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1 Introduction

A large number of problems in Computational Sciences and other disciplines can be stated in
the form of a nonlinear equation or nonlinear system of equations using mathematical modelling.
Finding the solution ξ of a nonlinear system of equations F (x) = 0 is a classical and difficult
problem in Numerical Analysis, Applied Mathematics and Engineering, wherein F : D ⊂ Rn → Rn

is a sufficiently Frechet differentiable function in an open convex set D. We can find in [1, 2], and
in the references therein, several overviews of the iterative methods for solving nonlinear systems
published in the last years. The best known method for finding a solution ξ ∈ D is Newton’s
scheme.

The dynamical behavior of the rational operator associated to iterative schemes for solving
nonlinear systems, applied to low-degree polynomial systems, has shown to be an efficient tool
for analyzing the stability and reliability of the methods, see for example [1, 3] and the references
therein.

In this manuscript, we introduce a new sixth-order parametric family of multistep iterative
schemes for solving nonlinear systems of equations as an extension of the family presented in [4] for
solving nonlinear equations. This family is built from the Ostrowski’s scheme, adding a Newton step
with a “frozen” derivative and using a divided difference operator. We study its convergence, its
real dynamics for stability and its numerical behavior. The dynamical planes are presented showing
the complexity of the family. From the parameter spaces, presented in [4] for scalar functions, we
have been able to determine different members of the family for vector functions that have bad
convergence properties, since attracting periodic orbits and attracting strange fixed points appear
in their dynamical planes. Moreover, this same study has allowed us to detect family members
with specially stable behavior and suitable for solving practical problems. Several numerical tests
are performed to illustrate the efficiency and stability of the presented family.

1marmosma@doctor.upv.es
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2 New parametric family

The new triparametric family called MCTC(α, β, γ), object of study in this manuscript, has the
following iterative expression:

y(k) = x(k) − [F ′(x(k))]−1F (x(k))
z(k) = y(k) − [2[x(k), y(k);F ]− F ′(x(k))]−1F (y(k))

x(k+1) = z(k) − (αI + βu(k) + γv(k))[F ′(x(k))]−1F (z(k))
, (1)

where u(k) = I − [F ′(x(k))]−1[x(k), y(k);F ], v(k) = [x(k), y(k);F ]−1F ′(x(k)), k = 0, 1, 2, ..., and α, β
and γ are arbitrary parameters. The divided difference operator [x, y;F ], defined in [5], is the map
[·, ·;F ] : D ×D ⊂ Rn × Rn → L(Rn), satisfying [x, y;F ](x− y) = F (x)− F (y),∀x, y ∈ D.

Theorem 13 (triparametric family). Let F : D ⊆ Rn → Rn be a sufficiently differentiable function
in an open convex set D and ξ ∈ D a solution of the nonlinear system F (x) = 0. Let us suppose
that F ′(x) is continuous and nonsingular at ξ, and x(0) is an initial estimate close enough to ξ.
Then, sequence {x(k)}k≥0 obtained by using expression (1) converges to ξ with order four, being its
error equation

e(k+1) = (1− α− γ)
(
C3

2 − C3C2
)
e(k)4 +O(e(k)5),

where e(k) = x(k) − ξ, Cq = 1
q! [F ′(ξ)]−1F (q)(ξ) and q = 2, 3, ...

From Theorem 13, it follows that the new triparametric family has an order of convergence of
four for any value of α, β and γ. However, convergence can be speed-up if only one parameter is
held and the family is reduced to an uniparametric iterative scheme.

Theorem 14 (uniparametric family). Let F : D ⊆ Rn → Rn be a sufficiently differentiable function
in an open convex set D and ξ ∈ D a solution of the nonlinear system F (x) = 0. Let us suppose
that F ′(x) is continuous and nonsingular at ξ, and x(0) is an initial estimate close enough to ξ.
Then, sequence {x(k)}k≥0 obtained by using expression (1) converges to ξ with order six, provided
that β = 1 + α and γ = 1− α, being its error equation

e(k+1) =
(
C2

3C2 − C3C
3
2 + 6C5

2 − 6C2
2C3C2

)
e(k)6 +O(e(k)7),

where e(k) = x(k) − ξ, Cq = 1
q! [F ′(ξ)]−1F (q)(ξ) and q = 2, 3, ...

From Theorem 14, it follows that if we only hold α in (1), the triparametric family is reduced to
an uniparametric family with an order of convergence of six, for any value of α, as long as β = 1+α
and γ = 1− α. So, the iterative expression of the new three-step uniparametric family, dependent
only of α and which we will call MCTC(α) family, is defined as

y(k) = x(k) − [F ′(x(k))]−1F (x(k))
z(k) = y(k) − [2[x(k), y(k);F ]− F ′(x(k))]−1F (y(k))

x(k+1) = z(k) − (αI + (1 + α)u(k) + (1− α)v(k))[F ′(x(k))]−1F (z(k))
, (2)

where u(k) = I − [F ′(x(k))]−1[x(k), y(k);F ], v(k) = [x(k), y(k);F ]−1F ′(x(k)), k = 0, 1, 2, ..., and α is
an arbitrary parameter.

Because of the results obtained with the convergence analysis carried out, from now on we only
work with MCTC(α) family of iterative methods and, to select the best members of this family,
we use the real dynamics tools discussed in Section 3.
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3 Real dynamics for stability

This section refers to the study of the dynamical behavior of the rational operator associated with
iterative schemes of MCTC(α) family. This study give us important information about the stability
and reliability of the family. We will construct dynamical planes in order to show the behavior of
particular methods in terms of the basins of attraction of their fixed points, periodic points, etc.

3.1 Rational operator

The rational operator can be built on any nonlinear system; however, we construct this operator
on the following low-degree nonlinear polynomial system:

F (x1, x2) =
(
x2

1 − 1, x2
2 − 1

)
= (0, 0) , (3)

since the criterion of stability or instability of a method applied to this system can be generalized
for other multidimensional cases.

Proposition 1 (rational operator RF ). Let the polynomial system F (x1, x2) given in (3), with
roots (−1,−1), (−1, 1), (1,−1), (1, 1) ∈ R2. The rational operator associated with MCTC(α)
family and applied on F (x1, x2), with α ∈ R an arbitrary parameter, is

RF (x1, x2, α) = (RF11 , RF12) , (4)
where

RF11 = 1
32

((
x2

1 − 1
)4 (

α+ (α− 19)x4
1 − 2(α− 1)x2

1 + 1
)

4x5
1
(
x2

1 + 1
)2 (3x2

1 + 1
) + 8

(
x4

1 + 6x2
1 + 1

)
x3

1 + x1
− α

(
x2

2 − 1
)4

x3
2
(
x2

2 + 1
)2
)
,

RF12 = 1
32

((
x2

2 − 1
)4 (

α+ (α− 19)x4
2 − 2(α− 1)x2

2 + 1
)

4x5
2
(
x2

2 + 1
)2 (3x2

2 + 1
) + 8

(
x4

2 + 6x2
2 + 1

)
x3

2 + x2
− α

(
x2

1 − 1
)4

x3
1
(
x2

1 + 1
)2
)
.

To simplify the rational operator RF defined in Proposition 1, we can select a value of α that
cancels terms of the expression and reduces it. It is easy to show that for α = 0, the rational
operator is simpler and there will be fewer fixed and critical points that can improve the stability
of the associated method. Also, the components of this RF (x1, x2, 0) will be of separate variables.

3.2 Fixed points and their stability

We calculate the fixed points of the rational operator RF (x1, x2, α) given in (4), and analyze their
stability.

Proposition 2 (fixed points). The real fixed points of RF (x1, x2, α) are the roots of the equation
RF (x1, x2, α) = (x1, x2). That is

fp1 = (−1,−1), fp2 = (−1, 1), fp3 = (1,−1), fp4 = (1, 1),

that correspond to the roots of the polynomial system F (x1, x2) given in (3), and they are also
superattracting. Other strange fixed points may appear but their components are roots of polyno-
mials of very high degrees.

From Proposition 2, we establish there is a minimum of 4 fixed points. Of these, from fp1 to
fp4 correspond to the roots of the original polynomial system F (x1, x2) and are attractive and
critical points.
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3.3 Dynamical planes

Here, we study the stability of two MCTC(α) family methods as representatives. The first method
is for α = 0, whose value is inside the stability region of the parameter spaces shown in [4], that is,
it is in the red area. The second method is for α = 200, whose value is outside the stability region
of the same parameter spaces, located in the black area.

Dynamical planes are built with a mesh from -2 to 2, with a step equal to 0.01. Every initial
estimation is iterated 100 times (maximum) with a tolerance of 10−3. The points in the mesh are
represented based on the roots to which they converge: the color is brighter when lesser are the
iterations. If all the iterations are completed and not convergence to any roots is reached, then the
point is represented in black. Fixed points are illustrated with a white circle ‘#’, critical points
with a white square ‘□’ and attractors with a white asterisk ‘∗’. Also, the basins of attraction are
depicted in different colors. The resulting graphic is made in Matlab R2020b with a resolution of
400x400 pixels.

Thus, the dynamical planes for RF (x1, x2, 0) and RF (x1, x2, 200), with some convergence orbits
in yellow, are shown in Figure 1. On the one hand, the method for α = 0 presents four basins
of attraction associated with the roots. Also, there are no black areas of non-convergence to the
solution. Consequently, this method shows good dynamical behavior: it is very stable. On the
other hand, the method for α = 200 presents the same four basins of attraction associated with the
roots, but of reduced size, which minimizes the chances of convergence to the solution. Likewise,
there are black areas of slow convergence of the method. Consequently, this method has poor
dynamical behavior: it is unstable.

(a) α = 0 and pf = (−1,−1) (b) α = 200 and pf = (−1,−1)

Figure 1: Dynamical planes for RF .

4 Numerical results

In this section, we perform several numerical tests to illustrate the efficiency and stability of the
presented family. We consider the same two members of MCTC(α) proposed in Section 3.3, for
α = 0 and α = 200. These methods are applied on two nonlinear test systems, whose expressions
and corresponding roots are shown in Table 1.
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Table 1: Nonlinear test systems and corresponding roots.

Nonlinear test system Roots

F1(x1, x2) =
(
x2

1 − 1, x2
2 − 1

)
= (0, 0) ξ ≈ (1, 1)T

F2(x1, x2) =
(
x2

1 + x2
2 − 1, x2

1 − x2
2 −

1
2

)
= (0, 0) ξ ≈

(√
3

2 ,
1
2

)T

The calculations have been developed in Matlab R2020b programming package using variable
precision arithmetics with 200 digits of mantissa. For each method, we analyze the number of
iterations (iter) required to converge to the solution, so that the stopping criteria ||x(k+1)−x(k)|| <
10−100 or ||F (x(k+1))|| < 10−100 are satisfied.

To check the theoretical order of convergence of the methods, we calculate the approximate
computational order of convergence (ACOC) given in [12]. In the numerical results, if the ACOC
vector inputs do not stabilize their values throughout the iterative process, it is marked as ‘-’; and,
if any of the methods used does not reach convergence in a maximum of 50 iterations, it is marked
as ‘nc’.

Thus, in Table 2 we show the numerical performance of MCTC(0) for initial estimates near and
far from the solution, that is, for x(0) ≈ 2ξ and x(0) ≈ 10ξ. The results are encouraging because
we can notice that MCTC(0) always converges to the solution in the two nonlinear test systems,
regardless of the initial estimates used. Therefore, we verify this method is robust, according to
the stability results shown in Section 3.

Table 2: Numerical performance of MCTC(0) on test problems.

System x(0) ||x(k+1) − x(k)|| ||F (x(k+1))|| iter ACOC
F1 ≈ 2ξ (2, 2)T 6.4031e-71 8.0537e-173 5 3.1906
F2 ≈ 2ξ (1.7, 1)T 6.6576e-68 1.4261e-166 6 3.6518

F1 ≈ 10ξ (10, 10)T 6.7666e-41 3.4488e-113 10 6.4467
F2 ≈ 10ξ (9, 5)T 3.9e-70 5.5314e-172 12 3.4528

Now, in Table 3 we show the numerical performance of MCTC(200) for initial estimations very
close to (x(0) ≈ ξ) and near to (x(0) ≈ 2ξ) the solution.

Table 3: Numerical performance of MCTC(200) on test problems.

System x(0) ||x(k+1) − x(k)|| ||F (x(k+1))|| iter ACOC
F1 ≈ ξ (1.5, 1.5)T 8.1881e-94 1.5574e-207 4 2.5252
F2 ≈ ξ (1.3, 0.8)T nc nc nc nc

F1 ≈ 2ξ (2, 2)T nc nc nc nc
F2 ≈ 2ξ (1.7, 1)T nc nc nc nc

Note that the results shown in Table 3 also corroborate the stability analysis performed in
Section 3. The MCTC(200) presents convergence problems even for estimates very close to the
root (x(0) ≈ ξ), this method does not converge to the solution in one of two cases. Furthermore,
for estimations near to the root (x(0) ≈ 2ξ), it does not converge to the solution in all cases,
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establishing a dependency on the initial estimates used. Therefore, the instability of this method
is verified.

5 Conclusions

A highly efficient family of iterative methods MCTC(α) has been designed to solve nonlinear
systems. This family proved to have an excellent numerical performance considering stable members
as representatives. The method for α = 0 proved to be robust (stable), according to the real
dynamics analysis performed. The method for α = 200 proved to be unstable, chaotic and cannot
converge to the solution according to the initial estimate and the nonlinear system used. Also, the
order of convergence is verified by the ACOC, which is close to 6. Numerical experiments confirm
the theoretical results.
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