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Abstract

The objective in this paper is the expansion of the utilization for a fifth convergence
order scheme without derivatives for finding solutions of of Banach space valued
equations. Conditions of the first order divided difference of the operator involved are
only imposed. In this way the use of the scheme is expanded, since in earlier articles
the derivatives until order four that do appear in the iterative method are required
for setting convergence. Our technique also provides bounds on error distances as
well as information about the location of the solutions not given in earlier works.
Experiments with concrete problems complete this study.
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1 INTRODUCTION

A plethora of applications from Mathematics as well as scientific disciplines require finding a simple solution x∗ of nonlinear
equation

F (x) = 0, (1)
where for X being a Banach space and Δ ⊂ X standing for an open set, F ∶ Δ → X denotes a continuous operator. To solve
F (x) = 0, we study the local convergence of the following multi-step method defined for � = 0, 1, 2,… as

u� = x� + �F (x�), v� = x� − �F (x�),
y� = x� − A−1� F (x�)

z� = y� −
9
5
A−1� F (y�)

ℎ� = y� −
16
5
A−1� F (y�)

x�+1 = z� −
1
5
A−1� F (ℎ�)

(2)

where A� = [u� , v� ;F ], A ∶ Δ × Δ → l(X,X) and � ∈ ℝ. Here, l(X,X) denotes the space of bounded linear operators from
X to X. In the local convergence, we use information about the solution to determine a radius of convergence and estimates on
x� − x∗. The conclusions were obtained for the special case when X = Y = ℝi. It is a fifth order scheme using up to the fourth
order derivatives in the local convergence order1. But, it is important to note that the scheme (2) is derivative free,2,3,4. So,
these hypotheses restrict the applicability of the methods,5. Let us consider a motivational example. We assume the following
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function F on X = ℝ and D = [− 1
2
, 3
2
] such as:

F (�) =
{

�3 ln �2 + �5 − �4, � ≠ 0
0, � = 0

, (3)

that leads to
F ′(�) = 3�2 ln �2 + 5�4 − 4�3 + 2�2,

F ′′(�) = 6� ln �2 + 20�3 − 12�2 + 10�,

F ′′′(�) = 6 ln �2 + 60�2 − 12� + 22.

Notice that F ′(�), F ′′(�) are defined at � = 0 but F ′′′(�) is not. Therefore, results requiring the existence of F ′′′(�) or higher
cannot be applied for studying the convergence of (2). Moreover, no computable error bounds ‖x� − x∗‖, or the lipschitz
continuity of F ′′(�), or any information regarding the uniqueness of the solution are provided using Lipschitz-type functions.
Furthermore, the convergence criteria can not be compared, since they are based on different hypotheses. The novelty of our
paper lies in the fact that we address all these problems by using only the first derivative. Moreover, we rely on the computational
order of convergence (COC) or approximated computational order of convergence (ACOC) to determine the convergence order
not requiring derivatives of order higher than one (please see6,7). The new technique uses the same set of conditions for the three
methods. Furthermore, it can also be used to extend the applicability of other methods along the same lines,8.

2 CONVERGENCE

It is convenient to define functions on the real line given � ∈ ℝ, � ≥ 0, � ≥ 0 and  ≥ 0. Set I = [0,∞). Consider the existence
of a continuous and increasing function Ω0 ∶ I × I → I such that

Ω0(�, ��) = 1, (4)

has a smallest positive solution r, with Ω0(0, 0) = 0.
LetΩ ∶ I0×I0 → I be a continuous and increasing function withΩ(0, 0) = 0, and I0 = [0, r). Define functions �m,  m, m =

1, 2, 3, 4 to be on the interval I0 by

�1(� ) =
Ω
(

(1 + )�, ��
)

1 − Ω0(�, ��)
,

�2(� ) =

[

Ω
(

(

 + �1(� )
)

�, ��
)

+ 4
5
�
]

�1(� )

1 − Ω0(�, ��)
,

�3(� ) = �2(� ) +
16��1(� )

5
(

1 − Ω0(�, ��)
) ,

�4(� ) = �2(� ) +
��3(� )

5
(

1 − Ω0(�, ��)
) ,

and
 m(� ) = �m(� ) − 1.

Using these definitions, we have m(0) = −1 and m(� )→∞ as � → r−. Denote byRm the least solution of equations m(� ) = 0,
m = 1, 2, 3, 4 in the interval (0, r) assured to exist by the intermediate value theorem. Define a radius of convergence R by

R = min{Rm}. (5)

Then, if � ∈ [0, R)
0 ≤ Ω0(�, ��) < 1, (6)

and
0 ≤ �m(� ) < 1. (7)

Set U (x∗, �) =
{

x ∈ Δ ∶ ‖x − x∗‖ < �
}

and let Ū (x∗, �) stand for the closure of U (x∗, �).
Let us introduce conditions (C):
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(C1) F ∶ Δ → X, is Fréchet differentiable at a simple solution x∗ of equation F (x∗) = 0 with [⋅, ⋅;F ] ∶ D × D → l(X,X) a
standard divided difference of order one, and for � ∈ ℝ

‖

‖

‖

F ′(x∗)−1[x, x∗;F ]
‖

‖

‖

≤ �,

‖I + �[x, x∗;F ]‖ ≤ 
and
‖I − �[x, x∗;F ]‖ ≤ �

holds for all x ∈ Δ and some , � ≥ 0.

(C2) For each x, y ∈ Δ, we have
‖

‖

‖

F ′(x∗)−1
(

[x, x∗;F ] − F ′(x∗)
)

‖

‖

‖

≤ Ω0(‖x − x∗‖, ‖y − x∗‖).

Set Δ0 = Δ ∩ U (x∗, r).

(C3) For each x, y, z ∈ Δ0, we get
‖

‖

‖

F ′(x∗)−1
(

[x, y;F ] − [z, x∗;F ]
)

‖

‖

‖

≤ Ω(‖x − x∗‖, ‖y − x∗‖).

(C4) The ball Ū (x∗, R̃) ⊂ Δ, where R is defined in (5), and r exists, is given in (4) and R̃ = max{R, R, �R}.

(C5) There exists R∗ ≥ R such that
Ω0(0, R∗) < 1 or Ω0(R∗, 0) < 1.

Set Δ1 = Δ ∩ U ∗(x∗, R∗).

Next, we base the convergence analysis on the C conditions, and the developed notations.

Theorem 1. Suppose the (C) conditions are satisfied. Then, if we choose x0 ∈ U (x∗, R) − {x∗}, the following assertions hold:

{x�} ⊂ Δ, (8)

lim
�→∞

x� = x∗, (9)

‖y� − x∗‖ ≤ �1(‖x� − x∗‖)‖x� − x∗‖ ≤ ‖x� − x∗‖ < r, (10)

‖z� − x∗‖ ≤ �2(‖x� − x∗‖)‖x� − x∗‖ ≤ ‖x� − x∗‖, (11)

‖ℎ� − x∗‖ ≤ �3(‖x� − x∗‖)‖x� − x∗‖ ≤ ‖x� − x∗‖, (12)

‖x�+1 − x∗‖ ≤ �4(‖x� − x∗‖)‖x� − x∗‖ ≤ ‖x� − x∗‖, (13)
and the only solution of equation F (x) = 0 in the set Δ1 given below (C4) is x∗.

Proof. By conditions x0 ∈ U (x∗, R)−{x∗}, F (x0) = F (x0)−F (x∗) = [x0, x∗;F ](x0−x∗) the definition of divided difference,
first, second and third condition in (C1), we have

‖u0 − x∗‖ = ‖x0 − x∗ + �F (x0)‖
= ‖(I + �[x0, x∗;F ])(x0 − x∗)‖
≤ ‖I + �[x0, x∗;F ]‖‖x0 − x∗‖
≤ ‖x0 − x∗‖ ≤ R,

‖v0 − x∗‖ = ‖x0 − x∗ − �F (x0)‖
= ‖(I − �[x0, x∗;F ])(x0 − x∗)‖
≤ �‖x0 − x∗‖ ≤ �R,
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and
‖

‖

‖

F ′(x∗)−1[x0, x∗;F ]
‖

‖

‖

≤ �,

respectively.
By adopting (5), (6) and (C2), we get

‖

‖

‖

F ′(x∗)−1
(

A0 − F ′(x∗)
)

‖

‖

‖

≤ Ω0(‖u0 − x∗‖, ‖v − x∗‖)

≤ Ω0(‖x0 − x∗‖, �‖x0 − x∗‖) ≤ Ω0(R, �R) < 1,

which together with a Lemma by Banach operators that are invertible9,10,11, leads to A0 is invertible,

‖

‖

‖

A−10 F
′(x∗)

‖

‖

‖

≤ 1
Ω0(‖x0 − x∗‖, �‖x0 − x∗‖)

, (14)

and y0, z0, ℎ0, x1 exist by C1 condition for method (2) for � = 0.
Using (2), (5), (7) (for � = 1), (C3) and (14), we obtain

‖y0 − x∗‖ =
‖

‖

‖

x0 − x∗ − A−10 F (x0)
‖

‖

‖

= ‖

‖

‖

(

A−10 F
′(x∗)

)

F ′(x∗)−1
(

A0 − [x0, x∗;F ]
)

(x0 − x∗)
‖

‖

‖

≤ ‖

‖

‖

A−10 F
′(x∗)

‖

‖

‖

‖

‖

‖

F ′(x∗)−1
(

A0 − [x0, x∗;F ]
)

‖

‖

‖

‖x0 − x∗‖

≤
Ω
(

‖(u0 − x∗) + (x∗ − v0)‖, ‖v0 − x∗‖
)

‖x0 − x∗‖

1 − Ω0(‖x0 − x∗‖, �‖x0 − x∗‖)

≤
Ω
(

(1 + )‖x0 − x∗‖, �‖x0 − x∗‖
)

‖x0 − x∗‖

1 − Ω0(‖x0 − x∗‖, �‖x0 − x∗‖)
= �1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < R.

(15)

Then, using the second step of method (2), (14) and (15), we have

‖z0 − x∗‖ =
‖

‖

‖

‖

(

y0 − x∗ − A−10 F (y0)
)

− 4
5
A−10 F (y0)

‖

‖

‖

‖

≤ ‖

‖

‖

y0 − x∗ − A−10 F (y0)
‖

‖

‖

+ 4
5
‖

‖

‖

A−10 F
′(x∗)

‖

‖

‖

‖

‖

‖

F ′(x∗)−1F (y0)
‖

‖

‖

≤ ‖

‖

‖

A−10 F
′(x∗)

‖

‖

‖

‖

‖

‖

F ′(x∗)−1
(

A0 − [y0, x∗;F ]
)

‖

‖

‖

‖y0 − x∗‖ +
4
5
‖

‖

‖

A−10 F
′(x∗)

‖

‖

‖

‖

‖

‖

F ′(x∗)−1F (y0)
‖

‖

‖

≤

[

Ω
(

‖(u0 − x∗) + (x∗ − y0)‖, ‖v0 − x∗‖
)

+ 4
5
�
]

‖y0 − x∗‖

1 − Ω0(‖x0 − x∗‖, �‖x0 − x∗‖)

≤

[

Ω
(

‖x0 − x∗‖, ‖x0 − x∗‖
)

+ 4
5
�
]

�1(‖x0 − x∗‖)‖x0 − x∗‖

1 − Ω0(‖x0 − x∗‖, �‖x0 − x∗‖)
= �2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖.

(16)

Moreover, in the view of third substep of method (2), (14), (15) and the triangle inequality, we obtain

‖ℎ0 − x∗‖ =
‖

‖

‖

‖

(z0 − x∗) −
16
5
A−10 F (y0)

‖

‖

‖

‖

≤ ‖z0 − x∗‖ +
16
5
‖

‖

‖

A−10 F
′(x∗)

‖

‖

‖

‖

‖

‖

F ′(x∗)−1F (y0)
‖

‖

‖

≤
⎡

⎢

⎢

⎢

⎣

�2(‖x0 − x∗‖) +
16��1(‖x0 − x∗‖)

5
(

1 − Ω0(‖x0 − x∗‖, �‖x0 − x∗‖)
)

⎤

⎥

⎥

⎥

⎦

‖x0 − x∗‖

= �3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖,

(17)
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Furthermore, by adopting (14) (16), (17) and the triangle inequality, we yield

‖x1 − x∗‖ =
‖

‖

‖

‖

z0 − x∗ −
1
5
A−10 F (ℎ0)

‖

‖

‖

‖

≤ ‖z0 − x∗‖ +
1
5
‖

‖

‖

A−10 F
′(x∗)

‖

‖

‖

‖

‖

‖

F ′(x∗)−1F (ℎ0)
‖

‖

‖

≤
⎡

⎢

⎢

⎢

⎣

�2(‖x0 − x∗‖) +
��3(‖x0 − x∗‖)

5
(

1 − Ω0(‖x0 − x∗‖, �‖x0 − x∗‖)
)

⎤

⎥

⎥

⎥

⎦

‖x0 − x∗‖

= �4(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖,

(18)

deducing that y0, z0, ℎ0, x1 ∈ U (x∗, R) and (10)–(13) hold for � = 0. Next, by the inequation

‖xk+1 − x∗‖ ≤ p‖xk − x∗‖ < R, (19)

where p = �4(‖x0 − x∗‖) ∈ [0, 1), we obtain limk→∞ xk = x∗, with xk+1 ∈ U (x∗, R).
Uniqueness of the solution:
It remains to show the uniqueness of the x∗ in the set Δ1. For this purpose, let us assume another solution y∗ ∈ Δ1 with

F (y∗) = 0. Set T = [x∗, y∗;F ]. In view of (C2) and (C5)
‖

‖

‖

F ′(x∗)−1
(

T − F ′(x∗)
)

‖

‖

‖

≤ Ω0(0, ‖x∗ − y∗‖) ≤ Ω0(0, R) < 1,

so T is invertible. Finally, we get x∗ = y∗ from the approximation 0 = F (y∗) − F (x∗) = T (y∗ − x∗).

Remark 1. The proposed technique can be potentially applicable to the analysis of synchronization manifold in control systems,
see e.g., Fixed-time group consensus for multi-agent systems with nonlinear dynamics and uncertainties, kinematic synthesis
problem for steering and prominent 2D Bratu problem (details can be found in12,13,14).

3 NUMERICAL EXAMPLES

The theoretical results developed in the previous sections are illustrated numerically in this section. We consider two real life
problems and two standard nonlinear problems that are illustrated in examples 3.1–3.3. The results are listed in Tables 1, 3 and
4. Additionally, we obtain the COC 7, approximated by means of

� =
ln ‖x�+1−x∗‖

|x�−x∗‖

ln ‖x�−x∗‖
‖x�−1−x∗‖

, for � = 1, 2,… (20)

or ACOC 10 by:

�∗ =
ln ‖x�+1−x�‖

‖x�−x�−1‖

ln ‖x�−x�−1‖
‖x�−1−x�−2‖

, for � = 2, 3,… (21)

We adopt � = 10−200 as the error tolerance. The terminating criteria to solve nonlinear system or scalar equation are:
(i) ‖x�+1 − x�‖ < �, and (ii) ‖F (x�)‖ < �.

The computations are performed with the package Matℎematica 9 with multiple precision arithmetic,15,16. The divided
difference in all examples is given by [x, y;F ] = ∫ 1

0 F
′
(

y + �(x − y)
)

d�. We also consider � = 0 in all examples 3.1–3.3.

3.1 Numerical Example 1
Let us consider the following system of nonlinear equations (chosen from Grau-Sánchez et al.17)

F (x1, x2,… , x�) =
�
∑

j=1,j≠i
xj − e−xi , 1 ≤ i ≤ �. (22)
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We choose � = 10 in order to check the theoretical results mentioned with a large size system. The obtained solution of this
problem is

x∗ = (0.5671433… , 0.5671433… , 0.5671433… ,⋯ , 0.5671433… (10times))T .

Choose X = ℝ10 and Δ = U
(

x∗,
1
2

)

. Then, we get

Ω0(t, s) =
t + s
2
, Ω(t, s) = t + s, � = 7,  = 1, and � = 1.

The obtained results can be observed in Table 1.

TABLE 1 Radii for Example 3.1

Method R1 R2 R3 R4 R x0 � �

(2) 0.076923 0.053984 0.022085 0.279501 0.022085 (0.55, 0.55, ⋯ , 0.55(10times))T 3 5.0000

3.2 Numerical Example 2
The kinematic synthesis problem for steering14,1, is given as

[

Ei
(

x2 sin
(

 i
)

− x3
)

− Fi
(

x2 sin
(

'i
)

− x3
)]2 +

[

Fi
(

x2 cos
(

'i
)

+ 1
)

− Fi
(

x2 cos
(

 i
)

− 1
)]2

−
[

x1
(

x2 sin
(

 i
)

− x3
) (

x2 cos
(

'i
)

+ 1
)

− x1
(

x2 cos
(

 i
)

− x3
) (

x2 sin
(

'i
)

− x3
)]2 = 0, for i = 1, 2, 3,

where
Ei = −x3x2

(

sin
(

'i
)

− sin
(

'0
))

− x1
(

x2 sin
(

'i
)

− x3
)

+ x2
(

cos
(

'i
)

− cos
(

'0
))

, i = 1, 2, 3

and
Fi = −x3x2 sin

(

 i
)

+
(

−x2
)

cos
(

 i
)

+
(

x3 − x1
)

x2 sin
(

 0
)

+ x2 cos
(

 0
)

+ x1x3, i = 1, 2, 3.

In Table 2, we present the values of  i and 'i (in radians).
The approximated solution is

x∗ = (0.9051567… , 0.6977417… , 0.6508335… )T .

Choose X = ℝ3 and Δ = U
(

x∗, 1
)

× U
(

x∗, 1
)

× U
(

x∗, 1
)

.
Then, we get

Ω0(t, s) =
t + s
4
, Ω(t, s) = t + s

2
� = 11,  = 1, and � = 1.

We provide the radii of convergence for Example 3.2 in Table 3.

TABLE 2 Values of  i and 'i (in radians) for Example (3.2).

i  i 'i
0 1.3954170041747090114 1.7461756494150842271

1 1.7444828545735749268 2.0364691127919609051

2 2.0656234369405315689 2.2390977868265978920

3 2.4600678478912500533 2.4600678409809344550
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TABLE 3 Radii for Example 3.2

Method R1 R2 R3 R4 R x0 � �

(2) 0.10526 0.073747 0.030365 0.051422 0.030365 (0.88,0.67,0.63) 5 4.0000

3.3 Numerical Example 3
We choose a prominent 2D Bratu problem12,13, which is given by

uxx + utt + Ceu = 0, on
A ∶ (x, t) ∈ 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,
along boundary ℎypotℎesis u = 0 on A.

(23)

Let us assume that Θi,j = u(xi, tj) is a numerical result over the grid points of the mesh. In addition, we consider that �1 and �2
are the number of steps in the direction of x and t, respectively. Moreover, we choose that ℎ and k are the respective step sizes
in the direction of x and y, respectively. In order to find the solution of PDE (23), we adopt the following approach

uxx(xi, tj) =
Θi+1,j − 2Θi,j + Θi−1,j

ℎ2
, C = 0.1, t ∈ [0, 1], (24)

which further yields the succeeding SNE

Θi,j+1 + Θi,j−1 − Θi,j + Θi+1,j + Θi−1,j + ℎ2C exp
(

Θi,j
)

i = 1, 2, 3,… , �1, j = 1, 2, 3,… , �2 (25)

By choosing �1 = �2 = 11, ℎ = 1
11
, and C = 0.1, we get a large SNE of order 100 × 100 which converges to the following

required root

x∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.0011… , 0.0018… , 0.0022… , 0.0025… , 0.0026… , 0.0026… , 0.0025… , 0.0022… , 0.0018… , 0.0011…
0.0018… , 0.0030… , 0.0038… , 0.0043… , 0.0046… , 0.0046… , 0.0043… , 0.0038… , 0.0030… , 0.0018… ,
0.0022… , 0.0038… , 0.0049… , 0.0056… , 0.0059… , 0.0059… , 0.0056… , 0.0049… , 0.0038… , 0.0022… ,
0.0025… , 0.0043… , 0.0056… , 0.0064… , 0.0068… , 0.0068… , 0.0064… , 0.0056… , 0.0043… , 0.0025… ,
0.0026… , 0.0046… , 0.0059… , 0.0068… , 0.0072… , 0.0072… , 0.0068… , 0.0059… , 0.0046… , 0.0026… ,
0.0026… , 0.0046… , 0.0059… , 0.0068… , 0.0072… , 0.0072… , 0.0068… , 0.0059… , 0.0046… , 0.0026… ,
0.0025… , 0.0043… , 0.0056… , 0.0064… , 0.0068… , 0.0068… , 0.0064… , 0.0056… , 0.0043… , 0.0025… ,
0.0022… , 0.0038… , 0.0049… , 0.0056… , 0.0059… , 0.0059… , 0.0056… , 0.0049… , 0.0038… , 0.0022… ,
0.0018… , 0.0030… , 0.0038… , 0.0043… , 0.0046… , 0.0046… , 0.0043… , 0.0038… , 0.0030… , 0.0018… ,
0.0011… , 0.0018… , 0.0022… , 0.0025… , 0.0026… , 0.0026… , 0.0025… , 0.0022… , 0.0018… , 0.0011…

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T

a the column vector. Choose X = ℝ100 and Δ = U
(

x∗, 0.006
)

. Then, we have

Ω0(t, s) = Ω(t, s) = 6(t + s), � = 12,  = 1, and � = 1.

The obtained results are depicted in Table 4 with the following initial approximation (the column vector)

x0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.001113, 0.001812, 0.002260, 0.002530, 0.002657, 0.002657, 0.002530, 0.002260, 0.001812, 0.001113,
0.001812, 0.003048, 0.003870, 0.004374, 0.004613, 0.004613, 0.004374, 0.003870, 0.003048, 0.001812,
0.002260, 0.003870, 0.004968, 0.005652, 0.005979, 0.005979, 0.005652, 0.004968, 0.003870, 0.002260,
0.002530, 0.004374, 0.005652, 0.006454, 0.006841, 0.006841, 0.006454, 0.005652, 0.004374, 0.002530,
0.002657, 0.004613, 0.005979, 0.006841, 0.007257, 0.007257, 0.006841, 0.005979, 0.004613, 0.002657,
0.002657, 0.004613, 0.005979, 0.006841, 0.007257, 0.007257, 0.006841, 0.005979, 0.004613, 0.002657,
0.002530, 0.004374, 0.005652, 0.006454, 0.006841, 0.006841, 0.006454, 0.005652, 0.004374, 0.002530,
0.002260, 0.003870, 0.004968, 0.005652, 0.005979, 0.005979, 0.005652, 0.004968, 0.003870, 0.002260,
0.001812, 0.003048, 0.003870, 0.004374, 0.004613, 0.004613, 0.004374, 0.003870, 0.003048, 0.001812,
0.001113, 0.0018125, 0.002260, 0.002530, 0.002657, 0.002657, 0.002530, 0.002260, 0.001812, 0.001113

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T

.
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TABLE 4 Radii of convergence for Example (3.3)

Method R1 R2 R3 R4 R x0 � �

(2) 0.033333 0.0050705 0.000080359 0.0846490 0.000080359 above this table 3 3.9742

4 CONCLUSION

A novel fifth order scheme is developed for generating a sequence approximating x∗. The novelty of our work is that the new
technique expands its applicability, since it only uses conditions on the divided difference of order one contrasting earlier articles
requiring derivatives up to the order fourth. We presented estimates on |x�−x∗| and results on the uniqueness of x∗ based on our
conditions. This was not done in the earlier articles, where expensive Taylor expansions were used to determine the convergence
order even though such high order derivatives did not appear in method (2). Numerical experiments test our convergence results.
Moreover, our results hold on a Banach space setting further extending the ones shown in1 on X = ℝj . As further works we
suggest the technique to be utilized to expand the applicability of other schemes available in the literature by using inverses of
linear operators along the same lines,18,19,20,21.
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