
5th Joint International Symposium on Deformation Monitoring (JISDM), 20-22 June 2022, Valencia, Spain 
DOI: http://doi.org/10.4995/JISDM2022.2022.13921 

 

  2022, Editorial Universitat Politècnica de València 

Sensitivity analysis of control networks in terms of minimal detectable 
displacements 

 
Krzysztof Książek, Sławomir Łapiński 

 
Warsaw University of Technology, Faculty of Geodesy and Cartography, Pl. Politechniki 1, 00-661 Warsaw, 

Poland, (krzysztof.ksiazek@pw.edu.pl; slawomir.lapinski@pw.edu.pl) 
 
Key words: sensitivity analysis; minimal detectable displacement; global test; power of the test; mean success 
rate 
 
 
ABSTRACT 

Sensitivity analysis is one aspect of the calculation process in displacement measurement. For this purpose, 
sensitivity measures are used in the form of minimal detectable displacements (MDD), derived from the 
definition of minimal detectable bias (MDB). Analyses were performed based on disturbing the parameter 
vector with the MDD value (calculated from principal component analysis). Analyses were considered for 
displacements of the levelling network based on the global vector (𝐌𝐃𝐃୬ୣ୲୵୭୰୩). The calculations were 
conducted using the least squares adjustment with pseudo-random observations. The mean success rate (MSR) 
was used to perform the detection analyses. The effectiveness of the global test agrees with the assumed power 
of the test. Local tests for a single point showed 48.6 % displacements of more than one point. It should be 
considered using another local test for the case of displacements of multiple points. This study concludes that 
in addition to the accuracy of the designed network points, the network configuration is also important in 
sensitivity analyses. The research shows that sensitivity analyses should be considered at the design stage of 
control networks, i.e. to determine at what level a given network is able to detect displacement. 

 
I. INTRODUCTION 

To (better) design the optimum control network, it is 
important to obtain a priori information about the 
magnitudes and rates of displacement (or 
deformation). In the literature on geodetic network 
design (e.g. Alizadeh-Khameneh, 2015), accuracy and 
reliability criteria for one observation epoch are used. 
In control networks (apart from accuracy and reliability 
analyses), the aim is to design a network that is sensitive 
to the displacements (or coordinate differences) 
between two or more measurement epochs (Niemeier, 
1982; Niemeier et al., 1982). Even-Tzur in works (2010; 
2002) also indicates that monitoring networks should 
be analysed according to three criteria: accuracy, 
reliability and sensitivity. 

The network's sensitivity is a criterion to be taken into 
account for the optimisation of control networks 
(Kuang, 1991) as it gives information on what level of 
displacement (or deformation) will be detected. 
Sensitivity measures, namely Minimal Detectable 
Displacement (MDD), are calculated to determine this 
level. The concept of MDD is based on the definition of 
Minimal Detectable Bias (MDB) pioneered in the work 
of (Baarda, 1968; 1967). It can be noted that as the 
concept of reliability, the measure of internal reliability 
is the internal reliability index ሼ𝐑ሽ୧୧ and the minimal 
detectable bias in observation (MDB). The transfer of 
considerations into displacement studies was initiated 
in the 1970s and 1980s, mainly by German authors, e.g., 
Pelzer (1972) and Niemeier (1982; 1981). Thus, Prof. 

Pelzer can be considered the precursor of displacement 
sensitivity analyses in control networks (Pelzer, 1972). 

Although nearly fifty years have passed, the subject 
of network sensitivity to displacement detection is still 
commonly addressed in research. The main issues 
found in the literature on the subject include: 

 Sensitivity of the control network to 
displacements (or deformations). 

 Definition of the minimal detectable 
displacement. 

 Selection of statistical test parameters for 
displacement assessment 

 Examples of the use of sensitivity analyses for 
applied solutions. 

Considering the subject of network sensitivity 
analysis, Heck in his work (1986), gives the quantities 
that are required to carry it out. These should therefore 
be listed: 

 Network configuration (coefficient matrix 𝐀). 
 Measurement accuracy (weighting matrix 𝐏, a 

priori variance factor 𝜎ௗ
ଶ). 

 The distribution of test statistics to be used in the 
displacement (deformation) analysis for 𝐻଴ and 
𝐻௔ (non-centrality parameters 𝜆଴ or probabilities 
α଴ and β଴). 

Knowing that all this information is available before 
the measurements are made, sensitivity analysis can be 
performed during the planning stage. If the sensitivity 
of the designed network is not suitable for the intended 
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use, the parameters used must be modified so that the 
final requirements are fulfilled. A new proposal is 
extending the application area of the MDD. The 
research focuses on the probabilistic aspect of the 
combination of significance and detectability 
(Prószyński and Łapiński, 2021). 

 

II. MATHEMATICAL BASICS 

Modelling multidimensional data acquired as part of 
the measurements performed requires a specific 
mathematical model of the object, showing the 
relationships between real quantities in the adopted 
reference system. A common object known to the 
surveyor is a geodetic network, particularly a 
displacement control network, which consists of 
geometric elements defined on a set of points of a given 
network. 

The well-known Gauss-Markov model is assumed to 
adjust the measured values (Eq. 1): 

 
𝐀 𝐱 ൌ 𝐥 ൅ 𝐯      ,    𝐂𝐥 (1) 

 
where 𝐀 ሺ𝑛 ൈ 𝑢ሻ = design matrix 

 𝐱 ሺ𝑢 ൈ 1ሻ = vector of parameters 
 𝐥 ሺ𝑛 ൈ 1ሻ = vector of observation 

 𝐯 ሺ𝑛 ൈ 1ሻ = vector of random errors in 𝐥 (with 
opposite sign 𝐯 ൌ െ𝛆) 

 𝐂𝐥 ሺ𝑛 ൈ 𝑛ሻ = covariance matrix for 𝐥 (positive 
definite) 

 𝑛 = number of observations 
 𝑢 = number of parameters 

 
After standardising (i.e. reducing to unit weight) the 

model from Equation 1, the final model in the stochastic 
approach will take the form (Eq. 2): 

 
𝐀ୱ 𝐱 ൌ 𝐋 ൅ 𝐯ୱ      ,    𝐂𝐥 ≡ 𝐈       (2) 

 
where 𝐀ୱ ൌ 𝐃 𝐀, 𝐋 ൌ 𝐃 𝐥, 𝐯ୱ ൌ 𝐃 𝐯 

 𝐃 = standardisation matrix such that 𝐃୘𝐃 ൌ 𝐂𝐥
ିଵ 

 
The control networks for displacement analysis are 

local networks without connections to the known 
reference system, so there is the network defect, which 
is determined by the fact that the matrix of coefficients 
in the system of observation Equations 2 is of non-full 
rank (Eq. 3): 

 
𝑟𝑎𝑛𝑘ሺ𝐀ୱሻ ൌ 𝑢 െ 𝑑௦ (3) 

 
where 𝑑௦ = the number of network defects 
 

The coefficient matrix 𝐀ୱ in the system of normal 

equations is a singular matrix therefore 𝑑𝑒𝑡ሺ𝐀ୱ
୘𝐀ୱሻ ൌ

0, and it is impossible to compute the inverse of such a 
matrix (the case with an infinite number of system 
solutions). To obtain a solution, the generalised inverse 

of the matrix 𝐀ୱ
୘𝐀ୱ can be used (Perelmuter, 1979), 

where a special case is the use of Moore-Penrose 
pseudoinverse. Then the determined parameter vector 
is of the least Euclidean norm and the covariance matrix 
of the unknowns (parameters) 𝐂𝐱ො  has the smallest trace 

value (Equations 4 and 5) under the condition 𝐯ොୱ
୘𝐯ොୱ ൌ

𝑚𝑖𝑛 as a postulate of the least squares method. 
 

𝐱ො୘𝐱ො ൌ 𝑚𝑖𝑛 (4) 

 
𝑇𝑟 ሺ𝐂𝐱ොሻ ൌ 𝑚𝑖𝑛 (5) 

 
The parameter vector is determined from the formula 

(Eq. 6): 
 

𝐱ො ൌ 𝐐𝐱ො ሺ𝐀ୱ
୘𝐋ሻ ൌ ሺ𝐀ୱ

୘𝐀ୱሻାሺ𝐀ୱ
୘𝐋ሻ (6) 

 
where 𝐐𝐱ො = cofactor matrix of the parameter vector 

 ሺ… ሻା = Moore-Penrose pseudoinverse 
 
Based on Equation 6, the displacement vector 𝐝 is 

obtained (Eq. 7): 
 

𝐝 ൌ 𝐱ොଶ െ 𝐱ොଵ (7) 

 
where 𝐱ොଵ  = vector of parameters in the initial 

position 
 𝐱ොଶ  = vector of parameters in the present    
position 

 
while the cofactor matrix of displacement vector 𝐝 
(Eq. 8): 

 
𝐐𝐝 ൌ 𝐐𝐱ොభ ൅ 𝐐𝐱ොమ (8) 

 
The global test procedure, as with many geodetic 

tasks, involves separating two hypotheses: the null (𝐻଴ሻ 
and the alternative ሺ𝐻௔ሻ (Eqs. 9 and 10): 

 
𝐻଴: 𝐸ሺ𝐝ሻ ൌ 𝟎 (9) 

 
𝐻௔: 𝐸ሺ𝐝ሻ ് 𝟎 ൌ 𝐝୅   (10) 

 
where 𝐝୅ ሺ𝑢 ൈ 1ሻ = the displacement vector 
 

If the null hypothesis 𝐻଴ is rejected, the alternative 
hypothesis 𝐻௔ is accepted. 

The test statistic takes the form (Eq. 11): 
 

𝑇 ൌ
𝐝୘𝐐𝐝

ା 𝐝
σୢ

ଶ ~𝜒ଶሺℎሻ (11) 

 
where 𝜎ௗ

ଶ = the a priori variance factor 𝜎ௗ
ଶ ൌ 1 

 ℎ = rank of the cofactor matrix in the vector of 
parameters 

 
Checking the global test condition consists in 

comparing the corresponding test statistic being the 
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value of 𝑇 from Equation 11 and comparing it with the 

threshold value κ ൌ χ୦,ଵି஑బ
ଶ . 

Possible cases for checking the condition in 
Equation 11: 

 When 𝑇 ൏ 𝜅, then the null hypothesis 𝐻଴ is 
satisfied with probability 1 െ α଴ (α଴ being the 
significance level). In this case, there are no 
displacements in the given network, and thus the 
resulting vector 𝐝 is due only to random errors 
between the two measurement periods. 

 When 𝑇 ൒ 𝜅, then the alternative hypothesis 𝐻௔ 
is accepted. In this case, there are displacements 
in the given network, and we cannot identify a 
point (or points) that has moved. It is only 
possible to say that at least one point has moved. 

The single point test statistic 𝑇௜ will take the form 
(Eq. 12): 

 

𝑇௜ ൌ
𝐝୧

୘𝐐୧
ିଵ𝐝୧

σୢ
ଶ ~𝜒ଶሺℎ௜ሻ (12) 

 
where 𝐝୧ሺℎ௜ ൈ 1ሻ = the displacement vector of the 

i-th point, 
 𝐐୧ሺℎ௜ ൈ ℎ௜ሻ = the cofactor matrix of the i-th 

point, 
 ℎ௜ = rank of the matrix of the point in the 

network. 
 

The test statistic is compared with the threshold 

value κ௜ ൌ χ୦೔,ଵି஑బ
ଶ : 

 𝑇௜ ൏ κ௜ then the point under test is not displaced, 
with probability 1 െ α଴. 

 𝑇௜ ൒ κ௜ then the point under test shall be 
regarded as displaced. 

The terms global test and local test are used for this 
paper regarding the parameter vector. The former is 
when the detectability of a displacement is tested on 
the whole network. In turn, analyses of detectability in 
terms of performed statistical tests for individual points 
in this paper will be called a local test of a single point. 

Based on equations 10 and 11, the value of the non-
centrality parameter 𝜆 of the distribution calculated 
from the pre-set or well-defined displacement 
vector 𝐝୅ (Eq. 13): 

 

𝜆 ൌ
𝐝୅

୘ 𝐐𝐝
ା 𝐝୅

𝜎ௗ
ଶ  (13) 

 
The value of the non-centrality parameter calculated 

from Equation 13 is compared with the lower limit of 
the value of the non-centrality parameter obtained 
from Baarda's nomograms (note that only for the 𝜒ଶ 
distribution) (Baarda, 1968) or using a computational 
algorithm (Aydin and Demirel, 2005). The threshold 
value of the non-centrality parameter 𝜆଴ is determined 

by the significance level α଴ (type I error probabilities) 
and the power of the test 1 െ β଴ (β଴ - type II error 
probabilities). 

Then, if the inequality (Eq. 14): 
 

𝜆 ൒ 𝜆଴ (14) 

 
where 𝐝୅ is detectable. 
 

Then it can be concluded that the given network is 
sensitive to expected displacements. If the inequality is 
not true, the network must be redesigned to be capable 
of detecting expected displacement values. 

Based on the inequality (Equation 14) and the 
knowledge about the magnitude of the displacement of 
the test object (vector 𝐠), it is possible to make an 
evaluation to determine the detectable displacement. 

Then the alternative hypothesis takes the form 
(Eq. 15): 

 
𝐻௔: 𝐝𝐀 ൌ 𝑐 𝐠   (15) 

 
where 𝑐 = scalar factor. 

 
The displacement vector 𝐝𝐀 is detectable when 

(Eq. 16): 
 

𝜆 ൌ
ሺ𝑐 𝐠ሻ୘ 𝐐𝐝

ା ሺ𝑐 𝐠ሻ 
σୢ

ଶ ൐ 𝜆଴ (16) 

 
Based on Equation 16, the value of the scalar factor 𝑐 

can be calculated (Eq. 17): 
 

𝑐 ൒ σୢඨ
𝜆଴  

𝐠୘𝐐𝐝
ା 𝐠

 (17) 

 
As a result, it is possible to determine the minimal 

detectable displacement vector 𝐌𝐃𝐃 in the assumed 
model of the network (Eq. 18): 

 
𝐌𝐃𝐃 ൌ 𝑐௠௜௡ ൉ 𝐠 (18) 

 
The Minimal Detectable Displacement vector, a 

measure of network sensitivity, was obtained. 
The papers (Aydin, 2011; Niemeier, 1982) take into 

account that in some cases, the directional vector 𝐠 is 
not known. Then, in order to calculate the minimal 
detectable displacement, the eigenvector 𝐠୫୧୬ 
belonging to the minimum eigenvalue 𝜆௠௜௡ calculated 
from the decomposition of the cofactor matrix  𝐐𝐝

ା 
should be used. This is the direction with the maximum 
deformability of the network (Niemeier, 1982). The 
formula takes the form (Eq. 19): 

 

𝑐௠௜௡ ൒ σୢඨ
𝜆଴  

𝐠୫୧୬
୘ 𝐐𝐝

ା 𝐠୫୧୬
 (19) 

 

479



5th Joint International Symposium on Deformation Monitoring (JISDM), 20-22 June 2022, Valencia, Spain 
 

2022, Editorial Universitat Politècnica de València    

Finally, the minimal detectable displacement vector 
for the whole network 𝐌𝐃𝐃௡௘௪௧௢௥௞ in the eigenvector 
direction 𝐠𝒎𝒊𝒏 is obtained for a given power test 1 െ β଴ 
and significance level α଴(Eq. 20): 

 
𝐌𝐃𝐃௡௘௧௪௢௥௞ ൌ 𝑐௠௜௡ ൉ 𝐠𝒎𝒊𝒏 (20) 

 
Using the Moore-Penrose pseudoinverse (Eq. 6), in 

this solution, the cofactor matrix 𝐐𝐝 (Eq. 8) and 
displacement vector 𝐝 (Eq. 7) are related to the centre 
of gravity of the net. This solution gives the lowest 
minimal detectable displacement value (Łapiński, 
2019). 

 

III. EMPIRICAL TESTS 

For a computational example of sensitivity analysis, 
let us assume a levelling network consisting of eight 
points numbered P1 from P8. These are eight unknowns 
in the adjustment process. The defect of the network 
ሺ𝑑௦ሻ is an equal one. The geometry of the vertical 
network is shown in Figure 1. 

 

 
Figure 1. The geometry of the levelling network. 

 

The observations consist of 13 differences in 
elevation between network points from the two 
measurement epochs - Table 1. 

 
Table 1. Observations in levelling network 

No. 
 

Observation code Number of stations in 
one measurement epoch

1 P1 P2 5 
2 P2 P3 6 
3 P3 P4 5 
4 P4 P5 4 
5 P5 P1 4 
6 P5 P6 1 
7 P6 P7 2 
8 P7 P8 3 
9 P8 P6 3 
10 P4 P8 3 
11 P8 P3 3 
12 P6 P2 2 
13 P2 P7 1 

 
The numerical study considered the case of 

uncorrelated observations. The calculation of 
displacements with the method of observation 

differences was applied, assuming the same number of 
stations in levelling lines for both measurement epochs. 

The standard deviations for the differences 𝜎௜ ൌ  𝜎଴√n, 
where  𝜎଴ ൌ 1 𝑚𝑚, n – number of stations. It was 
assumed that the observations did not have gross 
errors or were correctly eliminated by diagnostic tests. 

The study assumed a sample number of 50 000 using 
Monte-Carlo Simulations (Koch, 2018) (with such a 
sample is the compatibility of results between 
simulations). But at the same time, imposed a condition 
on the pseudo-random vector (corresponding to 
standardised random errors), i.e., the typical true error 
is between 0.85 and 1.15. A self-developed algorithm in 
MATLAB was implemented to perform the sensitivity 
analyses and the presentation of the results. 

In the first step, the value of minimal detectable 
displacement for the network was calculated based on 
Equation 20, assuming 𝜒ଶሺℎሻ distribution, α଴ ൌ 0.05, 
1 െ β଴ ൌ 0.80. The values of 𝐌𝐃𝐃୬ୣ୲୵୭୰୩ are 
presented in Table 2. 

 
Table 2. Summary of 𝐌𝐃𝐃୬ୣ୲୵୭୰୩ values 

𝑴𝑫𝑫௡௘௧௪௢௥௞ [mm] 

6.61 
0.70 

-3.87 

-3.02 

1.21 

0.45 

0.13 

-2.21 

‖𝑴𝑫𝑫௡௘௧௪௢௥௞‖ [mm] 8.65 

 
A displacement sensitivity analysis was then 

performed by distorting the parameter vector with the 
value of the minimal detectable displacement. The 
known parameter vector is then converted into a vector 
of observations (with a fixed matrix 𝐀ୱ), then the 
pseudo-random part of the observations is added. An 
adjustment by the least squares method is performed 
based on the calculated new observation vector. The 
result of each adjustment is a displacement vector, and 
the value of the non-centrality parameter is calculated 
from Equation 13, which is then compared with its 
threshold value (Eq. 14). 

The results from the analyses performed are 
presented using the mean success rate (𝑀𝑆𝑅) proposed 
in the work (Hekimoglu and Koch, 1999). According to 
the case study, the experiments are appropriately 
tested in the simulation procedure. After applying the 
appropriate test procedure, those that exceeded the 
threshold value (so-called successful results) are 
counted for each experiment. The 𝑀𝑆𝑅 is calculated as 
follows (Eq. 21): 

 

𝑀𝑆𝑅 ൌ
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠
 (21) 
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The results for each analysis are related to the case of 
displacement detection, i.e. information based on a 
statistical test. Three different graphs were produced to 
present the results. The first one shows the 
effectiveness of individual statistical tests, i.e. global 
test, local test, both tests at the same time and in the 
case of lack of information about a possible 
displacement. The effectiveness of the static test means 
that a displacement of at least one point in the network 
was detected. The calculated efficiencies for each 
statistical test are shown in Figure 2. 

Based on Figure 2, the highest efficiency, i.e. with a 
value of 80.8 %, was obtained for the local test. It 
means that the displacement of at least one point in the 
network was detected. The effectiveness of the global 
test is 79.5 %, where 75.9 % refers to the displacement 
detection effectiveness for both tests simultaneously. It 
can be said that the tests have similar effectiveness, 
with the exception of 15.6 % of all tests where 
displacement was not detected. It should be added that 
an 80 % probability power of the tests was assumed. 

The second graph shows more detailed results for the 
test performed for each point in the network. 
Efficiencies are presented with information on the 
number of points in the network considered to be 
displaced. These results are shown in Figure 3. 

Based on Figure 3, the highest efficiency, i.e. with a 
value of 32.2 %, is characterised by the single point 
detection case. Although, for two points of the network, 
the efficiency of detecting displaced points is slightly 
lower, reaching a value of 30.9 %. It can be seen from 
Figure 3 that the effectiveness decreases as the number 
of detected points increases. In this analysis, a 
maximum of 5 network points were detected. Although 
for the case of five points detected, the effectiveness is 
very low, equal 0.5 %. The sum of all values is 80.8 %, 
which is the total effectiveness of the local test. It is 
worth reminding that there are 8 points in the network. 

More detailed results, as they relate to the 
effectiveness of detecting individual point numbers in 
the network, are presented in the third type of graph, 
as illustrated in Figure 4. 

Based on Figure 4, the highest efficiency of 70.5 % 
was obtained for point P1. In the second order, the 
highest efficiency was obtained for point P3. The 
successive points are P4, P8, P5, P2, P6, and P7. Figure 
4 (100 % cumulative columnar) for each network point 
should be interpreted as follows, e.g. for point P1 in 
70.5 % of all trials, the local test detected displacement. 
In comparison, the displacements were not detected 
for 29.5 % of all experiments. 

 

 
Figure 2. Effectiveness diagram for different statistical tests. 

 

 
Figure 3. Determination of the effectiveness of local tests with information on the number of points considered to be 

displaced. 
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Figure 4. Summary of the detection effectiveness of each network points. 

 

IV. CONCLUSIONS 

This work on geodetic displacement measurements 
deals with sensitivity analyses. The disturbance 
analyses with the value of the minimal detectable 
displacement (constant vector) in the direction of the 
maximum deformability of the network were carried 
out. The work aimed to check the efficiency of 
displacement detection with a large simulated test 
sample. 

The results are shown in Figures 2-4. Concerning 
Figure 4, to indicate why there is such an order of 
detection efficiency of individual points, reference 
should be made to the cofactor matrix 𝐐𝐝. This matrix 
also calculates the accuracy characteristics, so the 
relationship between the value of the minimal 
detectable displacement for the whole network and the 
accuracy characteristics can be assumed. Table 3 shows 
the values of the mean errors of point position of all 
network. Thus, it confirms the obtained order of the 
resulting effectiveness. Only for point P7, a low 
efficiency was obtained, despite having a higher 
accuracy of 0.16 mm than point P6 and 0.03 mm than 
point P2. However, it should be noted that this relates 
to a (very low) efficiency of less than 1.2 %. Point P1 has 
the lowest point accuracy and, according to work 
(Kutterer, 1998), can be the weakest area of the 
network. 

 
Table 3. Mean error of point position 

Point number 
 

Mean error of point 
position [mm] 

P1 2.0 
P2 1.1 
P3 1.6 
P4 1.5 
P5 1.2 
P6 0.9 
P7 1.1 
P8 1.2 

 
By distorting the parameter vector (displacements) 

with the value of 𝐌𝐃𝐃௡௘௧௪௢௥௞ the effectiveness of the 

global test agrees with the assumed power of the test. 
Local tests for a single point showed that there are 
displacements of more than one point in 48.6 %. It 
should be considered using another local test for the 
case of displacement of multiple points. 

When designing a network, the geometry of the 
network is important, as is the accuracy of the 
determination of the network points (mean error). 
Therefore, sensitivity analysis is used as one of the 
criteria for network optimisation to meet the assumed 
requirements for the control network. Depending on 
the purpose of the geodetic network, different criteria 
can be selected for implementation in the optimisation 
procedure. The definition of 𝐌𝐃𝐃୬ୣ୲୵୭୰୩ can be used 
to compare the magnitude of minimal detectable 
displacements for different control networks design 
options. 
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