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a b s t r a c t 

Background and Objective: In silico prediction of drug-induced ventricular arrhythmia often requires com- 

putationally intensive simulations, making its application tedious and non-interactive. This inconvenience 

can be mitigated using matrices of precomputed simulation results, allowing instantaneous computation 

of biomarkers such as action potential duration at 90% of the repolarisation (APD 90 ). However, preparing 

such matrices can be computationally intensive for the method developers, limiting the range of simu- 

lated conditions. In this work, we aim to optimise the generation of these matrices so that they can be 

obtained with less effort and for a broader range of input values. 

Methods: Machine learning methods were applied, building models trained with only a small fraction of 

the originally simulated results. The predictive performances of the models were assessed by comparing 

their predicted values with the actual simulation results, using percentual mean absolute error and mean 

relative error, as well as the percentage of data with a relative error below 5%. 

Results: Our method obtained highly accurate estimations of the original values, leading to a nearly one 

hundred-fold decrease in computation time. This method also allows precomputing more complex matri- 

ces, describing the effect of more ion channels on the APD 90. The best results were obtained by applying 

Support Vector Machine models, which yielded errors below 1% in most cases. This approach was further 

validated by predicting the APD 90 of a set of 12 CiPA compounds and exporting the optimal settings for 

predicting APD 90 using a different set of ion channels, always with satisfactory results. 

Conclusions: The proposed method effectively reduces the computational effort required to generate ma- 

trices of precomputed electrophysiological simulation values. The same approach can be applied in other 

fields where computationally costly simulations are applied repeatedly using slightly different input val- 

ues. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Assessing the arrhythmogenic risk of new drug candidates is an 

mportant step in safety studies. The mechanism by which drugs 

nduce ventricular arrhythmias involves their binding to one or 

ultiple ion channels, thereby altering the ionic conductance that 

ontrols cardiomyocyte membrane potential [1] . As a result, the 
∗ Corresponding author. 

E-mail address: manuel.pastor@upf.edu (M. Pastor) . 
1 Both authors have contributed equally 

T

s

t

(

ttps://doi.org/10.1016/j.cmpb.2023.107345 

169-2607/© 2023 The Authors. Published by Elsevier B.V. This is an open access article u
orm and duration of ventricular action potentials (APs) change, 

nd the net effects can be observed at tissue and organ levels, such 

s the prolongation of the QT-interval on the surface ECG [2] . A 

ignificant prolongation of the QT-interval, is often linked to se- 

ere adversities such as early afterdepolarisations (EADs), which 

an quickly progress to one of the most severe effects of proar- 

hythmic drugs: the polymorphic ventricular tachycardia known as 

orsade de Pointes (TdP) [3] . 

As the occurrence of TdP historically led to the withdrawal of 

everal marketed drugs, the International Council for Harmonisa- 

ion of Technical Requirements for Pharmaceuticals for Human Use 

ICH) developed standardised guidelines for safety testing of novel 
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edicines [4] . Resting upon the preclinical ICH S7b guideline [5] , 

he estimation of proarrhythmic risk is done through the integra- 

ion of results from in vitro inhibition assay of the Rapid Delayed 

ectifier Potassium Current (I Kr ) encoded by the Human Ether-a- 

o-go-related Gene (hERG) and an in vivo animal QT-prolongation 

tudy. Following the clinical guideline ICH E14 [6] , the potential of 

 drug to delay ventricular repolarisation is assessed by measuring 

n vivo human QT/QTc interval prolongation. 

Indeed, testing drugs in compliance with these regulatory re- 

uirements over the last two decades resulted in no further re- 

oval of marketed drugs due to ventricular arrhythmia. However, 

he consideration of in vitro effects of drugs on a single ion channel 

nd the application of a conservative cut-off for QT-prolongation is 

he reason why several potentially useful drug candidates with low 

oxicity risk are also discarded during the development stages. To 

rovide a more complete description of the cellular mechanisms 

f drug proarrhythmia, a novel testing paradigm was proposed by 

he Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative 

 7 , 8 ]. The CiPA points out that the consideration of drug interac-

ions with other currents along with the hERG is also important 

or the analysis of ventricular arrhythmia. The main aim behind 

he CiPA project is to combine in vitro measured drug effects on 

ultiples ion channels (I Na , I NaL , I Kr , I to , I CaL , I K1 , and I Ks ) with com-

utational simulations, such as in silico reconstructions of cardiac 

yocyte electrophysiology, and to compare these results with in 

itro human stem cell results and human ECG phase 1 clinical tri- 

ls [9] . 

Adding in silico elements to the cardiac safety testing pipeline 

as two main advantages, the first being the ability to fill data 

aps when experimental results are not yet available at early stages 

f drug development and the second being an increased analyti- 

al accuracy due to the solid mechanistic foundation of the CiPA 

aradigm [10] . 

Several works have been published on the implementation 

f the CiPA based in silico simulations for the prediction of 

entricular arrhythmia and TdP biomarkers using predicted or 

xperimentally determined drug-induced ion channel inhibition 

ata [11–19] . Computational models of human and animal elec- 

rophysiology operate at different biological levels, ranging from 

 single channel to whole tissue simulations and vary in terms of 

he degree of complexity and abstraction, the underlying mathe- 

atical approaches, and physiological parameters [11] . Although 

he predictions generated by such models are considered valuable 

nd relevant, they also have limitations related to their usability. 

sually, computational safety models are designed based on the 

ubjective scientific interests of the developers and the required 

fficiency to run on high-performance-computing platforms is 

eldom reached. But most importantly, the simulation consists 

f multiple steps, making the prediction process rather tedious 

20] . For example, Beattie et al. [21] presented a safety tool 

ased on concentration-effect data for four cardiac ion channels 

hERG, NaV1.5, CaV1.2, KCNQ1), in which drug-induced channel 

nhibition of selected compounds was predicted and used for 

he computation of QT interval changes in rabbit ventricles using 

omputationally demanding one-dimensional tissue simulation. 

To speed up the process, our group developed an in silico sys- 

em that transforms multi-channel blockage into proarrhythmia 

iomarkers, such as action potential duration at 90% of the re- 

olarisation (APD 90 ), in which the most computationally intensive 

teps are precomputed, allowing to produce results instantaneously 

 22 , 23 ]. In our system, input values are pre-processed by combin-

ng channel-specific half-maximal inhibitory concentration (IC 50 ) 

nd the Hill coefficient for the currents I Kr , I Ks , and I CaL with the

oncentration of the drug. The APD 90 prolongation values are then 

redicted using isolated human ventricular myocyte models as a 

unction of these three input values. Since the calculation can take 
2

 considerable time, the predictions are generated by making use 

f precomputed matrices comprising large sets of possible combi- 

ations of input values, each of which is associated with a partic- 

lar value of the output biomarker. These technical features make 

he prediction system simple, practical, and rapid [ 22 , 23 ]. 

Even if storing precomputed data matrices is a very convenient 

ay to obtain predictions interactively, with minimal computa- 

ional requirements for the end-user, the procedure has the draw- 

ack that the preparatory simulations that the method developer 

eeds to run are extremely expensive in terms of computational 

ower and time. This is because accurate predictions can only be 

roduced when the input values cover a wide range of possibilities 

tarting with safe and ending with very toxic representations of 

rug effects on each considered ion channel. The number of com- 

inations is calculated as X 

n , being X the number of possible val- 

es considered for each input value and n the count of the input 

alues considered (number of ion channels). This fact imposes a 

ractical upper limit to the number of currents that can be con- 

idered since incorporating one more channel multiplies by X the 

umber of simulations to run. Since incorporating additional cur- 

ents could have substantial benefits, we studied how to overcome 

hese limitations. A potential solution would be to train a machine 

earning (ML) model with part of the data array and use it to pre- 

ict the rest of the data array, thereby reducing the number of re- 

uired simulations. The use of ML in the field of arrhythmia and 

lectrophysiology-oriented research is not new, and the spectrum 

f published ML applications in this area is very broad [ 20 , 21 ]. For

xample, classification and regression algorithms can be applied 

o build models describing the association between the molecu- 

ar structure and the inhibitory potential of drugs on ion chan- 

els [24] or to produce high-level arrhythmogenic risk indicators 

25–27] . Another example of the application of ML in combination 

ith in silico simulations to improve the predictive results of the 

rrhythmogenic risk in post-infarction patients was described by 

aleckar and colleagues (2020), who simulated the data for the 

nalysis only partially and predicted the rest using ML methods 

28] . 

In this work, we describe an application of ML which aimed 

nly to optimise the generation of precomputed matrices that link 

nput ionic currents with output APD 90 values. The basic idea was 

o train a model with a few of the array nodes and to use it to

econstruct the whole array. We show that even a tiny fraction 

f nodes (5% or less) can produce a very accurate estimation of 

he values obtained using simulations for the remaining part of 

he array (95% or more). Therefore, using an ML model can save 

p to 95% of the computation time and, more importantly, opens 

he possibility to precompute matrices with more currents that can 

rovide better, more useful predictions. In this work, we compare 

ifferent machine learning approaches, optimise their parameters, 

nd evaluate the quality of the predictions obtained using different 

ample sizes to make the most optimal choices for future simula- 

ions. Then, we present the best methodological settings and val- 

date our selected model by predicting the APD 90 for a series of 

ompounds from the CiPA dataset. Lastly, we evaluate the value of 

ur method by simulating a real production scenario where it was 

pplied to a new electrophysiological simulation. 

. Methods 

.1. Data collection for model building 

In silico action potential (AP) modelling of the healthy human 

ndocardial cardiomyocyte and APD 90 measurements were done 

sing a modified version of the widely known model published 

y O’Hara and colleagues [29] . The modifications were designed to 

etter reproduce the experimental data of drug effects. Briefly, the 
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Table 1 

Percentages of data from the original array sampled using four differ- 

ent rates to generate the training, validation, and test series for model 

building. 

Sampling rate Training series Validation series Test series 

1/20 5% 5% 90% 

1/50 2% 2% 96% 

1/100 1% 1% 98% 

1/200 0.5% 0.5% 99% 

Fig. 1. 3D plot showing the non-linear relationship between the APD 90 and the in- 

put values (I Kr and I Ks ) for the simulated data. In this plot, a fixed value of 0.3 was 

used for I CaL . 
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t
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f

P model modifications included: i) the scaling of the following 

onductances: I Kr by 1.119, I NaL by 2.274, I K1 by 1.414, I Ks by 1.648, 

 CaL by 1.018, and I Na by 0.4; and ii) a reformulation of the activa-

ion and inactivation gates of I Na . For further details about the elec- 

rophysiological model, see Llopis-Lorente et al. [16] . Simulations 

ere run with a basic cycle length of 1,0 0 0 ms, a stimulus of 1.5-

old the diastolic threshold of amplitude and a duration of 0.5 ms, 

t physiological temperature (37 °C) and the following extracellular 

oncentrations: [Na + ] = 140 nM, [Ca 2 + ] = 1.8 nM and [K 

+ ] = 5.4 nM.

easurements of APD 90 under drug effects were done after 500 

eats starting from control -no drug- initial conditions. 

In this work, we considered the effects of drug action on two 

ombinations of cardiac ion channels. Primarily, aiming to improve 

he in silico modelling tool described by Obiol-Pardo, we consid- 

red drug effects on I Kr , I Ks and I CaL currents [ 22 , 23 ]. To evaluate

he applicability of our new methodology to other combinations of 

onic channels and validate the proposed machine learning meth- 

ds, we selected the currents I Kr , I CaL , I NaL that were recently de-

cribed by Llopis-Lorente [16] . Drug effects on the AP were sim- 

lated using the simple pore block model [30] . Drug inhibition 

roduced on each channel was simulated by scaling the channel’s 

aximal conductance (g i ) using the standard Hill equation Eq. (1) . 

 i, drug = g i 

[ 

1 + 

(
D 

I C 50 ,i 

)h 
] −1 

(1) 

here g i , drug is channel i ‘s maximal conductance in the presence 

f the drug, D is the drug concentration, IC 50, i is the half-maximal 

nhibitory concentration for that drug, and channel i and h is the 

ill coefficient, which represents the number of molecules that are 

ufficient to block an ion channel. 

A wide combination of input values representing the ratio 

 

D 
I C 50 

) h for I Kr , I Ks , I CaL was simulated and stored in an array. The

rray consisted of 3 channel input values: I Kr , I Ks , and I CaL . Each of

hem represented the logarithm of the ratio ( D 
I C 50 

) h , as described 

n Eq. (2) . For each channel (I Kr , I Ks , I CaL ), the input value ranged

rom −3 to 2.5, with a step increment of 0.1. These values were 

hosen to cover the properties found in real molecules, avoiding 

he need to extrapolate the models. Therefore, the simulated array 

omprised 175,616 instances (56 data points for each current). 

nput value = log 10 

([ 
D 

I C 50 

] h )
(2) 

The output value of the array was the APD 90 , simulated as de- 

cribed above for each of the input values combinations. For each 

et of input values, an additional binary variable was included to 

ndicate whether early afterdepolarisations (EAD) occurred during 

he simulation of that drug (EAD = 1) or not (EAD = 0). An EAD was

efined as any event with a positive voltage gradient (dV/dt > 

 mV/ms) after 100 ms from the beginning of the action poten- 

ial or with a value of membrane voltage at the end of the beat

eing higher than resting membrane voltage (Vm > −40 mV). 

The standard use of such array was as follows: for a given com- 

ound at a concentration D, Eq. 2 was applied for the three ionic 

hannels (I Kr , I Ks , I CaL ). The results of Eq. (2) were rounded to the

rst decimal and bounded between −3 and 2.5, i.e. , if an input 

alue was lower than −3 or higher than 2.5, the value was then 

ransformed to −3 or 2.5. For each combination of the three cal- 

ulated input values, the corresponding output (APD 90 ) was stored 

n a three-dimensional result array. For example, a drug with the 

ollowing IC 50 s: 1 nM for I Kr , 10 0 0 nM for I Ks and 10 nM for I CaL at

 concentration of 1 nM yielded the data point [0, −3, −1], which 

ed to an APD 90 of 369.16 ms. 

Electrophysiological simulations and generation of the APD 90 

rray were carried out using MATLAB version R2021b. The table 
3

ith the APD 90 values for a wide combination of input values is 

vailable online, named “KrKsCaL.xlsx”, on the public repository of 

he Polytechnic University of Valencia (RIUNET, https://riunet.upv. 

s/handle/10251/183067 ). 

.2. Data pre-processing 

We removed from the analysis all data points for which EADs 

ere detected. Also, we applied filters to remove simulation re- 

ults yielding APDs greater than 10 0 0 ms. These conditions repre- 

ent repolarisation abnormalities, and the numerical result is con- 

idered unreliable. Additionally, data points with an APD 90 larger 

han the 3rd quartile plus 1.5 times the interquartile range were 

onsidered outliers and removed. This filter removed 1.4% of the 

ata points, with values ranging between 777.59 and 865.47 ms. 

fter the pre-processing, the number of simulation results was re- 

uced to 140,269. 

The data array was divided into training, validation, and test 

ets using four different sampling rates that were used in the mod- 

ls ( Table 1 ). In each case, the training and validation series were

xtracted by picking the results at regular and pre-defined inter- 

als to guarantee an even distribution of values for fitting and val- 

dation along with the explored range of input values. All remain- 

ng data were used as test series to evaluate the predictive perfor- 

ance of the models. 

.3. Machine learning algorithms 

Figure 1 shows a 3D representation of the APD 90 values ob- 

ained for different combinations of two current pairs (I Kr and 

 Ks ). The APD 90 values are distributed on a non-linear 2D sur- 

ace smoothly distributed. This observation suggests that by the 

https://riunet.upv.es/handle/10251/183067
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pplication of ML algorithms suitable for processing non-linear 

ata, we could obtain a good model fitting. In this work, we 

elected three different ML methods: Polynomial Transformation 

ith Ridge regression (PR), Support Vector Machine (SVM), and 

ultilayer Perceptron (MLP). For each one, we optimised their hy- 

erparameters and validated the models using three partitions and 

n external test set with selected CiPA compounds. 

.4. Polynomial regression 

The PR model was built using polynomial regression Eq. (3) , a 

orm of linear regression in which the relationship between the in- 

ependent and dependent variables is modelled as a polynomial of 

he n 

th degree . In this algorithm [31] , the polynomial degree in- 

reases proportionally to the complexity of the data structure: 

ˆ 
 = b + w 1 .x + w 2 . x 

2 . . . + w n . x 
n (3) 

Where ˆ y is the target variable, n is the degree of the polyno- 

ial, x is the independent variable, w represents the model coeffi- 

ients, and b is the offset. 

To reduce the chance of overfitting the model by selecting a too 

igh polynomial degree, Ridge regression [32] Eq. (4) was applied: 

 ( w, b ) = 

∑ M 

i =1 

(
y i − b −

∑ p 

j=1 
w j · x i j 

)2 

+ α
∑ p 

( j=1) 
w 

2 
j (4) 

Ridge regression, which operates by performing L2 regularisa- 

ion, penalises the model coefficients by adding the factor ( α). 

he greater the factor α, the greater the impact of the shrinkage 

enalty, resulting in a larger reduction of the magnitude of model 

oefficients. Therefore, finding an optimal value for α is particu- 

arly important to control model overfit. 

.5. Support vector machine 

To build the SVM model, we used a non-linear support vec- 

or machine for regression (SVR) which can be explained by a line 

nclosed between two decision boundaries, where the width be- 

ween is controlled by the parameter ε [33] . As the data points 

hat lie within the boundaries get assigned a loss of 0, the best 

alue of ε is the one that maximally increases the number of the 

ata points included within. On the other hand, the error is com- 

uted using slack variables that quantify the distance from the de- 

ision bound aries Ɛ’s to the points outside the margin. Support 

ector machine models strive towards a maximal error reduction 

s defined in Eq. (5) . 

inimise 
w 

T w 

2 

+ C 
∑ N 

i =1 

(
ξi + ξi 

∗)
subject to ⎧ ⎨ 

⎩ 

y i − w 

T φ( x i ) − b ≤ ε + ξi , 

w 

T φ( x i ) + b − y i ≤ ε + ξ ∗
i 
, 

ξi , ξ
∗
i 

≥ 0 , i = 1 , . . . , n 

(5) 

ξ i and ξ i 
∗ are the slack variables, ‖ w ‖ represents the Euclidian 

ormalisation of the weight (w) vector. C is a regularisation pa- 

ameter where the strength of the regularisation is inversely pro- 

ortional to this parameter. ϕ(x) is the transformation from input 

pace into feature space, and b is the bias term. 

To process non-linear data, support vector regressors perform 

he kernel trick [34] , a method that allows for a representation 

f the data only through a set of pairwise similarity comparisons 

etween two instances in the input space. More precisely, a ker- 

el function K ( x i ,x j ) takes as input the original low dimensional

ata points ( x i , x j ) and computes a dot product of these data in

he transformed high dimensional space, without explicitly deter- 

ining their coordinates in this feature space. In this work Radial 
4 
asis Function (RBF) [35] kernel Eq. (6) was used. 

 

(
x i , x j 

)
= e −γ x i −x j 

2 

(6) 

is the parameter of the gaussian kernel and ( x i , x j ) are two se-

ected input instances. In this work, scale mode γ Eq. (7) was se- 

ected because it is invariant against the scale of the inputs. 

 scale mode = 

1 

n . x v ariance 

(7) 

Where n is the number of features and x variance corresponds to 

he variance in the input data. 

.6. Multilayer perceptron 

Multilayer perceptron [36] is a feedforward artificial neural net- 

ork class belonging to the family of supervised machine learning 

lgorithms. The basic structure of an MLP consists of a dot prod- 

ct of the input data (x) with their weights (w) + the bias (b) and

f an activation function which in most cases is non-linear Eq. (8) . 

hese inputs yield an output of a single neuron. 

ut put = f ( y ) = f 

( 

n ∑ 

k =1 

w k . x k + b 

) 

(8) 

The output obtained from the first neuron is transmitted to 

he next one through feedforward propagation. In order to reduce 

he error between the desired output and the predicted output, 

he weights are updated in a process of backpropagation [37] . The 

ost important hyperparameters that impact the predictive perfor- 

ance of the neural network are hidden layers, activation function 

38] , learning rate (lr), which controls the step-size in updating the 

eights, the L2 regularisation parameter penalty alpha ( ɑ ), and the 

olver for weight optimisation. 

.7. Evaluation metrics 

The three machine learning algorithms were applied to four 

raining series generated with different sampling rates (as shown 

n Table 1 ) to build 12 models. The predictive performances of the 

odels were compared using three evaluation metrics: Mean Ab- 

olute Error (MAE) Eq. (9) , the Mean Relative Error in% (MRE) com- 

uted from Relative Error Eq. (10) , and the percentage of data with 

elative Error (RE) below 5% (non-large data-points error, NLDE). 

hese metrics were used to quantify the differences between pre- 

icted and simulated APD 90 values and to guarantee that the quan- 

ity of the sampled data from the original simulated data array is 

nough to build a robust ML model. We only consider acceptable 

he simulations with an RE below 5%. 

AE = 

1 

n 

∑ n 

i =1 

∣∣Y i − ˆ Y i 
∣∣ (9) 

ˆ Y i corresponds to the predicted value, Y i is the real value, and n 

s the number of data points. 

E ( % ) = 

∣∣Y i − ˆ Y i 
∣∣

Y i 
. 100 (10) 

RE (%) values, computed as a function of APD 90, were plotted 

or a visual evaluation 

.8. Hyperparameters of all described ML algorithms 

Algorithm-specific hyperparameters selected for the optimisa- 

ion of the ML models are listed in Table 2 . 

The hyperparameter tuning for the different models aimed to 

inimise the validation set MAE. We also tested whether the hy- 

erparameters of the three selected algorithms can be optimised 
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Table 2 

Selected hyperparameters for the optimisation of selected ML models. 

Internal name Algorithm Hyperparameters 

PR Ridge regression with a polynomial 

transformation 

Polynomial degree = [2–15], α= [1.10 −6 – 10] 

SVM Support Vector Machine Regression C = [0.1 – 30.10 5 ], kernel = RBF, ϒ= scale, Ɛ= 0.1 

MLP Multilayer Perceptron Hidden layers = [(50,50,50), (50,100,50), 

(100,)], learning rate = [constant, adaptative, 

sgd], solver = Adam, α= [0.05, 0.1,0.5], 

activation = ReLU 
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Fig. 2. Distributions of APD 90 values after data pre-processing. 
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sing only the training set or if it requires an additional validation 

et. 

The scripts were developed using Python 3.8. Machine learning 

odels were built and evaluated using standard libraries Scikit- 

earn [39] , NumPy [40] , Pandas [41] and Matplotlib [42] . The 

ource code of the scripts used for building and validating the 

odels, together with the datasets described and analysed in this 

anuscript, are available at GitHub ( https://github.com/phi-grib/ 

ardioML ) and distributed as open source under GNU GLP-3.0 li- 

ense. 

.9. Example case study using CiPA compounds 

To obtain a more realistic evaluation, focused on the range of 

C 50 observed in commonly used drugs for the I Kr , I Ks , and I CaL 

hannels, as well as drug concentrations reached in their clinical 

se, we computed the input values as described in Eq. (2) for 12 

iPA drugs belonging to three different TdP risk classes (low, in- 

ermediate, high). For these compounds, we used the concentra- 

ion corresponding to their Effective Free Therapeutic Plasma Con- 

entration (EFTPC) values, the channel-specific half-maximal in- 

ibitory concentrations (IC 50 ) and Hill coefficients (h) extracted 

rom Llopis-Lorente et al. [16] . D, IC 50 s, h values and the cor-

esponding input values used for the simulation of the 12 CiPA 

rugs are available at the file “12_CiPA_Drugs.D-IC50-h.xlsx’’ at 

itHub ( https://github.com/phi-grib/cardioML/blob/main/12 _ CiPA _ 

rugs.D- IC50- h.xlsx ). The PR, SVM, and MLP models, trained with 

ata sampled 1/100, were applied to these compounds to predict 

heir APD 90 . 

The predicted results were eventually compared with the simu- 

ated APD 90 read-out from the data array, and the differences were 

xpressed as Relative Error (%). 

. Results 

.1. Overview 

The starting point for this work was to generate a large num- 

er of APD 90 values using electrophysiological simulations, as de- 

cribed in the Methods section. For these simulations, the input 

alues represent the relation between the IC 50 , Hill coefficient and 

he drug concentration for three ion channels I Kr , I Ks , and I CaL . The

utput values are the APD 90 we expect to obtain for cardiomy- 

cytes exposed to a drug with the given I Kr , I Ks , and I CaL input val-

es. These values were collected in an array containing the APD 90 

alues produced by the simulations for a wide combination of in- 

ut values. 

The next step was generating small samples of the original data, 

hich were used to train ML models that were used to predict the 

emaining data as accurately as possible. The results were com- 

ared to identify the best ML methods and the lowest training 

eries size producing acceptable results. Finally, the quality of the 

odels was further compared, and the method was validated using 

2 CiPA compounds. 
5 
Our study showed that a simulation of only 1–5% of data is 

ufficient to build an ML model able to produce accurate estima- 

ions of the remaining 99–95% of the APD 90 values. Such a large 

eduction in the computation automatically translates into a sub- 

tantial improvement of both the time and computing power re- 

uired for the preceding data collection step. Consequently, this re- 

uction opens the possibility of considering drug effects on more 

han three channels, thereby improving the mechanistic descrip- 

ion of the in silico tool. From the model settings evaluated, the 

est results were obtained using SVM. A sampling ratio 1/100 was 

onsidered a good trade-off between estimation quality and com- 

utation reduction, according to three quality evaluation metrics 

onsidered: MRE (%), MAE (%) and percentage of data points with 

E below 5% computed for the training, validation, and test set. In 

he external validation using CiPA compounds, we showed that the 

aximum error obtained by the SVM model for the sampling ratio 

/100 barely exceeds 1.5% of RE, representing approximately 4 ms 

f deviation. 

.2. Compilation of the data array 

As described above, a data array of APD 90 obtained for different 

imulation input values (ratio of drug concentration over I Kr , I Ks , 

nd I CaL IC 50 ) was generated. This dataset consisted of simulated 

PD 90 for 175,616 possible combinations of drug effects on chan- 

els I Kr , I Ks , and I CaL . It covers a range of blockades from 0.1% to

9.7% for each channel. The pre-treatment applied removed values 

ssigned the top cut-off value (10 0 0 ms) and higher (see Methods 

ection for details). Figure 2 shows the final distributions of the 

PD 90 values, where most of the values are concentrated around 

he physiological biomarker values (264 ms). 

This data array resulted from the systematic application of elec- 

rophysiological simulations using a range of input values that start 

rom practically safe scenarios ( −3 indicates the ratio of 1:10 0 0 be- 

ween the effective free therapeutic plasma concentration and the 

C 50 ). Larger APD 90 values can only be observed for a few combina- 

ions of input values, with a slight concentration of around 610 ms. 

https://github.com/phi-grib/cardioML
https://github.com/phi-grib/cardioML/blob/main/12_CiPA_Drugs.D-IC50-h.xlsx
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Fig. 3. Selected evaluation metric for different ML models and partitions of data, 

MRE (%). 

3

t

t

1

a  

w  

P

s

t

g

k

r

i

m

m

g

f

s

M

t

M

g

n

e

e

w

M

t

d

b

M

e

a

h

a

A

A

F

s

.3. Machine learning: fitting and quality 

Before model building, the original data array was split into 

raining, validation and test sets using regular and equal-sized pat- 

erns with four different sampling rates: 1/20, 1/50, 1/100, and 

/200. A first sample of data points was assigned as a training set 

nd a second one as a validation set, whereby the rest of the data

as devoted to the test set. Then, we used the training set to build

R, SVM and MLP models. A detailed description of the applied 

ampling rates and ML algorithms is provided in the Methods sec- 

ion. In this work, we optimised the hyperparameters of each al- 

orithm by minimising the loss function on both the training (data 
ig. 4. Each plot shows the RE (%) as a function of the experimental values of APD 90 . Co

ampling ratios applied to the input data starting from 1/20 to 1/200. 

6 
nown for the model) and the validation (independent data) se- 

ies and compared the results to evaluate whether a separate val- 

dation set is necessary or somewhat redundant in the process of 

odel optimisation. Furthermore, this allows assessing if the best 

odelling settings (hyperparameters determined for a specific al- 

orithm and sampling) can be re-used to obtain a suitable model 

or another data set of similar nature without needing a validation 

et. 

After building 12 models, their quality was evaluated using the 

AE, MRE and NLDE, computed as explained in the Methods sec- 

ion. Figure 3 summarises the results obtained in the calculation of 

RE for each model and the four selected sampling ratios. In the 

eneral quality assessment of the models, the lowest MAE (results 

ot shown) and MRE (%) were produced by the PR algorithm. Nev- 

rtheless, the differences between PR and SVM, considering both 

valuation metrics are minimal, of approximately 0.2%. Compared 

ith the SVM and PR models, the MAE and MRE computed for the 

LP model are generally higher and increase for low sampling ra- 

ios. 

The plots in Fig. 4 illustrate the RE (%) calculated for the pre- 

icted APD 90 values from the test series. We show the differences 

etween the three tested models: PR (blue), SVM (orange), and 

LP (green) and how the different sampling ratios impacted the 

valuation metrics from the smallest to the highest. In models PR 

nd SVM, the RE (%) range is smaller than for MLP. All the models 

ave in common that the RE (%) is larger for APD 90 below 300 ms 

nd above 600 ms. In the graphical distribution of RE (%) along the 

PD 90 axis, it is noticeable that the initial and end regions of the 

PD 90 value range are the ones with the largest RE (%) increase. 
lumns represent three trained models PR, SVM, and MLP. Rows correspond to the 
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Fig. 5. 3D plots representing I Kr , I Ks and APD 90 for a fixed value of I CaL equal to 0.3 to give an example. Columns represent three trained models PR, SVM, and MLP. Rows 

correspond to the sampling ratios applied to the input data starting from 1/20 to 1/200. 

7
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Fig. 6. External validation of the three ML models built using the training set sampled 1/100 performed using a set of 12 CiPA drugs selected from three TdP risk classes. A: 

Simulated and predicted APD 90 values. B: RE (%). 
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Table 3 

Performance metrics assessed for the model APD 90 – (I Kr , I Ks , I CaL ) using 

(A) training, validation, and test set and (B) using the double amount of 

data for training and the rest for test set. 

(A) 

SVM 

Sampling Partition MAE MRE (%) NLDE 

1/100 Train 0.56 0.18 100 

Val 1 0.27 100 

Test 0.93 0.25 100 

(B) 

SVM 

Sampling Partition MAE MRE (%) NLDE 

1/100 Train 0.56 0.18 100 

Test 0.93 0.25 100 
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onetheless, out of the three model types, SVM is the only al- 

orithm that does not make any prediction above the considered 

hreshold of 5% of RE. 

A closer observation of the differences between the APD 90 ob- 

ained from the simulation and the predicted, expressed as RE (%), 

hows that the largest errors have a periodic pattern. This can be 

bserved, for example, in the region between 300 and 500 ms in 

he results of the PR with 1/100 sampling. These errors are pro- 

uced by a border effect: the model does not fit well the data 

oints located at the upper and lower limits of the input values. In 

hese positions, there is an abrupt change of the surface, and some 

odels struggle to fit the simulation results accurately. In particu- 

ar, the use of equispaced sample points in PR can produce slight 

scillations at the edges (Runge’s phenomenon) [43] . 

Figure 5 represents a 3D plot, with APD 90 in the Z (vertical axis) 

nd I Kr and I Ks in the X and Y axes, respectively. A fixed value

f 0.3 was used for I CaL in all instances. For all models and sam-

ling rates shown in the graphics, the predicted values correspond 

ore precisely with the simulation results in the centre of the cov- 

red output ranges (APD 90 between 30 0 and 60 0 ms). As described 

bove, the values predicted by the three different models are plot- 

ed using the following colours PR (blue), SVM (orange), and MLP 

green), while grey was used to depict simulated values on each 

lot. Still, some models exhibit minor deviations in the borders for 

he reasons explained above. However, even in these areas, we ob- 

ain errors well below 5% for all SVM models. 

.4. External validation using a set of CiPA compounds 

A set of 12 CiPA compounds with well-defined cardiac electro- 

hysiology, clinical response and known effective therapeutic con- 

entration was used in our project to validate the predictive quality 

f the models. 

Figure 6 (A) illustrates the APD 90 simulated and predicted using 

he three ML models and the sampling rate of 1/100 for a set of 

2 CiPA drugs. For all selected CiPA drugs except Quinidine, which 

oses a high risk of inducing TdP, the duration of the experimental 

PD 90 interval lies below 300 ms. This trend remains unchanged 

or the APD 90 values predicted by all three models. Figure 6 (B) il- 

ustrates the RE (%) for the CiPA dataset used for the external val- 

dation. The RE values are very low and below 1% in most cases. 

his external validation result confirms the results obtained in the 

alidation and testing step of the model training, where the PR and 

VM models perform comparatively well. In contrast, the predic- 

ions generated by the MLP model deviate more from the experi- 

ental values. 
8 
.5. Simulation of future use by applying the developed methodology 

o another data array 

Once a suitable sampling rate and algorithm were selected, 

nd its hyperparameters were optimised, could these settings be 

sed to fit biomarkers obtained from a different electrophysiolog- 

cal simulation? Should the hyperparameters be optimised again 

sing a validation set? To answer these questions, a second pre- 

imulated data array was used. The simulations were carried out 

ollowing the in silico action potential (AP) modelling protocol de- 

cribed in the Methods section but now using input values which 

eflect the degree of inhibition of three different ion currents (I Kr , 

 NaL , I CaL ). 

Data simulation and sampling were done using methods equiv- 

lent to those described above. Further on, the assessment of the 

VM using a sampling ratio of 1/100 was performed following two 

ifferent approaches. The first option was identical to the method- 

logy described for the array APD 90 – (I Kr , I Ks , I CaL ), in which we

sed 1/100 data points for model training, 1/100 for validation, and 

8/100 for testing. The hyperparameters for this model were deter- 

ined based on the validation set. In the second scenario, we built 

n SVM model and optimised its hyperparameters as a function of 

he training set only, which was compiled by combining the train- 

ng and validation sets (summing to 2 data points per 100). 

For the selected model and sampling rate, the results obtained 

sing either two ( Table 3 (A)) or three ( Table 3 (B)) partitions are

ather similar. Therefore, we found that in comparable situations, 

he same hyperparameters can be applied to train other models, 

aking it unnecessary to include the validation partition. 
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. Discussion 

The methodology presented here allows the replacement of 

omputationally costly simulations with estimations generated by 

 machine learning model. For the method to be profitable, the re- 

uction must significantly impact the number of necessary simu- 

ations. In the Results section, it was shown that the number of 

ata points available for training the model largely impacts the er- 

ors the model commits on average but selecting 1 of every 100 

ata points results in an excellent balance between the reduction 

f the calculations and the robustness and predictive accuracy of 

he simulation fitting. 

Deciding on the necessary number of points required to capture 

he data structure is a problem-specific decision. In the current ap- 

lication, simulating 1/100 points would practically produce a one 

undred-fold decrease in the number of required simulations and 

omputation time, fulfilling our original objectives. 

All in all, the described methodology led to the development 

f high-quality models able to produce APD 90 values, which are a 

elatively accurate estimation of those produced by computation- 

lly intensive simulations. In this research, we obtained slight dif- 

erences in the quality of the SVM as compared to the PR model. 

he errors produced by PR at the borders can be justified by the 

se of regularly spaced sample points, and could be mitigated by 

he use of Chebyshev nodes [43] . However, for this particular work 

e considered that the use of an ad-hoc sampling for PR will not 

llow a fair comparison with other models. The advantage of ap- 

lying polynomial transformation is the simplicity of the under- 

ying mathematics, especially in contrast to the Neural Network or 

VM models when large regularisation values are used for training. 

herefore, PR would be the preferred algorithm if taking the lowest 

omputational complexity as the criteria for choosing the model. 

ut very often, fitting complex data requires the application of a 

igh polynomial degree which goes in hand with a high probability 

f overfitting, which is the downside of PR. This issue can be re- 

olved through the application of regularisation. The most common 

egularisation methods are Lasso (L1) and Ridge (L2). While Ridge 

egression introduces a penalty factor to shrink the magnitude of 

he model coefficients, Lasso eliminates some of the insignificant 

oefficients of the model. This difference was extremely important 

ince all features in our input data were essential to model the 

iological problem correctly and therefore, L2 regularisation was 

elected instead of the more rigorous L1. 

For this reason, if increasing the number of ion channels is the 

bjective of future works, Polynomial Regression would not be the 

est choice. This is because incrementing the number of input val- 

es could yield less smooth surfaces, requiring an increase of the 

olynomial degree and more rigorous regularisation. On the other 

and, the Support Vector Machine algorithm is characterised by 

 very high generalisation ability, even when the number of in- 

tances is less than the number of variables [42] . However, one of 

he downsides of SVMs for regression is its sensitivity to outliers, 

hich highlights the importance of both data pre-processing and 

odel optimisation. The robustness of the SVM algorithm was con- 

rmed in this work by obtaining high-quality models and precise 

redictions. 

The third and last tested model, the MLP, did not generalise as 

ell as the other two models. A possible explanation for this re- 

ult may be the insufficient amount of data since Artificial Neural 

etworks generally require a lot of information to learn from and 

o predict well. Additionally, since the tuning of hyperparameters 

f MLP is comparatively expensive in terms of content and time, 

mproving the performance of the neural network model would re- 

uire testing a wider range of hyperparameters. Nevertheless, the 

cope of application of Multi-Layer Perceptron is wide and covers 

everal modelling areas. To give a more related example, MLP algo- 
9 
ithms were used with high accuracy in Arrhythmia Classification 

roblems where the data was richer in specific information and 

aluable characteristics [44] . 

With respect to the method limitations, the models described 

ere were developed and optimised for a combination of three ion 

hannels. When re-using this methodology for a different combina- 

ion of channels or ventricular arrhythmia biomarkers, the model 

uilding and validation would need to be repeated to ensure high- 

uality results. 

We used a specific model (a modified version of O’Hara and 

olleagues) to generate the APD 90 array. There are many available 

odels in the field for which the methodology is expected to work 

ell. This, however, would need to be confirmed. 

. Conclusion 

In this work, we have shown that it is possible to significantly 

educe the number of simulations required to make accurate pre- 

ictions of ventricular-arrhythmia biomarkers through the appli- 

ation of ML models. We demonstrated that the total amount of 

he originally simulated data points can be reduced to just 1%. 

uch data reduction goes in hand with a significant reduction of 

he time necessary to produce an in silico prediction tool based 

n large pre-simulated datasets. The simple approach developed 

ere opens up the possibility of modelling more complex biological 

rocesses, such as the alteration of ventricular-arrhythmia safety 

iomarkers as a response to an interaction of four and more ionic 

hannels. Additionally, the methods described here are likely to be 

pplicable to model other biomarkers than APD 90 and even be ap- 

lied to predict other computational simulation results in different 

elds of biomedical research. Lastly, the development of effective 

arly-stage screening systems is aligned with the interests of phar- 

aceutical companies. 
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