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1 Introduction

This paper presents a way to get a Hamiltonian function for a coupled first order differential
equation system whose independent variable is time or, as it is called shortly in the literature
about the subject, a dynamical system. In addition, the Hamiltonian is also first order in momenta,
oppositely to physics dynamics, where the Hamiltonian is second order respect the momenta (note
that the corresponding dynamical systems in physics are, by the Newton laws of Nature, coupled
second order differential equation systems). Besides, while the temporal variables involved in
physics are of spatial nature, in the dynamical systems here considered the temporal variables
involved are abstract, i.e., they are of arbitrary nature, such as, for instance, biological populations,
chemical components, or any other variables related with social or behavioural nature. The way
used to get the Hamiltonian is that provided by Dirac by his Generalized Hamiltonian Dynamics
method [1]. This method is applied for those systems for which the Hamiltonian cannot be provided
from the Lagrangian function for two cases: either for those where the generalized velocities cannot
be isolated as a function of the momenta, or for those with singular Hamiltonians, for which
the momenta vanish. The second case is the corresponding to this paper. This method was
developed by Dirac for fields in order to get the Hamiltonian of the electromagnetic field, which
was also singular. Note that here, at difference of fields, which are infinite-dimensional systems, the
system dimension is finite and equal to the number of the first order differential equations involved
in the model studied. There are other approaches different to Dirac’s method, such as Hava’s
approach [2] or Pontryagin’s approach [3]. Hava’s approach [2] focuses on the Lagrangian to discuss
possible conservation laws, and Pontryagin’s approach [3] uses a different Hamiltonian way steered
to optimize dynamical functions, although Dirac’s and Pontryagin’s results are mathematically
similar but with different objectives. In fact, the real Dirac’s objective is to get the Schrödinger
equation from the Hamiltonian. Different authors have followed Pontryagin’s method [3] to get
the same quantum approach objective [4, 5] in other contexts. However, this paper objective does
not consider the quantum approach, which is so considered in [6, 7]. In addition, the equivalence
between Hava’s and Dirac’s approach is addressed in [8] and also more recently in [6, 7]. Section 2
is devoted to get the Hamiltonian following Dirac’s approach [1]. Section 3 is devoted to use the
formalism presented to get a General System Thermodynamics (GST), while Section 4 points out
how this formalism could reproduce the classical reversible Thermodynamics as a particular case
of the GST. Section 5 is devoted to the paper discussion and the possible future applications of the
formalism.
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2 Getting the Hamiltonian

Let qk (t), k = 1, 2, . . . , n, the abstract variables of a dynamical system, with q = (q1, q2, . . . , qn):

q̇k (t) = fk (t, q) ; k = 1, 2, . . . , n. (1)

The problem of minimum action principle consists in finding an integral action Λ (t):

Λ (t) =

∫ t2

t1

L (t, q, q̇) dt (2)

with arbitrary t1 and t2 times, being L (t, q, q̇) the Lagrangian, such that Λ (t) be a minimum, i.e.,
δΛ (t) = 0. This process of minimization provides the Euler-Lagrange equations:

d

dt

(

∂L

∂q̇k

)

−
∂L

∂qk

= 0; k = 1, 2, . . . , n. (3)

Eq. (3) must reproduce the system of Eq. 1. This problem is known in the scientific literature as
the Lagrange inverse problem [2].

As Dirac [1] and Havas [2] argue, the only possibility to solve the inverse Lagrange problem for
Eq. 1 is as a linear combination for the Lagrangian such as the following:

L (t, q, q̇) =
n

∑

j=1

gj (t, q) q̇j − h (t, q) . (4)

In Eq. (4) the gj (t, q) and h (t, q) functions are unknown functions by the moment. Note that the
momenta pk can be defined from Eq. (4) as:

pk =
∂L

∂q̇k

= gk (t, q) (5)

As it is well known, the Hamiltonian (H0 (t, q, p)) is defined from the Lagrangian as:

H0 (t, q, p) =
n

∑

j=1

pj q̇j − L (t, q, q̇) = h (t, q) (6)

Note that the Hamiltonian H0 (t, q, p) of Eq. 6 is singular due to it does not depend on the
momenta. Dirac’s method [1] solves the problem by the steps described in the beginning. The first
step is defining the primary constraints φj (t, q, p) from Eq. 5:

φj (t, q, p) = pj − gj (t, q) = 0; j = 1, 2, . . . , n (7)

that are added to the Hamiltonian Eq. 6 by the λj (t, q, p) unknown multiplying functions as:

H (t, q, p) = H0 (t, q, p) +
n

∑

j=1

λj (t, q, p) φj (t, q, p) = h (t, q) +
n

∑

j=1

λj (t, q, p) φj (t, q, p) (8)

Note that the primary constraints are non-zero valued inside the Hamiltonian. By considering Eq.
7, the Hamilton equations for the new Hamiltonian H (t, q, p) are:

q̇k = ∂H(t,q,p)
∂pk

= λk(t, q, p)

ṗk = −
∂H(t,q,p)

∂qk
= −

∂h(t,q)
∂qk

+ j =
∑n

j=1 λj(t, q, p)
∂gj(t,q)

∂qk







; k = 1, 2, . . . , n (9)
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The first result obtained by comparing Eqs. 1 and 9 is that:

λk (t, q, p) = fk (t, q) ; k = 1, 2, . . . , n (10)

Note that in Eq. 9 the zero value of the primary constraints outside the Hamiltonian has been
used. In order to get the gj (t, q) and h (t, q) functions of the formalism, the functions primary
constants φj (t, q, p) must hold the consistency conditions, i.e., φ̇l = 0(l = 1, 2, . . . , n), that is:

φ̇l (t, q, p) =
∂φl (t, q, p)

∂t
+

n
∑

k=1

∂φl (t, q, p)

∂qk

q̇k +
n

∑

k=1

∂φl (t, q, p)

∂pk

ṗk = 0; l = 1, 2, . . . , n (11)

The substitution of Eqs. 9 and 10 in Eq. 11 provides, taking into account the zero value of the
primary constraints, and after some calculations:

−
∂gl (t, q)

∂t
−

∂h (t, q)

∂ql

+
n

∑

k=1

(

−
∂gl (t, q)

∂qk

+
∂gk (t, q)

∂ql

)

fk (t, q) = 0; l = 1, 2, . . . , n (12)

In Eq. 12 the following Fkl (t, q) functions can be defined:

Fkl (t, q) = −F lk (t, q) = −
∂gl (t, q)

∂qk

+
∂gk (t, q)

∂ql

; k, l = 1, 2, . . . , n (13)

Eq. 12 can be rewritten by using Eq. 13:

n
∑

k=1

Flk (t, q) fk (t, q) = −
∂gl (t, q)

∂t
−

∂h (t, q)

∂ql

; l = 1, 2, . . . , n (14)

In order to get an equation for the Flk (t, q) functions without the h (t, q) function, such as in
Eq. 14, the following steps are followed: 1. Take the derivative respect an arbitrary qj in Eq. 14;
2. Rewrite Eq. 14 by replacing l by j; 3. Take the derivative respect qj in the rewritten equation;
4. Subtract both equations. Taking into account the equality of both h (t, q) crossed derivatives,
the result is:

∂F jl (t, q)

∂t
=

∂

∂qj

(

n
∑

k=1

Flk (t, q) fk (t, q)

)

−
∂

∂ql

(Fjk (t, q) fk (t, q)) ; j, l = 1, 2, . . . , n (15)

Therefore, the process to get the gj (t, q) and h (t, q) functions of the Hamiltonian given by Eq. 8
is: 1. Get the Flk (t, q) functions by Eq. 15; 2. Substitute these results in Eq. 13 to get the gj (t, q)
functions; 3. Substitute these results in Eq. 14 to get the h (t, q) function. Take into account in
this process that Fll (t, q) = 0 and that Fkl (t, q) = −F lk (t, q).

However, two different classes of solutions must be considered depending on the system dimen-
sion n. This is due to the antisymmetric definition of the Flk (t, q) functions. On the one hand, if
n is even, then, in general det (Flk (t, q)) Ó= 0. In this case Eqs. 14 or 15 are independent. On the
other hand, if n is odd, then always det (Flk (t, q)) = 0, and being det (Flk (t, q)) Ó= 0 for the n − 1
even dimension, one of the Eq. 14 is dependent on the others, which makes that some Flk (t, q)
functions become undetermined parameters from which the rest ones depend on.

Actually, this last case always happens due to Eq. 14 is a coupled set of n equations and
n + 1 unknown variables: gl (t, q) (l = 1, 2, . . . , n) and h (t, q). For instance, let the special one-
dimensional (n = 1) odd case be. The consistence conditions that provide Eq. 14 become:

η (t, q) :=
∂g (t, q)

∂t
+

∂h (t, q)

∂q
= 0 (16)
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Note that Eq. 16 does not provide the λ (t, q, p) = f (t, q) multiplying function. When this
case happens, the Dirac’s method [1] prescription is to consider the equations such as Eq. 16 as
secondary constraints. In order to get the multiplying function in an equation, the time derivative
is taken in Eq. 16:

η̇ (t, q) =
∂η (t, q, p)

∂t
+

∂η (t, q, p)

∂q
q̇ +

∂η (t, q, p)

∂p
ṗ = 0 (17)

Taking into account the Hamilton equations Eq. 9, as for the primary constraints, Eq. 17 becomes,
after some calculations:

∂2g (t, q)

∂t2
+

∂2h (t, q)

∂t ∂q
+ f (t, q)

(

∂2g (t, q)

∂q ∂t
+

∂2h (t, q)

∂q2

)

= 0 (18)

Note in Eq. 18 that just an equation is provided for two unknown variables, g (t, q) and h (t, q),
then one of the two variables become undetermined.

Now, with all the formalism background developed, the gj (t, q) (j = 1, 2, . . . , n) and h (t, q)
functions can be found, and the Hamiltonian can be written from Eqs. 7 and 8, as:

H (t, q, p) =
n

∑

j=1

fj (t, q) (pj − gj (t, q)) + h (t, q) =

=
n

∑

j=1

fj(t, q) · pj −
n

∑

j=1

fj(t, q) · gj(t, q) + h(t, q) (19)

Observe in addition that, if the dynamical model Eq. 1 is autonomous, thus fk (t, q) = fk (q)
and both gj (t, q) = gj (q) (j = 1, 2, . . . , n) and h (t, q) = h (q) can be found as time independent
functions, thus the Hamiltonian H (t, q, p) = H (q, p) and it is a constant of the dynamics, then it
can be identified with the system energy E, that is:

E =
n

∑

j=1

fj (q) (pj − gj(q)) + h (q) =
n

∑

j=1

fj(q) · pj −
n

∑

j=1

fj(q) · gj(q) + h(q) (20)

3 A proposal of a General System Thermodynamics (GST)

A first theoretical application of the Hamiltonian formalism developed is to state a general or
abstract theory of systems, called here as a System General Thermodynamics (GST), by introducing
some new postulates. The First Postulate is: identify the Hamiltonian of Eq. 19 as the

system Internal Energy. The Hamilton equations will correspond to the state equations. Note
that time is indispensable in this formalism, unlikely to the classical quasi-static evolution of
Thermodynamics [9]. The Second Postulate is: assume the two following equations:

gk (t, q) =
∂χ (t, q)

∂qk

; k = 1, 2, . . . , n (21)

h (t, q) = −
∂χ (t, q)

∂t
(22)

From Eqs. 21 and 22, Eq. 14 hold identically (even for the case n = 1 given by Eq. 16), being
χ (t, q) an arbitrary function, and Eq. 15 and 18 are unnecessary to compute gk (t, q) and h (t, q).
Therefore, the primary constraints of Eq. 7 become:

φ̄j (t, q, p) = pj −
∂χ (t, q)

∂qj
= 0; j = 1, 2, . . . , n (23)
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and the Hamiltonian (Eq. 19) becomes:

H (t, q, p)
n

∑

j=1

fj(t, q) · φ̄j(t, q, p)−
∂χ(t, q)

∂t
=

n
∑

j=1

fj(t, q) · pj −
n

∑

j=1

∂χ(t, q)

∂qj
fj(t, q)−

∂χ(t, q)

∂t
(24)

The corresponding Hamilton equations to Eq. 24 are:

q̇k =
∂H(t,q,p)

∂pk
= fk(t, q)

pk = −
∂H(t,q,p)

∂qk

∑n
j=1 fj(t, q)∂2χ(t,q)

∂qk∂qj
+ ∂2χ(t,q)

∂qk∂t
;







; k = 1, 2, . . . , n (25)

and that the time derivative of the Hamiltonian is:

dH (t, q, p)

dt
=

∂H (t, q, p)

∂t
=

∂2χ (t, q)

∂t2
−

n
∑

k=1

fk (t, q)
∂2χ (t, q)

∂qk ∂t
(26)

Note in Eq. 26, as it is well-known, that the fact that the Hamiltonian total time derivative be equal
to its partial time derivative is a general property of the Hamiltonian systems. On the other hand,
χ (t, q) can be fixed by the Third Postulate, which introduces in the formalism the generalized
temperature T (t, q) and the generalized Entropy and S (t, q) in the Hamiltonian (Eq. 24) as:

n
∑

j=1

∂χ (t, q)

∂qj
fj (t, q) +

∂χ (t, q)

∂t
= −T (t, q) · St, q (27)

Then, this Hamiltonian of Eq. 24 can also be written as:

H (t, q, p)
n

∑

j=1

fj(t, q) · pj + T (t, q) · S(t, q) (28)

that mathematically looks like much more to the Internal Energy of the classical Thermodynamics.
The Fourth Postulate is a generalized Gibbs-Duhem equation [9], written as:

n
∑

k=1

fk(t, q) · dpk + S(t, q) · dT (t, q) = 0 (29)

Dividing Eq. 29 by dt, developing the total time derivative of T (t, q) and making use subsequently
of Eq. 25, the generalized Gibbs-Duhem equation becomes:

S (t, q)
∂T (t, q)

∂t
+S (t, q)

n
∑

k=1

fk (t, q)
∂T (t, q)

∂qk

= −
n

∑

k=1

fk (t, q)





n
∑

j=1

fj (t, q)
∂2χ (t, q)

∂qk ∂qj
+

∂2χ (t, q)

∂qk ∂t





(30)
Taking the differential of H (t, q, p) in Eq. 28 and considering the generalized Gibbs-Duhem equa-
tion Eq. 29:

dH (t, q, p)
n

∑

k=1

dpk · dfk(t, q) + T (t, q) · dS(t, q) (31)

Dividing Eq. 31 by dt, developing the total time derivative of S (t, q) and making use subsequently
of Eqs. 23, 25 and 26, Eq. 31 becomes:

T (t, q)
∂S (t, q)

∂t
+ T (t, q)

n
∑

k=1

fk (t, q)
∂S (t, q)

∂qk

=
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= −
∂2χ (t, q)

∂t2
−

n
∑

k=1

fk (t, q)
∂2χ (t, q)

∂qk ∂t
−

n
∑

k=1

∂χ (t, q)

∂qk





∂fk (t, q)

∂t
+

n
∑

j=1

∂fk (t, q)

∂qj
fj (t, q)



 (32)

Eqs. (27), (30) and (32) define a system of three partial differential equations for χ (t, q), T (t, q)
and S (t, q). However, the χ (t, q) function can be uncoupled by taking the total time derivative
of T (t, q) · St, q in Eq. 27, developing it by its partial derivatives, and comparing the result with
Eqs. 30 and 32. This process provides the following equation for the χ (t, q) function:

n
∑

k=1

fk (t, q)
∂2χ (t, q)

∂qk ∂t
= 0 (33)

Eq. 33 allows computing the χ (t, q) function, and at once simplifying Eqs. 30 and 32:

S (t, q)
∂T (t, q)

∂t
+ S (t, q)

n
∑

k=1

fk (t, q)
∂T (t, q)

∂qk

= −
n

∑

k=1

fk (t, q)





n
∑

j=1

fj (t, q)
∂2χ (t, q)

∂qk ∂qj



 (34)

T (t, q)
∂S (t, q)

∂t
+ T (t, q)

n
∑

k=1

fk (t, q)
∂S (t, q)

∂qk

=

= −
∂2χ (t, q)

∂t2
−

n
∑

k=1

∂χ (t, q)

∂qk





∂fk (t, q)

∂t
+

n
∑

j=1

∂fk (t, q)

∂qj
fj (t, q)



 (35)

In conclusion, Eqs. (33), (34) and (35) are the base to compute the χ (t, q), T (t, q) and S (t, q)
functions.

4 Reversible Thermodynamics is a particular case of the GST?

In order to answer the question of this section, the non-explicit time dependence of Hamiltonian Eq.
28 is assumed. Therefore: (a) the system Eq. 1 is autonomous (fk (t, q) = fk (q) ; k = 1, 2, . . . , n);
(b) Temperature holds T = T (q) and Entropy holds S = S (q). In addition, it is assumed that
there exists at least one steady state qe = (qe1, qe2, . . . , qen), such that fk (qe) = 0; k = 1, 2, . . . , n.
Expanding at first order the fk (q) functions and substituting them in the Hamiltonian Eq. 28:

H (q, p)
n

∑

j=1

(

n
∑

l=1

νjl (ql − qel)

)

· pj + T (q) · S(q) =

=
n

∑

l=1





n
∑

j=1

νjl · pj



 (ql − qel) + T (q) · S(q) (36)

In Eq. 36: νjl =
∂fj

∂ql
(qe). If the following canonical transformation is done:

Ql = ql − qel

Pl =
∑n

j=1 νjl · pj

}

; l = 1, 2, . . . , n (37)

Then, the Hamiltonian Eq. 36 becomes:

H (Q, P) =
n

∑

l=1

Pl · Ql + T (Q) · S(Q) (38)

Eq. 38 is then similar to that corresponding to a reversible thermodynamics.
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5 Conclusions

Note that all the formalism presented is an attempt to develop a complete classical analytical

dynamics or mechanics for dynamical systems, here represented as coupled first order differential
equation systems.

On the one hand, the formalism is called classical versus the quantum possible development
from the Hamiltonian. In fact, a first attempt to bring the formalism to the quantum context is
done in [7]. On the other hand, it is a first attempt because more background can be developed,
such as the Hamilton-Jacobi equation, or the corresponding canonical transformations.

It is important to emphasize that the formalism is completely open to solve many theoretical
problems as well as its applications. For instance, about the relationship with the physical formal-
ism, already faced by Havas in [2] from a Lagrangian perspective, in which the energy conservation
should be also faced from a Hamiltonian perspective. This is important because a second order
differential equation formalism can be reduced to a first order formalism by introducing the veloc-
ities as new variables. The same happens with the relationship of both formalisms in the quantum
context [7]: the probability is conserved but the Hamilton-Jacobi equation does not present any
stochastic further term.

Another problem faced from the presented formalism is, as pointed out already in [6], that the
Hamiltonian can be reinterpreted as a nonlinear version of the Thermodynamics Internal Energy,
expressed by the second Thermodynamics postulate, identifying the Internal Energy with the
Hamiltonian. In fact this formalism goes beyond, because from the Hamiltonian function, an
attempt to develop a General System Thermodynamics (GST) is presented. Observe that the
GST presented is nonlinear and a comparing with the classical Thermodynamics referred to quasi-
static or reversible systems. Thus, the irreversible systems [9] should be described by the GST.
Note that, at this point, Section 4 shows how a Hamiltonian that does not depend explicitly on
time in the linear context about a steady state reproduces the classical reversible Internal Energy.
However, both linear and nonlinear general approaches should reproduce for Eqs. 34 and 35 the
third Thermodynamics postulate, i.e., T (t, q) > 0, while any sign of the Entropy time derivative
(

Ṡ (t, q) > 0, Ṡ (t, q) = 0 or Ṡ (t, q) < 0
)

should inform us whether the system is tending to order

or to disorder. The most interesting application in this context is that related with the dynamics of
the chemical reactions, due to it is modelled with coupled first order differential equation systems [9].
It could be a way to state the whished objective of physics to unify dynamics and thermodynamics.
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