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ABSTRACT 

Various measurement techniques and data processing are applied to determine point displacements and 
deformation of geodetic networks or buildings. Considering classical measurements and analysis of the network 
deformation, we should realize that the measurements are not “immediate.” The question arises: what happens 
if a point (or some points) displaces between particular measurements within one epoch. In such a case, the 
observation set would consist of the observations before and after point displacement, and such hypothetical 
observation groups can be regarded as related to two (or more) pseudo epochs. The paper's main objective is 
to examine some estimation methods that would probably deal with such a problem, namely Msplit estimation 
(in two variants, the squared and the absolute Msplit estimation) and chosen robust methods, namely Huber’s 
method (example M-estimation) and the Hodges-Lehmann weighted estimation (basic R-estimation). The first 
approach can provide two (or more) variants of the network point coordinates (here, before and after point 
movements), providing information about two (or more) states of the network during measurements. In 
contrast, the robust methods can only decrease the influence of the outliers on the computed network point 
coordinates. Thus, estimation results would concern only one network state in such a case. The presented 
empirical analyses show that the better and more realistic results are obtained by applying Msplit estimation. 
Huber’s method can also provide acceptable results (describing the network state at the epoch beginning) only 
if the number of observations conducted after the point displacements is not too high. 

 
I. INTRODUCTION 

The displacement of the network point is determined 
between at least two measurement epochs. Thus, the 
deformation analysis is conducted between two 
moments in time. However, geodetic observations, 
namely measurements of angles, distances, or height 
differences, are not “immediate,” and sometimes they 
require some time. Such a fact concerns traditional 
measurements and, in some cases also, other 
techniques like GPS measurements. Generally, we 
assume that the network points are stable during the 
measurements of each epoch. The question arises, 
what if a point (or some points) displaces between 
measurements within one epoch. It is evident that such 
displacements would affect the observation set, in 
which some observations relate to the stage before 
displacements, whereas the other observations to the 
stage after displacements. Since all observations belong 
to one epoch, thus we can call such subsets 
observations at the first and second pseudo epoch; 
however, we do not know the assignment of each 
observation to either of the pseudo epochs in practice. 
This problem was mentioned in (Wiśniewski et al., 
2019). It is also no doubt that the existence of the 
pseudo epoch would also affect further computations, 
such as the deformation analysis between two epochs. 

That would indeed happen if one applied the usual 
approach based on the least squares method, without 
any statistical tests or analyses detecting “outlying” 
observations (in the problem considered here, the 
observations of one of the pseudo epochs could be 
regarded as outliers). An alternative would be the 
application of robust estimation or other methods 
which can deal with such an observation set. In the first 
case, we can apply any robust M-estimation (Caspary et 
al., 1990; Hekimoğlu, 1999; Xu, 2005; Nowel, 2015), or 
R-estimation (Hodges and Lehmann, 1963; Duchnowski, 
2013; Wyszkowska and Duchnowski, 2018). A method 
called Msplit estimation was created to estimate the 
location parameters (more generally, the parameters of 
the split functional models) when an observation set 
consists of the subsets mentioned before. The method 
has already been applied in deformation analysis 
(Wiśniewski, 2009; Zienkiewicz et al., 2017; 
Wyszkowska and Duchnowski, 2019). 

The paper aims to compare different approaches to 
the problem of pseudo epochs. The following methods 
will be analyzed: the least squares estimation (LS), the 
Huber method (an example of robust M-estimation), 
and the Hodges-Lehmann weighted estimation 
(example of R-estimation; HLW), the squared Msplit 
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estimation (SMS), and the absolute Msplit estimation 
(AMS). 

 

II. EMPIRICAL ANALYSES 

Let us consider the following linear model (Eq. 1): 
 

 y AX v  (1) 

 
where y = observation vector of size 1n  

 A = coefficient matrix of size n r  
 X = parameter vector of size 1r  
 v = measurement error vector 1n  
 

The LS estimator ˆ
LSX  of the parameter vector can be 

computed as (Eq. 2): 
 

  1
ˆ T

LS


 TX A PA A Py  (2) 

 
where P = weight matrix of size n n  
 

Whereas the Huber estimator ˆ
HX  of the parameter 

vector is determined in the iterative process (Eqs. 3 and 
4): 
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    ˆ( )iii ii
w v W P  (4) 

 
where W = diagonal matrix of weights of size n n  

ˆ( )iw v  = weight function related to variant of 

M-estimation, 1 i n   

 îv  = standardized error of ith observation 

  ii  = ith diagonal element of matrix 

 
The new version of the matrix W is computed in each 

subsequent iterative step. The general formula of the 
Huber weight function can be written as (Yang, 1994; 
Ge et al., 2013) (Eq. 5): 
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where c = positive constant 
 

Here, we assume the constant 2c  , which defines 
the interval of the acceptable, standardized 
measurement errors (Gui and Zhang, 1998). 

Another robust estimator which can be applied in the 
paper context is the Hodges-Lehmann weighted 

estimator of the expected value , 1 j r  . 

The general formula is as follows (Duchnowski, 2013) 
(Eq. 6): 

 

 ˆ medw
2

HLW k l
j

z z
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 (6) 

 
where medw = weighted median operator 
 zk, zl = elements of sample of size s ( 1 k s  , 

1 l s  ) 
 

The sample mentioned is created for each parameter 
Xj separately. In the paper context, the sample elements 
are created by computing the coordinates of a 
particular network point by applying the raw 
observations and the reference point coordinates in all 
possible independent ways (Duchnowski, 2013, 2021). 

Msplit estimation is the last method considered here. 
The general assumption of that estimation method is 
the split of the functional model (Equation 1) into two 
competitive ones (Wiśniewski, 2009; Wyszkowska and 
Duchnowski, 2019) (Eq. 7): 
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(2) (2)
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where X(m) = versions of parameter vector 

 v(m) = versions of measurement error vector 
 1 or 2m    

 
We examine two Msplit estimation variants: the 

squared and absolute Msplit estimation. These two 
methods differ in the objective function, hence also in 
the influence and weight functions. The weight 
functions of SMS estimation are as follows (Wiśniewski, 
2009) (Eq. 8): 
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while AMS estimation refers to the following weight 
functions (Wyszkowska and Duchnowski, 2019) (Eq. 9): 
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 (9) 

 

The competitive Msplit estimates, namely (1)X̂  and (2)X̂  

of the parameter vector, are determined in the iterative 
process by applying the modified Newton method 
(Wiśniewski, 2009). Because of the difference in the 

 ˆHLW
jE X
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weight functions, two variants of Msplit estimation 
require different computing algorithms. SMS 
estimation uses the traditional iterative process, while 
AMS estimation requires a parallel iterative process 
(Wyszkowska and Duchnowski, 2020). The differences 
between the algorithms concern the starting point and 
computing the estimates in subsequent iterative steps. 
There is one starting point in the traditional iterative 
process (usually LS estimates of the parameters) and 
two different starting points in the parallel iterative 
process. The algorithms are described in detail in 
(Wiśniewski, 2009; Wyszkowska and Duchnowski, 
2019). 

Considering the problem of pseudo epochs, the 
competitive versions of the parameter vector should 
reflect the point displacements. One expects one 
version to correspond to the point coordinates before 
displacement and the second after the point 
movement. 

 

III. TITLE  

Let us consider a leveling network presented in 
Figure 1. The network consists of two reference points 
(fixed ones), A and B, and seven object points (points 
with unknown heights). The observations, namely 
twenty height differences, are assumed to be measured 
twice in one measurement epoch with the assumed 
standard deviation of 1 mm. Without loss of generality, 
we can assume that the theoretical heights of all 
network points are equal to 0 mm; hence, all theoretical 
height differences are equal to 0 mm. 

 

 
Figure 1. Simulated leveling network. 

 

Let us assume that points 101 and 102 have moved 

vertically for 101 10 mm,H   102 20 mmH   during 

the measurements. Additionally, we consider two 
variants: Variant I, the second measurements of the 
height differences h1, h3, h7 were measured after the 
point displacements; Variant II, the first measurements 
of the height differences h3, h7 and the second 
measurements of the height differences h1, h3, h4, h7, h9 
were measured after the point displacements. Two 

variants help us to understand how each estimation 
method reacts to a different number of observations 
after the point displacement. One should realize that in 
practice, we do not know which points are displaced 
and which observations are performed before and after 
the point displacement; thus, we cannot divide 
observations into subsets a priori. 

Now let us examine how such an affected observation 
set influences the estimation results. Assuming that the 
observations are normally distributed, we simulated 
5000 observation sets in each variant. 

 
A. Variant I 

The histograms of the heights of the chosen points 
estimated by applying the conventional methods are 
presented in Figure 2. 

 

 
Figure 2. Histograms of estimated point heights (Variant I). 

 

The histograms are determined for the heights of the 
object points that moved, namely 101 and 102, and one 
chosen stable point 104. The histograms obtained for 
the other stable points are very similar to the histogram 
of the point 104 height; hence they are omitted here. 

The best results are obtained for the Huber method, 
where the height estimates are robust against outlying 
observations. The other robust method (HLW) does not 
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provide correct results, especially for point 101. It 
results from the location of outliers and the low 
breakdown point of the method in the case of a small 
number of observations (Duchnowski, 2011). Note that 
we have 6 independent ways to compute the heights of 
point 101, 8 ways for point 102, and 12 ways for point 
104, which determines the size of the samples in 
Equation 6. 

The histograms of the estimated heights of the same 
variant and points obtained for the two variants of Msplit 
estimation are shown in Figure 3. Following the split 
functional model of Equation 7 we have two 
competitive solutions (the competitive estimates of the 
point heights). 

 

 
Figure 3. Histograms of estimated point heights (Variant I). 

 

The histograms obtained for the estimated heights of 
points 101 and 102 show that the Msplit estimation 
detects the point displacements correctly (the 
histograms coincide with the simulated point heights). 
The situation is different for the estimated height of 
point 104 (similar histograms are obtained for the rest 
of the object points). The first solutions of both variants 
seem correct; the histogram coincides with 0 mm. The 
histograms of the second solutions are generally 
proper; however, they seem a little bit skewed right, 

especially in the case of SMS estimation. Tables 1 and 2 
present some descriptive statistics from the Monte 
Carlo simulations to complete the comparison. The 
medians here describe the central tendencies of the 
estimates. The mean values omitted here are usually 
equal to the respective medians or differ from them by 
no more than 0.2 mm. The accuracy of the estimates is 
described by the root-mean-square deviation (RMSD) 
computed as (Eq. 10): 
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where ˆ MC
iX  = estimated parameter in ith simulation 

  X = simulated parameter  
 

For the conventional method, for each point 
0 mm.X   In the case of Msplit estimation, for the first 

solution, namely (1)X ,  it is assumed that 0 mm,X   but 

for the second one, (2)X , it holds that 

101 10 mm,X H    102 20 mmX H    or 

104 0 mm,X H    respectively. 

 
Table 1. Medians [mm] of the estimates of chosen object 

point heights from MC simulations (Variant I) 

Parameter
 

Point 101 Point 102 Point 104

LS 2.0 4.1 1.3 
Huber 0.0 0.1 0.0 
HLW 4.1 0.9 0.2 

SMS 𝑋෠ሺଵሻ -0.1 -0.1 0.0 

SMS 𝑋෠ሺଶሻ 10.1 19.9 3.0 

AMS 𝑋෠ሺଵሻ -0.1 0.0 -0.1 

AMS 𝑋෠ሺଶሻ 10.0 20.2 1.0 

 
Table 2. RMSDs [mm] of the estimates of chosen object 

point heights from MC simulations (Variant I) 

Method 
 

Point 101 Point 102 Point 104

LS 2.1 4.1 1.4 
Huber 0.6 0.5 0.4 
HLW 4.1 1.0 0.4 

SMS 𝑋෠ሺଵሻ 1.2 0.9 1.0 

SMS 𝑋෠ሺଶሻ 1.4 1.0 5.1 

AMS 𝑋෠ሺଵሻ 1.2 0.9 1.0 

AMS 𝑋෠ሺଶሻ 1.9 1.0 4.7 

 
Tables confirm that the Huber method provided the 

correct results, and LS or HLW estimation did not. They 
also prove that Msplit estimation might tell apart the first 
pseudo epoch from the second one. What is more, it 
can assess the point displacements correctly. However, 

Msplit estimation provides worse assessments of (2)X  for 

the points which do not displace during the 
measurements (see the results obtained in the case of 
point 104, especially RMSD). It might result from the 
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small number of observations performed after the 
point displacements. 

 
B. Variant II 

In that variant, more measurements are carried out 
after the point displacements. The histograms of the 
heights of the chosen points estimated by using the 
conventional methods are shown in Figure 4. This time, 
any of the methods did not provide satisfactory results. 
Only histograms obtained for the height of point 104 
are located close to 0 mm. It results from the fact that 
the most height differences between that point and the 
other network points were measured at the first 
pseudo epoch. 

 

 
Figure 4. Histograms of estimated point heights 

(Variant II). 
 

Figure 5 presents histograms of the point heights 
estimated by Msplit estimation variants. The location of 
all the histograms is correct, and the histograms 
obtained for point 104 seem less skewed right than in 
the previous variant. 

Like in the preceding subsection, we can also 
compare the descriptive statistics from the Monte Carlo 
method (Tables 3 and 4). The medians confirm the 
conclusions from the simple analysis of the histogram 

locations. The conventional methods cannot provide 
the correct results, and SMS as well as AMS estimation 
correctly identified the pseudo epochs and assessed the 
point displacements. The best results, the medians 
closest to the theoretical values, are obtained for AMS 
estimation. Empirical accuracies presented in Table 4 
show that Msplit estimation can deal with pseudo epochs 
better than the conventional methods when the 
number of observations carried out after the point 
displacements is greater. Even the Huber method, 
which succeeded in Variant I, cannot manage a higher 
number of outlying observations. 

 

 
Figure 5. Histograms of estimated point heights 

(Variant II). 
 

 

IV. CONCLUSIONS 

The displacements of the object points during one 
measurement epoch, if they really happen, stay 
undetected at the stage of measurements. They mainly 
might concern large networks where the number of 
observations is high; hence the longer time of 
measurements is required. That situation might also 
happen in networks that were established to determine 
terrain surface deformations resulting, for example, 
from uplifts or mining damages, where the vertical 
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displacements might be sudden and have a relatively 
high magnitude. 

 
Table 3. Medians [mm] of the estimates of chosen object 

point heights from MC simulations (Variant II) 

Method 
 

Point 101 Point 102 Point 104

LS 6.8 11.4 1.8 
Huber 6.8 11.6 1.8 
HLW 9.1 10.6 0.2 

SMS 𝑋෠ሺଵሻ 0.9 0.9 0.9 

SMS 𝑋෠ሺଶሻ 10.1 20.0 0.0 

AMS 𝑋෠ሺଵሻ 0.4 0.3 0.3 

AMS 𝑋෠ሺଶሻ 10.1 20.0 0.0 

 
Table 4. RMSDs [mm] of the estimates of chosen object 

point heights from MC simulations (Variant II) 

Method 
 

Point 101 Point 102 Point 104

LS 6.9 11.4 1.9 
Huber 6.8 12.2 1.8 
HLW 9.1 10.7 0.4 

SMS 𝑋෠ሺଵሻ 3.9 3.9 3.9 

SMS 𝑋෠ሺଶሻ 1.2 0.7 1.4 

AMS 𝑋෠ሺଵሻ 2.7 3.1 2.1 

AMS 𝑋෠ሺଶሻ 1.7 0.7 2.7 

 
Loss or preservation information about point 

displacements is the essential difference between the 
conventional methods and the approach based on Msplit 
estimation. The example presented in the paper proves 
that the conventional methods might not manage with 
point displacement during measurements. However, 
the robust methods can provide correct results only 
when the number of outlying observations is small 
enough. When applying robust M-estimation, it is 
assumed that observations from one pseudo epoch 
(before or after point displacements) are regarded as 
outliers. We would surely lose information about point 
displacements by “ignoring” such a group of 
observations. We would also not know which pseudo 
epoch is described finally. By applying Msplit estimation, 
one can preserve the information about point 
displacements and keep track of point movements 
during the measurement epoch. In the given example, 
both variants of Msplit estimation distinguish two groups 
of observations. What is more, they assess the point 
displacements between the pseudo epochs correctly. 
Comparing the results obtained for Msplit estimation 
variants, one can suggest applying the AMS method 
rather than SMS estimation in the problem addressed 
in the paper. 
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