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ABSTRACT 

The detection of deformations on man-made structures such as bridges and dams are an essential task in 
engineering geodesy. The classical method uncovering deformations is based on geodetic networks using 
measurements from total stations or GNSS receivers. Another new approach is the determination of 
deformations based on terrestrial laser scans leading to large-scale deformation results by point cloud 
comparisons. In the field of geodetic engineering, mobile laser scanning systems are increasingly used for high-
resolution point cloud generation in short measurement times, which leads to the idea to use these for 
deformation analysis. A crucial part of this measurement strategy is the estimation of the trajectory (position 
and orientation) of the scanner, which allows a consistent registration of the single scan lines in a global 
coordinate system (georeferencing). The largest limitation to the accuracy of the resulting point cloud is the 
accuracy of the estimated trajectory. In most applications, the estimation of position and orientation are based 
on the fusion of GNSS (Global Navigation Satellite System) and IMU (Inertial Measurement Unit) measurements. 
Systematic errors, as they often appear in GNSS measurements, are directly transferred to the georeferenced 
point cloud and therefor limit the potential for deformation analysis. With this paper we address the questions, 
if the trajectory estimation can be improved by the integration of known landmarks into the trajectory 
estimation procedure. Using a point cloud generated with an initial GNSS/IMU based trajectory, landmark 
targets can be observed in the point cloud and integrated into an updated estimate, using a factor graph-based 
approach. For the evaluation of a potential accuracy increase due to landmark observations, we performed 
measurements, comparing GNSS/IMU based results with the ones where landmarks are additionally integrated. 
The experiments show, that the accuracy increases especially in the heading angle, which is reflected in lower 
residuals to observed reference coordinates, but also in the trajectory covariances of the estimation results. 

 
I. INTRODUCTION 

In recent years, the method of point cloud 
comparisons between consecutive epochs has become 
increasingly popular for detecting deformations of 
man-mad structures, such as bridges and dam walls 
(Neuner et al., 2016; Xu et al., 2018). The acquisition of 
these point clouds is usually realized by taking 
terrestrial laser scans from multiple points of view and 
then registering the individual scans into one. Another 
increasingly popular method for recording point clouds 
is the use of kinematic laser scanning with multi-sensor 
systems (MSS), (Heinz et al., 2020; Eling et al., 2015; 
Paffenholz, 2012). By estimating the position and 
orientation of the system for each laser observation in 
time, a georeferenced point cloud of the environment 
can be acquired. A crucial aspect in this procedure is a 
precise estimation of the trajectory. 

An established method of trajectory estimation is the 
fusion of sensor information from GNSS (Global 
Navigation Satellite System) and IMU (Inertial 
Measurement Unit), where the accuracy of position and 
orientation depends significantly on the actual GNSS 
conditions. Systematic deviations in GNSS observations, 

caused by multipath and non-line of sight effects due to 
objects in the environment of the system (Zimmermann 
et al., 2017; Strode and Groves, 2016), are directly 
transferred to the point cloud due to the direct 
georeferencing of the 2D scan profiles. This reduces the 
detectability of deformations in the context of 
deformation analysis. For this reason, it might be 
beneficial to include additional absolute sensor 
information in the trajectory estimation process, in 
order to reduce systematic errors in the trajectory and 
the resulting point cloud. This absolute sensor 
information can be obtained by observing known 
control points in the environment, either with a camera 
or with a laser scanner. In this work, we analyze the 
usage of a profile laser scanner, which is already part of 
the measurement system used in context of this work. 

The integration of these observations introduces 
challenges for the algorithmic implementation. We 
chose a factor graph-based approach (Dellaert, 2012; 
Dellaert and Kaess, 2017; Choudhary et al., 2015) for 
the integration of this information, which also realizes a 
smoothing of the trajectory. This approach is closely 
related to SLAM algorithms such as realized in Shan et 
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al., (2020) and Chang et al., (2019). However, in 
contrast to most SLAM algorithms, we do not estimate 
the position of the landmarks within the process. 
Instead, we use the known positions to improve the 
estimate of the trajectory. The accuracy of the resulting 
point cloud (map) is improved in a second step. 

We analysed the result of the method within an 
experiment, where we scanned an environment which 
contains a number of known landmark targets with our 
MSS. The evaluation of the accuracy improvement by 
observing and including landmark observations in the 
trajectory estimation is first performed by comparing 
the estimated variances of the trajectory states with 
and without inclusion of landmark information in the 
graph-based trajectory optimization algorithm. 
Furthermore, an evaluation of the residuals to 
landmark control points is performed.  The rest of the 
paper is organized as follows: We first introduced the 
used sensor platform and the factor graph-based 
method for trajectory optimization in Section II, 
followed by the description of the experimental field 
used for evaluation. We discuss the evaluation results 
in Section III, closing this work by a conclusion and 
outlook in Section IV. 

 

II. MATERIALS AND METHODS 

A. Multi-Sensor System and Point Cloud Creation 

The multi-sensor system used in this study is well 
suited for mobile laser scanning in urban areas and 
consists of a high-end Inertial Navigation System (INS) 
(IMAR iNav-FJI-SURV), a GNSS antenna (Leica AS10) and 
a high-precision profile laser scanner (Z+F Profiler 
9012A), see Figure 1, left. In a measurement campaign, 
the system can be fixed to the roof of a vehicle. In order 
to exclude the vehicle from the field of view of the 
sensor, the scanner is tilted by 30°. 

 

 
Figure 1. Multi-Sensor System with GNSS Antenna, IMU 

with integrated GNSS receiver and profile laser scanner. 
Right: MSS mounted on vehicle. 

 

The INS consist of an internal multi GNSS receiver, a 
fiber optic gyroscope and servo accelerometers in all 
three spatial axes.  Data can be recorded with a rate of 
up to 1500 kHz. The integrated Novatel OEM628 Multi 
GNSS receiver provides centimeter accurate position 
estimates using kinematic baseline processing. 

The Z+F profile laser scanner delivers up to 1 million 
points per second with a spatial resolution of 0.5 mm at 
a distance of 3 m, and a distance accuracy of less than 
1 mm, as specified by the manufacturer. The scans are 
synchronized to the INS data using the PPS (Pule-Per-
Second) signal from the GNSS receiver. 

In order to create a georeferenced point cloud, the 
laser scans have to be transformed using the 
georeferencing equation (Eq. 1): 
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The laser measurements ሾ𝑥௦, 𝑦௦, 𝑧௦ሿ given in the 
sensor frame of the scanner are transformed into the 
body frame b using the system calibration parameters, 
which are the translation vector ሾ𝛥𝑥, 𝛥𝑦, 𝛥𝑧ሿ் and the 
rotation matrix 𝐑௦

௕. The subsequent transformation 
from the body into the global frame 𝑔 requires the 
estimation of the trajectory parameters, which are the 
positions ሾ𝑡௫, 𝑡௬, 𝑡௭ሿ் and orientations 𝐑௡

௘  (or roll, pitch 

and yaw angles 𝜃, 𝜓 and 𝜙) for each laser scanner 
measurement. The determination of these parameters 
is the main contribution in this study and will be 
described later. 

Apart from the position and orientation states, the 
system calibration parameters also have a significant 
influence on the accuracy of the resulting point cloud. 
We estimated them very accurately using a plane-based 
approach which is described in more detail in (Heinz et 
al., 2015). 

 
B. Measurements and State Definition for Trajectory 

Optimization 

The calculation of the trajectory is based on the 
measured rotation rates and accelerations of the IMU, 
the GNSS position information processed from the 
baseline and the laser measurements of the profile 
scanner to the known landmark coordinates. 

1)  GNSS: In the trajectory estimation a loosely 
coupled approach is used for the integration of the 
GNSS information. For this reason, we performed a 
kinematic GNSS carrier-phase based baseline 
processing, using a virtual reference station from SAPOS 
NRW. The GNSS coordinates for each GNSS epoch j are 

given by 𝐳௝
ீேௌௌ ൌ ሼ𝑥, 𝑦, 𝑧ሽ௝ with a corresponding 

standard deviation. 
 
2)  Landmark Targets: In order to create target 

observations, we first compute the initial point cloud 
based on the trajectory estimation with GNSS and IMU 
observations only. In this point cloud the known 
landmark targets are visible which allows to manually 
deduce the laser scanner observation to the target 
centrum. The detection of the target center and 
corresponding observation could also be performed 
automatically, but is beyond the scope of this paper. 
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The laser observations of the target centers are first 
given in the sensor frame in cartesian coordinates, and 
then transformed into the body frame using the system 
calibration parameters, and finally converted into polar 
coordinates. This results in two angles and a distance 
measurement, which are called bearing 𝜑, 𝜃 and range 
𝑑. The full set of observations to 𝑛 landmarks is given 
by 𝐳௡

஻ோ ൌ ሼ 𝜑, 𝜃, 𝑑ሽ𝑛. An example target resolved in the 

initial point cloud is visualized in Figure 2. 
 

 
Figure 2. Example landmark target in initial point cloud, 

computed with GNSS / IMU trajectory. 
 

3)  IMU: The measured accelerations 𝑎 and angular 

velocities 𝜔 of the IMU 𝐳௟
ூெ௎ ൌ ሼ𝑎௫, 𝑎௬, 𝑎௭, 𝜔௫, 𝜔௬, 𝜔௭ሽ௟ 

are given in the IMU frame which coincides with the 
body frame of the system and therefore do not have to 
be transformed. 

All sensor observations can be summarized in the set 

𝛭 ൌ  ൛𝐳௝
ீேௌௌ, 𝐳௟

ூெ௎, 𝐳௡
஻ோൟ  marked with the 

corresponding indices to distinguish between different 
sensor observations. 

 
4)  States: The state vector describing position, 

velocity and orientation of the system, defining one 
navigation system state in time, is given by   𝐱𝒊 ൌ
ሾ𝑥, 𝑦, 𝑧, 𝑣௫, 𝑣௬, 𝑣௭, 𝒒௥௣௬ሿ௜

். 
The position coordinates 𝑥, 𝑦, 𝑧, velocities 𝑣௫, 𝑣௬, 𝑣௭ 

and orientation 𝒒௥௣௬ refer to the UTM (Universal 

Transverse Mercator) coordinate system in which the 
estimation of the states is implemented. The 
description of the orientation angles roll, pitch and yaw 
are represented by the quaternion 𝒒௥௣௬ and refers to 

the axes of the navigation frame, coinciding with the 
axes of UTM. Due to the dynamic evolution of the IMU 
bias in time (Groves, 2015), it is necessary to include 

inertial sensor bias variables in the optimization in 
order to remove the systematic errors from the raw 
IMU observations. The additional six parameters for the 
IMU bias result in 𝐛௤ ൌ ሾ𝑣௫, 𝑣௬, 𝑣௭, 𝑣௫, 𝑣௬, 𝑣௭ሿ௤

். 

Summarizing the trajectory states and bias variables 
over the entire measurement period k, all states to be 

optimized result in 𝛎௞ ൌ ቄሼ𝐱𝒊ሽ൛𝐛𝒒ൟቅ. 

Since the landmark coordinates are available with 
very high accuracy, they are assumed to be known and 
are therefore not included as optimizing quantities in 
the set of state vectors 𝛎௞. 

 
C. Factor Graph-Based State Optimization 

We use a factor graph-based approach to optimize 
the trajectory state variables 𝛎௞. Within the graph, 
nodes describe the states to be estimated. The sensor 
observations result in so-called factors, which contain 
sensor observations and state variables. By assuming 
zero mean gaussian noise for the sensor 
measurements, the factors represent error functions 
involving measurements and variables. The factor 
graph representation of variables nodes and factors for 
the estimation problem in this work is visualized in 
Figure 3. More information about concept and 
definitions of factors is given in (Kaess et al., 2012). We 
introduce first the least squares optimization problem 
containing factors and state variables. Afterwards we 
define the individual factors and their error functions. 

 
1)  Least Squares Optimization: By setting up all 

error functions over the entire period for sensor 
measurements and defining the variable nodes, the 
optimization of all trajectory states can be described by 
the least squares problem (Eq. 2) 
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(2) 

 
assuming zero mean gaussian noise for all sensor 
observations. The corresponding factor graph 
visualization to Equation 2 is visualized in Figure 3 and 
is composed of the individual factors, that we introduce 
in the following. 

 

 
Figure 3. Full factor graph representation of the least squares problem (Equation 2). 
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By linearizing the individual error functions of the 
graph by a first order Taylor expansion, the normal 
equations can be set up containing all navigation states 
𝐱 and IMU bias states 𝐛. The linearization requires 
knowledge about approximate values for each variable 
node of the graph to be optimized. These are not 
available for the orientation parameters, since these 
must be updated in time by integrating the IMU 
observations. To solve this problem, we use the ISAM2 
algorithm that incrementally builds up the graph 
structure and optimizes the state variables periodically 
in time. The algorithm is implemented in the GTSAM 
library, detailed information about library and ISAM2 
algorithm used for optimizing the graph can be found in 
(Kaess et al., 2011; 2012; Indelman et al., 2013). 

 
2)  Preintegrated IMU Factor: The IMU factor is a 

non-linear error function involving two consecutive 
navigation states in time 𝐱௜ିଵ and 𝐱௜, and the 
corresponding bias states 𝐛௤ and is defined by (Eq. 3) 

 

𝑓ூெ௎൫𝐱௜ିଵ, 𝐱௜, 𝐛௤൯ ൌ 𝑒𝑟𝑟ூெ௎ ቀ𝐱௜ െ ℎ൫𝐱௜ିଵ, 𝐛௤, 𝚫𝐱௜ିଵ⟶௜൯ቁ. (3) 

 

By preintegrating the raw IMU observations 
considering the estimated bias variables 𝐛௤, the so-

called preintegrated IMU measurements 𝚫𝐱௜ିଵ⟶௜, 
related to the time interval between two defined 
navigation states 𝐱𝒊 and 𝐱𝒊ି𝟏 are obtained. The factor 
calculates the error of the current state 𝐱௜ and the 
predicted state by the function 𝒉ሺሻ involving the 
previous state, bias state and preintegrated 
measurements and is minimized in the least-squares 
optimization. More information about the 
preintegration, including the bias variables is given in 
Forster (2015). 

 
3)  IMU Bias Factor: The evolution of the bias 

variables requires a model for propagation in time 
which is computed by a function 𝑔ሺ𝐛௤ିଵሻ assuming a 

zero-mean gaussian noise model. By the definition of 
this noise model with a random walk process, the bias 
factor results in (Eq. 4) 

 

𝑓஻ூ஺ௌ൫𝐛௤, 𝐛௤ିଵ൯ ൌ 𝑑ሺ𝐛௤ െ 𝑔ሺ𝐛௤ିଵሻሻ (4) 

 

The error function computes the residuals of 
predicted bias by 𝑔ሺ𝐛𝑞െ1ሻ  and current bias state 𝐛௤, 

minimized in the optimization. More information about 
the bias factor and the connection to the preintegrated 
IMU factor is given in (Forster et al., 2016). 

 
4)  GNSS Factor: The GNSS factor is a so-called unary 

factor and is defined by the linear error function (Eq. 5) 
 

𝑓ீேௌௌ൫𝐱௝൯ ൌ 𝑒𝑟𝑟ீேௌௌ ቀ𝐳௝
ீேௌௌ െ ℎீேௌௌ൫𝐱௝൯ቁ (5) 

 
which computes the error between the GNSS position 

measurement 𝐳௝
ீேௌௌ and predicted position by the 

function ℎீேௌௌ൫𝐱௝൯ including the navigation state 𝐱௝ and 

the translation from body to GNSS antenna frame, the 
so-called lever arm. 

 
5)  Bearing and Range Factor: The bearing and 

range factor is described by the error function (Eq. 6) 
 

𝑓஻ோሺ𝐱௜ሻ ൌ 𝑒𝑟𝑟஻ோ൫𝐳௡
஻ோ െ 𝜋஻ோሺ𝐱௜, 𝐥௡ሻ൯ (6) 

 
computing the error between predicted bearing and 
range measurement by the function 𝜋஻ோ depending on 

the current trajectory state 𝐱௜, known landmark 𝐥௡ and 
laser scanner measurement 𝐳௡

஻ோ. Detailed information 
about the bearing and range factor is given by 
(Setterfield et al., 2017; Dellaert, 2012). 

 
6)  Sensor Noise Models: The weighting of the 

sensor information within the optimization of the state 
variables requires the definition of noise models for the 
factors in Figure 2, in which the observations are 
included. The specified standard deviations of the 
individual observations, which we used for the 
optimization are collected in Table 1. The standard 
deviation of the target measurements in Table 1 refer 
to the coordinates in the sensor frame of the laser 
scanner. The standard deviations of bearing and range 
in the body frame are determined by a variance 
propagation considering the accuracy of the system 
calibration. The variances of the raw IMU observations 
are also transferred to the preintegrated IMU 
observations of the IMU factor by a variance 
propagation (Forster et al., 2015). 

 
Table 1. Sensor noise models for the individual 

measurements 

GNSS 
 

IMU and Bias Target 

 Acceleration Gyroscope  
𝜎௫, 𝜎௬, 𝜎௭ 𝜎௔௫, 𝜎௔௬, 𝜎௔௭ 𝜎ఠ௫, 𝜎ఠ௬, 𝜎ఠ௭ 𝜎௫

௟ , 𝜎௬
௟ , 𝜎௭

௟

5cm 7.8 ⋅ 10ିହ 𝑚/𝑠 3 ⋅ 10ି଻ 𝑟𝑎𝑑/𝑠 5mm 
 Bias noise  Bias noise  
 7 ⋅ 10ିହ 𝑚/𝑠 5 ⋅ 10ି଻ 𝑟𝑎𝑑/𝑠  

 
D. Experimental Setup for Evaluation 

For recording measurements and later evaluation of 
our results we use an existing experimental field 20 km 
in west of the city of Bonn, Germany. We perform a 
network adjustment based on total station 
observations and static GNSS measurements to 
optimize a geodetic net with points known with an 
accuracy in submillimeter range in global frame. 

A subset of these coordinates was used as reference 
coordinates for evaluation purposes, while another 
subset was used as observations in the trajectory 
estimation process. In order to transform the local 
network into the UTM frame, known datum points are 
observed which are available with a high accuracy near 
the location of the network. By performing a least 
squares network adjustment, considering the datum 
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information, the network point coordinates are 
estimated with a standard deviation below 1 mm. The 
distribution of network points and points defining the 
datum are visualized in Figure 4. 

 

 
Figure 4. Resulting coordinates from network adjustment 

(Image Source: Google Maps, 2022). 
 

We perform multiple measurement drives with the 
car setup shown in Figure 1. The start and end points of 
campaigns are located in the north of the measurement 
area and proceeds through the geodetic network in the 
middle part. To ensure a high resolution of the 
landmark targets in the point cloud, a low velocity of 
the system near the landmarks of only about 10 cm/s is 
chosen. An example target is visualized in Figure 2. 

We perform two trajectory optimizations: The first on 
basis of GNSS and IMU observations only and the 
second with additional landmark observations, in order 
to elaborate the accuracy improvement due to target 
observations. The analysis focusses on comparison of 
both trajectories regarding the precision gain of 
position and orientation. Highlighting the influence of 
the bearing and range factors on state estimation in 
more detail, the number of GNSS observations within 
the algorithm is reduced by the factor 20 resulting in a 
GNSS position update rate of 10 s. Afterwards we 
analyze the residuals to the subset of coordinates from 
the geodetic network that we did not include in the 
trajectory optimization. 

 

III. RESULTS AND DISCUSSION 

A. Trajectory Estimates 

Figure 5 shows an example trajectory estimate with 
included landmark observations in the trajectory 
estimation. 

We use the target measurements to the red network 
points in Figure 5 to formulate the bearing and range 
factors, include them in the factor graph and perform 
the trajectory optimization. The factors are visualized in 

Figure 5 as red lines connecting landmark target and 
corresponding trajectory state. The subsequent 
discussions are made on basis of the chosen trajectory 
part introduced within this section. 

 

 
Figure 5. Trajectory state of east and north coordinate 

(blue), GNSS observations (black, rate: 10 s) and landmarks. 
Bearing and range factors (red lines) connect landmark and 

corresponding trajectory states. 
 

B. Estimate of Trajectory Variances 

The ISAM2 algorithm also provides estimated 
covariance information for the trajectory states, which 
allows the evaluation of the precision gain when 
including the landmark observations. For the analysis 
we compare the variances of the estimates based on 
GNSS and IMU measurements only and with the ones 
where additional target observations are included. The 
time interval of occurring landmarks and estimated 
standard deviations of the orientation angles roll, pitch 
and yaw is visualized in Figure 6. This selected interval 
corresponds to the trajectory part shown in Figure 5. 
The yaw angle is clearly improved in precision by about 
50% (~0.5°) over the whole section compared to the 
estimation without landmark information. The 
precision of pitch and roll angle is also improved, but 
less significant (0.01° –0.02°). Overall, this improvement 
has not only a positive effect close to the target 
observations, but also in between of two of them. The 
overall higher standard deviations in the yaw angle in 
both estimates compared to roll and pitch can be 
explained by the non-eccentric mounting of the GNSS 
antenna, which prevents an indirect observation of the 
yaw angle by the GNSS positions, resulting in higher 
standard deviation estimates for yaw. 
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Figure 6. Estimated orientation standard deviations of roll, 

pitch and yaw angles, GNSS + IMU vs. GNSS + IMU + 
Landmark. The time interval visualized corresponds to the 
trajectory section from figure 5. Red lines mark times of 

landmark observations. 
 

Figure 7 shows for the corresponding time interval for 
the estimated position standard deviations of the 
trajectories with and without landmark information. A 
GNSS position update has been used in the graph every 
10 seconds.  

 

 
Figure 7. Estimated position standard deviations (X=east, 

Y=north, Z=height), GNSS + IMU vs. GNSS + IMU + Landmark. 
The time interval shown corresponds to the trajectory 

section from figure 4. Red lines mark times of landmark 
observations. 

 

The arc-like increase of the standard deviations in the 
position in all three coordinates between two GNSS 
observations can be explained by the relative 
propagation of the variances in the IMU preintegration 
and is about 6 cm in the middle between two GNSS 
positions. GNSS coordinates are included in the 
estimation with a standard deviation of 5 cm which 
indicates a reliable variance propagation of the 
preintegrated IMU factor. 

At the time of landmark observations, the standard 
deviations can be significantly decreased by about 
1- 2 cm in east (X) and north (Y). In the ellipsoidal height 
(Z) a reduction of the standard deviation to about 1 cm 
can be observed, see Figure 7. Compared to the 
precision increase of the orientation angles, the 
observations of landmark targets cause only a local 
improvement of the precision. 

 

C. Root Mean Squared Error 

So far, we focused entirely on the increase in 
precision by comparing the variance estimates. In order 
to be able to make a statement about the point 
accuracy of MSS, the green reference points shown in 
Figure 5 are used, known with a standard deviation in 
the sub-millimeter range due to the network 
adjustment. 

Using the georeferencing Equation 1, the laser 
scanner measurements to reference points are 
transformed to the UTM coordinate frame, resulting in 
the target center coordinates. For evaluation of the 
increase in accuracy, we analyze the residuals to the 
reference coordinates. The residuals computed with 
the trajectory based on GNSS and IMU measurements 
only and with included bearing and range factors are 
compared to each other. 

In order to visualize the accuracy improvement due 
to the integration of landmark information, several 
trajectory estimates are performed with a decreasing 
number of GNSS position data in the trajectory 
estimation. For each estimate, the root mean squared 
error (RMSE) to the reference coordinates is calculated, 
which is defined by (Eq. 7) 

 

𝑅𝑀𝑆𝐸௫ ൌ ඨ
∑  ሺ𝑥ො െ 𝑥ሻଶே

௜ୀ଴

𝑁
 (7) 

 
in which 𝑥 describes the coordinate estimated from the 
sensor system with the corresponding trajectory 
estimate and 𝑥ො marks the reference coordinate from 
the network adjustment. The number of reference 
points used for RMSE computation is marked by 𝑁. 
 

The results of the RMSE values are shown in Figure 8 
for the east, north and ellipsoidal height for one 
measurement drive. For evaluation we performed 
several estimation runs and incrementally increased 
the time between consecutive GNSS position updates 
from 1 to 50 seconds. 

 

 
Figure 8. Root mean squared error of georeferenced 

control points from MSS and reference coordinates from 
network adjustment (Figure 5, green points). GNSS + IMU vs. 

GNSS + IMU + Landmark. 
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Comparing the RMSE values for the coordinates 
computed with both trajectory estimates in Figure 8 
significant differences are observable. The reduction of 
the height RMSE when inserting landmark information 
is the smallest with just a few mm and can be 
considered as barely significant, comparing the RMSE to 
the estimate without landmark information. A possible 
reason for this non-significant influence could be the 
much higher accuracy in the states of the roll and pitch 
angles, see Figure 6. 

In contrast to this observation, we see an increase in 
RMSE in the X, Y coordinates (north and east), especially 
detectable when inserting less GNSS position updates in 
the trajectory estimation. Comparing both estimates at 
a GNSS position update rate of 30 s the east RMSE can 
be reduced by about 40 mm, in north a reduction of 
over 45 mm is visible, when target observations are 
included into the state optimization, see Figure 8. 

The significant increase can be explained by the lower 
yaw angle precision compared to pitch and roll, see 
Figure 6. Errors in the yaw angle are directly transferred 
to the east and north coordinates, resulting in higher 
errors in these coordinates, when computing the RMSE 
to the reference coordinates. Please note, that the 
result only shows one particular measurement and that 
the maximal achieved accuracy may vary, depending on 
the GNSS conditions at the particular time and location 
of this measurement. 

 

IV. SUMMARY AND OUTLOOK 

Using the graph-based approach of trajectory 
estimation, landmark information can be easily 
incorporated as bearing and range factor in the 
trajectory estimation. 

The analysis of the accuracy gains by including 
landmark target information have shown a significant 
improvement of the yaw angle precision. A significant 
increase in roll and pitch angle accuracy could not be 
demonstrated. Improvements in position coordinates 
have only local effect compared to improvements of the 
angle variance estimates. 

The analysis of the root mean squared error when 
comparing to known reference coordinates results in 
lower values for the east and north coordinates, but not 
for the height residuals. This is especially valid when the 
number of GNSS observations are decreased in the 
trajectory estimation procedure. 

With this study we showed, that it can be beneficial 
for the accuracy of the trajectory estimation of a mobile 
mapping system, when additional information from 
known landmarks are included into the estimation. This 
is especially valid, when GNSS observations are less 
often available. We also presented a procedure how 
this can be realized, using a graph-based optimization 
approach. As the trajectory accuracy directly transfers 
to the accuracy of the resulting point cloud we can 
assume, that deformations can be better detected. In 

an extension of the work, we will evaluate the resulting 
point cloud using reference information. 
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