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1 Introduction

Fractional calculus is an extension of classical calculus, and the theoretical aspects from this are
held. Many problems can be described by using fractional calculus, because of the higher degree
of freedom compared to classical calculus [1, 2].

In recent years, some Newton-type methods for solving nonlinear equations have been proposed
by using the Riemann-Liouville, Caputo and conformable fractional derivatives [3–5].

First, let us introduce some preliminary concepts related to conformable derivative. The left
conformable fractional derivative of a function f : [a,∞) −→ R, starting from a, of order α ∈ (0, 1],
α, a, x ∈ R, a < x, is [6]

(T a
αf)(x) = lim

ε−→0

f(x+ ε(x− a)1−α)− f(x)
ε

. (1)

If the limit exists, f is α-differentiable. If f is also differentiable, (T a
αf)(x) = (x− a)1−αf ′(x). If f

is α-differentiable in (a, b), for some b ∈ R, (T a
αf)(a) = lim

x→a+
(T a

αf)(x). Note that T a
αC = 0, where

C is a constant.
Newly, a Newton-type method by using conformable derivative was designed for solving non-

linear equations in [5] with the following iterative expression:

xk+1 = a+
(

(xk − a)α − α f(xk)
(T a

αf)(xk)

)1/α

, k = 0, 1, 2, . . . (2)

where (T a
αf)(xk) is the left conformable fractional derivative of order α, α ∈ (0, 1], starting from

a, a < xk, ∀k. When α = 1, we obtain the classical Newton-Raphson method. The quadratic
convergence of this method is stated in [5] by using an appropriate conformable Taylor series [7].

The method proposed in [5], as seen in equation (1), can be used only to solve scalar problems.
To design a conformable vectorial Newton-type method in order to find the solution x̄ ∈ Rn of
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a nonlinear system F (x) = 0̂, with coordinate functions f1, . . . , fn, where F : D ⊆ Rn −→ Rn

is a sufficiently Fréchet-differentiable function in an open convex set D, we have to introduce the
necessary existing concepts and results.

We can find in [8] a definition of conformable partial derivative:

Definition 1. Let f be a function in n variables, x1, . . . , xn, the conformable partial derivative of
f of order α ∈ (0, 1] in xi > a = 0 is defined as:

∂α
0

∂xα
i

f(x1, . . . , xn) = lim
ϵ→0

f(x1, . . . , xi + ϵx1−α
i , . . . , xn)− f(x1, . . . , xn)

ϵ
, (3)

In [8] we can also find a definition of conformable Jacobian matrix:

Definition 2. Let f , g be functions in 2 variables x and y, and the respective partial derivatives
exist and are continuous. Being x > a1 and y > a2, where a = (a1, a2) = (0, 0) = 0̂, then the
conformable Jacobian matrix is:

F
α(1)
0̂ (x) =


∂α

0 f

∂xα

∂α
0 f

∂yα

∂α
0 g

∂xα

∂α
0 g

∂yα

 =

x
1−α∂f

∂x
y1−α∂f

∂y

x1−α ∂g

∂x
y1−α ∂g

∂y

 . (4)

This concept can be directly extended to higher dimensions.
The new concepts and results required to design a conformable vectorial Newton-type method

are stated in the next Section.

2 Methods

2.1 New concepts and results

Considering that in equation (3), xi ∈ (0,∞), it can be defined the conformable partial derivative
in xi ∈ (a,∞):

Definition 3. Let f be a function in n variables, x1, . . . , xn, the conformable partial derivative of
f of order 0 < α ≤ 1 in xi ∈ (a,∞) is

∂α
a

∂xα
i

f(x1, . . . , xn) = lim
ϵ→0

f(x1, . . . , xi + ϵ(xi − a)1−α, . . . , xn)− f(x1, . . . , xn)
ϵ

. (5)

When xi = a, ∂α
a

∂xα
i

f(x1, . . . , a, . . . , xn) = lim
xi→a+

∂α
a

∂xα
i

f(x1, . . . , xi, . . . , xn).

This conformable partial derivative is linear, and the product, quotient and chain rules are held,
like conformable derivative in [6].

It can also be stated the definition of conformable Jacobian matrix for x1 ∈ (a1,∞) and
x2 ∈ (a2,∞), being x = (x1, x2) and a = (a1, a2):

Definition 4. Let f and g be the coordinate functions of a vector valued function F : R2 −→ R2

with variables x1 > a1 and x2 > a2, being x = (x1, x2) and a = (a1, a2), such that the respective
partial derivatives exist and are continuous. The conformable Jacobian matrix is

Fα(1)
a (x) =


∂α

a1f

∂xα
1

∂α
a2f

∂xα
2

∂α
a1g

∂xα
1

∂α
a2g

∂xα
2

 =

(x1 − a1)1−α ∂f

∂x1
(x2 − a2)1−α ∂f

∂x2

(x1 − a1)1−α ∂g

∂x1
(x2 − a2)1−α ∂g

∂x2

 . (6)

This concept can also be directly extended to higher dimensions.
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Likewise in [7] (Theorem 4.1), we can get a new Taylor series, where the conformable derivatives
start from some point a = (a1, . . . , an) ∈ Rn distinct from another point b = (b1, . . . , bn) ∈ Rn where
they are being evaluated:

Theorem 1. Let F : Rn −→ Rn be an infinitely α-differentiable vector valued function, for
α ∈ (0, 1], around some point bi ∈ (ai,∞), ∀i = 1, . . . , n, being a = (a1, . . . , an) ∈ Rn and
b = (b1, . . . , bn) ∈ Rn. Then, F has the conformable Taylor power series

F (t) = F (b) + F
α(1)
a (b)
α

∆ + F
α(2)
a (b)
2!α2 ∆2 + · · · , (7)

being ∆ = H⊙α − L⊙α; H = t− a, L = b− a, where ⊙ is the Hadamard power.

In addition, in order to perform the convergence analysis, another concept has to be introduced.

Theorem 2. Let x, y ∈ Rn, r ∈ R, and be ⊙ the Hadamard product/power. The Newton’s binomial
theorem for fractional power and vector values is

(x+ y)⊙r =
∞∑

k=0

(
r

k

)
x⊙(r−k) ⊙ y⊙k, k ∈ {0} ∪ N, (8)

where the generalized binomial coefficient (see [9]) is(
r

k

)
= Γ(r + 1)
k!Γ(r − k + 1) , k ∈ {0} ∪ N. (9)

Now, we set the design of conformable Newton-type method for solving nonlinear systems.

2.2 Design and convergence analysis

As we can see in [5], let us consider the approximation of a function F with the Taylor power series
(7) up to order one, evaluated at the solution x̄ of F (x) = 0̂:

F (x) ≈ F (x̄) + F
α(1)
a (x̄)
α

∆. (10)

Since F (x̄) = 0̂, and ∆ = H⊙α − L⊙α; H = x− a, L = x̄− a,

F (x) ≈ F
α(1)
a (x̄)
α

[
(x− a)⊙α − (x̄− a)⊙α] . (11)

Multiplying both sides of (11), by α
[
F

α(1)
a (x̄)

]−1
from the left,

α
[
Fα(1)

a (x̄)
]−1

F (x) ≈ (x− a)⊙α − (x̄− a)⊙α. (12)

From (x̄− a)⊙α, we can get x̄, so

x̄ ≈ a+
(

(x− a)⊙α − α
[
Fα(1)

a (x̄)
]−1

F (x)
)⊙1/α

. (13)

Considering iterates x(k) and x(k+1) as approximations of solution x̄, we get the conformable
Newton-type method for nonlinear systems:

x(k+1) = a+
[(
x(k) − a

)⊙α
− α

[
Fα(1)

a

(
x(k)

)]−1
F
(
x(k)

)]⊙1/α

, k = 0, 1, 2, . . . (14)

Next result shows that quadratic convergence of vectorial Newton-type method (14) by using
the conformable Taylor series (7) is obtained.
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Theorem 3. Let F : D ⊆ Rn −→ Rn be a continuous function in an open convex set D ⊆ Rn

holding a zero x̄ ∈ Rn of a vector valued function F (x). Let Fα(1)
a (x) be the conformable Jacobian

matrix of F starting at a ∈ Rn, of order α, for any α ∈ (0, 1]. Let us suppose that Fα(1)
a (x) is

continuous and non-singular at x̄. If an starting point x(0) ∈ Rn is quite close to x̄, then the local
order of convergence of conformable vectorial Newton’s method

x(k+1) = a+
[(
x(k) − a

)⊙α
− α

[
Fα(1)

a

(
x(k)

)]−1
F
(
x(k)

)]⊙1/α

, k = 0, 1, 2, . . .

is at least 2, and the error equation is

e(k+1) = αC2(x̄− a)⊙(α−1)e(k)2 +O
(
e(k)3)

, (15)

where Cj = 1
j!αj−1

[
F

α(1)
a (x̄)

]−1
F

α(j)
a (x̄), j = 2, 3, 4, . . . , such that a < x(k), ∀k.

Next, some numerical tests with some nonlinear systems of equations are made. We comment
that, in all tests, a comparison with classical Newton-Raphson’s method (when α = 1) is being
made. The dependence on initial estimates of both methods is also analyzed.

3 Results

The numerical tests are made by using Matlab R2020a with double precision arithmetic, ∥F (x(k+1))∥ <
10−8 or ∥x(k+1) − x(k)∥ < 10−8 as stopping criterium, and a maximum of 500 iterations. We used
a = (a1, . . . , an) = (−10, . . . ,−10) for each test to be sure that ai < xi, ∀i = 1, . . . , n, as seen in
Definitions 3 and 4, and a < x(k), ∀k, according to Theorem 3. We also use the Approximated
Computational Order of Convergence (ACOC)

ACOC = ln(∥x(k+1) − x(k)∥/∥x(k) − x(k−1)∥)
ln(∥x(k) − x(k−1)∥/∥x(k−1) − x(k−2)∥)

, k = 0, 1, 2, . . . ,

introduced in [10], to verify the theoretical order of convergence is got in practice, and α ∈ (0, 1].
Our test function to vector values is F (x, y) = (x2−2x−y+0.5, x2+4y2−4)T with real and com-

plex roots x̄1 ≈ (−0.2222, 0.9938)T , x̄2 ≈ (1.9007, 0.3112)T and x̄3 ≈ (1.1608− 0.6545i,−0.9025−
0.2104i)T . The conformable Jacobian matrix of F (x, y) is

Fα(1)
a (x, y) =

(
(x− a1)1−α(2x− 2) (y − a2)1−α(−1)

(x− a1)1−α(2x) (y − a2)1−α(8y)

)
,

where a = (a1, a2) = (−10,−10).

α x̄ ∥F (x(k+1))∥ ∥x(k+1) − x(k)∥ iter ACOC
1 - - - > 500 -

0.9 x̄3 5.40× 10−11 5.86× 10−6 54 2.00
0.8 x̄3 9.77× 10−9 7.87× 10−5 86 2.00
0.7 x̄3 2.27× 10−14 4.75× 10−8 36 1.98
0.6 x̄2 2.95× 10−10 1.16× 10−5 23 2.05
0.5 x̄2 4.89× 10−10 1.48× 10−5 122 2.05
0.4 x̄2 5.34× 10−13 5.01× 10−7 86 2.04
0.3 x̄2 4.94× 10−10 1.79× 10−5 35 2.03
0.2 x̄2 1.16× 10−14 6.76× 10−8 21 1.98
0.1 x̄2 2.16× 10−10 1.08× 10−5 39 2.06

Table 1: Results for F (x, y) = 0̂ with initial estimation x(0) = (−2,−1.5)T
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α x̄ ∥F (x(k+1))∥ ∥x(k+1) − x(k)∥ iter ACOC
1 x̄1 8.31× 10−11 7.29× 10−6 5 2.00

0.9 x̄1 5.94× 10−11 6.15× 10−6 5 2.00
0.8 x̄1 4.21× 10−11 5.17× 10−6 5 2.00
0.7 x̄1 2.97× 10−11 4.33× 10−6 5 2.00
0.6 x̄1 2.09× 10−11 3.62× 10−6 5 2.00
0.5 x̄1 1.45× 10−11 3.01× 10−6 5 2.00
0.4 x̄1 1.01× 10−11 2.49× 10−6 5 2.00
0.3 x̄1 6.97× 10−12 2.06× 10−6 5 2.00
0.2 x̄1 4.80× 10−12 1.69× 10−6 5 2.00
0.1 x̄1 3.30× 10−12 1.39× 10−6 5 2.00

Table 2: Results for F (x, y) = 0̂ with initial estimation x(0) = (−2, 1.5)T

In Table 1, we can see for F (x, y) that classical Newton’s method (when α = 1) does not get any
solution in 500 iterations, while conformable vectorial Newton’s procedure converges. We observe
also that ACOC may be even slightly greater than 2 when α ̸= 1. Note also that complex root x̄3
is found with real initial estimate.

In Table 2, we can observe for F (x, y), with a different initial estimation, that classical Newton’s
scheme and conformable Newton’s method have a similar behaviour, regarding the number of
iterations and the ACOC. Once again, the quadratic convergence of conformable Newton’s method
is held for any α ∈ (0, 1].

In order to study the stability of conformable vectorial Newton’s method tested above, we
analyze the dependence on initial estimates by observing convergence planes, which is defined
in [11], and is also employed in [3–5].

For constructing convergence planes we consider from initial estimates (x0, y0), the points x0 in
the horizontal axis, and values of α ∈ (0, 1] in the vertical axis. Each one of 2 planes in the figure is
performing a distinct value of y0 from initial estimates (x0, y0). Each color in the planes represents
different solutions, and when it is painted in black no solution was found in 500 iterations. Each
plane is generated by a 400×400 grid, with a maximum of 500 iterations, and a tolerance of 0.001.

In Figure 1, it can be observed for F (x, y) that in (b) is obtained almost 100% of convergence,
while in (a) is obtained around 86% of convergence. This method converges to all roots for each
case, even to complex root with real initial estimates.

We can also see, in general, it is possible to get several solutions with the same initial estimate
by choosing different values of α.

4 Conclusions

The first conformable fractional Newton-type iterative method for solving nonlinear systems has
been designed. We have introduced the analytical implements needed for the construction of this
method. The convergence analysis has been made, and quadratic convergence of classical Newton’s
method is held. Numerical tests have been made, and the dependence on initial estimates was ana-
lyzed, sustaining the theory. We could see that conformable vectorial Newton-type method shows,
in some cases, a better numerical behaviour than classical one in terms of number of iterations,
ACOC, and wideness of basins of attractions of the roots. We could also see that complex roots
may be found with real initial estimates, and several roots may be obtained with the same initial
estimate by choosing distinct values for α.
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(a) y0 = −1.5, 85.99% of convergence
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(b) y0 = 1.5, 99.62% of convergence

Figure 1: Convergence planes of F (x, y). x̄1: green, x̄2: red, x̄3: blue
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