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Abstract
We introduce Europarl-ASR, a large speech and text corpus

of parliamentary debates including 1 300 hours of transcribed
speeches and 70 million tokens of text in English extracted from
European Parliament sessions. The training set is labelled with
the Parliament’s non-fully-verbatim official transcripts, time-
aligned. As verbatimness is critical for acoustic model training,
we also provide automatically noise-filtered and automatically
verbatimized transcripts of all speeches based on speech data
filtering and verbatimization techniques. Additionally, 18 hours
of transcribed speeches were manually verbatimized to build
reliable speaker-dependent and speaker-independent develop-
ment/test sets for streaming ASR benchmarking. The availabil-
ity of manual non-verbatim and verbatim transcripts for dev/test
speeches makes this corpus useful for the assessment of auto-
matic filtering and verbatimization techniques. This paper de-
scribes the corpus and its creation, and provides off-line and
streaming ASR baselines for both the speaker-dependent and
speaker-independent tasks using the three training transcription
sets. The corpus is publicly released under an open licence.
Index Terms: automatic speech recognition, speech corpus,
speech data filtering, speech data verbatimization.

1. Introduction
Significant advances in automatic speech recognition (ASR)
have recently taken place thanks to an increasing availability
of speech and text resources, both for supervised [1, 2, 3, 4] and
unsupervised [5, 6] learning. Nevertheless, there is still a lack
of publicly available, realistic ASR tasks addressing real-life
problems [7], especially for streaming ASR.

Moreover, optimal acoustic model training requires verba-
tim transcripts for speech data. However, available transcripts
are usually not truly verbatim, since human transcriptions are
typically rephrased and linguistically corrected. Thus, most ex-
isting web-sourced ASR corpora can only offer non-verbatim
transcripts [1, 2, 4, 6] for ASR training and evaluation. In this
scenario, the use of automatic speech data filtering and speech
data verbatimization techniques can be key in enhancing ASR
quality by making the data less noisy and closer to verbatim.
Nevertheless, progress on filtering and verbatimization has been
hindered by a lack of appropriate benchmarks.

In this context, some recent speech corpora have exploited
the vast multilingual speech and text data available from the

European Parliament (EP). In 2019, we released Europarl-
ST [4] as a multilingual corpus for speech translation train-
ing and benchmarking (which has already found some suc-
cess [8, 9, 10, 6]), based on EP speech data with transcrip-
tions and translations from 2008–2012 (including 186 h of En-
glish labelled speech data). This was followed by the recent re-
lease in March 2021 of the VoxPopuli multilingual speech cor-
pus [6] for unsupervised/semi-supervised learning and speech-
to-speech interpretation, which uses more EP speech and
text data, labelled and unlabelled, for more languages, from
1996–2020 (including 552 h of English labelled speech data).
Each corpus offers a predefined speaker-independent train-
ing/development/test partition based only on non-verbatim tran-
scripts. But there is more EP data to be exploited in more ways
by a corpus focusing on monolingual supervised ASR.

In this article, we introduce Europarl-ASR, a large corpus
of parliamentary debates for (streaming) ASR benchmarking
and speech data filtering/verbatimization extracted from EP ses-
sions from 1996–2020. This corpus was developed indepen-
dently by the authors from EP website-sourced data, beginning
in late 2019 concurrently with the creation of Europarl-ST.

In its initial release, the corpus is focused on English (EN)
monolingual annotated data. Its main highlights, which no other
EP-based corpus offers, are:

• 1 300 hours of EN transcribed speech data.
• 18 hours of EN speech data with both revised verbatim

and official non-verbatim transcriptions, split in 2 inde-
pendent dev/test partitions for 2 realistic ASR tasks (with
vs. without previous knowledge of the speaker).

• 3 full sets of timed transcriptions for the training data:
official non-verbatim, automatically noise-filtered, and
automatically verbatimized.

• 70 million tokens of EN text data.

The availability of manual verbatim transcriptions ensures reli-
able ASR benchmarking, and, together with the original non-
verbatim transcriptions, enables the assessment of filtering
and verbatimization techniques. Baseline ASR performances
are provided on both proposed tasks using the three training
transcription sets, considering not only off-line ASR but also
streaming ASR under strict low-latency requirements, as this
corpus is a genuine task for streaming ASR benchmarking.

The Europarl-ASR corpus is released under an open licence
at https://www.mllp.upv.es/europarl-asr.
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2. Data gathering and selection
The Europarl-ASR corpus is sourced from EP debates, which
consist of single-speaker speeches produced in turns, in any of
the 24 official EU languages. Also, oral interpretation in the
other 23 languages is carried out in real time by EP interpreters.

On May 2020, we crawled all publicly available data from
the so-called verbatim reports of proceedings in the EP site [11].
This included the speeches from all parliamentary sessions held
from July 1999 to May 2020. Within this period, however, there
are three kinds of data resources spanning different subperiods:

• Manual speech transcriptions: July 1999 to May 2020.
• Manual speech translations: July 1999 to Nov. 2012.
• Audio and video files, including original and dubbed au-

dio tracks: Sep. 2008 to May 2020.

In brief, the data gathering process resulted in roughly 2.9M
speeches from 1.2K parliamentary sessions, 4.9K raw hours
of accumulated original audio speech data from 2.5K different
speakers, and 108K extra raw hours of interpreted/dubbed audio
tracks1. Considering the original and dubbed audio tracks, each
language has in total about 4.9K raw hours.

As discussed in the introduction, the Europarl-ASR corpus
is (in its initial release) limited to English, which is the most re-
sourced language with 98K speeches, 38K of which come with
audio data, accounting for 1.3K raw hours of original English
audio. In this regard, as transcribed audio is provided at the
session’s agenda item level, we first proceeded with its segmen-
tation at speech level. To this end, we took advantage of the ap-
proximate manual start and end time stamps provided by the EP
for each speech, which were heuristically adjusted when needed
(e.g., to avoid overlapping between consecutive speeches). Al-
though the time boundaries obtained by adjusting EP start-end
time stamps may not be perfect for all speeches, we found that
they are fairly clean in most cases and, when not, they are gener-
ally realistic, unclear boundaries between consecutive speeches
that may need more in-depth subsequent processing.

After setting the start and end times for all speeches, a data
selection procedure was applied at the speech level on the basis
of character error rate (CER) scores. We automatically tran-
scribed all English speeches with audio data (38 086 files, 1 340
raw hours) using an in-house low-profile English ASR system,
based on a feed-forward DNN-HMM acoustic model trained
on 5.6K speech hours [4]. Then, CER scores were computed
for these automatic transcriptions against the official transcrip-
tions, and all speeches with CER scores greater than 50% were
discarded. This threshold was empirically defined by means
of manual inspection of randomly selected samples, aiming
to filter out noisy data (incorrect timestamps, unrelated/empty
transcriptions, etc.). As a result, we retained roughly 33 002
speeches and 1 263 raw hours, that is, 94% of the total initial au-
dio. In addition, we force-aligned all these speeches with their
corresponding transcriptions, using the aforementioned acous-
tic model, in order to obtain audio-to-word alignments.

Regarding text data, we gathered the manual transcriptions
of the 98K English speeches produced since July 1999, along
with the English translations of 180K other speeches produced
until November 2012, reaching 62.7M tokens in total.

3. Data partition and tasks
The EP is composed of 705 members (MEP) elected in the 27
Member States of the European Union every 5 years. Most EP

1We use K for “thousand” and M for “million” as abbreviations.

speeches (∼80%) are delivered by MEPs, though many (∼20%)
are given by guest speakers. For ASR, it is worth noting that
MEPs are known beforehand, at the beginning of each parlia-
mentary term, and even earlier in the case of reelected MEPs.
Thus, a first MEP use case or task consists in building speaker-
dependent ASR systems of (potentially) enhanced performance
by exploiting prior knowledge (data resources) for MEPs al-
ready seen in previous (re)training stages. Contrastingly, guest
speakers may intervene a few times or just once, so limited to no
information might be available beforehand. As is usual in ASR
nowadays, this leads to a second Guest task in which speaker-
independent ASR systems are required to deal with speech data
from guest speakers not seen in system (re)training.

Selected English text and audio data were used to source
each task with its own development and test sets, plus a com-
mon training set comprising the rest of the data. For the MEP
speaker-dependent task, we randomly selected 21 MEPs with
comparatively large speech data available for them to be ade-
quately represented in the train, dev and test sets. In accordance
with the gender distribution in the whole data crawl (∼65%
male, ∼35% female), 13 male and 8 female speakers were se-
lected2. Then, a number of speeches from selected speakers
were randomly drawn so as to build equally distributed dev and
test sets of about 3.5 speech hours each, with roughly 10 min-
utes of audio in each set for every selected speaker.

For the Guest speaker-independent task, 12 guests with lim-
ited speech data were randomly selected, thus reserving guests
with more data to maximize the amount of guest data in the
training set. To preserve gender balance, 6 female and 6 male
speakers were selected and evenly distributed over the dev and
test sets (i.e., 3 female and 3 male speakers in each set). As in
the MEP task, speeches were randomly drawn for the selected
speakers, resulting in dev and test sets of 3 hours each, with
about 30 min of speech in each set per selected speaker.

All speeches not included in any of the dev and test sets,
except those from the 12 guest speakers selected for the Guest
task, were allocated to the training set. In total, this set com-
prises 32 335 speeches from 1 034 speakers (681 male, 353
female), accounting for 1 230 raw hours and 9.7M text to-
kens. Also, previously computed audio-to-word alignments
were used to build 1.1M acoustic model training segments, last-
ing 3.2 seconds on average and 1 007 hours overall (includ-
ing silences), with pure speech duration (excluding non-speech
events and silences) standing at 920 hours. It is important to re-
mark that, due to the non-verbatimness of the official transcripts
(Sec. 4), these force-aligned segments may include alignment
errors (which are not handled). Table 1 provides overall statis-
tics for the train, dev and test sets.

Table 1: Overall statistics of the dev, test and train sets.

Set Speakers Speeches Raw Speech Tokens
MEP-dev 21 159 4.6h 3.4h 37.9K
MEP-test 21 145 4.7h 3.5h 38.8K
Guest-dev 6 52 4.3h 3.0h 31.8K
Guest-test 6 56 3.9h 3.0h 32.0K
train 1034 32335 1230h 920h 9.7M

Apart from the speech data above, we also prepared five
sets of in-domain English text data for language modelling:

1. Training set speeches: Sep. 2008 to May 2020.

2The gender of the 1 046 speakers was automatically inferred from
their names using the https://genderize.io/ REST API.
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2. Speeches without audio: July 1999 to Aug. 2008.
3. Translations into English: July 1999 to Nov. 2012.
4. Europarl-v10 [12] English text: Apr. 1996 to July 1999.
5. DCEP corpus [13] English text.

Table 2 shows overall statistics for these sets. The Europarl-
v10 text was selected from English transcriptions and transla-
tions with no overlap in dates with the first three sets, so that
data deduplication is not needed. The DCEP text is from pub-
lished EP-published official documents, excluding “verbatim”
reports of proceedings from parliamentary debates [13]. It was
included to increase the total amount of in-domain tokens so
that competitive language models could be built.

Table 2: Overall statistics of in-domain English text data.

Data source Speeches Tokens Sum
Training set speeches 32.3K 9.7M 9.7M
Speeches without audio 20.5K 6.4M 16.1M
Translations into English 180.5K 42.3M 58.4M
Europarl-v10 English subset N/A 11.0M 69.4M
DCEP corpus English text - 103.5M 172.9M

4. Manual revision of transcriptions
The EP’s official transcripts are not fully verbatim, despite be-
ing close to the actual uttered speech. On one hand, they suffer
from non-transcribed speech as they are subject to summariza-
tion and rephrasing, as well as to deliberate omissions of spon-
taneous speech lapses (false starts, repetitions. . . ). On the other
hand, they contain unuttered text, again due to summarization
and rephrasing, but also to linguistic corrections and to the in-
sertion of unuttered standard phrases and formalisms, such as
“Mister President” at the beginning of speeches.

To provide fully verbatim transcriptions for reliable ASR
benchmarking, all development and test sets were manually
post-edited using the TLP Player [14] at the MLLP Transcrip-
tion and Translation Platform [15]. Specific post-editing guide-
lines3 were applied to obtain truly verbatim transcripts for each
speech revised. Thus, we provide two transcription references
for each development and test speech: the original, raw refer-
ence (raw), and a revised, verbatim reference (verb). Consid-
ering the manually revised transcripts as the true reference, the
original raw transcripts are at a WER of 11.0% overall.

5. Filtering and verbatimization
Having fully verbatim transcriptions for development and test
purposes is ideal in order to reliably assess and compare ASR
systems. Similarly, it would be best to have fully verbatim tran-
scriptions for training too, but the sheer size of the train set
makes it extremely costly to manually revise. This is in fact a
common situation for ASR system builders nowadays: in gen-
eral, it is expected that (minor) discrepancies between available
raw transcriptions and their unavailable verbatim counterparts
will be largely compensated by exploiting more training data.
Although we agree with this view to a certain extent, we have
recently observed that, when available transcriptions are at a
significant (WER) distance of the true (verbatim) transcriptions,
preprocessing of training data by refined “noise” filtering cer-
tainly pays off [16, 17]. This being the case with EP data, we

3https://www.mllp.upv.es/europarl-asr

decided to apply this refined filtering to the training set, and also
a novel, more advanced kind of transcription “reconstruction”
preprocessing which we refer to as verbatimization.

The goal of filtering is to detect and discard acoustic seg-
ments unrelated to the available approximate transcription. As
described in [16], a pre-existing acoustic model is first used
to force-align a given audio and its approximate transcription,
and then to decide whether to accept or reject each audio-to-
word unit on the basis of phoneme duration and alignment
score statistics; finally, training segments are built by join-
ing consecutive accepted words. This procedure was applied
to the whole training set using the already computed forced-
alignments (Sec. 2). As a result, 33% of the audio data was
filtered out, leaving 1.2M training segments of 2 seconds on av-
erage (672 hours overall).

In contrast to filtering, which is limited to discarding unre-
liable audio segments, verbatimization is allowed to freely “re-
construct” verbatim transcriptions from their raw, approximate
counterparts. Broadly speaking, the proposed verbatimization
technique consists in replacing approximate transcriptions by
the automatic transcriptions produced by an ASR system using
an LM heavily biased towards a given transcription, though still
free enough to deliver completely different output. In particu-
lar, for the train set, KenLM [18] was used to train in-domain
(ID) trigram LMs from each approximate transcription. These
ID LMs were linearly interpolated with a pre-existing out-of-
domain (OOD) general-purpose LM trained with 17.9G tokens.
Interpolation weights were optimized to minimize perplexity on
the (verbatim) MEP-dev set, resulting in ID and OOD weights
of 93% and 7%, respectively. Then, each approximate tran-
scription in the training set was verbatimized by using its cor-
responding interpolated LM in conjunction with a pre-existing
acoustic model, resulting in 1M training segments of 3.7 sec-
onds on average, lasting 1 054 hours overall.

Table 3 shows basic statistics for the three training tran-
scription sets: raw, filtered (filt) and verbatimized (verb).

Table 3: Statistics of the three training transcription sets.

Set Segments Duration (h) Avg. len. (s)
raw 1.13M 1007 3.2
filt 1.24M 672 2.0
verb 1.03M 1054 3.7

From the statistics in Table 3, we can see that the filter-
ing process resulted in an aggressive reduction of the effective
training data while, contrarily, verbatimization not only did not
reduce the duration of the raw training data but, apparently, it
was even capable of uncovering missing transcription parts and
thus enlarge its input. This behaviour suggests the proposed
technique could be useful for purposes other than just “repair-
ing” training data, though we defer this study for brevity. At this
point, it is worth noting that the verbatimization procedure was
also assessed on the MEP-dev set, for which it produced au-
tomatic verbatim transcriptions at a 6.5% WER distance from
those manually generated. This amounts to a 35% relative im-
provement when compared to the 10.1% WER distance from
the raw MEP-dev transcriptions to their revised counterparts.

6. Baseline experiments and results
To provide baseline figures for offline and streaming ASR in the
MEP and Guest tasks, a common experimental setting was used
to build a different hybrid ASR system for each of the train-
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ing transcription sets provided: raw, filt and verb. As in [17],
acoustic modelling was done by first training context-dependent
feed-forward DNN-HMMs with three left-to-right tied states
using the transLectures-UPV toolkit [19]. State tying was based
on a phonetic decision tree approach [20] which, in our case,
produced 15K, 11K, and 15K tied states for, respectively, the
raw, filt and verb data. Then, feed-forward models were used
to bootstrap and train a BLSTM-HMM AM as in [21], though
combining the MEP and Guest development sets for validation.

Language modelling was conducted on the basis of the in-
domain English text data collected for that purpose (Sec. 3),
from which we trained common n-gram and Transformer LMs
for the three ASR systems, while keeping the MEP and Guest
development sets apart for validation and task adaptation. On
one hand, KenLM [18] was used to train a 4-gram LM with vo-
cabulary size limited to 250K words and OOV ratio 0.4% on the
dev sets. On the other hand, an in-house version of FairSeq [22]
was used to train a Transformer LM (TLM) with the 4-gram
LM vocabulary and the setup described in [17]. As in [21],
variance regularization was applied to speed up computation
of TLM scores during inference. Table 4 shows perplexities
computed over development data for each LM and their linear
interpolation. While the TLM clearly outperforms the n-gram
model by almost halving its perplexity, the interpolation of both
provides even better results in all cases.

Table 4: LM perplexities computed over development data.

MEP Guest Both
4-gram 127.9 132.8 130.2
TLM 67.7 77.1 72.0
4-gram+TLM 63.6 69.9 66.5
TLM weight 82% 78% 80%

A real-time one-pass decoding based on a history-
conditioned search strategy was used to build the desired hy-
brid ASR systems from the acoustic and language models de-
scribed above [23]. Also, for the systems to effectively work
under streaming conditions, BLSTM AMs were queried with
a sliding, overlapping context window of 500 ms [24], while
TLM history was limited to a maximum 40 words [21].

Table 5 shows WER figures for the raw, filt and verb offline
ASR systems using either the 4-gram LM alone or interpolated
with the TLM. For the computation of these figures, system
hyperparameters were optimized for minimum WER under the
constraint of decoding to be completed with a real time factor
(RTF) close to one (from raw audio and no prior segmentation).

Table 5: WERs for the three systems under an offline ASR setup.

raw filt verb
dev test dev test dev test

MEP 4-gram 10.2 9.9 9.4 9.2 9.5 9.3
+TLM 8.8 8.6 7.9 7.8 8.1 8.2

Guest 4-gram 11.2 8.7 10.7 8.8 10.2 8.2
+TLM 9.5 7.6 9.0 7.4 8.7 7.0

From the results in Table 5, we see that, as anticipated by
LM perplexities, LM interpolation consistently outperforms the
4-gram LM alone by up to 1.4 absolute WER points. Note also
that the filtering and verbatimization techniques led to consis-
tent WER improvements of up to 9% relative in both tasks w.r.t.
the system trained with original, raw transcriptions. Moreover,

when comparing filtering and verbatimization, we can observe
that filtering resulted in a better WER on the MEP task, while
verbatimization provided a better WER on the Guest task.

Table 6 shows WERs and latencies for the three systems
when running under strict low-latency streaming conditions.
Latencies are computed as the delay between the time instant
when an acoustic frame is provided to the decoder, and the time
instant when that frame is fully processed by the decoder and
its corresponding output has been delivered. Search parameters
were tuned accordingly to ensure low and stable latencies. With
slight degradations of 1–4% WER, these systems were capable
of providing live transcription outputs with a mean latency of
0.65 seconds and a very small standard deviation of 50 ms.

Table 6: WER and latencies in seconds (µ ± σ) for the three
systems running under a streaming ASR setup.

MEP Guest
dev / test Latency dev / test Latency

raw 9.0 / 8.8 0.66 ± 0.05 9.8 / 7.8 0.66 ± 0.05
filt 8.1 / 7.9 0.65 ± 0.05 9.3 / 7.5 0.65 ± 0.05
verb 8.4 / 8.3 0.65 ± 0.05 9.1 / 7.3 0.65 ± 0.05

7. Conclusions
A new corpus of parliamentary debates, Europarl-ASR, has
been introduced for streaming ASR benchmarking and, pioneer-
ingly, for assessing filtering and verbatimization techniques. Its
first version has been publicly released under an open licence,
featuring roughly 1 300 hours of transcribed English speeches
plus 18 hours of manually verbatimized evaluation data. Strong
baseline ASR results have been reported on the two test sets
(MEP / Guest): 7.8 / 7.0 WER for the offline setup, and 7.9 /
7.3 WER when considering a realistic use of ASR at the EP, that
is, under tight streaming conditions, with an empirical mean la-
tency of 0.65 seconds. Also, the application of filtering and ver-
batimization techniques over the official non-verbatim training
transcripts has been shown to result in systematic and consistent
WER gains of 9% relative in both tasks.

As for future releases of this corpus, first, we plan to extend
the English-language data with up to 3.5K hours of speeches
interpreted into English, applying verbatimization over man-
ual (1.4K hours) and automatically generated (2.1K hours) En-
glish translations. Second, we intend to define and incorpo-
rate assessment resources and metrics (based on harmonic F-
measures) to gauge filtering techniques. Finally, we will add
support for other EU languages such as German or Spanish.

8. Acknowledgements
This work has received funding from the EU’s H2020
research and innovation programme under grant agree-
ments 761758 (X5gon) and 952215 (TAILOR); the Gov-
ernment of Spain’s research project Multisub (RTI2018-
094879-B-I00, MCIU/AEI/FEDER,EU) and FPU scholar-
ships FPU14/03981 and FPU18/04135; the Generalitat Va-
lenciana’s research project Classroom Activity Recognition
(PROMETEO/2019/111) and predoctoral research scholarship
ACIF/2017/055; and the Universitat Politècnica de València’s
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