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Pivoting in ISM factorizations

J. Mas>! and J. Marin®

(b) Universitat Politecnica de Valencia,
Camino de Vera s/n, 46022 Valencia, Spain.
(§) Universitat Politecnica de Valencia,
Camino de Vera s/n, 46022 Valencia, Spain.

1 Introduction

In this work we study pivoting techniques for the balanced incomplete factorization preconditioner
(BIF) [7], for solving ill-conditioned sparse nonsingular linear systems of equations of the form

Az =b, Ac RV beR" (1)

using iterative Krylov methods. There are different pivoting techniques being partial, complete
and rook pivoting the more important ones [5,6]. Basically, at a given step of Gaussian elimination
pivoting looks for an element sufficiently large in magnitude in the remaining submatrix, the
Schur complement, to use it as the next pivot. These techniques involve row and possibly column
permutations of the matrix that supposes a computational overhead. In this sense, partial pivoting
is the cheapest pivoting technique, since it looks only in the first column of the Schur complement.
Close behind is rook pivoting [6], it selects a pivot with maximum absolute value in his row and
column, moving first to the biggest entry in magnitude in the first column, then it moves in the
corresponding row, and then again in the column, and so on until the requirement is fulfilled.
Finally, complete pivoting is the most expensive one, but guarantees the largest pivot at any stage
however because the pivot is the entry of biggest magnitude in all the Schur complement.

BIF preconditioning is based on the incomplete Sherman-Morrison decomposition, ISM. The
ISM decomposition uses recursion formulas derived from the Sherman-Morrison formula and was
introduced in [7] as a method for computing approximate inverse preconditioners. In [8] and [9]
the authors show that, applying the ISM algorithm to A and AT, it is possible to compute an
incomplete LDU factorization. Moreover, the inverse factors are also available and they influence
the computation of the LDU factorization, and vice versa. In addition, the availability of the direct
and inverse factors is exploited to implement norm based dropping rules [3]. The numerical results
show that BIF is a robust algorithm comparable to other techniques as ILU(7) [1], ILUT [10]
and RIF [2]. Nevertheless, as mentioned above, computing stable (incomplete) factorizations for
ill-conditioned problems still require the application of pivoting techniques. Here we show that
with a slight modification of the ISM recursion formulas it is possible to incoporate pivoting to
BIF.

limasm@imm.upv.es
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2 The ISM decomposition

The ISM decomposition computes approximate inverse preconditioners since it obtains a factoriza-
tion of the (shifted) inverse matrix of A, as

s — At =5"2ZD;1V], (2)

where s > 0 is a given scalar and the columns of the matrices Z and Vy are computed using the
recursion formulas

k—1 UTek k—1 yTz-
. T2

Zm=ep— Y, ——z and Vy=yp— Y i, (3)
i=1 ST i=1 T

for k =1,2,...,n. In (3) the vector ey (¢¥) denotes the k—th column (row) of the identity matrix,

yr = (a* — se¥)T where a* denotes the k-th row of A, and

rk:1+ygzk/s:1+vgek/s (4)

are the entries of the diagonal matrix D;.
It was proved in [8] that for symmetric matrices the factorization A = LDL” and the decom-
position (2) satisfy
D=sD,, Z=LT V,=LD-sL".

The algorithm to get the decomposition of A uses explicitly the computed factors of A=t that
is, A~! is implicitly factorized at the same time. Therefore, to get the LU factorization for general
matrices it is necessary to compute also the ISM decomposition of AT that gives as result

Z=LT and V,=LD-sU"},

where we have denoted with tilde the factors of the ISM decomposition of A” .

It is well known that a nonsingular matrix A has an LU factorization if there exists a lower unit
triangular matrix L and an upper triangular matrix U, such that A = LU. The LDU factorization
is obtained from the LU factorization by taking D as the diagonal matrix whose entries are the
diagonal entries of U, and applying its inverse to U as D~'U. Both factorizations are closely related
with Gaussian elimination. Note that not all the nonsingular matrices have LU factorization since
a zero pivot can be found during the Gaussian elimination process. However it is always possible
to permute some rows, and maybe some columns of the matrix in such a way that the permuted
matrix PAQ has LU factorization. Here P and () are permutation matrices acting on rows and
columns of A, respectively.

The idea is that it is possible to find permutation matrices P and @ such that at the k-th step
of the Gaussian elimination process one obtains the matrix

L11 O] [Ull U12 ]

where the Schur complement S k) = Agy — A21A2_21A12 is nonsingular and its first diagonal element
is nonzero. Then, the permuted matrix PAQ is factorized as

A A L1 O Ui Upe
PAQ = _ .
@ [ Ag1 Az ] [ Loi Lo ] [ 0 Uy ]

Note that in practice, the permutation matrices P and ) are not known in advance and therefore
LU factorization algorithms determine which rows and columns must be interchanged during the
elimination process.

(6)
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3 Right looking ISM algorithm

To implement pivoting in the ISM decomposition it is necessary to know the Schur complement of
the LU factorization. To accomplish that the vectors z; and v, must be computed in a different
way. Instead of computing only one pair of vectors in the k-th step of the algorithm according to
equations (3), the modification consist in updating also the remaining vectors, from k + 1 to n.
That is, the right part of the matrices Z and V are updated in each step. The following MATLAB
code implements the new right looking version of ISM.

Algorithm 1 The ISM right looking algorithm
function [Z, V, D] = ismrl(A)

= size(A,1);

= (A-eye(n))’;

eye(n);

= A’-eye(n);

= zeros(n,1);

for k=1:n-1

D(k) = 1+V(k,k);

for 1 = k+1:n

O < N~ B
I

Z(:,1) = 2(:,1) - V(1,k)/D(R)*Z(:,k);

V(:,1) = V(:,1) - (YC,1)°*Z(C:,k))/DR)*V(: k) ;
end

end

D(n)=1+V(n,n);

The next results show that the Schur complement S*) is available from the matrix V. We
denote by V2(2k ) the (n — k) x (n — k) submatrix of V' in Algorithm 1 after step k, with rows and
columns with indexes in {k +1,...,n}.

Theorem 12. If A is a nonsingular matriz, then at the k-th step of the right looking ISM algorithm
1

v = s®" (7)
Corollary 2. If the right looking algorithm is applied to AT then

o (k
2(2) _ gk g

To introduce pivoting strategies the relation
T
should be taken into account. The new pivot is looked for into the submatrix VQ(Qk ) 4+ T that
corresponds to the transpose of the same submatrix in A®) in Gaussian elimination. Thus, in
partial pivoting if two columns k and p > k are permuted at step k in matrix V®) | the rows k and
p should be permuted in A.
Also note that the pivoting strategy should be decided looking into the Schur complement

contained in Vs, or that in Vj, but not both. In contrast, for complete pivoting it is clear that Vj
or Vi produce the same pivot in exact arithmetic so any of them or both may be used.
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Table 1: Test problems

Matrix n nz cond(A) Application
adder_dcop_06 1,813 11,224 1.1-10'2  circuit simulation matrix
adder_dcop_19 1,813 11,224 5.9-10''  circuit simulation matrix
oscil_-dcop-01 1,813 11,224 5.9-10'2  circuit simulation problem
oscil_dcop_57 1,813 11,224 1.4-10%'  circuit simulation problem
radfrl 1,048 13,299 5.9-10' chemical process separation

4 Numerical experiments

In this section we report the results of some numerical experiments with a set of matrices from
The Univesity of Florida Sparse Matrix Collection [4]. The matrices are listed in Table 1 where
their size, number of nonzeros, condition number and application are indicated. They correspond
to very ill-conditioned and highly indefinite problems for which Gaussian elimination without piv-
oting fails to compute good quality L and U factors, so the same is expected to be the case for
incomplete LU factorizations. Partial, rook and complete pivoting techniques have been tested.
The experiments have been implemented and run in MATLAB R2022. As iterative solvers the
MATLAB implementation of full GMRES [11] and BiCGStab [12] were used. The iterations were
stopped when the initial residual was reduced by 8 orders of magnitude with a maximum number
of 1,000 iterations. The right hand side vector was computed such that the solution was the vector
of all ones. To compare the results obtained with BIF the problems were also solved with the
MATLAB’s incomplete LU preconditioner with partial pivoting, ILUTP.

The implementation of the BIF preconditioner is based on the algorithm described in [9] but
with the right looking modification described in Section 3. For simplicity, all the experiments
have been done with the the parameter s of the ISM decomposition equal to one. The algorithm
is implemented such that the ISM decompositions of A and AT are computed at the same time.
Therefore, accessing to A and AT simultaneously is needed. The pivot is choosen from the Schur
complement contained in V; rather than V,. We note that for complete pivoting the same pivot
could be obtained working either with Vi or V, but we choose working with Vj for simplicity.

In Table 2 the pivoting strategy is indicated with C, P and R for the complete, partial and
rook pivoting strategies, respectively. Density is the ratio between the number of nonzeros of
the preconditioner and the matrix. Column iter shows the number of iterations of the solver and
droptol is the tolerance used to drop elements in BIFP and ILUTP. The other columns are self
explanatory. To reduce the numbers in the tables, a blank space means that the value is the same
appearing in previous rows. For instance, in Table 2 the droptol value for BIFP was always 1076
and therefore it appears only in the first row. The same holds for the preconditioner densities
which are the same for GMRES and BiCSTAB and therefore only indicated once.

Next, we will comment on the results. We note that the matrices tested can not be solved
without pivoting with both BIFP and ILUTP preconditioners. Thus, pivoting is an essential tool
to gain robustness for these factorizations. From the University of Florida test matrices, Table 2,
we observe for the adder group that there are not big differences between the different pivoting
strategies for BIFP. Density is small, except for adder_dcop_-06. The same can be said for the
number of iterations spent by both iterative solvers. For the rest of matrices one can see that
BIFP with complete pivoting computes sparser preconditioners than partial and rook pivoting.
The iteration count does not present remarkable differences except for the oscil_dcop_01 matrix for
which GMRES with partial pivoting, although with larger nonzero density, doubles the number of
iterations.
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Finally, comparing the performance of BIFP with ILUTP we did not observed significative
differences, specially with the preconditioned BiCGStab method. We recall that ILUTP uses
partial pivoting and we observe that BIFP with this pivoting strategy performed closely in most
cases.

5 Conclusions

In this paper we have presented an improved version of the BIF preconditioner that incorporates
pivoting. The algorithm relies on a modification of the recursion formulas such that the Schur
complement of standard Gaussian elimination is available at each step of the factorization. Thus,
the application of different pivoting techniques, as for instance partial, rook and complete pivoting,
can be done in a straightforward maner. Incorporating pivoting turns out to be an important
step in order to achieve our initial goal of obtaining a more robust preconditioner since it is able
to solve very ill-conditioned and indefinite problems that it may not be possible to solve in other
way. The results of the numerical experiments with several matrices arising in different applications
confirm that BIF with pivoting is a robust algorithm. Partial, rook and complete pivoting has been
tested. Although complete pivoting very often produces sparser preconditioners with a competitive
iteration count, rook and partial pivoting perform also quite well. Taking into account that partial
and rook are less expensive from a computational point of view since they need less comparisons
in order to determine the pivot, these two techniques may be prefereable as default.
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Table 2: Test results for the University of Florida matrices

Matrix precond solver droptol piv  density iter
BIFP GMRES 0% C 1.76 4

P 1.81 3

R 2.92 4

adder_dcop_06 BiCGStab C 1
P 1

R 1

ILUTP GMRES 107 P 1.67 3

BiCGStab P 1

BIFP GMRES 107 C 0.69 3

P 0.94 3

R 0.72 3

adder_dcop_-19 BiCGStab C 2
P 1

R 2

ILUTP GMRES 1072 P 0.70 6

BiCGStab P 2

BIFP GMRES 1077 C 2.06 10

P 2.64 19

R 2.08 11

oscil_dcop_01 BiCGStab C 1
P 4

R 1

ILUTP GMRES 1072 P 2.70 3

BiCGStab P 1

BIFP GMRES 1071  C 2.31 11

0~ P 2.28 28

107 R 2.57 11

oscil_dcop_57 BiCGStab C 1
P 2

R 1

ILUTP GMRES 10716 P 2.74 11

BiCGStab P 1

BIFP GMRES 102 C 2.25 3

10° P 3.86 1

1072 R 2.70 2

radfrl BiCGStab C 9
P 3

R 8

ILUTP GMRES 1073 P 2.69 2

BiCGStab P 10
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