proof of this deterministic result [10, pages 88–89], one can straightforwardly34

establish the following theorem when elements of matrices A(ω) and B(ω) are continuous RVs.35

Theorem 1 (Random Kalman controllability condition). Let A(ω) and B(ω) be continuous36

RVs. Then, a necessary and sufficient condition for (2) to be controllable, in terms of A(ω)37

and B(ω), ω ∈ Ω, is38

P
[{
ω ∈ Ω : rank(C(ω)) = rank

(
B(ω)|A(ω)B(ω)| · · · |An−1(ω)B(ω)

)
= n

}]
= 1,

where C(ω), ω ∈ Ω, has dimensions n × nm, and we will call C(ω) the random Kalman’s con-39

trollability matrix.40

Indeed, the proof is based on showing the invertibility of a certain matrix whose entries are41

absolutely continuous RVs. It is well-known the invertibility of a square matrix is equivalent42

to prove that its determinant is different from zero. In the case that all elements of the matrix43

are absolutely continuous RVs, the probability that the determinant is zero is clearly an event44

whose probability is null since is defined via a condition defined via an equality (=). In other45
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words, the corresponding matrix is invertible with probability one (w.p. 1). The above reasoning46

can be extended in terms of the rank of a rectangular matrix, since it is computed by means of47

minors, which are the determinants of smaller matrices contained in the corresponding matrix48

whose rank need to be computed.49

Proposition 1. If all elements of matrices A(ω), B(ω), ω ∈ Ω are continuous RVs, then problem50

(2) is controllable.51

Proof Since all elements of matrices A(ω), B(ω), ω ∈ Ω are continuous RVs, then52

P
[{
ω ∈ Ω : rank(C(ω)) = rank

(
B(ω)|A(ω)B(ω)| · · · |An−1(ω)B(ω)

)
= n

}]
= 1,

and applying Theorem 1 the result straightforwardly follows.53

In contrast to the deterministic control problem (1), when solving its random counterpart,54

stated in (2), the solution is a stochastic process (SP). In such case, besides seeking for the55

solution, x(t), is also important to determine its main statistical properties as the mean, µx(t),56

and the variance-covariance matrix, Σx(t). However, a more desirable goal is to compute the first57

probability density function (1-PDF), say f1(x, t), of the solution SP since from it not only these58

moments but other statistics can be calculated by integration. For example,59

µx(t) = E[x(t, ω)] =

∫
Rn

x f1(x, t) dx, Σx(t) =

∫
Rn

(x − µx(t))(x − µx(t))> f1(x, t) dx. (3)

Furthermore, the 1-PDF permits calculating the probability that the solution SP lies on a specific60

set of interest as well,61

P[{ω ∈ Ω : x(t, ω) ∈ B}] =

∫
B

f1(x, t) dx, B ⊂ Rn.

Notice that, fixed t and α ∈ (0, 1), the 1-PDF also permits constructing confidence regions by62

determining z ∈ R such that63 ∫
Rn

( f1(x, t) − z) dx = 1 − α, f1(x, t) ≥ z.

The confidence region is the Rn−1-manifold defined by f1(x, t) = z. For instance, when α = 0.05,64

it is said that f1(x, t) = z defines a region with 1 − α = 95% of confidence level.65

The main goal of this contribution is to compute the 1-PDF of the control, u(t, ω), and of66

the solution SP, x(t, ω), of the random control problem (2). With this aim, the Random Variable67

Transformation method (RVT) will be applied. RVT is a powerful technique to determine the68

joint PDF of a random vector which comes from mapping another random vector whose joint69

PDF is known. The multidimensional version of the RVT method is stated in the following70

theorem.71

Theorem 2 (RVT (Random Variable Transformation) technique). [12, pp. 24–25] Let X(ω) =72

(X1(ω), . . . , Xm(ω))> and Z(ω) = (Z1(ω), . . . ,Zm(ω))> be two m-dimensional absolutely contin-73

uous random vectors defined on a complete probability space (Ω,F ,P). Let s : Rm → Rm
74

be a one-to-one deterministic transformation of X(ω) onto Z(ω), i.e., Z(ω) = s(X(ω)), ω ∈75

Ω. Assume that s is a continuous mapping with continuous partial derivatives with respect76
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to each component xi, 1 ≤ i ≤ m. Then, if fX(x1, . . . , xm) denotes the joint PDF of the vec-77

tor X(ω), and p = s−1 = (p1(z1, . . . , zm), . . . , pm(z1, . . . , zm)) represents the inverse mapping of78

s = (s1(x1, . . . , xm), . . . , sm(x1, . . . , xm)), the joint PDF of the random vector Z(ω) is given by79

fZ(z1, . . . , zm) = fX (p1(z1, . . . , zm), . . . , pm(z1, . . . , zm)) |Jm| ,

where |Jm|, which is assumed to be different from zero, denotes the absolute value of the Jacobian80

defined by the following determinant81

Jm = det


∂p1(z1, . . . , zm)

∂z1
· · ·

∂pm(z1, . . . , zm)
∂z1

...
. . .

...
∂p1(z1, . . . , zm)

∂zm
· · ·

∂pm(z1, . . . , zm)
∂zm


.

We will apply the theoretical results established throughout this paper to study a damped82

linear oscillator whose resistance and frequency coefficients are assumed to be RVs and whose83

dynamics is driven by a stochastic control. The analysis of damped oscillators subject to un-84

certainties has been studied from several points of view. In [13], author studies the long time85

behaviour of a nonlinear oscillator subject to a random multiplicative noise, which is assumed86

stationary Gaussian of zero-mean value and with a spectral density that decays as a power law at87

high frequencies. In [14], authors provide a full probabilistic description of the solution stochas-88

tic process to damped pendulum random differential equation assuming different stochastic ex-89

citations defined via Gaussian processes, approximations using Karhunen-Loève expansions and90

random power series. In [15], the problem of suboptimal linear feedback control laws with mean-91

square criteria for the linear oscillator and the Duffing oscillator under external non-Gaussian ex-92

citations is studied. In [16], the forced van der Pol oscillator is analyzed by varying the parameter93

values, which is a way of perturbing the dynamical behavior of the vibratory system. However,94

to the best of our knowledge, the approach proposed in our application is a novelty in the extant95

literature.96

This paper is organized as follows. In Section 2 we describe how explicit expressions for97

the solution SP of problem (2) and for the control SP can be obtained. Then, the 1-PDF of98

the solution SP of (2) is computed. Computation of the 1-PDF of the control SP is addressed99

in Section 3. In Section 4, the theoretical results, previously obtained, are applied to study the100

dynamics of a damped oscillator whose restoring force and resistance coefficients are RVs and101

the control is a SP. Finally, some conclusions are shown in Section 5.102

2. Computing the 1-PDF of the solution SP103

We can construct an explicit solution of the random problem (2) following the reasoning104

described in [9, Section 3] that consists in extending the deterministic solution to the random105

scenario. Given a stochastic control, u(t, ω) ∈ L2((0,T ] ×Ω;Rm), applying the formula of varia-106

tion of parameters, we obtain that the unique solution, x ∈ H1((0,T ]×Ω;Rn), of random problem107

(2) is given by108

x(t, ω) = exp (A(ω)t) x0(ω) +

∫ t

0
exp (A(ω)(t − s)) B(ω)u(s, ω) ds, t ∈ [0,T ]. (4)

4



However, notice that this is not a closed form-expression since it depends on the control109

u(t, ω), which needs to be determined. The stochastic control u(t, ω) can be obtained using the110

duality principle [17, p. 51], that reduces the controllability problem (2) into an observability111

problem. Then, one obtains an explicit formula for the stochastic control in terms of data112

u(t, ω) = B>(ω) exp
(
A>(ω)(T − t)

) (∫ T

0
exp(A(ω)(T − s))B(ω)B>(ω) exp

(
A>(ω)(T − s)

)
ds

)−1

(
x1(ω) − exp(A(ω)T )x0(ω)

)
.

(5)
In order to simplify the expressions in subsequent developments, we will rewrite expression113

(4) introducing the following notation114

F(t, A, B) = exp(A(T − t))B, Λ(t, A, B) =

∫ t

0
F(s, A, B)F>(s, A, B) ds,

115

G(t, A, B) = Λ(t, A, B)Λ−1(T, A, B), H(t, A, B) = exp(A(t − T ))G(t, A, B).

Remark 1. Notice that Λ(t, A(ω), B(ω)), 0 < t ≤ T is an invertible matrix w.p. 1 when all116

elements of matrices A(ω) and B(ω) are absolutely continuous RVs. In other case, i.e. when117

some element are deterministic, Λ(t, A(ω), B(ω)), 0 < t ≤ T, is an invertible matrix w.p. 1118

provided the random Kalman condition holds (see [9, Remark 1]).119

Then, expression (4) can be written as120

x(t, ω) =
(
exp(A(ω)t) − H(t, A(ω), B(ω)) exp(A(ω)T )

)
x0(ω) + H(t, A(ω), B(ω))x1(ω). (6)

As it has been indicated in Section 1, hereinafter, we will assume that all the entries of input data121

of random problem (2), namely, the initial condition x0(ω), the target condition x1(ω) and the122

coefficient matrices A(ω) and B(ω) are RVs. So, in total we have h = n+n+nn+nm = 2n+n2+nm123

RVs, x0
i (ω), x1

i (ω), ai j(ω), bik(ω), i = 1, . . . , n; j = 1, . . . , n and k = 1, . . . ,m, respectively. For124

simplicity, in the subsequence presentation all these RVs are conveniently arranged in vectors125

and matrices,126

x0(ω) =
[
x0

1(ω), . . . , x0
n(ω)

]>
, x1(ω) =

[
x1

1(ω), . . . , x1
n(ω)

]>
,

127

A(ω) =


a11(ω) · · · a1n(ω)
...

. . .
...

an1(ω) · · · ann(ω)

 , B(ω) =


b11(ω) · · · b1m(ω)
...

. . .
...

bn1(ω) · · · bnm(ω)

 .
For the sake of generality, we will assume a joint PDF, fx0,x1,A,B, for these h RVs. Our objective128

is to compute the 1-PDF of the solution SP, x(t, ω), t > 0. To this end, we will take advantage of129

the RVT technique by fixing ω ∈ Ω and defining the mapping s : Rh −→ Rh, whose components,130

for convenience, are defined by blocks, s = (s1, s2, s3, s4),131

si : Rh −→ Rn, i = 1, 2, s3 : Rh −→ Rn×n, s4 : Rh −→ Rn×m,

in the following way132

z1 = s1(x0, x1, A, B) =
(
exp(At) − H(t, A, B) exp(AT )

)
x0 + H(t, A, B)x1,

z2 = s2(x0, x1, A, B) = x0,
Z3 = s3(x0, x1, A, B) = A,
Z4 = s4(x0, x1, A, B) = B.
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Notice that, for consistency with the notation used throughout the paper, for the last two blocks133

we have utilized capital letters since they are matrix mappings. The inverse mapping of s, s−1 =134

p, is given by p = (p1, p2, p3, p4), where135

x0 = p1

(
z1, z2,Z3,Z4

)
= z2,

x1 = p2

(
z1, z2,Z3,Z4

)
= H−1(t,Z3,Z4)z1 −

(
G−1(t,Z3,Z4) − In

)
exp(Z3t)z2,

A = p3

(
z1, z2,Z3,Z4

)
= Z3,

B = p4

(
z1, z2,Z3,Z4

)
= Z4.

Here, In denotes the identity matrix of size n, pi : Rh −→ Rn, i = 1, 2, p3 : Rh −→ Rn×n, p4 :136

Rh −→ Rn×m and137

G−1(t, A, B) = Λ(T, A, B)Λ−1(t, A, B),
H−1(t, A, B) = G−1(t, A, B) exp(A(T − t)) = Λ(T, A, B)Λ−1(t, A, B) exp(A(T − t)).

The absolute value of the Jacobian of mapping p is given by138

|Jh| =

∣∣∣∣∣∣∣∣∣∣∣det


0n×n H−1

(
t,Z3,Z4

)
0n×n2 0n×nm

In #n×n 0n×n2 0n×nm

0n2×n #n2×n In2 0n2×nm
0nm×n #nm×n 0nm×n2 Inm


∣∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣det
(
H−1

(
t,Z3,Z4

))∣∣∣∣
=

∣∣∣∣det
(
Λ(T, A, B)Λ−1(t, A, B) exp(A(T − t))

)∣∣∣∣ =
|det (Λ(T, A, B))|
|det (Λ(t, A, B))|

∣∣∣det
(
exp(A(T − t))

)∣∣∣ ,
where, as usually, 0n1×n2 stands for the null matrix of size n1 × n2, and #n1×n2 denote certain139

matrices whose explicit form is unnecessary to compute in order to calculate the value of the140

Jacobian. Indeed, the null block matrices 0n1×n2 , that appear in the Jacobian matrix, cancel the141

terms that involve factors of the form #n1×n2 . Since we are dealing with the full random case,142

i.e. where all input parameters are absolute continuous RVs, we can ensure that |Jh| , 0, w.p. 1.143

Then applying Theorem 2, the PDF of random vector
(
z1, z2,Z3,Z4

)
, in terms of the joint PDF of144

the random vector of input parameters
(
x0, x1, A, B

)
, is given by145

fz1,z2,Z3,Z4

(
z1, z2,Z3,Z4

)
= fx0,x1,A,B

(
z2,H−1(t,Z3,Z4)z1 −

(
G−1

(
t,Z3,Z4

)
− In

)
exp

(
Z3t

)
z2,Z3,Z4

) ∣∣∣∣det
(
H−1(t,Z3,Z4)

)∣∣∣∣ .
(7)

As the solution of problem (2) corresponds to the first component of the foregoing mapping146

s : Rh −→ Rh, i.e. z1, the 1-PDF of x(t, ω) is obtained marginalizing (7) with respect to z2 =147

x0,Z3 = A and Z4 = B,148

f1(x, t) =

∫
Rh1

fx0,x1,A,B

(
x0,H−1(t, A, B)x −

(
G−1 (t, A, B) − I

)
exp (At) x0, A, B

)
·

∣∣∣∣det
(
H−1(t, A, B)

)∣∣∣∣ dx0 dA dB,
(8)

where h1 = n + n2 + nm and149

dx0dA dB =
∏

0≤i≤n

∏
0≤ j≤n

∏
0≤k≤m

dx0
i dAi, j dBi,k. (9)
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Remark 2. The 1-PDF given by (8) is well defined when 0 < t ≤ T , while for t = 0 is just
the PDF of the initial condition x0, which is directly obtained by marginalizing the joint PDF of
the input data, fx0,x1,A,B, with respect to the random vector (x1, A, B). Therefore, the 1-PDF of
the solution SP is determined on the whole interval [0,T ]. Nevertheless, from a computational
standpoint, it is worth pointing out that the calculation of the 1-PDF, f1(x, t), by expression (8)
has computational drawbacks because of Λ(t, A, B) is quasi-singular about t = 0 (observe that
Λ(0, A, B) is singular and Λ(t, A, B) is continuous), so the terms G(t, A, B) and H(t, A, B) are also
quasi-singular for t in a neighbourhood of t = 0. To overcome this numerical drawback it is
better to compute f1(x, t), for values of t close to t = 0, using the following expression

f1(x, t) =

∫
Rh1

fx0,x1,A,B

((
exp(At) − H(t, A, B) exp(AT )

)−1
(
x − H(t, A, B)x1

)
, x1, A, B

)
·

∣∣∣∣det
(
H−1(t, A, B)

)∣∣∣∣ dx1 dA dB,

where dx1 = dx1
1 · · · d x1

n. This expression is easily obtained changing the second component, s2,150

in mapping s, by151

s2 = s2

(
x0, x1, A, B

)
= x1,

in the previous reasoning. In this manner, the numerical effects of computing the inverse of152

quasi-singular matrices is minimized.153

Remark 3. In the previous development we have guaranteed that the Jacobian Jh is different
from zero because of all input parameters are absolutely continuous RVs, however expressions
(8) and (9) can still be used in case problem (2) is not fully randomized. For example, if only
a few components of matrix A, say A1,1, A2,3 and An,n, are RVs, the 1-PDF given by (8) and
(9) can be used considering that dA = dA1,1 dA2,3 dAn,n. Notice that in this case the random
Kalman condition is fulfilled. (i.e., we are dealing with controllable problems) and, according to
Remark 1, Λ(t, A(ω), B(ω)), 0 < t ≤ T , is invertible, so

|det (Λ(T, A(ω), B(ω)))|
|det (Λ(t, A(ω), B(ω)))|

∣∣∣det
(
exp(A(ω)(T − t))

)∣∣∣ , 0, w.p. 1,

since the exponential matrix is always invertible.154

3. Computing the 1-PDF of the control SP155

Using the notation introduced in Section 2, the control SP, given in (5), can be written as156

u(t, ω) = F>(t, A(ω), B(ω))Λ−1(T, A(ω), B(ω))
(
x1(ω) − exp(A(ω)T )x0(ω))

)
,

i.e.157

u(t, ω) = J(t, A(ω), B(ω))
(
x1(ω) − exp(A(ω)T )x0(ω))

)
,

where158

J(t, A, B) = F>(t, A, B)Λ−1(T, A, B)

is a matrix of size m × n.159

As we are assuming that all input parameters are absolutely continuous RVs, the random160

matrix B(ω) of size m × n, with m ≤ n, has maximum rank w.p. 1, i.e.161

P[{ω ∈ Ω : rank(B(ω)) = m}] = 1.
7



This implies that162

P[{ω ∈ Ω : rank(J(t, A(ω), B(ω))) = m}] = 1,

then we can construct an invertible matrix w.p. 1 of dimension n × n,163 [
J(t, A(ω), B(ω))

L

]
, (10)

where164

L =
[

0(n−m)×m In−m

]
. (11)

Notice that the construction of matrix L is not unique. An easy form to construct it ensuring165

invertibility w.p. 1 of matrix (10)–(11) is to consider zero-vectors to complete the m independent166

columns of J(t, A(ω), B(ω)), and to complete the rest of columns with the n −m columns associ-167

ated to the identity matrix In−m. Other expressions for matrix L can be obtained keeping the first168

m columns and completing its last n − m columns by permuting the columns of In−m.169

Now, we will apply Theorem 2 to compute the 1-PDF of u(t, ω). Let us fix t > 0, and define170

the mapping s : Rh → Rh by171

z1 = s1(x0, x1, A, B) =

[
J(t, A, B)

L

]
x1 +

[
−J(t, A, B) exp(AT )x0

0(n−m)×1

]
,

z2 = s2(x0, x1, A, B) = x0,
Z3 = s3(x0, x1, A, B) = A,
Z4 = s4(x0, x1, A, B) = B,

where si : Rh → Rn, i = 1, 2, s3 : Rh → Rn×n, s4 : Rh → Rn×m being h = 2n + n2 + nm. The172

inverse mapping p = s−1 is given by173

x0 = p1(z1, z2,Z3,Z4) = z2,

x1 = p2(z1, z2,Z3,Z4) =

[
J(t,Z3,Z4)

L

]−1 (
z1 +

[
J(t,Z3,Z4) exp(Z3T )z2

0(n−m)×1

])
,

A = p3(z1, z2,Z3,Z4) = Z3,
B = p4(z1, z2,Z3,Z4) = Z4,

and the absolute value of its Jacobian is174

|Jh| =

∣∣∣∣∣∣∣det
[

J(t,Z3,Z4)
L

]−1
∣∣∣∣∣∣∣ =

1∣∣∣∣∣∣det
[

J(t,Z3,Z4)
L

]∣∣∣∣∣∣
, 0.

Then, applying RVT technique (Theorem 2), the PDF of the random vector (z1, z2,Z3,Z4) is175

fz1,z2,Z3,Z4 (z1, z2,Z3,Z4)

= fx0,x1,A,B

z2,

[
J(t,Z3,Z4)

L

]−1 (
z1 +

[
J(t,Z3,Z4) exp(Z3T )z2

0(n−m)×1

])
,Z3,Z4


·

∣∣∣∣∣∣∣det
[

J(t,Z3,Z4)
L

]−1
∣∣∣∣∣∣∣ .

(12)

Notice that, for every t fixed, the stochastic control, u(t, ω), is given by the m first components
of vector z1. To determine the 1-PDF of u(t, ω), we marginalize expression (12) with respect to
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the other variables, i.e. z2 = x0, Z3 = A and Z4 = B, and the n − m last components of z1

(corresponding to the n − m last components of x1, or Lx1 when L has a different expression of
(11)). This leads to

f1(u, t) =

∫
Rh2

fx0,x1,A,B

x0,

[
J(t, A, B)

L

]−1 [
u + J(t, A, B) exp(AT )x0

q

]
∣∣∣∣∣∣∣det

[
J(t, A, B)

L

]−1
∣∣∣∣∣∣∣ dqdx0dAdB,

where h2 = 2n − m + n2 + nm, q =
(
x1

m+1, . . . , x
1
n

)>
and176

dqdx0dA dB =
∏

m+1≤l≤n

∏
0≤i≤n

∏
0≤ j≤n

∏
0≤k≤m

dx1
l dx0

i dAi, j dBi,k.

4. Application to study the dynamics of a damped oscillator with parametric noise177

The random differential equation describing a damped oscillator with random inputs and an178

additive stochastic control is given by:179

y′′(t, ω) = −
k(ω)

m
y(t, ω) −

R(ω)
m

y′(t, ω) + u(t, ω), (13)

where y(t, ω) is a SP that determines the position of the mass at the time instant t; k(ω) is the180

restoring force random coefficient; the input parameter R(ω) denotes the resistance random co-181

efficient; m is the mass and u(t, ω) is the control term described by a SP. All these quantities are182

defined in a common complete probability space (Ω,F ,P). In practice, the random nature of the183

restoring force and the resistance coefficients is naturally allocated because of they are obtained184

via experiments that involve measurement errors. Since these two parameters are treated as RVs,185

the differential equation (13) is said to have parametric noise.186

Our main objective is to determine the 1-PDFs of the solution SP, y(t, ω), and of the control187

SP, u(t, ω), using the theoretical results obtained in Sections 2 and 3, respectively. We con-188

sider that the physical system formulated via the differential equation (13) is at an initial state,189

{y(0, ω), y′(0, ω)}, for position and velocity, respectively, and we want to reach a final target,190

{y(T, ω), y′(T, ω)}, at a fixed time T . Since initial and target states are RVs, they are not known in191

a deterministic way but probabilistically because of measurement errors or lacking of knowledge192

of the physical experiments. In practical scenarios, the distributions of the aforementioned RVs193

can be established using different information sources, like repeating the physical experiment,194

using the available knowledge of the oscillator and allocating them plausible distributions, etc.195

As expression (13) is a second-order random differential equation, we can rewrite (13) as a196

first-order linear control system according to the following structure197

x′(t, ω) =

(
0 1
−

k(ω)
m −

R(ω)
m

)
x(t, ω) +

(
0
1

)
u(t, ω), (14)

where198

x(t, ω) =

(
x1(t, ω)
x2(t, ω)

)
=

(
y(t, ω)
y′(t, ω)

)
, A(ω) =

(
0 1
−

k(ω)
m −

R(ω)
m

)
, B =

(
0
1

)
.

Notice that199

rank(C(ω)) = rank (B|A(ω)B) = rank
(

0 1
1 −

R(ω)
m

)
= 2, ∀ω ∈ Ω,
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so Kalman’s controllability condition holds independently of the distributions of the absolutely200

continuous RVs defining the oscillator behaviour.201

To study the influence of randomness in the dynamics of the damped oscillator, we will202

consider four casuistries. Specifically, we shall analyse the cases where the initial condition is203

either deterministic or random and, in both cases, we shall consider that matrix A is deterministic204

or random. In all these scenarios, we will take m = 1 and T = 1 and, we will assume that the205

final state, x1(ω), has a multinormal distribution with mean and variance-covariance matrix206

µ = (1, 0) Σ =

(
0.01 0

0 0.005

)
, (15)

respectively, i.e. x1(ω) = (x1
1(ω), x1

2(ω))> ∼ N(µ; Σ).207

Case 1 In this case we choose the following (deterministic) initial condition208

x0 =

(
2
0

)
, (16)

and the parameters involved in (deterministic) matrix A taking the constant values k = 10209

and R = 1.210

Case 2 Now the (deterministic) initial condition, x0, is the same as in Case 1, i.e. given by (16).211

The random coefficients k and R are assumed to have PDFs whose expected (or mean)212

values are the same as the ones taken in Case 1. In particular, the following distributions213

have been considered:214

• k(ω) is a truncated Normal distribution with parameters µk = 10 (mean) and σk = 0.1215

(standard deviation) on the interval [9.5, 10.5], i.e. k(ω) ∼ N|[9.5,10.5] (10; 0.12).216

• R(ω) is a truncated Normal distribution with parameters µR = 1 (mean) and σR =217

0.05 (standard deviation) on the interval [0.75, 1.25], i.e. R(ω) ∼ N|[0.75,1.25] (1; 0.052).218

Case 3 In this case, we consider a random initial value, x0(ω), following a Normal distribution.219

We assume that its expectation is µ0 = (2, 0)> (i.e., the same deterministic value given in220

(16) that has been taken in Cases 1 and 2 too) and that its variance-covariance matrix Σ is221

given by (15). So, x0(ω) = (x0
1(ω), x0

2(ω))> ∼ N(µ0; Σ). Parameters k and R are assumed222

deterministic. As in Case 1, we take k = 10 and R = 1.223

Case 4 We choose all parameters as RVs. Their distributions are the ones considered in previous224

Cases, i.e. x0(ω) as in Case 3 and, k(ω) and R(ω) as in Case 2.225

For all cases we have computed the joint 1-PDF, f1(x, t), of the solution SP, x(t, ω) = (y(t, ω), y′(t, ω))>,226

to the random oscillator control problem (14). Then, from f1(x, t) confidence regions at certain227

confidence levels have been determined. Also, f1(y, t) is obtained marginalizing f1(x, t). Further-228

more, the 1-PDF, f1(u, t), of the control SP, u(t, ω), associated to this problem has been obtained.229

In Fig. 1 we have represented the joint PDF of the position and velocity, (x1(t, ω), x2(t, ω))> =230

(y(t, ω), y′(t, ω))>, of the randomized oscillator at t = 0.2 in Case 1 (left) and Case 2 (right), where231

the initial condition is deterministic. We can observe that the analytical computations obtained232

by applying the RVT method agree with Monte Carlo simulations and that, in Case 2 where233

parameters are affected by randomness, the 1-PDF is slightly flattened. Similar behaviours are234
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observed when considering other times instants. This issue can be seen in Fig. 2, where we have235

represented the phase portrait for the random oscillator control problem (14). The expectation236

vector of the position and velocity adopts the shape of a spiral line (see dotted line). This ex-237

pectation is highlighted with points at the following time instants, t ∈ {0, 0.2, 0.4, 0.5, 0.6, 0.9, 1}.238

Also, at this specific times, confidence regions at 50% and 90% confidence levels have been239

plotted in blue and red lines, respectively. We observe that the solution tends to the final target.240

As the initial point is deterministic, the variability propagates as time increases.241

Since the solution y(t, ω) of the random control problem (13) determines the position of the242

oscillator at the time instant t, in Fig. 3 we have represented its 1-PDF, f1(y, t), at the time instants243

t ∈ {0, 0.2, 0.4, 0.5, 0.6, 0.9, 1} in Case 1 (top) and Case 2 (bottom). Both plots are quite similar,244

although we see the effect of randomness in model parameters k(ω) and R(ω), corresponding to245

Case 2, induces lower leptokurtic PDFs, as expected. Notice that in the graphical representations,246

this effect is more apparent at t = 0.2. In Fig. 4, we complete the graphical comparison of the247

aforementioned impact of uncertainty by plotting the mean, µy(t), and the interval centred at this248

statistic and having two standard deviations as diameter, [µy(t) − σy(t), µy(t) + σy(t)]. We can249

see that both graphical representations are similar, so to better compare the graphical results, in250

Table 1, we collect the figures corresponding to plots shown in Fig. 4 as well as the standard251

deviation, σy(t). We then confirm that uncertainty propagates slowly over the time. Notice that252

the graphical and numerical results commented so far are all in full agreement.253

Case 1
t = 0.2 t = 0.4 t = 0.5 t = 0.6 t = 0.9Case 2

µy(t) + σy(t) 1.69745 1.17807 0.992827 0.901246 1.05697
1.69952 1.18077 0.994808 0.902371 1.05698

µy(t) 1.69376 1.15816 0.959047 0.850821 0.961373
1.69375 1.15814 0.959031 0.850809 0.961372

µy(t) − σy(t) 1.69007 1.13824 0.925268 0.800396 0.865779
1.68799 1.1355 0.923253 0.799246 0.865769

σy(t) 0.00368999 0.0199181 0.0337797 0.050425 0.095594
0.00576671 0.0226376 0.0357779 0.051562 0.095603

Table 1: Mean, µy(t), standard deviation, σy(t), and µy(t) ± σy(t) of the solution SP y(t, ω) at different time instants t.
Case 1 and Case 2.

The 1-PDF of control SP, for Case 1 (top) and Case 2 (bottom), are both represented in Fig. 5254

at the time instants t ∈ {0, 0.1, 0.5, 0.8, 1}. We can observe that, in both cases, they have a sharper255

form at initial and final times. For a fixed time, we can observe that the 1-PDFs are similar at256

intermediate times, but they vary near the initial and final times, being a little wider (entailing257

more variability) when randomness is considered in model parameters as expected.258

A similar analysis can be performed to compare Case 3 and Case 4, and analogous conclu-259

sions can be obtained. Down below, we briefly report graphical and numerical results.260

In Fig. 6, the 1-PDF of the position and velocity at t = 0.1 in Case 3 (left) and in Case 4261

(right) are represented. In both cases, the initial and final condition are random. Again, we can262

observe that the analytical computations obtained by applying the RVT method agree with Monte263
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Figure 1: Joint PDF, f1(x1, x2, t), of the position and velocity, (y(t, ω), y′(t, ω))>, of the random oscillator control problem
(14) at t = 0.2. Left: Case 1; Right: Case 2. Top: Applying the RVT technique and plotting confidence regions for
different confidence levels 1 − α (blue, 1 − α = 0.5 and red, 1 − α = 0.9); Middle: Appying Monte Carlo simulations;
Bottom: Comparison between RVT and Monte Carlo simulations.
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Figure 2: Phase portrait for the random oscillator control problem (14). The expectation of the random vector position-
velocity is represented by the spiral line (dotted line). 50% (blue) and 90% (red) confidence regions are plotted at different
time instants t. Top: Case 1. Bottom: Case 2.
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Figure 3: Graphical representation of the 1-PDF, f1(y, t), of the solution SP, y(t, ω), at different time instants. Top: Case 1.
Bottom: Case 2.

14



0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

2.0

y

μy(t)+σy (t)

μy(t)

μy(t)-σy (t)

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

2.0

y

μy(t)+σy (t)

μy(t)

μy(t)-σy (t)

Figure 4: Mean, µy(t), and mean plus/minus standard deviation, µy(t) ± σy(t), of the solution SP y(t, ω). Top: Case 1.
Bottom: Case 2.
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Carlo simulations and that the 1-PDF is slightly flattened in the presence of randomness in the264

model parameters. This can be verified if we carefully observe the confidence region at 50%265

level. Similar conclusions can be obtained from the portrait diagram plotted in Fig. 7, specially266

if we observe confidence region at t = 0.1 and t = 0.2.267

A zoom of 50% (blue line) and 90% (red line) on the confidence regions for the 1-PDF of268

the random vector position-velocity to the random oscillator control problem (14), at time instant269

t = 0.1, are drawn in Fig. 8. Case 3 (top) and Case 4 (bottom). Although, these two plots are270

very similar, if we carefully look at them, we can observe that the confidence regions in Case 4,271

where all the parameters are RVs, are slightly wider than those corresponding to Case 3.272

In Fig. 9, we have plotted the 1-PDF, f1(y, t), of the solution SP, y(t, ω), at different time273

instants in both Cases 3 and 4. In Fig. 10, we compare both cases by plotting the mean, µy(t),274

and the mean plus/minus standard deviation, µy(t) ± σy(t), of y(t, ω) at different time instants275

t. From these two graphical representations, we observe the small effect of uncertainty in the276

position of the damped oscillator since both plots are similar. In Table 2, differences are better277

highlighted and quantified by means of numerical values. It must be said that the differences278

between both cases are small since we have chosen small values for the variance associated to279

input parameters (see the diagonal of variance-covariance matrix Σ in expression (15)). The280

variability in the model output would increase as variance of k(ω) and R(ω) does.281

Case 3
t = 0.1 t = 0.2 t = 0.4 t = 0.5 t = 0.6 t = 0.9Case 4

µy(t) + σy(t) 2.00717 1.77784 1.21237 1.00682 0.905035 1.05697
2.00721 1.778 1.21349 1.00831 0.906109 1.057

µy(t) 1.91157 1.69376 1.15815 0.959045 0.850819 0.961371
1.9116 1.6938 1.15822 0.959103 0.850835 0.961399

µy(t) − σy(t) 1.81597 1.60968 1.10394 0.911274 0.796603 0.865774
1.816 1.6096 1.10295 0.909899 0.795562 0.865794

σy(t) 0.095596 0.0840844 0.0542159 0.0477713 0.0542159 0.0955965
0.095605 0.0841992 0.0552716 0.0492039 0.0552734 0.0956051

Table 2: Mean, µy(t), and mean plus/minus standard deviation, µy(t) ± σy(t), of the solution SP, y(t, ω), at different time
instants t. Case 3 and Case 4.

In Fig. 11, the 1-PDFs of control SP for Case 3 (left) and for Case 4 (right) are represented at282

the time instants t ∈ {0, 0.1, 0.5, 0.8, 1}. We can observe similar behaviours as in Cases 1 and 2,283

namely, the 1-PDF is sharper at initial and final times. Also, we observe that the 1-PDF in both284

scenarios are similar at intermediate times, but they vary near the initial and final times, being285

wider when uncertainty is considered in model parameters.286

5. Conclusions287

Nowadays modelling in presence of uncertainty is a topic of great interest, particularly in288

the field of controllability of systems. The main novelty of this contribution is that we have289

studied autonomous linear control systems assuming full randomness in all model inputs (initial290
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Figure 6: 1-PDF, f1(x1, x2, t), of the random vector position-velocity at the time instante t = 0.1 to the random oscillator
control problem (14). Left: Case 3; Right: Case 4. Top: Applying RVT and plotting confidence regions for different
confidence level 1 − α (blue, 1 − α = 0.5 and red, 1 − α = 0.9); Middle: Applying Monte Carlo simulations; Bottom:
Comparison between Monte Carlo and RVT method.
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Figure 7: Phase portrait for the random oscillator control problem (14). The expectation of the random vector position-
velocity is represented by a spiral line (dotted line). 50% (blue) and 90% (red) confidence regions are plotted at different
time instants t. Top: Case 3. Bottom: Case 4.
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Figure 9: Graphical representation of the 1-PDF, f1(y, t), of the solution SP, y(t, ω), at different time instants. Top: Case 3.
Bottom: Case 4.
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Figure 11: 1-PDF of the control SP u(t, ω) associated to the random oscillator control problem (14) at different time
instants t. Top: Case 3. Bottom: Case 4.
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and target conditions, coefficients and control), while other stochastic approaches just consider291

the associate averaged system or specific forms for the noise (like independent and identically292

distributed random variables, White noise, etc.). More precisely, in our analysis all model pa-293

rameters (coefficients and initial and target conditions) are random variables, having arbitrary294

distributions, instead of deterministic values, and the control is a stochastic process rather than295

a classical function. Furthermore, for the sake of generality, in our study we have considered296

the scenario where all model parameters can be dependent random variables with an arbitrary297

joint distribution. In this general setting, we have provided a complete probabilistic description298

of the solution stochastic process of the randomized control problem by computing closed-form299

expressions of the probability density function of the solution and for the control. In this manner,300

we can calculate, not only the expectation and the variance of the solution and of the control (as301

is usually done in most contributions dealing with stochastic control systems), but any higher302

unidimensional moments, confidence intervals as well as the probability that the solution lies303

within an interval of specific interest.304

Our findings can be applied to solve randomized higher order linear differential equations305

with an additive stochastic control. This can be done using the ideas exhibited in the example306

dealing with the random damped oscillator, that is based on a second order linear differential307

equation subject to stochastic control.308

Finally, we want to point out that in forthcoming works we plan to extend the present analysis309

for random non-autonomous linear control systems.310
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