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find deeper complications beneath. Nature is anything but simple.”  

Richard Preston-The Hot Zone 
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ABSTRACT 

The residual variance of traits, referred to as VE, is under genetic control. This means that 

some of the dissimilarities among individuals observed in the VE result from a genetic 

variation in response to microenvironmental factors. Response to selection for the VE 

was observed in divergent selection experiments. Therefore, including VE traits as a 

breeding goal could homogenize production on farms by its reduction. Furthermore, the 

reduction of the VE may improve health traits and animal resilience due to their negative 

correlation. Thus, VE is a promising trait to reach a more sustainable livestock system by 

improving welfare and animal resilience. Disclosing the biological mechanisms of the VE 

can help to gain some insight into the biological basics of animal resilience. In this thesis, 

genomic, metagenomic, and metabolomic analyses were performed on rabbit lines 

divergently selected for high and low VE of litter size (LS). These animals showed 

differences in their resilience potential. Thus, these divergent populations are an 

excellent biological material for studying animal resilience through the VE.  

Genome-wide association studies (GWAS) were performed using single marker 

regression, and Bayesian multiple marker regression approaches. Four genomic regions 

were associated with the VE in the Oryctolagus cuniculus chromosome (OCU) 3, OCU7, 

OCU10, and OCU14, explaining 8.6% of the total genetic variance for the VE. In addition, 

the signature of selection (SS) study identified 134 genomic regions which could be under 

selection for VE. Overlapping between both studies was placed in the OCU3, where 

functional mutations for the DOCK2, INSYN2B and FOXI1 genes were also found. 

Candidate genes from GWAS and SS were those with functional mutations identified 

using whole genome sequencing (WGS) analysis with pools of DNA. Highlighted 

candidate genes showed biological functions related to the development of sensory 

structures, the immune response, the stress response, and the nervous system. All of 

them are relevant functions to modulate animal resilience. On the other hand, 

metagenomic and metabolomic studies showed that the selection for VE modified the gut 

microbiome and metabolome composition. Beneficial microbial species such as Alistipes 

prutedinis, Alistipes shahii, Odoribacter splanchnicus and Limosilactobacillus 

fermentum were more abundant in the resilient population. In contrast, harmful 

microbial species such as Acetatifactor muris and Eggerthella sp were more abundant 

in the non-resilient animals. Genes related to biofilm formation, aromatic amino acid 

metabolism (Phenylalanine, tryptophan, and tyrosine), and glutamate metabolism were 

also differentially expressed between the rabbit populations. Furthermore, 15 gut 

metabolites were identified as potential biomarkers to properly discriminate and predict 

between the resilient and non-resilient rabbit populations. Five of them, the equol, 3-(4-
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hydroxyphenyl)lactate, 5-aminovalerate, N6-acetyllisine, and serine were microbial-

derived metabolites.  

This is the first study unravelling important biological mechanisms under the animal 

resilience generated by VE of LS selection. Genome and gut microbiome and metabolome 

composition were modified throughout the selection process, affecting the immune and 

stress response. Overlapping results were found between the metagenomic and 

metabolome studies, suggesting the aromatic amino acid metabolism and the L-

glutamate synthesis influence the phenotype of the VE. Moreover, some of the candidate 

genes associated with the VE of LS such as DOCK2, ACE and HDAC9 could influence the 

microbiome composition in the rabbit populations. On the other hand, in this thesis, we 

developed a flexible tool for simulating the coevolution of the genome and microbiome 

across a selection process for the first time. The key of this tool was the implementation 

of the microbiome inheritance. It is constructed in R and based on AlphaSimR so the 

user can modify the code and implement different scenarios. We performed a first 

approximation, showing as the selection based on the phenotype is successful and 

generated phenotypic, genetic, and microbiome responses. The results highlighted the 

importance of microbial heritability, symbiosis, and microbial species fitness as 

fundamental actors to obtain a proper selection response of traits.   

This thesis is the first step to develop future strategies and further research to improve 

animal resilience. A selection combining genomic and metagenomic information may 

improve the selection response. Moreover, gut-derived metabolites with evidence of 

crosstalk can be used as biomarkers to identify resilient animals by plasma, avoiding the 

extraction of faecal samples to determine the microbiome composition. If these studies 

suceed, these strategies could improve animal resilience with the aim of search a more 

sustainable livestock system. Lastly, the simulation tool developed could help unravel 

the microbiome's implications in animal breeding programs. 
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RESUMEN 

La varianza residual de los caracteres, denominada VE, está bajo control genético. Esto 

significa que algunas de las disimilitudes entre individuos observadas en la VE son el 

resultado de una variación genética en respuesta a factores microambientales. La 

respuesta a la selección para la VE se observó en experimentos de selección divergente. 

Por lo tanto, la inclusión de los rasgos de VE como objetivo de selección podría 

homogeneizar la producción en las explotaciones ganaderas mediante su reducción. 

Además, esta reducción de la VE podría mejorar los caracteres de salud y la resiliencia de 

los animales debido a su correlación negativa. Así pues, la VE es un rasgo prometedor 

para alcanzar un sistema ganadero más sostenible al mejorar el bienestar y la resiliencia 

animal. Desvelar los mecanismos biológicos de la VE podría ayudar a conocer los 

fundamentos biológicos de la resiliencia animal. En esta tesis, se realizaron análisis 

genómicos, metagenómicos y metabolómicos en líneas de conejo seleccionadas de forma 

divergente para alta y baja VE del tamaño de la camada (TC). Estos animales mostraron 

diferencias en su potencial de resiliencia. Por ello, estas poblaciones divergentes son un 

excelente material biológico para estudiar la resiliencia animal a través de la VE.  

Se realizaron estudios de asociación del genoma (GWAS) utilizando  la regresión de un 

solo marcador y la regresión bayesiana de múltiples marcadores. Cuatro regiones 

genómicas se asociaron con la VE en el cromosoma 3 de Oryctolagus cuniculus (OCU), 

OCU7, OCU10 y OCU14, explicando el 8,6% de la varianza genética total para la VE. 

Además, el estudio de huellas de selección (SS) identificó 134 regiones genómicas que 

podrían estar bajo selección para la VE. El solapamiento entre ambos estudios se 

identificó en el OCU3, donde también se encontraron mutaciones funcionales para los 

genes DOCK2, INSYN2B y FOXI1. Los genes candidatos de GWAS y SS fueron aquellos 

con mutaciones funcionales identificadas mediante el análisis de secuenciación del 

genoma completo (WGS) con pools de ADN. Los genes candidatos destacados mostraron 

funciones biológicas relacionadas con el desarrollo de estructuras sensoriales, la 

respuesta inmunitaria, la respuesta al estrés y el sistema nervioso. Todas ellas son 

funciones relevantes para modular la resiliencia de los animales. Por otra parte, los 

estudios metagenómicos y metabolómicos mostraron que la selección para la VE 

modificó el microbioma intestinal y la composición de su metaboloma. Las especies 

microbianas beneficiosas como Alistipes prutedinis, Alistipes shahii, Odoribacter 

splanchnicus y Limosilactobacillus fermentum eran más abundantes en la población 

resiliente. En cambio, las especies microbianas nocivas, como Acetatifactor muris y 

Eggerthella sp, fueron más abundantes en los animales no resistentes. Los genes 
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relacionados con la formación de biofilms, el metabolismo de aminoácidos aromáticos 

(fenilalanina, triptófano y tirosina) y el metabolismo del glutamato también se 

expresaron de forma diferencial entre las poblaciones de conejos. Además, se 

identificaron 15 metabolitos intestinales como potenciales biomarcadores para 

discriminar y predecir adecuadamente entre las poblaciones de conejos resistentes y no 

resistentes. Cinco de ellos, el equol, el 3-(4-hidroxifenil)lactato, el 5-aminovalerato, la 

N6-acetilisina y la serina son metabolitos de origen microbiano.  

Este es el primer estudio que desvela importantes mecanismos biológicos de la resiliencia 

animal generada por la selección de la VE de TC. El genoma y el microbioma intestinal y 

la composición del metaboloma se modificaron a lo largo del proceso de selección, 

afectando a la respuesta inmunitaria y al estrés. Se encontraron resultados coincidentes 

entre los estudios metagenómicos y del metaboloma, lo que sugiere que el metabolismo 

de aminoácidos aromáticos y la síntesis de L-glutamato influyen en el fenotipo de la VE. 

Además, algunos de los genes candidatos asociados a la VE de TC, como DOCK2, ACE y 

HDAC9, podrían influir en la composición del microbioma en las poblaciones de conejos. 

Por otro lado, en esta tesis desarrollamos por primera vez una herramienta flexible para 

simular la coevolución del genoma y el microbioma a través de un proceso de selección. 

La clave de esta herramienta fue la implementación de la herencia del microbioma. Está 

construida en R y basada en AlphaSimR para que el usuario pueda modificar el código e 

implementar diferentes escenarios. Realizamos una primera aproximación, mostrando 

como la selección basada en el fenotipo es exitosa y generamos respuestas fenotípicas, 

genéticas y del microbioma. Los resultados destacaron la importancia de la 

heredabilidad microbiana, la simbiosis y la aptitud de las especies microbianas como 

actores fundamentales para obtener una respuesta de selección adecuada. 

Esta tesis es el primer paso para desarrollar futuras estrategias y nuevas investigaciones 

para mejorar la resiliencia de los animales. Una selección que combine información 

genómica y metagenómica puede mejorar la respuesta de selección. Además, los 

metabolitos derivados del intestino con evidencia de crosstalk pueden utilizarse como 

biomarcadores para identificar animales resilientes por plasma, evitando la extracción 

de muestras fecales para determinar la composición del microbioma. Si estos estudios 

tienen éxito, estas estrategias podrían mejorar la resiliencia de los animales con el 

objetivo de buscar un sistema ganadero más sostenible. Por último, la herramienta de 

simulación desarrollada podría ayudar a desentrañar las implicaciones del microbioma 

en los programas de cría de animales
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RESUM 

La variància residual dels caràcters, denominada VE, està baix control genètic. Això 

significa que algunes de les dissimilituds entre individus observades en la VE són el 

resultat d'una variació genètica en resposta a factors microambientals. La resposta a la 

selecció per a la VE es va observar en experiments de selecció divergent. Per tant, la 

inclusió dels trets de VE com a objectiu de selecció podria homogeneïtzar la producció en 

les explotacions ramaderes mitjançant la seua reducció. A més, aquesta reducció de la VE 

podria millorar els caràcters de salut i la resiliència dels animals a causa de la seua 

correlació negativa. Així doncs, la VE és un tret prometedor per a aconseguir un sistema 

ramader més sostenible en millorar el benestar i la resiliència animal. Revelar els 

mecanismes biològics de la VE podria ajudar a conéixer els fonaments biològics de la 

resiliència animal. En aquesta tesi, es van realitzar anàlisis genòmiques, 

metagenòmiques i metabolòmiques en línies de conill seleccionades de manera divergent 

per a alta i baixa VE de la grandària de la ventrada (GV). Aquests animals van mostrar 

diferències en el seu potencial de resiliència. Per això, aquestes poblacions divergents 

són un excel·lent material biològic per a estudiar la resiliència animal a través de la VE.  

Es van realitzar estudis d'associació del genoma (GWAS) utilitzant la regressió d'un solo 

marcador i la regressió bayesiana de múltiples marcadors. Quatre regions genòmiques 

es van associar amb la VE en el cromosoma 3 de Oryctolagus cuniculus (OCU), OCU7, 

OCU10 i OCU14, explicant el 8,6% de la variància genètica total per a la VE. A més, l'estudi 

de petjades de selecció (SS) va identificar 134 regions genòmiques que podrien estar sota 

selecció per a la VE. El solapament entre tots dos estudis es va identificar en l'OCU3, on 

també es van trobar mutacions funcionals per als gens DOCK2, INSYN2B i FOXI1. Els 

gens candidats de GWAS i SS van ser aquells amb mutacions funcionals identificades 

mitjançant l'anàlisi de seqüenciació del genoma complet (WGS) amb pools d'ADN. Els 

gens candidats destacats van mostrar funcions biològiques relacionades amb el 

desenvolupament d'estructures sensorials, la resposta immunitària, la resposta a l'estrés 

i el sistema nerviós. Totes elles són funcions rellevants per a modular la resiliència dels 

animals. D'altra banda, els estudis metagenòmiques i *metabolòmiques van mostrar que 

la selecció per a la VE va modificar el microbioma intestinal i la composició de la seua 

metaboloma. Les espècies microbianes beneficioses com Alistipes prutedinis, Alistipes 

shahii, Odoribacter splanchnicus i Limosilactobacillus fermentum eren més abundants 

en la població resilient. En canvi, les espècies microbianes nocives, com Acetatifactor 

muris i Eggerthella sp, van ser més abundants en els animals no resistents. Els gens 

relacionats amb la formació de biofilms, el metabolisme d'aminoàcids aromàtics 
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(fenilalanina, triptòfan i tirosina) i el metabolisme del glutamat també es van expressar 

de manera diferencial entre les poblacions de conills. A més, es van identificar 15 

metabòlits intestinals com a potencials biomarcadores per a discriminar i predir 

adequadament entre les poblacions de conills resistents i no resistents. Cinc d'ells, el 

equol, el 3-(4-hidroxifenil)lactat, el 5-aminovalerato, la N6-acetilisina i la serina són 

metabòlits d'origen microbià.  

Aquest és el primer estudi que revela importants mecanismes biològics de la resiliència 

animal generada per la selecció de la VE de GC. El genoma i el microbioma intestinal i la 

composició del metaboloma es van modificar al llarg del procés de selecció, afectant la 

resposta immunitària i a l'estrés. Es van trobar resultats coincidents entre els estudis 

metagenòmiques i del metaboloma, la qual cosa suggereix que el metabolisme 

d'aminoàcids aromàtics i la síntesi de L-glutamat influeixen en el fenotip de la VE. A més, 

alguns dels gens candidats associats a la VE de GC, com DOCK2, ACE i HDAC9, podrien 

influir en la composició del microbioma en les poblacions de conills. D'altra banda, en 

aquesta tesi desenvolupem per primera vegada una eina flexible per a simular la 

coevolució del genoma i el microbioma a través d'un procés de selecció. La clau d'aquesta 

eina va ser la implementació de l'herència del microbioma. Està construïda en R i basada 

en AlphaSimR perquè l'usuari puga modificar el codi i implementar diferents escenaris. 

Realitzem una primera aproximació, mostrant com la selecció basada en el fenotip és 

reeixida i generem respostes fenotípiques, genètiques i del microbioma. Els resultats van 

destacar la importància de la heredabilidad microbiana, la simbiosi i l'aptitud de les 

espècies microbianes com a actors fonamentals per a obtindre una resposta de selecció 

adequada. 

Aquesta tesi és el primer pas per a desenvolupar futures estratègies i noves investigacions 

per a millorar la resiliència dels animals. Una selecció que combine informació genòmica 

i metagenòmique pot millorar la resposta de selecció. A més, els metabòlits derivats de 

l'intestí amb evidència de crosstalk poden utilitzar-se com biomarcadores per a 

identificar animals resilients per plasma, evitant l'extracció de mostres fecals per a 

determinar la composició del microbioma. Si aquests estudis tenen èxit, aquestes 

estratègies podrien millorar la resiliència dels animals amb l'objectiu de buscar un 

sistema ramader més sostenible. Finalment, l'eina de simulació desenvolupada podria 

ajudar a desentranyar les implicacions del microbioma en els programes de cria 

d'animals. 
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CHAPTER 1: SCOPE OF THIS STUDY 
 
This thesis used rabbits from a divergent selection experiment for high and low VE of 

litter size (LS) by the University of Miguel Hernández in Elche. These populations 

showed an outstanding genetic response to the selection for VE of LS as well as 

differences in their resilience potential, being an exceptional biological material to study 

animal resilience through the VE. Thus, this thesis aimed to investigate the molecular 

basics of these rabbit populations to gain insight into the biological mechanisms of 

animal resilience. This thesis focused on studying the genome and gut microbiome 

because both are important to shape phenotypes.  

SPECIFIC OBJECTIVES  

1. To identify genes and functional mutations associated with the VE and animal 

resilience using genome-wide association approaches, signatures of selection 

methodologies, and whole genome sequencing analysis. 

2. To determine the gut microbiome and metabolome composition underlying the 

differences in the resilience potential of the rabbits divergently selected for VE of litter 

size using metagenomic and metabolomic analysis. 

3. To develop a simulation tool for studying the effects of the genome and the microbiome 

coevolution in animal breeding programs. 
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CHAPTER 2: INTRODUCTION 

The most frequent occurrence of extreme climate events such as heat waves is proof of 

climate change [1]. The exposure of the animal to the new climate conditions requires an 

adaptation of these to avoid worse livestock production. Additionally, less use of 

antibiotics, as well as an increase in the animal welfare, must be required in the short 

future in the livestock industry. Hence, in this reality, a more sustainable livestock 

system is needed. The study of animal resilience may solve this one because the 

improvement of animal resilience would allow animals to cope better with the 

environmental fluctuations.  

1. ANIMAL RESILIENCE 

Until now, resilience was considered a challenging trait because is highly difficult to 

measure it. There are many definitions for resilience depending on the nature of the 

environmental perturbation [2]. In this dissertation, we referred to resilience as the 

ability of animals to maintain or quickly recover their performance after an 

environmental perturbation [3]. Furthermore, there are different ways to quantify the 

resilience. It can be measured by identifying the non-additive variance due to genotype 

by environment interactions (GxE) [4-6], as deviations of the observed individuals’ 

performance from an expected pattern [7-11], or using fluctuation traits [3, 12-15]. GxE 

needs to categorize or quantify the environmental conditions to correlate the phenotypic 

value from each level and extract the genotype by environment interaction [4, 16-18]. It 

is based on the intercept and slope of a reactive norm to calculate the estimated breeding 

values for resilience [4]. However, GxE is not a measure of overall resilience as strongly 

depends on the challenging environment or the nature of the disturbance categorized, 

i.e. heat stress [6, 19-20] or pathogen infection [5,21]. Deviations and fluctuations of 

traits seemed to fit better with our definition of resilience. Deviations from an expected 

pattern are measured with smoothing curves. Nevertheless, thresholds must be settled 

to determine the degree of resilience depending on the duration and the magnitude of 

the deviation [7-8]. The novel measure indicators are based on fluctuations traits such 

as the skewness of deviations, the autocorrelation of deviations, the variance of 

deviations, the residual variance [3, 22-23], the root mean square error, or quantile 

regression [24]. In all cases to measure animal resilience, repeated records such as daily 

feed intake [24-25] daily milk yield [14, 23], litter size [26,], and body weight [10-11] are 

needed. The use of one or other resilience indicators depends on the breeding goal. 

However, recent studies have proposed the environmental variance as a promising 

indicator of resilience considering their correlation, specifically with the residual 
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environmental variance [3, 14-15]. The environmental variance is easy to measure and 

showed low-to-moderate heritability [13, 27]. Moreover, it showed a negative correlation 

with health-related traits such as mortality [28], longevity, and fertility [23]. Likewise, 

animals with a low environmental variance showed less susceptibility to environmental 

perturbations for heat waves [14], pathogen infections [15], and highly stressful 

conditions as the parity [29]. The immune system seemed to be an important part of 

resilience since it allows to perceive the environmental factors and mitigate their effects 

[2].  

Unravelling the biological mechanism underlying the environmental variance could be a 

strategy to decipher animal resilience. The selection for environmental variance may 

allow more resilient animals to improve the sustainability of the livestock system. For 

that, this dissertation aimed to disentangle the genetic and microbiome basics of the 

environmental variance with the perspective of extrapolating the results to animal 

resilience. There are a wide number of evidence highlighting the relevance of the genome 

and microbiome shaping the phenotypes [30]. Hence, we studied the genome and the 

microbiome of animals divergently selected by high and low environmental variance of 

litter size to obtain a global vision of the most important mechanisms that could 

modulate the animal resilience.  

2. ENVIRONMENTAL VARIANCE OF TRAITS 

The environmental variance or VE is a measure of environmental sensitivity, how the 

individuals respond to the environment [31]. VE is not homoscedastic and differs from 

individuals even if they share an environment. This is because each genome can respond 

differently to environmental factors [32-33]. That means that a part of the dissimilarities 

among individuals observed on the phenotype is a result of a genetic variation for 

environmental sensitivity which can affect the mean or the variance of traits (Fig. 1). The 

estimation of the environmental sensitivity depends on the ability to quantify or 

categorized the environmental factors. When the environmental factors can be 

measurable (for instance diet or temperature) are defined as macro-environmental 

factors [17, 33-34]. In this case, the environmental sensitivity can be estimated by 

computing a GxE interaction due to the phenotypic mean differences between 

environmental factors depend on the genotype (Fig 1B). When factors are unknown, they 

are known as micro-environmental factors. These factors are all unknown environmental 

factors in a short period or throughout the lifetime of individuals [17, 33-35]. The micro-

environmental factors are studied using the residual variance of the traits that are the 

differences in the within-individual variance under the same environmental conditions, 
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also named VE [32-34]. Thus, the term VE is used to refer to the environmental sensitivity 

for micro-environmental factors measured as the residual variance of the traits (Fig. 1C). 

The genetic variation in the VE is of interest in evolutionary ecology and animal and plant 

breeders to study the environmental sensitivity and use it as a selection criterion [30, 

33]. 

 

Figure 1. Differences in the phenotype value due to environmental sensitivity. A) Phenotype do 
not affect by environmental factors. B) Environmental factors shift the mean of the phenotype. C) 
Environmental factors shift the variance of the phenotype. D) Environmental factors affecting both the mean 
and the variance of the phenotype.  

The VE has been treated as a trait itself and different assumptions were suggested to 

model it, based on the approach made by SanCristobal-Gaudy et al. (1998) [36]. This 

approach assumed a hierarchical mixed model where an additive genetic effect is fitted 

on both the phenotypic mean and the exponential log of the VE (for more details see Hill, 

2010 [37]). To solve the mixed models for the VE different methodologies such as the 

double hierarchical model (DGLM) solve by maximum likelihood [38], two-step 

restricted maximum likelihood (REML) [39] and Bayesian methodologies [40] has been 

proposed. Bayesian methodologies allow to directly estimate the parameters for the VE. 

However, they require the implementation of highly complex MCM sampling algorithms 

(Metropolis Hasting with Langevin proposals) [41-42]. The heritability estimations for 

the VE under these methods statistically supported the genetic control of the VE. The 

values for these estimates can find in the review by Hills and Mulder (2010) [37] and 

most recently by Iung et al. (2019) [27], showing heritabilities for VE ranging from 0 to 

0.208 with a mean of 0.027. The large fluctuation in the heritabilities values is due to the 

extreme sensitivity of the estimate to the model applied (Yang et al., 2011) and the effects 

included on it [40, 43]). 

The first empirical study to prove the segregation of genetic variance for the VE was made 

by Mackay and Lyman (2005) [44] using the Drosophila Melanogaster. After that, 

divergent selection experiments for VE in mice [28] and rabbits [26, 39] showed a 

substantial genetic response. In these experiments, a negative correlated response to the 

selection was observed for traits such as longevity [45], litter size [26, 46], implanted 

embryo, and foetal survival [46], and mortality and animal resilience [15].  A positive 

correlation response for productive traits such as birth weight was found for the 

divergent experiment in mice [28] instead no effect was observed in rabbit for this trait 
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[39]. Statistical models for VE also found a negative correlation for health and 

reproductive trait such mortality, longevity and fertility [12-13, 23-24], as well as for 

animal resilience [13]. Likewise, a positive correlation was found for milk daily yield [12-

13] and birth weight [47-48]. However, the correlation obtained using statistical model 

difficult the estimation of reliable genetic correlations because the model is highly 

complex and hyperparametrized, and the estimates are strongly dependent on the scale 

used for the trait. Correlation between the mean and the variance of productive traits was 

observed to range from -1 to 1 [27]. Then, a properly knowledge about the biological 

mechanisms influencing the VE is necessary to unravel the animal resilience and its 

correlation with key trait for the livestock industry. 

2.1. RABBITS FOR STUDYING THE VE 

Selection for deciphering animal resilience in livestock systems is necessary. The rabbit 

and the mouse are good animal models for studying it. Both species are easy-

management, prolific and have short gestation periods; 21 days for the mouse [49] and 

31 for the rabbit. However, the rabbit is of importance in the field of animal production. 

Animal breeding programs have been developed to improve the meat quality [50-52] and 

reproductive traits [53-55]. Furthermore, two divergent selection experiments for high 

and low VE were successful performed in rabbit [26, 39]. In this thesis we used animals 

from the divergent selection experiment for VE of litter size (LS) developed by Blasco et 

al. (2017) [26]. This divergent selection was performed considering the within-dam 

variance of LS pre-corrected for year-season and parity-lactation: 

𝑉𝐸 =
1

𝑛 + 1
∑(𝑥𝑖 − �̅�)

𝑛

1

 
(1) 

where n is the total number of parities of the dam, 𝑥𝑖 is the pre-corrected litter size, and 

�̅� is the average of litter size of the dam. Although the correlation of the VE using pre-

corrected and uncorrected LS showed a genetic correlation of 0.99, meaning that no 

differences exist when pre-correction is made for LS. This result was subtle different 

from the found by Poppe et al. (2020) [23] where a moderate correlation from 0.39 to 

0.45 was observed when the VE is computed using the raw data. Anyway, this 

computation of the VE avoids artifacts due to the hyperparametrization of the models to 

calculate the VE.  

The divergent selection experiment considered 125 breeding females and 25 breeding 

males per divergent line in each generation (see details in Blasco et al., 2017 [26]).  The 

candidate females belonged to the best females with almost 3 or 4 parities. The males 
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were selected from the offspring of the best female for each sire (best mating). Animals 

from the divergent lines were coetaneous and under the same environmental conditions. 

After 10 generations, the rabbit populations showed an outstanding genetic response of 

4.5% in the mean of the base populations. Another experiment for VE in rabbits showed 

a genetic response of 16% in the mean of the trait after four generations [39]. In mice, a 

selection for VE was also successful [28]. Hence, selecting animals for VE is feasible. 

Furthermore, the rabbit lines from Blasco et al. (2017) [26] showed a negative genetic 

correlation with reproductive traits such as implanted embryo (-0.49), embryonic 

survival (-0.43), foetal survival (-.18) and prenatal survival (-0.45) [46]. A negative 

correlated response for litter size [46] and resilience was also found [15, 29]. The 

selection for VE of LS modified the mean and the variance of the LS (Fig 1). That means 

that the rabbit line selected for low VE of LS was more productive for LS and more 

resilient. Resilience was measured through the identification of immunological 

biomarkers under stressful conditions to know how the inflammatory response is 

triggered in the populations. The stressful conditions considered was a challenge of a 

vaccination with myxomatosis [15] and the moment of the first parity of the dam [29]. 

Both challenges showed that animals from the line with low VE of LS were less susceptible 

to the stress generated since showed low levels of inflammatory biomarkers such as the 

CRP. Then, these rabbit populations are an exceptional biological material to unravel the 

mechanisms under the VE and the animal resilience.  

3. OMICS STUDIES 

The omics studies emerged with the aim to unveil the biological mechanisms shaping the 

phenotypes. Next-generation sequencing (NGS) technologies drove the “Omics era”, 

dawning the field of genomics since it can sequence millions of DNA fragments in a 

cheaper way. The different omics disciplines emerged with the advancement of modern 

technology and bioinformatics, allowing to study the different components of a living 

organism on a large-scale. The different omics disciplines are: 

▪ Genomic: the study of individual’s DNA 

▪ Transcriptomic: the study of the individual’s DNA expression based on 

the number of copies of transcripts of RNA.  

▪ Epigenomic: the study of the individual`s DNA expression comprising 

epigenetic marks. 

▪ Proteomic: the study of proteins from the individual 

▪ Metabolomic: the study of the metabolites produced from the individual’s 

metabolism.  
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All these disciplines were extended to the study of the microbiome since was 

demonstrated that living microorganisms in individuals can also contribute to shaping 

their phenotypes [30, 56]. Hence, an extension of the omics vocabulary was made with 

the incorporation of the terms: Meta-genomic, Metatranscriptomics, Metaproteomics, 

and Metabonomic (similar to metabolomic) [57]. Only 1% of the total microbial species 

can cultivate so these new omics allow to explore a field previously almost unknown.  

4. GENOMIC STUDIES 

The aim of genome studies is to try to explain the genetic basis of heritable traits. In this 

thesis, we focus on genome-wide association, signatures of selection, and whole genome 

sequencing studies.  

4.1. GENOME-WIDE ASSOCIATION STUDIES 

The genome-wide association studies (GWAS) try to identify variations in the 

individual’s genome associated with phenotypes. Most common GWAS [58-59] are 

based on the identification of single-nucleotides polymorphisms (SNP). These SNPs are 

variations in a single position of the DNA which are in linkage disequilibrium (LD) or 

segregating together with the causal variants, those with an effect on the phenotype [60].  

Extensively GWAS has been applied in livestock to identify quantitative trait loci (QTL) 

associated with key traits with economic repercussions in this industry. For instance, 

milk yield and somatic cell score in cattle [61-63], carcass weight, intramuscular fat, and 

fat composition in pigs [64-67], intramuscular fat in rabbits [68-69], and feed intake in 

chickens [70-71], among others. Most of these quantitative traits are influenced by a huge 

number of variants each one with a weak effect on the trait [72-74]. Thus, the 

identification of most of them is still challenging. GWAS only captures a small fraction 

of the genetic variance, usually due to the identification of those with major additive 

effects on the phenotype [75]. 

Limitations in the detection power of GWAS are mainly conditioned by multiple factors 

[76]. Most important are (i) the SNP chip, (ii) the population studied, (iii) the sample 

size, (iii) the quantitative trait, (iv) the effect size of the variants, and (v) the methodology 

applied. (i) SNP chips used to be developed for species using different genetic lines. In 

livestock, most used SNP chips have between 50K and 200K SNP. That means that for a 

genome of around 3 billion pair bases (length of the Oryctolagus cuniculus genome), the 

average SNP density ranged from 17 to 67 SNPs per megabase. In such a manner, they 

do not generally incorporate all SNPs needed to catch all the causal variants contributing 

genetically to a phenotype. Moreover, SNP density decreases substantially after the 
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quality control [77] and is greatly dependent on the (ii) population under study and how 

many SNPs are not polymorphic. Moreover, an inappropriate (iii) sample size hides the 

true allele frequencies of the population and difficult the identification of its family 

structure. This hinders the estimate of the variants’ effects and increases the ratio of false 

positives (FP) and negatives (FN) [58-59, 61]. Additionally, the genetic basics of the 

quantitative trait analysed such as its heritability, the number of variants and their 

distribution through the genome, and (iv) their effect size determine the statistical power 

of the GWAS. There is no a (v) methodology consensus to estimate the genetic effect of 

the variants [78]. Thresholds used to determine if a variant is associated with the trait 

vary among studies. It must consider all the factors to properly control the ratio of FP 

and FN [61]. However, it is complicated due to the hyper parametrization of the models. 

In general, models use two different approximations based on the estimation of the 

genetic effect marker by marker or accounting for groups of SNPs. Both methodologies, 

single-marker regression and multiple-marker regression allow the implementation of 

GWAS [78]. However, we must take both their limitations and benefits into account.   

  4.1.1. SINGLE-MARKER REGRESSION 

SMR consider that the SNPs are independent among them, and the causal variants or 

QTLs have a strong effect on the phenotype. Models are fitted marker by marker, 

including the SNP effect as a fixed effect.  In general, all SMR models follow the structure: 

𝒚 = 𝑿𝒃 + 𝒛𝒋𝛼𝑗 + 𝒆 (2) 

where y is the vector of phenotypic values; X is the matrix of incidence of the systematic 

effect b; z is the vector with the allele dosage of the SNP j code as 0,1 and 2, according to 

the number of copies of the reference allele; 𝛼 is the additive genetic effect of the SNP j; 

and e is the residual vector normally distributed with mean zero and standard deviation 

𝐼𝜎𝑒
2. The population stratification can be corrected by including in the model the first five 

principal components as systematic effects. However, the best way to take the population 

stratification into account is to include in the model a polygenic effect (g) based on the 

genomic relationship matrix (GRM) such as the variance-covariance matrix of the 

distribution. In livestock, the GRM uses to be constructed using the VanRaden (2008) 

[79] or Yang et al. (2010) [80] estimators. Using these estimators, the SNPs are fitted 

double in the model, decreasing the detection power of the GWAS [81]. Thus, Yang et al. 

(2014) [81-82] proposed to leave the chromosome of the tested SNP out to avoid that. 

Maximum likelihood is used to adjust the models and test the level of “significance” (p-

value) using a F-Fisher test or a chi-square test. The threshold to consider when a p-value 
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rejects the null hypothesis and determines that a SNP is associated with the trait used to 

be 0.05. 

Caution must be taken with the p-value to avoid misinterpretation. The p-value is not a 

probability and does not show the degree or magnitude of the evidence to reject the null 

hypothesis. Moreover, it is based on the sample so their values can vary among 

experiments. Thus, the p-value must be considered only as a qualitative indicator of 

association or no association. Furthermore, a threshold of 0.05 must be adjusted to 

reduce the number of false positives due to the multiple testing. False discovery rate 

(FDR) [83] and Bonferroni correction [84] are the most common to correct for multiple 

testing, although in GWAS most implemented used to be the Bonferroni correction. 

Bonferroni correction adjusts the threshold of the p-value dividing it by the number of 

SNP that are independent. The easy way is to consider that all SNPs are independent, but 

this reduces drastically the detection power of the GWAS, increasing the number of false 

negatives. A more realistic approximation is to calculate the number of independent LD 

blocks to approximate the number of independent SNPs. On the other hand, an empirical 

p-value can calculate (based on a permutation test) to obtain the distribution of the SNPs 

under the null hypothesis to establish a proper threshold for the study. In livestock 

systems, the threshold should be fixed to 1e-4 because artificial selection has been 

applied to most of the species and their effective sample size are low, so they should have 

large blocks of LD. However, there is no consensus about the threshold since it highly 

depends on the genetic architecture of the sample population, so each GWAS should 

calculate its optimal threshold to control the number of FP and FN in their study.  

SMR models do not consider the correlation among the SNPs, generating an 

overestimation of the additive genetic effects of the SNPs dependent on sample size [85]. 

In this way, multiple-marker regression might estimate better the SNP effects taking the 

LD of surrounding SNPs into account.  

  4.1.2. BAYESIAN MULTIPLE-MARKER REGRESSION 

BMMR models were developed by Meuwissen et al. (2001) [86] with genomic prediction 

purposes and then were adapted for performing GWAS. Multi-maker regression (MMR) 

models take the correlation among SNPs into account to estimate the genetic effect of 

the SNPs. Bayesian inference is used to perform the MMR, fitting the effects of the SNPs 

as random effects. Bayesian inference is based on probabilities since the degree of 

uncertainty is expressed with a probability distribution of the beliefs about the unknown 

parameters in the model (θ), the prior distribution. The posterior distribution of the 

parameters given the data (P(θ|y) is constructed by joining the data distribution (a 
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likelihood function) and this prior distribution. This posterior distribution is used to 

make inferences since it reflects the knowledge about the value of the parameters given 

the observed data [87-88]. There are different methodologies to perform a BMMR 

model. Dissimilarities among them are in the information about the size of the SNP 

effects included in the prior distribution [89-90]. These methodologies are Bayes A, B, 

C, C𝜋 or Bayes LASSO, among others [90-93].  In all methods, Markov chain Monte Carlo 

(MCMC) algorithms (i.e. Gibbs sampling, Metropolis Hastings) are used to sample from 

the posterior distribution. 

What methodology is best relies on the genetic architecture of the trait since the prior 

distribution highly affects the estimate of the SNPs effects [90]. The Bayes B was the 

most used by animal breeders because was easy to implement by the GenSel software 

developed by Garrick and Fernando (2013) [94]. Moreover, its computation efficiency 

was improved by Cheng et al. (2015) [95] and included in the software JWAS which also 

optimized other Bayesian Alphabet methods [96]. Bayes B considers that a percentage of 

the SNPs (𝜋) do not influence the phenotype, and the rest have effect and variance with 

a probability of 1-𝜋 [78]. It is a good methodology for a low sample size to detect SNPs 

with large effects size on the phenotype [97]. However, the  𝜋 value conditions the results 

so different priors must be used to obtain reliable results [93]. In this line, Bayes R might 

be a better approximation due to allow the use of a mixture of prior distributions [98].  

BMMR models have a better estimation of the SNP effect with the use of SNP windows 

[99]. Additionally, the genetic variance explained by each window can be obtained.  The 

SNP windows can be sliding or discrete. Sliding windows allow the overlapping of SNP 

among adjacent windows while discrete windows are independent windows of a fixed 

size. However, there is not reference size for the windows (by SNP number or base pair 

length), affecting the estimation of the parameters in the model. The detection of SNPs 

associated with the trait is performed by the computation of the Bayes Factor (BF). BF is 

the ratio of the marginal posterior probability of each SNP given the null hypothesis and 

the alternative hypothesis, each one multiplied by its prior [88, 100]. Kass and Raftery 

(2015) [100] suggested two thresholds to indicate the degree of the evidence to reject the 

hypothesis of no association: a BF higher than 10 as strong evidence of association and a 

BF higher than 100 as decisive evidence of association. However, as for the SMR models, 

the threshold is suggestive because is highly dependent on the assumptions considered 

to perform the model. Other measures such as the posterior probability of association 

(PPA) and window posterior probability association (WPPA) [100-101] can be used to 

identify an association (see the review Wolc et al. 2022 [93] for more details).  
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GWAS is a useful tool to discover novel biological mechanisms of traits due to a genetic 

effect on them. However, it is still complicated to extrapolate and validate the results in 

other populations [75, 102]. The degree of the LD between the SNP markers and the 

causal variant, the strength of their genetic effects, as well as the heritability of the trait, 

affect the ability of GWAS to identify and quantify the true QTLs. Therefore, GWAS must 

be considered an exploratory analysis. The magnitude of the genetic effect and the 

variance explained by the SNPs are highly influenced by the methodology applied. GWAS 

must be complemented with other genomic studies and with post-genomic analysis to 

properly interpret and disclose the biological mechanism under key traits. In this way, 

the study of signatures of selection may help to deep insight into the biological 

mechanisms of the genetic variance observed in the traits. 

4.2. SIGNATURE OF SELECTION 

Signatures of selection (SS) are patterns of positive selection on the DNA where there are 

advantageous alleles that were or are under selection pressure. SS is generated due to a 

hitchhiking effect, which is an extension of the selection pressure to neutral alleles 

surrounding the advantageous allele [103], forming haplotypes. Haplotypes are DNA 

segments where the patterns of neutral variation have been disrupted and both neutral 

and advantageous alleles are segregating jointly because are in LD. The increase in the 

prevalence of a haplotype is due to a selective sweep where the advantageous alleles 

become more common after selection and therefore their surrounding neutral alleles 

[104]. Selective sweep can be hard if a new mutation arises and quickly reaches fixation, 

partial if has not reached yet fixation, and soft if a neutral allele that is segregating in the 

population becomes favourable at a certain time and increase its frequency [105].  

Hard selective sweeps act on rare mutations with a large effect on the phenotype. This 

generates specific signatures of selection easily trackable such as high levels of LD, long 

haplotypes, a reduction in the local variability, and a quick increase in allele frequencies 

that can reach fixation [105]. However, after generations of selection recombination 

makes LD decay and breaks haplotypes [106]. This event depends on the genomic 

regions because recombination rates vary widely across the genome [107]. Hard selective 

sweep is the classic and expected, but the most likely is the soft selective sweep due to 

the polygenic nature of complex traits. Artificial selection can act over many loci, 

increasing their allele frequencies at the same time so fixation is not reached. 

Furthermore, neutral or standing variants on the genome can become advantageous 

because of the selection target [108-109]. In this line, the signatures of selection in soft 



 _______________________________________________________ INTRODUCTION 

19 
 

selective sweeps are less pronounced and thus more difficult to identify.  Thus, the 

detection of this one is highly dependent on the sample size.  

GWAS is based on the estimation of the effect variants on the phenotype so fails to 

identify alleles under weak selection or fixed alleles [75]. Thus, mapping signatures of 

selection allows searching most of the patterns of positive selection regardless of the 

phenotype [110]. SS methodologies try to detect all pointedly patterns on the DNA 

produced by selective sweep which explain the evolution of the populations and the 

improvement of key traits in the livestock systems [111-112]. They focus on detecting SS 

due to the (i) reduction in local variability, (ii) deviation in the site frequency spectrum, 

(iii) increment in the LD or extended haplotype, and (iv) differentiation in a single site 

position. Furthermore, they can be classified into intra- (i, ii, and iii) and inter-

population (iv) statistics [111-112]. A recent review of the most common program to 

detect these signatures of selection could be found in Saravana et al. (2020) [113].  

  4.2.1 INTRA-POPULATION STATISTICS 

i. Reduction in local variability 

A common pattern of SS is the increment of homozygous segments in the genome due to 

a local reduction of the variability in the regions under selection. The most common 

methodology is the ROH or Runs of Homozygosity. The ROH methodology tries to 

identify continuous segments where on average the individual showed a higher number 

of homozygous sites regardless of the entire genome [114]. This methodology also allows 

to identify of past and recent selection events, depending on the extension of the ROH, 

as well as determining in a better way the inbreeding coefficient in the population [115-

116]. The heterozygosity depression across the genome through the pooled 

heterozygosity (HP) can also use as a measure of the reduction in the local variability 

[117]. 

ii. Deviation in the site frequency spectrum 

In this category, statistics compute the deviations of the allele frequencies from the 

distribution under the neutral model or no selection [118-119]. A selective sweep distorts 

the allele frequencies in the region harbouring the advantageous allele going out of the 

neutral distribution. The most common statistics are Tajima’s D (TD) [120], Fay and 

Wu’s H [121], and composite-likelihood ratio (CLR) [122-123]. TD cannot distinguish 

between rare and high frequency new mutations because no ancestral genome is used 

which is supplied by Fay and Wu’s H with the inference of the ancestral alleles from an 
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external population. CLR implements a coalescence simulation to obtain the neutral 

distribution of the allele frequencies under the hypothesis of no selection [123]. The null 

distribution can be based on the data itself [104] or on the allele frequencies observed in 

the overall breed compared with the distribution of a subset of breed selected for a key 

trait [124].  

iii. Variation in the linkage disequilibrium 

The following statistic measures the extension in the LD patterns after a hitchhiking 

effect. Advantageous alleles take time to reach high frequencies. During this time LD 

trends decay and haplotypes break [106, 125]. In this line, Sabeti et al. (2002) [125] 

developed the long-range haplotype (LRH) method to compare the extension of 

homozygous haplotypes in a region with their frequency in the population. For that, a 

core haplotype using the LD decay is computed to then calculate the extended 

homozygous haplotype (EHH), that is the probability that the core haplotype in two 

random chromosomes will be identical by descent. The recombination rate is used to 

normalize its values [125] due LD differences across the genome [126].  The integrated 

haplotype score (iHS) is an expansion of EHH including the recombination distance and 

determining the ancestral and derived alleles to compare the EHH in the population 

[127]. However, it requires phasing haplotypes. In events where the inference of the 

haplotype is not possible or is not so accurate, we can detect high allele frequencies by 

the identification of excessive LD with the LD decay (LDD) statistics [128]. 

  4.2.2 INTER-POPULATION STATISTICS 

iv. Differentiation in a single site position 

This pattern of positive SS is based on the differences in allele frequencies among 

populations. These differences can be measured by computing the fixation index or 

inbreeding coefficients FST, FIT and FIS [129].  Most used is the FST which harbouring the 

FIT and FIS in its definition and determines the correlation between random gametes of a 

subpopulation relative to the entire population. All used approximations are based on 

the allele frequencies and the degree of heterozygosity in the populations [130-132]. The 

Nei (1973) [130] and Weir & Cockerham (1984) [131] approximations are the most used. 

Although the former does not consider the sample size, and latter tends to overestimate 

the FST values [133]. Moreover, FST statistics are for populations that diverged from the 

same ancestor population. FLK statistic deal with and take the population tree structure 

into account with the inclusion of the coancestry matrix in the model [134] and can also 

compare haplotypes frequencies (hapFLK [135]). Bayesian approaches are also 
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implemented to compute the FST [136-138]. On the other hand, an extension of EHH (XP-

EHH and Rsb) and CLR (XP-CLR) statistics were made to also allow comparisons among 

populations. They compare the EHH or CLR at the same position among populations 

[106, 139-140]. Ancient selection before the divergence can be tested using the 3P-CLR 

approach [141]. Finally, genomic diversity among populations can be also detected by the 

study of the variation in the LD between two populations [142-143] 

SS identified by each methodology could differ among them because they used different 

assumptions to detect the SS [111,113]. For example, iHS identified segregating 

haplotypes whereas XP-EHH reveals haplotypes close to fixation [106] as well as Fay and 

Wu’s H statistic can identify high allele frequencies and Tajima’s D low-to-medium 

alleles frequencies [144].  The heritability of traits and their polygenic nature could hide 

some SS due to a soft selective sweep [105]. Low correlations among statistics were 

reported by Ma et al. (2015) [145], González-Rodríguez et al. (2016) [146], and Sosa-

Madrid et al. (2020) [147].  Thus, the use of multiple methodologies was suggested to 

increase the potential to detect SS [111, 148]. Combining the information of the different 

statistics and taking their correlation into account could be implemented using the 

DCMS method [145, 149]. Overall, the statistics for the identification of positive SS are 

affected by an SNP ascertainment bias and SNP chip limitations [111, 150-151]. 

Furthermore, statistics not based on variations in the linkage disequilibrium tend to 

overestimate their values because the surrounding alleles are large LD with the causal 

variants. The improvement of the estimation of these parameters could be achieved by 

considering sliding windows for their calculation [111], as well as knowing the genomic 

structure of the ancestor population [105]. The use of whole-genome sequencing data 

could help to complete the gaps to achieve the entire genetic architecture of the 

populations and improve the detection of SS and causal variant by GWAS. 

4.3. WHOLE-GENOME SEQUENCING  

Whole-genome sequencing (WGS) is a promising technology that overcomes most of the 

limitations of SNP chips mentioned before. This technology allows to obtain millions of 

DNA fragments in parallel, sequencing the whole individual genome. WGS scrutinizes 

the entire genome and releases the identification of most of the variants, increasing the 

probability to discover causal variants and capture the overall genetic variation that 

shapes complex traits. WGS has become cheaper and cheaper over the years, being 

available for a wide range of experiments. Nowadays, second- (SGS) and third 

generations sequencing (TGS) technologies are competing in the market [152]. 

Differences between both technologies lie in the longitude of the sequenced reads, being 
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reads from SGS technologies shorter [152-154]. The short reads of SGS technologies 

allow to successfully identify single nucleotides variants (SNVs) and short indels but fails 

in the identification of most structural variations as copy number variations due to 

repeated sequences [155-156]. Moreover, SGS are highly influence by PCR bias such as 

the GC content across the genome, being this one inefficient to amplify regions with low 

or high GC content [157]. TGS technologies try to deal with all the SGS limitations [156, 

158]. Their methodologies do not depend on PCR amplification, so they are not affected 

by its bias. Moreover, they might resolve the problem of identifying most of the structural 

variants due to their long reads [159-160] and of improving genome assembly [154]. The 

most relevant TGS technologies until now are the SMRT of PacBio [161] and Nanopore 

sequencing of Oxford [162] Nanopore Technologies while for SGS are the Illumina 

platforms which dominates the market [152].  

In livestock, there is a strong LD among variants, so the identification of the causal 

variants using SNP chips is challenging. The massive information generated by WGS 

technologies can help to identify directly all the causal variants under the domestication 

process of livestock species [163-166], as well as those underlying adaptative and 

productive traits [167-170]. However, unless WGS technologies are nowadays cheaper, it 

is still costly compared with genotyping with SNP chips. Furthermore, proper sequencing 

coverage is needed to accurately call the variants across the genome and calculate their 

allele frequencies to estimate their effect and identify the causal variant [171]. In general, 

WGS studies use a quite low sample size per population or breed which limits the 

statistical power to extract reliable estimates and results. The polygenic nature of most 

traits makes it challenging. Variants with a small effect on the phenotype require a large 

sample size to detect them. Moreover, WGS generated massive useless information due 

to the large LD of the livestock populations, increasing the computational cost of this 

analysis. Resequencing of target regions with WGS technologies has been proposed as an 

alternative to screen feasibly thousands of individual genomes [172]. In this way, we can 

explore the non-coding and coding variants to identify the causal variant in candidate 

GWAS regions [173]. This also allows to reduce the WGS data, although we lost 

information from the regions that were not identified by the GWAS as QTL. Another 

approximation to reduce the cost of WGS is to perform whole exome sequencing (WES) 

since coding regions seem to harbour most of the variants with high effect on phenotypes 

[174]. WES enables to sequence all coding genomic regions which represent only 2% of 

the WGS data. However, the location of the causal variant depends on the genetic 

architecture of the population and the trait. Hence, with WES we lost information of the 

noncoding regions which can also contain important variants to shape phenotypes [175]. 

On the other hand, WGS was proposed to do in DNA pools of representative animals for 
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identifying most of the variants underlying traits with an acceptable sample size [176]. 

This approach was successfully implemented in pigs and sheep allowing to sequence the 

whole genome of a representative population of hundred animals [177]. However, 

although the use of DNA pools gives reliable estimates of the allele frequencies, this 

methodology confounds low frequent variants with sequencing errors avoiding to 

accurately identify rare variants.  

Despite of the promising benefits of the WGS, no clear advantages of WGS over SNP 

chips have yet been identified to perform GWAS. Furthermore, the use of WGS instead 

of SNP chips did not increase substantially the prediction performance of the models, 

showing an average improvement of 2.5 to 4.2 percentage points depending on the trait 

and the population analysed [178]. Computational cost limits the sample population 

which avoids to properly accurate WGS data. A low sample size requires a selection of 

the animals to sequences avoiding well-defined genetic architecture of the trait in terms 

of LD, calling variants, and allele frequencies. Moreover, WGS pipelines must be 

optimized to process the data. Genotyping with SNP chips allows to successfully identify 

the common genomic regions associated with key traits [179], patterns of positive 

selection [113] as well as copy number variations regions [180]. Although it fails in 

identify rare variants and large structural mutations as deletions and insertions. 

Considering the limitation of the WGS, this one might be used as a complementary 

methodology to GWAS using SNP chips because those are more economically feasible 

and can be performed at large scale. Nowadays, WGS data might help to discover the 

causal variants in candidate genomic regions identified using SNP chips until WGS 

becomes feasible for large sample sizes.  

4.4. PREVIOUS GENOMIC ANALYSIS IN VE AND 

RESILIENCE 

Candidate genes for animal resilience were identified using different resilience 

indicators. In small ruminants, genes of Toll Like Receptors (TLR), Heat Shock Protein 

(HSP) family, gonadotrophin hormone, as well as BMP2, BMP7, and LEP genes were 

associated with resilience to heat stress (see review Joy et al., 2020 [181]). Houda et al. 

(2022) [182] showed that prostaglandin receptor genes (PTGDR2), genes from 

membrane-spanning 4A family (MS4A), GRB10, IKZF1, MYD88, and RNASEL genes 

were some of the genes associated with disease resilience. The QTLs identified in that 

study explained 26.95% of the genetic variance for the resilience indicator used 

(deviations from the expected body weight) [182]. Likewise, RSAD2 (virus inhibitory 

protein), IL17RA, TRIM39 genes, and the MHC region were also associated with disease 
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resilience in pigs, among others [183]. Genes for a correct neural response and heat 

tolerance were found for resilience to heat stress in cattle [20] and for olfactory receptor, 

stress response, and immune response in sheep [184].  

VE could be a global measure of resilience. Several genomic analyses sought to identify 

quantitative trait loci associated with the VE (vQTL) using different livestock species; pigs 

[185-186], cattle [187-189] and chicken [190]. Overall, vQTLs explained a low genetic 

variance of VE ranging from 0.56 to 8%, except for Wolc et al. (2012) [190] and Iung et 

al. (2018) [189] which explained 16 and 20% of the genetic variance, respectively. 

Candidate genes found were involved in pathways related to the stress and immune 

response, and the development of sensory and neural structures. The genes from the 

heat-shock proteins (HSP) or related to them were also identified by Sell-Kubiak et al. 

(2015) [185] in pigs, Iung et al. (2018) [189] in cattle and Morgante et al. (2015) [191] in 

Drosophila Melanogaster. Independently the resilience biomarker used seemed that the 

HSP protein is critical to modulate the VE. HSP are related to the response to heat stress 

by boosting the immune response and countering cell damage [192-194]so could also be 

key for modulating animal resilience. Candidate genes identified by all resilience 

biomarkers supported the relevance of the immune system to control animal resilience 

[2, 195].  

5. MICROBIOME STUDIES 

In a traditional framework, the phenotypes variability observed were assumed to be a 

consequence of the individual genome and the environment [32]. However, 

microorganisms (archaea, bacteria, eukaryotes, and viruses) which live in each 

individual can also shift their phenotypes [30, 196]. According to the definition proposed 

by Marchesi and Ravel  [57], these microorganisms, their genomes, and their habitat or 

surrounding environment (e.g., tissues) assemble the individual microbiome. The 

consortium of the individual genome and the microbial genomes is called hologenome 

and can drive the evolution and adaption of animals and plants [197-199]. Because of this 

coevolution, animals and plant breeder became to incorporate in their models the 

microbiome as another source of phenotypic variability which can affect both the mean 

and the variance of traits (see review of Henry et al. 2021 [30]).  

The largest community of functional microbial species in animals is from the gut with a 

density around 1013 cells/mL of content [200-202]. Its implications to health and disease 

have been widely studied (see reviews [56, 203-205].  However, gut microbiome 

inheritance is complex which complicate its modelling and reliability across traits and 

species. In mammals, its inheritance starts with the colonization of microbial species 
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from the dam. Gut microbiome from the dam can reach the placenta [206-207] and the 

amniotic fluid [207-208] through dam’s blood stream. Thus, colonization of bacteria 

could begin in utero when the foetus absorbs amniotic fluid. This was supported by the 

high similarity between the microbiome composition of the meconium (earliest stool) 

and the amniotic fluid [209]. After that, birth route (caesarean section or vaginal-

delivery) [210-212], suckling and maternal environment as well as other environmental 

conditions can influence the acquisition of microbial species by the offspring [213]. In 

rabbit, coprophagous behaviour in pups may also be important to establish a properly 

bacterial community in the gut [214-215].   

Incursions of microbial species are produced until a mature immune system is 

completely developed. Education of host immunity is essential to establish the normal 

microbiota and develop an immune system which protects individual against pathogens 

[216]. Suckling is important for that because the dam can pass bacterial components and 

antibodies through the milk, which is an advantage for colonization of the gut by 

maternal microbial species [217]. Daft et al. (2015) [218] showed how nursing mothers 

influence the gut microbiome of fostered mice more than their biological dams. However, 

this study removed the solid feed which seems to be decisive for the composition of the 

stable microbiome. Bian et al. (2016) [219] showed in a cross-fostering model using 

piglets that the postweaning and the intake of solid feed are key establishing the gut 

microbiome composition and diversity of the piglets, decreasing the effect of the 

suckling. The nursing mother determined only a few microbial species in the adult pigs 

[219]. Likewise, Mulder et al. (2009) [220] suggested that housing environment is also a 

major factor for determining the stable microbiome, showing that animals under a high-

hygiene conditions had higher microbial diversity than those animals housed outdoor. 

High microbial diversity is related to a healthy and resilient gut because allow individual 

to cope better with gut disturbances [221-222]. However, the acquisition of microbial 

species with healthy properties may be most important than the diversity because 

directly control the growth of harmful bacteria [223]. Although multiple factors can 

affect the ability of bacteria to respond to stressful conditions (see review Shade et al., 

2012 [224]). 

Variability in the microbiome composition among individuals can be also a consequence 

of the host genetics due to microbial heritability [225-227]. Host genome can affect 

around 5-10% of the microbiome variability [225, 227] which means that microbiome 

composition fluctuations seem to be dominated by environmental factors over the host 

genetics [228]. Grieneisen et al. (2021) [226] showed that most of the microbial species 

(97%) were heritable with low to moderate microbial heritability. Moreover, the 
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microbial heritability of the family Christensenellaceae seems to be the most consistent 

across experiments [226-227, 229]. However, correlation among microbial species is not 

considered in these models, leading to imprecise heritability estimates. Moreover, there 

is an overestimation of the number of heritable taxa due to the huge number of models 

fitted [230]. Ever, the microbiome is influenced by a multitude of factors so deciphering 

it is still a challenge (for a complete review of how the microbiome is influenced across 

the lifetime see Martino et al., 2022 [231]).  

Phenotypes are shifted by the microbiome composition [197]. Differences in gut 

microbiome composition have been widely found in key traits for livestock such as feed 

intake [232-233], growth performance, and carcass quality in pigs [234], feed intake in 

chickens [235], milk protein yield [236] and methane emissions in cattle [237], and 

intramuscular fat in rabbits [238]. Faecal transplantation in germ free animals 

supported that because receptor animals showed similar phenotypes to the donor [239-

242]. Hence, microbiome composition dissimilarities allow to explain a percentage of the 

total phenotypic variance. Diffort et al (2016) [243] was the first to name this 

phenomenon as microbiability (m2), that is the proportion of the phenotypic variance 

explained by the microbiome. In humans, m2 was 0.36 for lactose consumption and HDL 

cholesterol, between 0.22-0.36 to body mass index and 0.25 for glycaemic status [228]. 

Table 1. Heritability (h2) and microbiability (m2) in different traits for some 
livestock species. 

Specie Trait h2 m2 Reference 
Cattle     

 Fat % 0.19 0.08 Buitenhuis et al., 2019 [244] 
 Protein % 0.18 0.08 Buitenhuis et al., 2019 [244] 
 Methane emissions 0.21 0.13 Diffort et al., 2018 [243] 
  0.14 0.16 Ramayo-Caldas et al., 2020 [245] 
  0.15-0.22(e) 0.15-0.3(e) Saborio-Montero et al., 2021 [246] 

Pig     
 Feed Intake 0.11 0.16 Camarinha-Silva et al., 2017 [247] 
 RFI(a) 0.30 0.11 Aliakbari et al., 2022 [248] 
  0.24-0.32(f) 0.18-0.33(f) Derú et al., 2022 [233] 
 FCR(b) 0.19 0.21 Camarinha-Silva et al., 2017 [247] 
  0.31 0.20 Aliakbari et al., 2022 [248] 
  0.23-0.27(f) 0.14 Derú et al., 2022 [233] 
 ADG(c) 0.47 0.03 Aliakbari et al., 2022 [248] 
  0.22-0.29(f) 0.17-0.20(f) Derú et al., 2022 [233] 
 IMF(d) 0.54 0.03-0.06 Khanal et al., 2021 [249] 

Rabbit     
 ADG(c) 0.05-0.14(e) 0.49-0.79(e) Velasco-Galilea et al., 2021 [250] 

(a)Residual feed intake; (b)Feed conversion rate; (c)Average of daily gain; (d)Intramuscular fat; (e)The 
estimates depend on the microbiota relationship matrix used; (f) The estimates depend on the 
composition of fiber in the diet.  

In livestock, several studies reported values of microbiability for key traits such residual 

feed intake, methane emissions, and intramuscular fat (Table 1). The value for 
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microbiability is highly dependent on the trait and the species used. Moreover, the model 

approximation could generate subtle differences in their values [246, 250]. Most of the 

value for m2 showed that microbiome contributes in a low to medium degree to traits 

with quite similar values for h2 and m2 [243, 245-248]. Exceptions were found for 

Average daily gain (ADG) and intramuscular fat (IMF) in pigs where genetic contribution 

dominates over the microbiome composition, unlike in rabbits for ADG (Table 1). High 

values from 0.49 to 0.79 were found for the m2 of ADG in rabbits in contrast to that found 

by Aliakbari et al. (2022) [248] in pigs which were almost null. These studies indicate 

that m2 is specific for traits and species and may not have the same value as the h2. 

5.1. IDENTIFYING THE MICROBIAL SPECIES DIVERSITY 

Two different NGS methods are used to identify and quantify the microbiome: amplicon-

based approach [251-252] and shotgun metagenomic sequencing [253-254]. The former 

is based on the sequencing of the 16s rRNA. The latter is based on the WGS approach 

since the whole metagenome of the entire microbial community is sequenced using 

untargeted primer sequences.   

Amplicon-based approach sequences directly the 16s rRNA sequence, the stable and the 

hypervariable regions. The hypervariable region harbours the differences between 

microbial species allowing their assignment. To determine the microbial diversity in the 

sample, the reads are clustered in operational taxonomic units (OUT [255]) with a 

similarity in their sequences higher than 97% [256]. For that, different strategies such as 

close-related clustering, open-reference clustering and de novo clustering can be used 

[257]. Most used is de novo clustering because outperforms the other strategies [258-

259] and was implemented in the most used software such as QIIME [260] and Mothur 

[261]. De novo clustering does not use an external, predefined database for clustering, so 

OTUs identification is not restricted to the number of reference OTU in the database, 

avoiding loss of information [257, 262]. However, it requires a higher computational cost 

and the OTUs cannot be reproduced in other studies because depend on the dataset used 

to define them. The threshold of 97% of similarity for clustering reads in the same OTU 

is adequate for classifying at species level but avoids detecting intra-species variations 

[263]. For that, amplicon single variant (ASV) was proposed as an optimal approach to 

detect most of the microbial variability in the samples [264]. This approach avoids using 

arbitrary thresholds [263] as cluster contains similar sequences only differing in a single 

nucleotide, capturing all the biological variation of the dataset. Furthermore, ASV can be 

compared among datasets [265]. QIIME software incorporates the identification of ASVs 

through the DADA2 pipeline [264]. After the clustering of the read sequences, the taxa 
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annotation is obtained by comparing the ASVs and OTUs with public databases as Silva 

[266]. Amplicon-based sequencing variants are useful to unravel the bacteria and 

archaea or fungi (using internal transcribed spacer; ITS [267]) diversity in the samples, 

but they cannot capture the differences in other microorganisms such as eukaryotes and 

viruses. Moreover, pipelines are not developed to determine the genes and function of 

the sequences in the sample. In this line, shotgun metagenomic is a more powerful 

methodology to extract all the information about the microbiome composition.  

Metagenomic allows to extract information of both the taxonomic composition and the 

genetic resource (functional information) of all microorganisms in a specific 

environment. For that, the reads obtained after the shotgun sequencing process must be 

assembled in large genomic fragments named contigs to then assign their functions 

(genes) and taxonomies (see review Lapidus and Korobeynikov, 2021 [268]). The contig 

assembly is a highly computational cost step in metagenomic studies. It depends on the 

algorithm used (Overlap-layout-consensus or De Brujin graph [269]), the coverage 

depth, and the complexity of the sample (number of different species) [270]. Low-

abundant species, bacterial strain mixtures and repetitive sequences should induce 

errors or chimeras (sequence incorrectly joined) in the assembly. Moreover, a lot of reads 

are lost in this process because they do not assemble in any contig [271]. Coassembly 

approach was proposed to improve the percentage of mapping reads because it considers 

all the reads of all the samples for the construction of contigs [271]. After contig assembly, 

gene prediction is performed on each contig [272] which will allow for annotating their 

taxonomies and functions through the software Diamond [273]. Public databases such 

as GeneBank nr database, NCBI taxonomy, or GTDB taxonomy [274] can be used for 

taxonomic annotation, and eggNOG database [275-276], KEGG ID database [277] or 

InterPro [278] for functional annotations. Taxonomic annotation requires another step 

to assign a taxonomy rank to each contig. The last common ancestor approach 

implemented in MEGAN [279] is one of the most used. In this case, the last common 

ancestor is used to define the taxonomy rank of the contig when it matches with multiple 

genomes. This approach is also used for the taxonomic assignment using amplicon-based 

sequencing [280] and seems to work properly for both short and long reads [281]. The 

tools QIIME [280], SqueezeMeta [271], and Kraken [282] implemented this 

methodology to assign the taxonomy.  

Lastly, the abundance of each taxonomy and functional assignment is determined by 

counting the total number of reads annotated in each OUT, ASV or contig database.  

Taxonomy databases can be formed by phylum to species rank, depending on the degree 

of information available in each database.  
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5.1.1. NORMALIZATION 

The absolute abundance of microbial species is simply impossible to obtain. NGS 

technologies allow to observe of a random sampling of the absolute microbiome 

composition. Hence, the observed counts are a part of the real absolute values for each 

microbiome feature (microbial species, genes, OTUs or ASVs), restricted to a constant 

sum imposed by the NGS instrument. In this line, microbiome data is compositional, and 

the use of proper normalization or data transformation is necessary to avoid misleading 

in the identification of the relevant microbiome features [283]. The most common 

normalization is the Total-Sum scaling (TSS) and rarefaction [284]. The former converts 

the data to “relative abundance” considering the total number of reads sequences and 

the latter makes a subsample of equal size to the observed data [285]. None of them 

correct or consider the compositional nature of the data since TSS is still a constant sum 

[283] and the rarefaction is a subcomposition of the data, still resulting in spurious 

correlations [283, 286]. Inference based on these kinds of normalized data can generate 

false positive [287] and misleading information [283]. The only way is to extract the 

information from the ratios between variables [283, 288].  

Log-ratio transformations are based on Aitchison methodology (1986) [288] and it was 

proposed to resolve the problem of the compositional nature of microbiome data. This 

included a new challenge, because zero values are not supported by logarithms and in 

microbiome data has a large number of zeros [289]. In a previous step, filtering 

uninformative variables (low abundance variable or with a high number of zero) are 

necessary to avoid false positives [290]. After that, the remaining zeros can be imputed 

using different strategies. Pseudo-count imputation is easier since all zeros are replaced 

by a small value that is arbitrary. However, this imputation assumes that all zeros are 

non-biological or sampling zeros due to the sample collection or an inefficient 

amplification [291]. Moreover, the analyses are sensitive to the arbitrary pseudo-count 

used [291-292]. Other strategies try to model the zeros using zero-inflated Gaussian 

models [293], zero-inflated beta regression [294], zero-inflated negative binomial 

generalized linear model [295], negative binomial regression [296] or Bayesian-

multiplicative inference which involves a Dirichlet distribution [297]. However, no 

consensus on the way to impute the zeros in microbiome data is reached. 

For compositional data, different log-ratio transformations can be used: (i) additive log-

ratio transformation (ALR), centered log-ratio transformation (CLR) or isometric log-

ratio transformation (ILR). ALR considers a reference variable to construct all the ratios. 

However, depending on the reference variable, the transformed dataset could be no 
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isometry. CLR transformation is isometry because used the geometric mean of all taxa to 

perform the ratios. However, the interpretation of the result is complicated because all 

variables are included in the denominator. ILR constructs the ratio based on 

amalgamations among the variables, for instance, 𝐼𝐿𝑅 =
𝑎+𝑏+𝑐

𝑧+𝑦
, where a, b, c, z, y are 

different variables from the datasets. This is a good approximation when you know what 

ILR are interested. In another way, the calculation of all the ILR from all the variables 

has a high computational cost. Moreover, the biological interpretation of the ratio 

between the amalgamation of variables could be complicated. In a biological view, ALR 

is easier to interpret because the same reference variable is used to calculate all the ratios. 

Greenacre et al. (2021) [298] proposed that the reference variable must be the one with 

the lowest variance which after a Procrustes analysis allows maintaining the isometry in 

the data. 

5.1.2. STATISTICAL ANALYSIS 

(i) Differential analyses (DA), (ii) alpha- and beta-diversity indexes and (iii) linear mixed 

models are used to study the microbiome. (i) DA analysis and (ii) alpha- and beta-

diversity allow identifying dissimilarities among groups in the microbiome composition. 

(i) DA analysis is more sensitive allowing to detect features which can act as biomarkers 

for specific group or phenotypes. (ii) Alpha- and beta-diversity is a more conservative 

method which indicate if there are or not global differences in the microbial species 

composition among groups. (iii) Linear mixed models are used to study the contribution 

of the microbiome to key phenotypes.  

 i. Differential abundance analysis 

Differential abundance (DA) analyses test if there are dissimilarities in the microbiome 

due to the identification of relevant features among groups. Each methodology applied 

its own normalization or transformation of the data [299-300] to then models the data 

under different assumptions for hypothesis testing (see reviews Lutz et al. 2022 [301]). 

Most of the tests are univariate so a false discovery rate (FDR) correction [83] is 

performed in most of the methodologies to correct the multiple testing. Multivariate 

methods such as partial least square discriminant analysis (PLS-DA) [302] and the zero-

inflated generalized Dirichlet-multinomial model [303] can avoid univariate models. 

However, no advantages of multivariate over univariate methods have been observed 

[304]. DA analysis can be implemented using different methodologies available in R: 

DESeq2 [305], edgeR [306], limma [307], ALDEx2 [287], metagenomeSeq [293], 
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Corncob [308] and ANCOM [299, 309], PLS-DA (mixOmics) [310] among others (see 

reviews from Calgaro et al. 2020 [311] and Nearing et al. 2022 [312]).  

The identification of microbiome features is highly dependent on the methodology used. 

For instance, the methodologies used to identify differential abundant ASVs gave 

different results across 38 different datasets [312]. ALDEx2 and ANCOM-II was the most 

conservative methods because identified the lowest number of relevant ASVs. Moreover, 

most of the variables identified by them are also identified by all the other methodologies 

suggesting that these ASVs are likely true positives.  Both ALDEX2 and ANCOM-II are 

methodologies that include log-ratio transformations; CLR in ALDEx2 [287] and ALR in 

ANCOM-II [309]. Another promising methodology for differential abundance is the 

partial least square discriminant analysis (PLS-DA). PLS-DA is a multivariate method 

that can reduce the dimensionality of the data to remove noise. It tries to maximize the 

covariance between a categorical variable (dependent variable) and its features 

(independent variables) [302]. This allow to properly calculate the contribution of each 

feature (metabolites, taxa or genes) on the prediction and classification of the 

populations, leading to the high collinearity of the datasets. However, this methodology 

seemed overfit when the number of features is larger than the number of samples, 

reaching an over-optimistic model [313]. Thus, validation test such as permutation test 

and cross-validation must be used to check the results. Nevertheless, there is not a 

consensus methodology to analyse this kind of data to search significant differences in 

the features abundance among samples. Nearing et al. (2022) [312] suggest used 

multiple methodologies and compare the result among them.   

 ii. Alpha- and beta-diversity 

Alpha-diversity indicates the microbial species richness and abundance within a sample 

whereas beta-diversity determines the degree of (dis)similarities in microbial species 

composition between samples [314]. Indexes for estimating alpha-diversity are ACE 

index, Chao1 index, Shannon index, and (inverse) Simpson index. ACE [315] and Chao1 

[316] index measure the number of observed microbial species in the sample, corrected 

by a factor to avoid underestimation of the real richness due to the presence of rare 

microbial species [317]. Simpson index [318] measures the presence of dominant species 

in the sample. Both richness and dominance are combined in the Shannon index [319]. 

Non-parametric Wilcoxon test can use to obtain the relevance of the difference in alpha-

diversity among samples. To measure the beta-diversity Bray-Curtis distance, UniFrac 

distance and Jaccard distance can be calculate. Bray Curtis distance [320] determines 

the dissimilarity in microbial species composition between groups or treatments. It 
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considers both the abundance and the number of microbial species in each group. 

UniFrac [321] distance uses the phylogenetic tree to compare the samples. Jaccard 

distance measures the difference in presence or absence of microbial species between the 

groups. Jaccard distance does not consider the abundance of the microbial species. Beta-

diversity values can be plotted using ordination plots such PCoA or non-

multidimensional scaling (NMDS) and the relevance for the differences in their values 

among groups can be tested using a permutational multivariate analysis of the variance 

(PERMANOVA), prior verification of homoscedasticity of the variances.  

Each diversity measure gives different information about the microbiome. For that, a 

combination of them must be used to evaluate the microbiome diversity in the sample. 

The vegan packages in R [322] implements most of the alpha- and beta-diversity 

measures in an easy way.  

 iii. Linear mixed models 

Linear mixed models allow to estimate the proportion of the phenotypic variance that is 

explained by the microbiome i.e., the microbiability or m2. There is not a consensus 

model to estimate it because it depends to a large extent on the trait under study. 

Moreover, there are fluctuations in the m2 estimates due to the use of different 

approaches to compute the microbial relationship matrix (see Table 1). The first 

approach used to compute the microbial relationship matrix (M) was developed by Ross 

et al. (2012) [323], being 𝑀 =
𝑋𝑋′

𝑛
; where X is the log relative abundance of the OTU 

autoscaled.  Different research used this approach to compute the m2 of key traits in pigs 

[248-249], cows [243, 245-246], and rabbits [250]. Camarinha-Silva et al. (2017) [247] 

proposed a quite similar approach to Ross et al. (2012) [323] where 𝑀 =
1

𝑛·𝑋𝑋′
 for off-

diagonal values and 𝑀 =
1

𝑛
∑ 𝑋𝑖𝑘

2𝑛
𝑘=1  for diagonal values. Moreover, distance matrix based 

on beta-diversity estimates such as Bray Curtis dissimilarity [245, 250] and Weighted 

Unifrac distance [250] were used to compute M, as well as other matrix distance such as 

Jensen-Shannon distance [324], and Mahalanobis distance, among others [246]. There 

is not consensus on the approach to compute the microbial relationship matrix. Saborio-

Montero et al. (2021) [246] showed that the correlation among the different M deeply 

vary among approaches, explaining the differences in the estimation of m2.  

Furthermore, the algorithm used for estimating it (restricted maximum likelihood or 

Bayesian alphabet) also influence the m2 estimates. Hence, simulation studies could be 

useful to define the proper methodology to estimate the m2 [325]. 
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5.2. GUT METABOLOME 

One of the principal functions of the microbial species from the gut is to convert the non-

digestible nutrients into absorbable components for the host. Digestion of microbial 

species produces a wide gut-derived metabolite with detrimental or beneficial effects on 

the host [202, 326]. The production and abundance of these metabolites depend on the 

diet and the microbiome composition, which is affected by a huge number of factors 

[327]. Likewise, these metabolites also affect the microbial species community due to the 

regulation of functions such as the quorum sensing. Quorum sensing is important to 

establish gut microbiome behaviour and affect the pathogenesis of some microbial 

species [328-329]. Thus, both microbial species communities and their derived 

metabolites determine the microbiome composition which establishes a crosstalk with 

the host to shape phenotypes.  

The identification of gut-metabolites can be targeted or untargeted depending on if we 

know the compounds that we want to identify or by contrast we want an overview of the 

whole metabolites. Different technologies and sample preparations are needed to 

identify most of the metabolites due to their chemical nature. Gas or liquid 

chromatography coupled to mass spectrometry (MS) are the most used techniques to 

separate and identify small molecules of less than 1,500 Da [330-331]. Gas 

chromatography showed a high performance but is only for volatile organic compounds 

such as short chain fatty acids (SCFAs). Liquid chromatography techniques are easier 

than the gas chromatographic because it does not require sample volatility. Moreover, it 

allows identifying a wide number of compounds in the sample [332-333]. Other 

techniques as capillary electrospray coupled to MS and fourier transform infrared 

spectroscopy as well as nuclear magnetic resonance (NMR) spectroscopy can be used in 

metabolome studies (see Vernocchi et al. 2016 [331] for more details).  

De Vos et al. (2022) [56] made a complete review of the most important metabolites 

identified in the gut as well as their implications on the host. Short chain fatty acids 

(SCFAs), bile acid derivates and metabolites from the aromatic amino acid metabolism 

(AAAs) are the metabolites more studied [56, 334-335]. They can interplay with the 

brain, liver, and immune system modulating host’s health. Beneficial effects have been 

extensively reported for gut SCFAs production due to their anti-inflammatory properties 

[336-339]. The effect of the metabolites from the AAAs is still unclear as depending on 

the compound and its target they could induce disease or not in the host [340]. For 

instance, indole-3-acetic acid (I3A) has anti-inflammatory effect in the liver [341] 

whereas the end-product 3-(4-hydroxyphenyl)lactate is a biomarker of hepatic 

inflammation and steatosis [342]. Moreover, gut metabolites allow to establish a dialog 
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between the gut microbiota and the intestinal epithelial cells (IECs) to maintain the 

integrity of the intestinal epithelial barrier [343]. The integrity of IECs is crucial to 

modulate gut immunity and preventing infections [344]. Gut metabolites can act directly 

or indirectly on the organ and tissues and the effect could be influenced by other 

molecules and factors in the host. However, the biological mechanisms underlying the 

crosstalk between the gut and the host are still unclear, so the effect of the gut metabolites 

must be studied carefully. Moreover, their origin (microbiota, host or diet) must be 

properly assigned to know their real implications [345-346]. 

In livestock, the study of the gut metabolome is not as common as the metagenome 

analysis. Recent studies in cattle and pigs tried to identify the gut metabolites 

differentially abundant for feed efficiency [347-349]. The results in the pigs’ studies were 

consistent since they found metabolites or derivates of the bile acids and vitamin D in 

the animals with high feed efficiency [348-349]. For cattle, the results were different to 

the pig studies because animals with high feed efficiency showed a great abundance of 

essential amino acids such as L-Serine, L-Tyrosine, L-Glutamate and L-Lysine, among 

others [347]. However, there are species with highly different gastrointestinal tract. On 

the other hand, the rumen metabolome was studied for underlaying its relationship with 

the milk yield protein in cattle [350].  

5.3. MICROBIOME COMPOSITION FOR VE AND 

RESILIENCE. 

Alberdi et al. (2016) [351] suggested that gut microbiota is a key factor to detect 

environmental fluctuations. Genetic selection is a slow process so the modulation of the 

microbiome composition could allow faster acclimatisation of species to environmental 

disturbances [351]. A challenging experiment in rats suggested that the genus 

Lactobacillus could develop a protective mechanism to cope with heat stress conditions 

[352]. In Daphnia magna, their inoculation with different microbiomes (after an 

exposition with toxic cyanobacteria) showed an effect on individual fitness and survival 

[353]. Moreover, in coral reefs, the microbiome was identified as a potential mechanism 

to cope with the environmental factor due to the horizontal gene transfer among bacteria, 

mutations in the microbial genomes, modification of the abundance of the microbial 

species and/or the acquisition of beneficial microbial species from the environment 

[354].  

Gut microbiome is still an emerging field in the livestock industry, so no studies have 

been performed specifically for environmental variance or resilience yet. However, the 

implications of the gut microbiome in the homeostasis of the immune system and stress 
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susceptibility are widely studied [355-358], supporting its effect on the health status of 

the individuals [56, 205]. A comparison between germ-free mice and those with 

transferred wild gut microbiota showed how wild gut microbiota help to cope with the 

infection by the influenza virus. The mice with transferred microbiota showed high 

survival compared with the germ-free mice [359]. Furthermore, the ability of the gut 

microbiome to quickly restore its initial taxonomy and functionality (to be resilient) also 

affects health and disease [360-361] Thus, the gut microbiome composition could 

partially influence the animal resilience through the modulation of the immune system 

[195]. Thus, promising results may obtain by the study of how the gut microbiome affects 

animal resilience. 
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1. ABSTRACT 

1.1. BACKGROUND 

Environmental variance (VE) is partly under genetic control and has recently been 

proposed as a measure of resilience. Unravelling the genetic background of the VE of 

complex traits could help to improve resilience of livestock and stabilize their production 

across farming systems. The objective of this study was to identify genes and functional 

mutations associated with variation in VE of litter size (LS) in rabbits. To achieve this, we 

combined the results of a genome-wide association study (GWAS) and a whole-genome 

sequencing (WGS) analysis using data from two divergently selected rabbit lines for high 

and low VE of LS. These lines differ in terms of biomarkers of immune response and 

mortality. Moreover, rabbits with a lower VE of LS were found to be more resilient to 

infections than animals with a higher VE of LS. 

1.2. RESULTS 

By using two GWAS approaches (single-marker regression and Bayesian multiple-

marker regression), we identified four genomic regions associated with VE of LS, on 

chromosomes 3, 7, 10, and 14. We detected 38 genes in the associated genomic regions 

and, using WGS, we identified 129 variants in the splicing, UTR, and coding (missense 

and frameshift effects) regions of 16 of these 38 genes. These genes were related to the 

immune system, the development of sensory structures, and stress responses. All of these 

variants (except one) segregated in one of the rabbit lines and were absent (n = 91) or 

fixed in the other one (n = 37). The fixed variants were in the HDAC9, ITGB8, MIS18A, 

ENSOCUG00000021276 and URB1 genes. We also identified a 1-bp deletion in the 

3’UTR region of the HUNK gene that was fixed in the low VE line and absent in the high 

VE line. 

1.3. CONCLUSIONS 

This is the first study that combines GWAS and WGS analyses to study the genetic basis 

of VE. The new candidate genes and functional mutations identified in this study suggest 

that the VE of LS is under the control of functions related to the immune system, stress 

response, and the nervous system. These findings could also explain differences in 

resilience between rabbits with homogeneous and heterogeneous VE of litter size. 
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2. BACKGROUND 

Understanding the effect of the environment on the phenotype of farm animals is 

important to improve responses to genetic selection. The environment can affect both 

the mean of a trait and its variance (environmental variance or VE). Many studies in 

various species have provided statistical evidence that VE is partly under genetic control: 

pigs [1], mice [2], chickens [3], snails (Helix aspersa) [4] and cattle [5], among others. 

For instance, the VE can differ between genotypes under the same environment [6]. 

Successful divergent selection experiments for VE support these findings in both livestock 

and model animals [7-9]. 

Recently, VE was proposed as a measure of resilience [10], which is the ability of an 

animal to maintain or quickly recover their performance in spite of environmental 

perturbations [11, 12]. Previous genome-wide association studies (GWAS) for VE have 

identified relevant contributions from candidate genes that are related to important 

phases of the inflammatory response, such as Hsp90 [13, 14], p22-PHOX, GNG11, and 

GNGT1 [15], which are triggered by tissue damage and the entry of pathogens [16]. In 

humans, the FTO gene, which affects the variability of body mass index [17], was also 

found to be associated with sensitivity to infections [18]. All these results support the role 

of the immune system in the detection and response to environmental perturbations 

such as pathogen infections [12]. 

Unravelling the genetic background of the VE of complex traits could help to improve 

resilience of livestock and stabilize their production across farming systems [19]. The aim 

of this study was to identify genes and functional mutations associated with variation in 

the VE of litter size (LS) in rabbits. We performed a GWAS and a whole-genome 

sequencing (WGS) analysis using data from two rabbit lines that have been divergently 

selected for high and low VE of LS [9]. These lines show a remarkable response (4.5% of 

the mean of base population), as well as differences in mortality, in biomarkers of 

immune response (plasma cortisol, leukocytes and acute-phase protein levels), and in 

concentrations of plasma cholesterol and triglycerides [20]. Moreover, the line with a 

low VE of LS was found to cope better with environmental stressors such as infections 

than the line with a high VE of LS, which suggests that the homogeneous line is more 

resilient. 

3. METHODS 

3.1. ANIMALS 

The rabbits used in this study belong to a divergent selection experiment for high and 
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low VE of LS over 12 generations at the University Miguel Hernandez of Elche, Spain. 

Each divergent line had approximately 125 female and 25 male parents per generation 

(for more details see Blasco et al. [9]). The total number of litters over these generations 

was equal to 13,788 for 3070 does: 6094 from the line with a low VE of LS, 6682 from the 

line with a high VE of LS, and 1012 from the base population. In total, 1658 records of 

litter size from generations 11 and 12, and genotypes for 384 does were used for the 

GWAS: 96 from the base population (404 parities), 149 from the line with a high VE of 

LS (649 parities), and 139 from the line with a low VE of LS (605 parities). The average 

litter size (total number born; TNB includes live born plus stillborn) for the base 

population and the lines with a low and high VE of LS was 8.72 (±3.05), 7.71 (±2.38) and 

6.51 (±3.06), respectively. 

3.2. PHENOTYPE 

In this study, we investigated genomic regions that were associated with the VE of LS, 

which was the selection criterion in the divergent selection experiment [9]. The VE of LS 

was calculated as the within-doe variance of TNB, after correction of TNB by year-season 

(47 levels) and parity-lactation status (3 levels) to avoid the effect of systematic effects 

on VE. The mean estimate of residuals for a doe across parities was used to calculate the 

VE of LS for a doe, using the minimum quadratic risk estimator: 

𝑉𝐸 =
1

𝑛 + 1
∑(𝑥𝑖 − �̅�)

𝑛

1

 
(1) 

where 𝑥𝑖 is the pre-corrected TNB at parity 𝑖 of a doe and 𝑛 is the total number of parities 

of the doe (ranging from 2 to 12). VE was calculated by assuming that the additive genetic 

and permanent effects are approximately the same for each parity of a doe [21]. The 

average of the VE of LS was 4.24 (±3.41), 2.27 (±1.97) and 3.84 (±3.69) for the base 

population and for the low and high lines, respectively. 

3.3. GENOTYPES 

Genomic DNA was isolated from blood sampled from does using standard procedures. 

Genotyping was performed with the 200K Affymetrix Axiom OrcunSNP array 

(ThermoFisher Scientific). Quality control of genotypes was performed using the 

platform Axiom Analysis Suite 3.1 of ThermoFisher Scientific and the PLINK v1.9 

software [22]. Animals with a call rate lower than 97% and SNPs with a minor allele 

frequency lower than 0.05, with missing genotypes higher than 0.05, or with unknown 

positions on the rabbit reference genome (OryCun v2.0.96) were removed. After quality 

control, 367 animals (1589 parities) and 96,329 SNPs remained in the dataset. The 
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missing genotypes were imputed with the Beagle v.4.1 software [23]. Finally, we 

identified outliers and checked the population structure by applying a principal 

component analysis (PCA) based on the genotypes [see Additional file 1]. 

3.4. GWAS 

Two approaches were used for GWAS: single-marker regression (SMR) and Bayesian 

multiple-marker regression (BMMR). SMR was performed using the linear mixed model 

method, which is available in the GCTA v1.91.4 beta software [24]. To correct for 

population stratification, GCTA considers the genomic relationship matrix built, but 

without SNPs on the chromosome of the tested SNP [25]. The SNPs that were associated 

with VE of LS were identified at a conservative p-value threshold of 0.0001 [26]. Using 

the same method, we also tested the effect of ignoring differences in number of parities 

between does. In order to do that, we performed the SMR using a weighted linear mixed 

model method implemented in the R software. Instead of a genomic relationship matrix, 

the model included the first five principal components based on genotype to correct for 

population stratification. The VE of LS was weighted according to Blasco et al. [9]: 

𝑤𝑖 =
(𝑛𝑖 + 1)2

2 ∗ (𝑛𝑖 − 1)
 

(2) 

where 𝑛𝑖 is the total number of parities for doe 𝑖. 

BMMR was performed using a Bayes B model that is implemented in the GenSel software 

[27]. This model assumed that, in a given iteration of the Monte Carlo Markov chain, 

many SNPs have no effect and variance, with a prior probability of π = 0.999, and 

approximately 100 SNPs have an effect and a variance on the VE of LS. The analysis was 

done using a chain length of 550,000, with a lag of 100 and a burn-in of 150,000. The 

means of the priors of the genotypic and environmental variances were equal to 5.1 and 

4.3, respectively. A Bayes factor was calculated to determine statistical significance of the 

SNP associations, as: 

𝐵𝐹 =
�̂�𝑖/(1 − �̂�𝑖)

(1 − 𝜋)/𝜋
 

(3) 

where 𝜋 is the prior probability and �̂�𝑖 is the posterior probability of a SNP in locus 𝑖 

having an effect. A threshold for 𝐵𝐹 higher than 10 was used to identify SNPs that are 

associated with VE of LS [28]. The contribution of each of the 2125 non-overlapping 1-

Mb genomic windows to the genetic variance was computed as the posterior mean of the 

percentage of the genomic variance explained by all markers across the genome (total 

genomic variance). 
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3.4.1. ADDITIONAL EVIDENCE FOR ASSOCIATED SNPS 

The SNPs identified to be associated with VE using both the SMR and BMMR approach 

were further tested using a permutation test and a GWAS within each population to 

determine whether they were spurious associations due to drift. Only SNPs that passed 

these additional tests were considered as displaying a true association with VE of LS. 

The permutation test was performed using the PLINK v1. 9 software [22]. In total, 

100,000 random permutations were performed to remove the true association between 

VE of LS and the genotype. Each permutated dataset was analysed using a linear-mixed 

model and the p-value of each SNP was calculated. The resulting distribution of p-values 

was used to calculate an empirical p-value (EMP1) for each SNP in the original data based 

on the number of times that the p-value of that SNP was declared to have a significant 

association with VE of LS under the null hypothesis of no association in the permutated 

data. The minimum EMP1 that could be registered was 1/N, where N is the number of 

permutation tests. Thus, only SNPs with an EMP1 close to 0.00001 were considered to 

be associated with VE of LS. 

Within-population GWAS was performed for each population using the SMR approach 

[24]. The same reference alleles were established in the two lines and in the base 

population to estimate allele substitution effects. Confidence intervals (CI) of the SNP 

effects within a population were estimated as the allele substitution effect estimate ±2SE. 

Overlapping CI for a SNP between lines was declared to signify no evidence of differences 

in allele effects on the phenotype across populations. 

3.4.2. IDENTIFICATION OF ASSOCIATED GENOMIC 

REGIONS 

The tested SNPs were used to perform a linkage disequilibrium (LD) study using the 

PLINK v1.9 software [22]. For this purpose SNPs within 0.5 Mb of a significant SNP were 

grouped, which were then expanded to genomic regions ±1 Mb for the LD study. 

Genomic regions associated with the trait were considered to be blocks of SNPs with r2 

higher than 0.7 among each other. We established this strong threshold following 

Vanliere et al. [29], who determined that two SNPs were dependent when r2 was equal 

or higher than 0.43. 

3.5. WHOLE-GENOME SEQUENCING 

To identify which variants were present in one line but not in the other, due to the 

selection process, a pool of DNA from the breeding males in the 10th generation was 

created for each line (27 animals per line) and sequenced with Illumina Technology at an 
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average depth of 27x. These males were all fathers of animals from the 11th generation, 

which were used in the GWAS.  

Pre-processing of the WGS data was performed following Elston [30]. The BWA 

algorithm [31] was used to index the OryCun v2.0.96 reference genome from the raw 

data. Illumina adapters and low-quality read ends were removed using Trimmomatic 

v0.39 [32]. The BWA-MEM algorithm was used to align reads to OryCun v2.0.96. The 

sorted BAM files were obtained by SAMtools [33]. Duplicates were marked using Picard 

MarkDuplicates [34]. 

Variant calling was performed using the GATK Best Practices pipeline [35] by applying 

GATK to the BAM files using HaplotypeCaller and GenotypeGVCF to obtain the raw VCF 

files for the high and low VE of LS lines. Variants were filtered using SelectVariant from 

GATK. Single nucleotide variants (SNVs) that were filtered out were labelled using 

VariantFiltration with the following filter expressions: QD < 2, FS > 60, MQ < 40, 

MQRankSum < -12.5, ReadPosRankSum < -8. INDELs were filtered out according to QD 

< 2, FS > 200, and ReadPosRankSum < -20. Finally, variants were annotated using the 

snpEFF software [36]. 

3.6. IDENTIFICATION OF CANDIDATE GENES AND 

FUNCTIONAL MUTATIONS 

The Ensembl release 97 database [37] was used to investigate candidate genes in the 

genomic regions associated with VE of LS, using OryCun 2.0.97 as the reference genome. 

SNVs and INDELs that were present in the genomic regions associated with VE of LS 

were also detected. Variants that segregated differently between the two lines and that 

had a greater impact on gene function, were proposed as functional mutations for VE of 

LS. We considered that a variant had a greater impact if it affected: (a) the amino acid 

sequence of the protein (missense or frameshift mutations), (b) the UTR regions of the 

mRNAs, or (c) the splicing pattern of the transcripts. Genes that contained such possible 

functional mutations were identified as candidate genes for VE of LS were. The biological 

functions and the gene ontology of the candidate genes were reviewed in GeneCards [38]. 

4. RESULTS 

4.1. GENOMIC REGIONS ASSOCIATED WITH 𝐕𝐄 OF LS 

GWAS identified SNPs associated with VE of LS using two approaches, SMR and BMMR. 

SMR identified 12 SNPs with a p-value less than 0.0001 on Oryctolagus cuniculus 

chromosomes (OCU) 3, 7, 10, and 14 (Fig. 1a). The same results were obtained with the 

weighted SMR analysis of VE to take differences in number of parities between does into 
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account (data not shown). With BMMR, we identified 60 SNPs on several chromosomes 

that had a Bayes factor (𝐵𝐹) higher than 10 (Fig. 1b), including all the SNPs that were 

identified by SMR (Table 1). These latter SNPs were in genomic windows on OCU3 (50-

52 Mb), OCU7 (141-142 Mb), OCU10 (4-5.7 Mb), and OCU14 (163-164 Mb), which 

explained 4.0, 0.2, 3.2 and 0.5% of the total genomic variance, respectively. The three 

most significant SNPs on OCU9 were also considered because they reached a p-value 

close to the threshold of 0.0001 (0.00018) and a 𝐵𝐹 greater than 10 (Fig. 1). The genomic 

window that contained these SNPs on OCU9 (4-6 Mb) explained 0.9% of the total 

genomic variance. In summary, 15 SNPs were identified to be associated with VE of LS by 

both methods. 

 

Figure 1. Manhattan plots for genome-wide association analyses for environmental variance 
of litter size. A) -log10(p-value) for association of SNPs using the single-marker regression approach. B) 
Bayes factor (BF) for association of SNPs using the Bayesian multiple-marker regression approach. The 
dashed lines represent significance thresholds a p-value of 0.0001 (A) and 𝐵𝐹 of 10 (B). The red triangles 
highlight the SNPs that pass the threshold. 
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These 15 SNPs were further evaluated by comparing their within-population allele 

substitution effects and by a permutation test. The allele substitution effect estimates for 

the 15 SNPs did not differ significantly between lines. However, five of these SNPs, 

located on OCU14 and 9, did not pass the permutation test because of their high 

empirical p-value (EMP1). The 10 SNPs that passed the additional tests were used to 

perform an LD analysis and determine the VE-associated genomic regions (vQTL), as 

described in methods (Table 1), resulting in associated LD blocks of 1.2, 1.8 and 2.4 Mb 

on OCU14, 10 and 3, respectively. On OCU7, no associated LD block was detected [see 

Additional files 2, 3, 4 and 5]. Hence, vQTL were identified on OCU3 at 50.4-52.8 Mb, 

on OCU10 at 3.9-5.7 Mb, on OCU14 at 162-163.2, and on OCU7, close to 141,236,037 bp 

(Table 1). 

Table 1. Genomic regions associated with environmental variance of litter 
size in rabbits 

OCUa Position 
(Mb) 

Significant 
SNPs 

p-value 𝑩𝑭b Genes located in the region 

3 50.4-52.8 Affx-151987366 7.02e-5 13.88 SPDL1, DOCK2c, INSYN2Bc, FOXI1c, LCP2, 
KCNMB1, ENSOCUG00000020826, 
KCNIP1, GABRP, RANBP17, TLX3, FGF18c, 
ENSOCUG00000022678, 
ENSOCUG00000011117c, 
ENSOCUG00000018666 

Affx-151799106 7.66e-5 14.39 
Affx-151959457 8.79e-5 12.54 

7 141.2 Affx-151820818 6.26e-5 24.88 AOX1 
10 3.9-5.7 Affx-151981327 1.76e-5 58.37 HDAC9c, FERD3Lc, TWISTNB, TMEM196c, 

ENSOCUG00000019989, 
ENSOCUG00000018779, MACC1, ITGB8c 

Affx-151890261 1.97e-5 58.48 
Affx-151932936 2.29e-5 69.79 
Affx-151906185 2.29e-5 70.82 
Affx-151891719 2.29e-5 68.65 

14 162-163.2 Affx-151919621d 8.65e-5 10.01 HUNKc, MIS18Ac, URB1c, 
ENSOCUG00000021276c, EVA1Cc, 
CFAP298, SYNJ1, PAXBP1c, C21orf62c, 
ENSOCUG00000011671, OLIG1, PLCXD1, 
GTPBP6, ENSOCUG00000017611 

Affx-151789209 1.14e-4 12.13 
Affx-151983021d 1.34e-4 10.91 

aOryctolagus cuniculus chromosome 
bBayes factor 
cCandidate genes with relevant variants identified by whole-genome sequencing analysis 
dSNPs that did not pass the additional tests 

4.2. CANDIDATE GENES FOR 𝐕𝐄 OF LITTER SIZE 

In total, 38 genes were located in the genomic regions that were associated with VE of LS 

(Table 1). We used WGS data of each line to identify 18,729 variants (SNVs + INDELs) 

in these regions (Table 2). From these, 129 were relevant (112 SNVs and 17 INDELs) 

based on their location in the transcription unit and/or splicing sites, which were located 

in 16 of the 38 genes identified in the GWAS [see Additional file 6]. These 16 genes 

(proposed as candidate genes) are involved in biological processes related to 

inflammatory response, development of sensory structures, and regulation of gene 

expression [see Additional file 7]). 
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Table 2. Classification and total number of variants (SNVs + INDELs) in each 
vQTL region 

Region OCU3 OCU7 OCU10 OCU14 Total 

Upstream 141 21 34 328 524 

5'UTR 2 0 5 0 7 

Synonymous 9 2 10 34 55 

Missense 1 0 6 28 35 

Frameshift 0 0 0 4 4 

Splicing 4 0 1 9 14 

Intron 2019 267 1622 3145 7053 

3'UTR 28 0 3 39 70 

Downstream 193 34 57 486 770 

Intergenic 3961 112 2237 3887 10,197 

Total     18,729 

All 129 relevant variants segregated in one of the two lines and were absent (91) or fixed 

(37) in the other line, except for one INDEL in the 3’UTR of the HUNK gene [see 

Additional file 6]. This latter was a 1-bp deletion that was fixed in the line with a low VE 

of LS and absent in the line with a high VE of LS. The other variants that were fixed for 

the alternative allele were identified in the line with a high VE of LS in the ITGB8, 

MIS18A, ENSOCUG00000021276, and URB1 genes, and in the line with a high VE of LS 

for the HDAC9 gene [see Additional file 6]. These variants could affect biological 

processes that are related to immune (HDAC9, ITGB8, and HUNK) and stress 

(ENSOCUG00000021276) responses, to regulation of gene expression (HDAC9, 

MIS18A, and URB1), and to phosphorylation of proteins (HUNK). 

5. DISCUSSION 

Our aim was to identify candidate genes and functional mutations associated with VE of 

litter size in rabbits. In GWAS, estimates of the effect of genomic variants on the 

phenotype depends on the model used [39]. In our study, we identified associated 

genomic regions using SMR and BMMR analyses. The SMR analysis does not consider 

the dependencies between SNPs, so the effects were overestimated. In addition, the 

number of false negatives increases when a correction such as Bonferroni is applied and 

variants with small effects cannot be detected. In the BMMR analysis, the shrinkage 

parameter of the model (π = 0.999) increases the power to detect variants with small 

effects but also increases the number of false positives [39]. Thus, in our study, only 

genomic regions that were identified by both methods were considered as candidate 

regions for identifying relevant genes. 

Several genomic regions were associated with VE of LS (Table 1). The highlighted SNPs 
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in these regions were further evaluated using within-population GWAS and a 

permutation test. However, both these tests have some limitations. The within-

population GWAS, accurate estimation of the allele substitution effect was limited by the 

small number of individuals per population (base = 91; low = 134; high = 142), which did 

not represent the allele and genotype frequencies in each population. For the 

permutation test, the highest EMP1 of the SNPs retained in the analysis was 0.00097 

(OCU14). This means that in 97 of the 100,000 permutation tests performed, the SNP 

was associated with VE of LS by chance under the null hypothesis. This could be due to 

the high level of relationship between animals in each population, which hinders 

elimination of true associations between genotype and phenotype. 

The GWAS results were combined with WGS to identify candidate genes and functional 

mutations associated with VE of LS. We screened for SNVs and INDELs between the two 

divergent rabbit lines in the vQTL that were detected by GWAS (Table 2). A variant was 

considered as a potential functional mutation when it caused a missense or frameshift 

mutation or affected the UTR regions in the mRNAs or the splicing pattern of the 

transcripts. Such variants are expected to have a critical effect on the function of a gene 

because of a change in mRNA stability or in the amino acid sequence of the protein it 

encodes. Sixteen of the 38 genes identified in the GWAS contained at least one of these 

variants [see Additional file 6]. Most of these variants segregated in one of the rabbit 

lines and were absent (91) or fixed (37) in the other line [see Additional file 6]. The use 

of DNA pools for WGS allowed us to have more coverage to identify different variants 

between the lines with high and low VE of LS. However, the use of pools does not allow 

estimation of the frequency of a variant in a line, or the genotype of each animal used in 

the pool. For this reason, although we classified 129 variants as functional mutations, we 

focused on the variants that were fixed in one line and not in the other [see Additional 

file 6]. 

The 16 candidate genes identified in this study are involved in functions that are related 

to immune (DOCK2, HDAC9, ITGB8, and HUNK) and stress (ENSOCUG00000021276) 

responses, development of sensory structures (FOXI1, FGF18, and EVA1C), regulation of 

gene expression (PAXBP1, FERD3L, HDAC9, and FOXI1), and phosphorylation of 

proteins (HUNK), among others [see Additional file 7]. A recent study by Argente et al. 

[20] found differences in levels of plasma leukocytes and cortisol between the divergent 

rabbit lines used here but from generation 8 and showed that the line with a low VE of LS 

was less sensitive to infection and stress than the high line. Our results confirm the 

importance of immune and stress responses for VE of LS through the DOCK2, ITGB8, 

HDAC9, and ENSOCUG00000021276 genes. For instance, DOCK2 is involved in 
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extravasation of monocytes (entry into the affected tissue) by promoting polarization of 

the cell membrane and remodelling of the actin cytoskeleton needed for this function. In 

addition, DOCK2 controls the monocyte inflammatory response via FcyR receptors [40], 

such as ITGB8, through TGF-β activation [41]. The HDAC9 gene may play a role in 

hematopoiesis and self-tolerance through the control of Treg cells [42]. The 

ENSOCUG00000021276 gene, which is orthologous to the human MRAP (melanocortin 

2 receptor accessory protein) gene, could modulate stress response though the 

production of glucocorticoids in the adrenal gland but experimental analyses are needed 

to verify this inferred function [37]. 

Previous GWAS for VE in pigs and cows also identified genes that are involved in the 

immune response, more specifically in the inflammatory response [13-15]. Sell-Kubiak 

et al. [13] and Morgante et al. [14] identified genes of the HSP (heat shock protein) family 

to be associated with VE, which regulate activation of leukocytes and protect cells against 

reactive-oxygen species (ROS) [43]. In mice, the candidate gene HDAC9 regulates 

expression of a gene of the HSP family (HSP70) [42]. Wijga et al. [15] also found genes 

involved in the phagocytosis process to be associated with the standard deviation of milk 

somatic cell count in cattle, which is in line with functions related to the DOCK2 gene 

[40]. Thus, there are several lines of evidence that support the importance of the immune 

system in the control of VE. 

For the other genes identified here (FOXI1, EVAC1, FGF18, and HUNK), we found no 

evidence in the literature that links them to a biological function associated with VE. A 

recent study proposed to use VE as a measure of animal resilience [10], which is 

supported by the results of Argente et al. [20], who suggested that the low VE of LS line 

is more resilient to general stressors than the high VE of LS line. According to Colditz and 

Hine [12], animals can better maintain performance (be more resilient) when they can 

properly discriminate environmental stimuli from the background. In this context, the 

nervous system, cell receptors, and the immune system act as sensors of environmental 

disturbances. Thus, the immune system is required to perceive and properly respond to 

environmental stimuli that occur on farms, as well as correct development of the sensory 

organs and the neuron system [12]. Along the same line, candidate genes such as FOXI1, 

EVAC1, and FGF18 would be important to develop sensory structures and parts of the 

nervous system. The FOXI1 gene encodes an important transcriptional factor, which is 

necessary for normal development of the inner ear, with mice that lack this gene 

developing deafness [44]. The EVA1C gene is involved in correct development of 

olfactory and optic sensory axons and other neural structures [45]. The growth factor 

FGF18 regulates development of the neural system, specifically the midbrain structure 
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[46]. Finally, HUNK is a serine/threonine kinase, which was recently shown to be 

associated with control of expression of E-cadherin [47], a molecule that can act as a 

receptor for pathogens [48]. We identified a 1-bp deletion in the 3’UTR region of the 

HUNK gene, which was fixed in the line with a low VE of LS and absent in the line with a 

high VE of LS. Mutations in the 3’UTR region can affect expression of the gene and/or 

translation rate of the mRNA. This suggests that different levels of expression of HUNK 

between the two lines could influence VE of LS. The role of the identified candidate genes 

on modulation of VE of LS and, therefore, on resilient responses, requires further study 

to complement current evidence on the relevance of the immune system on VE [13-15, 

20]. 

6. CONCLUSIONS 

A combined GWAS and WGS analysis allowed us to identify 16 new candidate genes that 

carry 129 putative functional mutations that are associated with VE of LS in rabbits. These 

findings provide support for the control of VE of LS through regulation of the immune 

system and suggest that development of the nervous system and sensory structures may 

also be important to modulate animal resilience. This study advances our understanding 

of the genetic background of VE. However, further studies are needed to validate the true 

effect of the putative functional mutations in these genes on VE of LS, as well as the 

relationship of VE with animal resilience. 
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between 1 and 0.5. Colours between green and blue indicate an r2 between 0.5 and 0. 
Genes in this region are plotted at the bottom of the graph according to their position on 
the genome. 
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File format: tiff 

Title: Linkage disequilibrium of SNPs on OCU10 at 3-7 Mb. 

Description: Representation of the linkage disequilibrium (LD) in the associated 
genomic region on OCU10. SNPs in this region were plotted according to their Bayes 
factor (BF). The colours of the SNPs indicate their LD with the SNP with the highest BF 
in this region (highlighted with a black triangle). Colours between red and green indicate 
an r2 between 1 and 0.5. Colours between green and blue indicate an r2 between 0.5 and 
0. Genes in this region is plotted at the bottom of the graph according to their position 
on the genome. 

Additional file 5 

File format: tiff 

Title: Linkage disequilibrium of SNPs on OCU14 at 161-164 Mb. 

Description: Representation of the linkage disequilibrium (LD) in the associated 
genomic region in OCU14. SNPs in the region were plotted according to their Bayes 
Factor (BF). The colours of the SNPs indicate their LD with the SNP with the higher BF 
in this region (highlighted with a black triangle). Colours between red and green indicate 
r2 between 1 and 0.5. Colours between green and blue indicate r2 between 0.5 and 0. 
Genes in this region was plotted at the bottom of the graphic according their position in 
the genome. 
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File format: xlsx 

Title: Candidate genes and their biological function based on the GeneCards and 
Ensembl databases. 

Additional file 7 

File format: xlsx 

Title: Total number of relevant variants identified in the associated genomic regions for 
the environmental variance of litter size.  

Description: INDELs and SNVs identified by WGS analysis in a UTR or splicing region 
or with a missense effect. For each variant, the position is indicated according to the 
chromosome (OCU) and base pair (bp) location. REF show the allele in the reference 
genome (Oryctolagus cuniculus v2.0.96) and ALT the alternative variant identified in 
the rabbit lines. Low and High show the allelic distribution in each line where 0 indicates 
the reference allele and 1 the alternative allele. 

 

 

 

 



 

72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 _____________________________________ SIGNATURES OF SELECTION STUDY 

73 
 

CHAPTER 4: Selection for environmental variance 

of litter size in rabbits involves genes in pathways 

controlling animal resilience 

 

Authors 

Cristina Casto-Rebollo1, María José Argente2, María Luz García2, Agustín Blasco1, Noelia 

Ibáñez-Escriche1* 

 

Institutional affiliations 

1Institute for Animal Science and Technology, Universitat Politècnica de València, 

València, Spain 

2Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de 

Elche, Orihuela, Spain 

 

 

 

 

 

 

 

 

 

The content of this chapter has been published in Genetic Selection 

Evolution. 

doi: 10.1186/s12711-021-00653-y 

https://doi.org/10.1186/s12711-021-00653-y


 

74 
 

1. ABSTRACT 

1.1. BACKGROUND 

Environmental variance (VE) is partially under genetic control, which means that the VE 

of individuals that share the same environment can differ because they have different 

genotypes. Previously, a divergent selection experiment for VE of litter size (LS) during 

13 generations in rabbit yielded a successful response and revealed differences in 

resilience between the divergent lines. The aim of the current study was to identify 

signatures of selection in these divergent lines to better understand the molecular 

mechanisms and pathways that control VE of LS and animal resilience. Three methods 

(FST, ROH and varLD) were used to identify signatures of selection in a set of 473 

genotypes from these rabbit lines (377) and a base population (96). A whole-genome 

sequencing (WGS) analysis was performed on 54 animals to detect genes with functional 

mutations. 

1.2. RESULTS 

By combining signatures of selection and WGS data, we detected 373 genes with 

functional mutations in their transcription units, among which 111 had functions related 

to the immune system, stress response, reproduction and embryo development, and/or 

carbohydrate and lipid metabolism. The genes TTC23L, FBXL20, GHDC, 

ENSOCUG00000031631, SLC18A1, CD300LG, MC2R, and ENSOCUG00000006264 

were particularly relevant, since each one carried a functional mutation that was fixed in 

one of the rabbit lines and absent in the other line. In the 3’UTR region of the MC2R and 

ENSOCUG00000006264 genes, we detected a novel insertion/deletion (INDEL) 

variant. 

1.3. CONCLUSIONS 

Our findings provide further evidence in favour of VE as a measure of animal resilience. 

Signatures of selection were identified for VE of LS in genes that have a functional 

mutation in their transcription units and are mostly implicated in the immune response 

and stress response pathways. However, the real implications of these genes for VE and 

animal resilience will need to be assessed through functional analyses. 
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2. BACKGROUND 

The environmental variance (VE) of a trait is the within-individual variation of the 

phenotypic values of that trait due to environmental factors [1, 2]. VE is partially under 

genetic control, which means that individuals sharing the same environment can have 

different VE because they have different genotypes [1]. Indeed, there have been successful 

divergent selection experiments for VE in mice [3] and rabbits [4]. VE was recently 

proposed as a measure of animal resilience [5], which has been defined as an animal’s 

ability to cope with environmental disturbances and the rapid recovery of its productive 

performance [6, 7]. Differences in resilience have been reported in rabbit lines that were 

divergently selected for high and low VE of litter size (LS), with the line with a low VE of 

LS being more resilient [8]. According to Colditz and Hine [7], the immune system, 

nervous system and cell receptors are essential for modulating animal resilience and 

allowing detection of and response to environmental perturbations, such as pathogen 

infections. 

Genome-wide associations studies (GWAS) for VE in livestock have identified candidate 

genes that are involved in the immune response, which boosts the inflammatory 

response [9-11]. In rabbit lines that were divergently selected for VE of LS, Casto-Rebollo 

et al. [11] identified functional mutations in candidate genes that are involved in the 

immune system, the nervous system, and the development of sensory structures. 

However, VE is a complex trait with a low heritability [12] and low phenotype accuracy, 

which makes the identification of all the loci that affect VE by GWAS only, difficult [13]. 

Analyses of signatures of selection, which do not require phenotype data, could help to 

identify more loci that affect VE of LS. Several methods for the detection of signatures of 

selection have been proposed and are based on different assumptions according to the 

pattern of positive selection to be detected [14]: (1) reduction of the local genomic 

variability, (2) modification of the spectrums of allele frequency, or (3) variation of the 

linkage disequilibrium (LD). However, because of these different assumptions, the three 

methods are not strongly correlated [15-16] and, thus, have to be used in conjunction to 

identify the largest possible number of signatures of selection. 

The aim of this study was to identify signatures of selection in rabbits that were 

divergently selected for high and low VE of LS during 13 generations [4], to determine 

the molecular mechanisms and pathways that control the VE of LS and animal resilience. 

We used three methods to identify signatures of selection in combination with whole-

genome sequencing (WGS) analysis to highlight the genes with functional mutations. 

This study complements a previous GWAS for VE of LS using the same rabbit lines [11]. 
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3. METHODS 

3.1. ANIMALS AND GENOTYPING DATA 

The rabbits used in this study were from generations 11 and 13 and from the base 

population of a divergent selection experiment for high and low VE of LS that was carried 

out at the University Miguel Hernández in Elche, Spain [4]. In total, 473 genotypes were 

used from 96 does from the base population, 282 from generation 11 (147 from the line 

with high VE of LS and 135 from the line with low VE of LS), and 95 from generation 13 

(46 from the line with high VE of LS and 49 from the line with low VE of LS). Genomic 

DNA was isolated from blood and tissue samples using standard protocols. Genotyping 

was performed with the 200K Affymetrix Axiom Orcun Single Nucleotide Polymorphism 

(SNP) array (Thermo Fisher Scientific) and quality control was done with the Axiom 

Analysis Suite 3.1 platform from Thermo Fisher Scientific and PLINK v.1.9 software [17]. 

Quality control removed animals with a call rate lower than 97% and SNPs that had a 

minor allele frequency (MAF) lower than 0.05, a missing genotype higher than 0.05, or 

an unknown position in the rabbit reference genome (OryCun v2.0.103). The missing 

genotypes were imputed with the Beagle v4.1 software [18]. After quality control, 452 

genotypes and 97,155 SNPs remained in the dataset. A principal component analysis 

(PCA) was performed to study population structure and to identify outliers using the R 

package SNPRelate available from Bioconductor [19]. 

3.2. IDENTIFICATION OF SIGNATURES OF SELECTION 

Statistical analyses were performed to search for signatures of selection using the 274 

genotypes from generation 11 (139 from the line with high VE of LS and 135 from the line 

with low VE of LS) and 90 genotypes from the base population. The 93 genotypes from 

generation 13 were kept for the validation analysis. Three methods were used to identify 

the patterns of signatures of selection (Fig. 1): (a) detection of runs of homozygosity 

(ROH), (b) quantification of the variation in LD patterns (VarLD), and (c) estimation of 

the fixation index (FST). 



 _____________________________________ SIGNATURES OF SELECTION STUDY 

77 
 

 

Figure 1. Methods of identifying patterns of signatures of selection. a) Runs of homozygosity 
(ROH). From left to right: the number of consecutive homozygous SNPs increases, generating a genomic 
region where the individual is homozygous at all sites, i.e. a ROH. b) Fixation index (FST). From left to right: 
allele frequencies of individuals in the population change until it differentiates into two different sub-
populations (FST = 1). c) Variation in linkage disequilibrium (VarLD), which searches for differences in 
linkage disequilibrium (LD) patterns between populations. From left to right: an advantageous allele (red 
star) can modify the LD in a population because of the selective sweep containing the SNPs surrounding it, 
i.e. the haplotype of this advantageous allele (Haplotype 2). 

3.2.1. DETECTION OF RUNS OF HOMOZYGOSITY 

A ROH is a region of the genome that displays a local reduction of genetic variation, i.e. 

a genomic region for which the individual is homozygous at all sites, which indicates the 

presence of a locus that is affected by selection (Fig. 1a) [20]. Using an algorithm 

implemented in PLINK v1.9 [17], we identified the ROH in all the individuals from the 

base population and from the lines with high and low VE of LS of generation 11. The 

parameters were set according to Ceballos et al. [21]. This algorithm searches for 

stretches of consecutive homozygous SNPs on each chromosome using sliding windows 

of 500 kb that contain around 50 SNPs. SNPs with missing calls and more than one 
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heterozygous SNP were not allowed in a window. The proportion of the overlapping 

windows that must be called homozygous to define any given SNP as in a homozygous 

segment was set to 0.05%. Two SNPs separated by more than 1 Mb belonged to two 

different homozygous segments. A homozygous segment was considered as a ROH if the 

number of consecutive SNPs exceeded 50 and the SNP density was higher than one SNP 

per 30 kb. A ROH must be a consensus genomic region in the selected animals to be a 

candidate signature of selection, i.e. it had to be identified in 50% of the animals in the 

line with low VE of LS (65), and in 50% of the animals in the line with high VE of LS (70). 

3.2.2. ESTIMATION OF THE FIXATION INDEX 

The fixation index (FST) was used to estimate the differences in allele frequencies between 

the lines with high and low VE of LS (Fig. 1b). The FST was calculated using Weir and 

Cockerham’s pairwise estimator method [22], implemented in the VCFtools v1.16 

software [23]. The FST values were estimated in 500-kb sliding windows with a step size 

of 250 kb. Windows with less than ten SNPs were excluded from the analysis. FST values 

were weighted to take differences in sample sizes between populations into account (for 

further details see Weir and Cockerham [22]). Relevant FST windows were those with a 

weighted FST value equal or above the weighted FST value in the 99.9th percentile of the 

distribution for all the genomes. MAF was calculated in the base population and the lines 

with high and low VE of LS for the relevant FST windows. Those that showed divergent 

changes in MAF between the rabbit lines relative to the base population were considered 

to be putative signatures of selection. These windows were considered as resulting from 

an effect of genetic drift if the MAF between the lines with high and low VE of LS at 

generation 11 displayed the same change relative to the base population (increase or 

decrease) or if one of the lines did not show any change (i.e. had a MAF equal to that in 

the base population). 

3.2.3. QUANTIFICATION OF VARLD SCORES 

We used the VarLD software [24] to evaluate the magnitude of the differences in LD 

patterns (Fig. 1c) between two populations. We analysed the pairwise comparison of the 

three populations: base population with the line with high VE of LS (Base-High), base 

population with the line with low VE of LS (Base-Low), and between the lines with high 

and low VE of LS (High-Low). Sliding windows of 50 SNPs with a step size of one SNP 

were used to calculate the correlation matrix of each population per chromosome. The 

program computed the r2 metric for each pair of SNPs to determine the strength of LD 

in each window. The difference between the eigenvalues of the correlation matrices of 

both populations determined the VarLD score, which was standardized by the mean and 
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the standard deviation of all the scores along each chromosome. A genomic window was 

relevant when its standardized VarLD scores were equal or above the standardized 

VarLD score in the 99.9th percentile distribution for all the genomes. The relevant 

windows identified in both the Base-High and Base-Low comparisons were considered 

as putative signatures of selection and the relevant windows identified only in the High-

Low comparison were considered as resulting from the effect of gene drift. 

3.3. VALIDATION 

The putative signatures of selection were validated by identifying those detected in the 

animals of the base population and of generation 13 (45 from the line with a high VE of 

LS and 48 from the line with a low VE of LS) applying the methods described above 

(Section on “Identification of signatures of selection”). Only those that were detected in 

both analyses (i.e. in generations 11 and 13) were considered as true signatures of 

selection. 

3.5. IDENTIFICATION OF CANDIDATE GENES 

Candidate genes were detected by searching for functional mutations in the genomic 

regions considered as true signatures of selection. Functional mutations were identified 

using whole-genome sequencing (WGS) data from two pools of DNA from breeding 

males in generation 10, i.e. all the fathers of animals from generation 11. Pools of DNA 

were prepared for each rabbit line (27 animals per line) and sequenced by Illumina 

Technology with an average depth of 27x. 

WGS data were pre-processed following Elston et al. [25] with the following steps: (1) 

indexation to the reference genome (OryCun v2.0.103), (2) removal of adapters and low-

quality read ends, (3) alignment to OryCun v2.0.103, and (4) identification of duplicates. 

Then, variant calling was performed using the GATK Best Practices pipeline [26] in three 

steps: (5) creation of raw VCF files for the high and low VE of LS lines, (6) variant filtering, 

and (7) variant annotation (for further information see Casto-Rebollo et al. [11]). 

A variant was considered as a functional mutation if it affected the transcription unit of 

a gene, i.e. (a) if it was located in the UTR regions, (b) if it was a missense or frameshift 

mutation, or (c) if it affected a splicing site. The gene ontologies (GO) of each candidate 

gene were extracted using the biomaRt package available from Bioconductor to R [27]. 

The Ensembl 103 release database [28] was used to access the Oryctolagus cuniculus 

v2.0.103 information. 
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4. RESULTS 

Analysis of the population structure using principal component analysis showed a clear 

separation between the base population and the lines with high and low VE of LS (Fig. 2). 

The individuals from generation 13 displayed the same family structure than that of their 

ancestors from generation 11. 

 

Figure 2. Principal component analysis of the genotyped data. Representation of the first (PC1) 
and second principal component (PC2) of the genotype data from the base population (orange) and the lines 
with high (right) and low (left) VE of LS in generations 11 (dot) and 13 (triangle). 

4.1. SIGNATURES OF SELECTION FOR VE OF LS 

The ROH, FST and VarLD methods (Fig. 1) identified putative signatures of selection for 

VE of LS, using the animals from generation 11 and the base population. Analysis of the 

contiguous homozygous segments identified 6230 consensus ROH, which were detected 

in at least two animals of the base population and of the lines with high and low VE of LS. 

Of these 6230 consensus ROH, 720 were identified in at least 70 does of the line with 

high VE of LS and 65 does of the line with low VE of LS. These 720 consensus ROH were 

considered as putative signatures of selection because they were detected in at least 50% 

of the animals of each rabbit line. The FST analysis identified eight genomic regions with 

a weighted FST value equal or above 0.35 (99.9th percentile) on Oryctolagus cuniculus 

chromosome (OCU)2 (104.5-105 Mb), OCU9 (89-89.75 Mb), OCU12 (8.75-9.5 Mb), 

OCU14 (121-121.5 Mb), and OCUX (81-81.75 Mb) [see Additional file 1]. However, only 
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the regions on OCU2 (104.5-105 Mb), OCU12 (8.75-9.5 Mb) and OCUX (81-81.75 Mb) 

were considered as signatures of selection for VE of LS because they showed consistent 

divergent changes in MAF between the lines with high and low VE of LS relative to the 

base population [see Additional file 1]. The VarLD analysis identified three genomic 

regions that showed differences in LD patterns and overlapped between the lines with 

high and low VE of LS on OCU13 (89.31-90.54 Mb), OCU14 (0.014-2.27 Mb), and OCU17 

(28.78-29.92 Mb). The highest VarLD scores, 12.55 and 12.25, were obtained for OCU14 

in the Base-High and Base-Low comparison, respectively. These three genomic regions 

were proposed as putative signatures of selection because their LD patterns differed 

relative to the base population. 

The 726 putative signatures of selection identified in the ROH, FST and VarLD analyses 

were validated in 93 animals from generation 13. Among these 726 putative signatures 

of selection, 134 [see Additional file 2] were considered as true signatures of selection 

(Fig. 1), i.e. 129 ROH based on patterns of homozygous segments, two VarLD regions 

based on differences in LD patterns on OCU13 (89.31-90.54 Mb) and OCU14 (0.014-2.27 

Mb), and three FST regions based on changes in allele frequencies on OCU2 (104.5-105 

Mb), OCU12 (8.75-9.5 Mb) and OCUX (81-81.75 Mb). Finally, among these 134 true 

signatures of selection, the genomic regions did not overlap among the three methods. 

4.2. CANDIDATE GENES FOR VE OF LS 

Nine hundred genes were identified in the genomic regions with positive selection 

patterns for VE of LS. Candidate genes were identified by searching for functional 

mutations in the 900 genes using WGS data. In total, 212,845 variants (single-nucleotide 

variants (SNVs) and insertion/deletion variants (INDEL) were identified in the true 

signatures of selection (Table 1). Among these 212,845 variants, 1196 were relevant (207 

INDEL and 989 SNVs) based on their location in the transcription unit of 373 of the 900 

identified genes. These 373 genes (proposed as candidate genes) are involved in many 

biological processes [see Additional file 3]. Most of them (237) are found in basic 

common gene ontologies (GO) such as: protein binding (GO:0005515), cytoplasm 

(GO:0005737) and nucleus (GO:0005634), although, they also have a pleiotropic effect 

on other biological processes [see Additional file 3]. One hundred and eleven genes 

(29.76%) are involved in biological processes related to immune response (e.g., 

GO:0030335 and GO:0071356), stress response (GO:0042594), reproduction and 

embryo development (GO:0001701), and/or carbohydrate and lipid metabolism (e.g., 

GO:0005739 and GO:0055114). 

We highlighted the GATA3, FKBP10, KAT2A, CYP1B1, BRCA1, PGM3, and ACE genes 
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that have a pleiotropic effect on the immune system, lipid and carbohydrate metabolism, 

and reproduction and embryo development. 

Table 1. Effects of the variants (SNVs and INDEL) identified in the genomic 
regions with true signatures of selection for VE of LS 

Effect Total 
Upstream 10,925 
Downstream 10,309 
Intergenic 122,789 
3’UTR 434 
5’UTR 170 
Intron 81,536 
Splicing 156 
Synonymous 657 
Missense 368 
Frameshift 38 
Inframe 20 
ncRNA exon 443 
Stop gained 8 
Start lost 2 

A variant can affect more than one gene because they can share their DNA sequence, thus 
although the total number of variants identified was equal to 212,845, a total of 227,855 effects 
were found. 

Among the 1196 functional mutations, we found 10 INDEL that were fixed (1/1) in one of 

the rabbit lines and absent (0/0) in the other and that affect the TTC23L, FBXL20, 

GHDC, ENSOCUG00000031631, SLC18A1, CD300LG, MC2R, and 

ENSOCUG00000006264 genes (Table 2). These genes are involved in biological 

processes related to stress response (MC2R), energy, carbohydrate, and lipid metabolism 

(ENSOCUG00000006264 and MC2R), nervous system (MC2R, SLC18A1, and 

FBXL20), immune response (ENSOCUG0000000626), behaviour (FBXL20), cell 

maintenance (TTC23L and GHDC), and other processes (ENSOCUG00000031631 and 

CD300LG). For each of the MC2R and ENSOCUG00000006264 genes, one of the 

variants was a novel INDEL in the 3’UTR (Table 2) based on the two alleles in the 

reference rabbit genome OryCun v2.0.103. These novel alleles were fixed (2/2) in the line 

with high VE of LS and absent in the line with low VE of LS (Table 2). 
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Table 2. Functional mutations (INDEL or SNVs) fixed in one of the rabbit 
lines and absent in the other line 

OCUa bpb Lowc Highd Region Gene Mutationh 

9 48280960 1/1 2/2 3’UTR MC2R 3-bp deletion* 
11 56199847 0/0e 1/1f Frameshift TTC23L 2-bp deletion 
12 138684799 1/1 0/0 Frameshift ENSOCUG00000031631 2-bp deletion 
12 138685173 1/1 0/0 Frameshift ENSOCUG00000031631 1-bp insertion 
12 138685179 1/1 0/0 Frameshift ENSOCUG00000031631 2-bp deletion 
14 33195918 1/1 2/2g 3’UTR ENSOCUG00000006264 25-bp deletion* 
15 4723998 1/1 0/0 3’UTR SLC18A1 4-bp deletion 
19 40686575 0/0 1/1 5’UTR FBXL20 90-bp insertion 
19 43006505 0/0 1/1 Frameshift GHDC 2-bp deletion 
19 44276359 1/1 0/0 3’UTR CD300LG 8-bp deletion 

aOryctolagus cuniculus (OCU) chromosome 
bFunctional mutation location in base pairs 
cGenotype of line with low VE of LS 
dGenotype of line with high VE of LS 
e0/0 indicates that the functional mutation is the homozygous for the reference allele 
f1/1 indicates that the functional mutation is homozygous for the alternative allele 
g2/2 indicates that the functional mutation is homozygous for a new allele not present in the 
reference genome 
hAll INDELs were marked according to the reference allele of OryCun v2.0.103 
*With reference to the alternative allele of OryCun v2.0.103 

5. DISCUSSION 

Divergent lines provide good biological material for genomic studies since they are 

selected for a unique trait and share the same environment. Previous studies on 

intramuscular fat (IMF) in rabbits and pigs [16, 29], and on antibody response and 

feather pecking behaviour in chickens [30, 31], using divergently selected lines, 

successfully detected signatures of selection, and identified associated genomic regions. 

The principal component analysis based on genotype data in our study showed a clear 

separation between the two divergent rabbit lines (Fig. 2), which agreed with the 

remarkable phenotypic differentiation in VE of LS (4.5% from the mean in the base 

population; Blasco et al. [4]). Thus, we searched for signatures of selection for VE of LS, 

by combining the ROH, VarLD and FST methods (Fig. 1) to identify genes and pathways 

that were modified during 13 generations of selection. 

In the analysis of signatures of selection, the identification of genomic regions under 

positive selection depends on the method applied [14]. Using the ROH, FST and VarLD 

methods, we identified 134 true signatures of selection for VE of LS with no overlapping 

between methods. Indeed, as each method is based on different assumptions (Fig. 1), 

correlations between results are low [15, 16], which makes it difficult to detect overlaps 

between the identified signatures of selection. The methods used to detect signatures of 

selection should be considered independently of the sources of QTL detection. By 
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combining the three methods, ROH, FST and VarLD, we were able to identify most of the 

selection forces that affect the trait of interest, and we considered these 134 true 

signatures of selection as independent patterns of positive selection for VE of LS. 

However, only one FST window on OCU3 (51-51.75 Mb) agreed with a variance-

controlling locus (vQTL), which was previously identified in a GWAS [11] that used the 

same animals from the base and the generation 11 populations. The three genes (SLIT3, 

FOXI1, and FGF18) with functional mutations located in this vQTL could be the most 

relevant genes that play a role in the control of VE of LS. They are involved in biological 

processes related to immune response, stress response, and/or development of sensory 

structures, which are relevant pathways to modulate resilience [7]. However, we 

identified this signature of selection in animals from generation 13 using a less 

conservative threshold of 99.5th percentile (weighted FST of 0.37). This FST window 

showed a weighted FST of 0.21 at generation 11 and 0.39 at generation 13. This stronger 

differentiation in allele frequencies in the population from generation 13 highlights the 

importance of this region for VE of LS. However, the difference between the weighted FST 

at generations 11 and 13 could also be an effect of the reduced sample size (95) at 

generation 13, which may hide the true changes in allele frequencies between the 

generations. 

Previous studies in divergent populations showed that some overlapping occurred 

between the signatures of selection obtained by FST analysis and a few QTL identified by 

GWAS [16, 29-31]. In contrast to our study, those studies used populations from a long-

term divergent selection (during 40 generations) [30, 31], or from a selection for a highly 

heritable trait (intramuscular fat; IMF) [16, 29]. The fact that VE of LS has a low 

heritability and accuracy [12] could hinder the identification of the genomic regions 

under selection in GWAS. Moreover, the small or moderate size of the effect of the 

variants could produce a sweep that is not large or strong enough to be detected as a 

signature of selection [32]. 

The identification of relevant loci for complex traits results in a large number of 

candidate genes due to their polygenic nature [33]. These genes are usually involved in 

multiple pathways or biological processes that may not be interrelated, such that 

searching for a relationship between these and the trait of interest is challenging. Along 

the same line, WGS analysis could be useful to identify the most relevant candidate genes 

that underlie the complex traits under study. In this study, we identified 900 genes that 

spanned genomic regions with patterns of signatures of selection for VE of LS, and among 

these, 373 presented functional mutations that affect their transcription unit [see 

Additional files 4 and 5]. However, given these 373 genes that are implicated in a wide 
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range of functional categories [see Additional file 6], it remains difficult to identify the 

most relevant molecular mechanism involved in VE of LS. Moreover, these genes may not 

have a clear relationship with VE of LS since they may be acting indirectly, by modulating 

the core genes underlying VE of LS [34]. For this reason, we could only make hypotheses 

based on the genes directly involved in previously identified biological pathways for VE 

of LS. 

Previous studies, developed by Argente et al. [8, 35] and Beloumi et al. [8] on the same 

rabbit lines as those used in this study, showed line-differences in immune response 

biomarkers (plasma cortisol, leukocytes, and acute-phase protein levels), in plasma 

concentrations of cholesterol and triglycerides, and in mortality [8, 35]. Among the 373 

genes, 59 were related to immune response, six to stress response, and 49 to energy 

metabolism, carbohydrate metabolism or lipid metabolism [see Additional file 3], which 

could explain the differences reported by Argente et al. [8] and Beloumi et al. [36]. In 

addition, we found 38 genes involved in reproduction and embryo development [see 

Additional file 3] that could clarify the correlated response of VE of LS with embryo 

implantation, embryo survival and litter size traits [36, 37]. In our study, we highlighted 

the genes, GATA3, FKBP10, KAT2A, CYP1B1, BRCA1, PGM3, and ACE, because they 

have a pleiotropic effect [see Additional file 3]. The ontologies of these genes are related 

to the immune system, lipid and carbohydrate metabolism, and reproduction and 

embryo development, supporting all the previously reported evidence [8, 35-37]. 

By searching for the most relevant functional mutations, we found seven promising 

genes that contained an INDEL with the alternative allele fixed in one rabbit line and 

absent in the other (Table 2), i.e., TTC23L, FBXL20, GHDC, ENSOCUG00000031631, 

SLC18A1, CD300LG, MC2R, and ENSOCUG00000006264, and which are the most 

relevant for VE of LS. However, the functional mutation detected in the MC2R and 

ENSOCUG00000006264 genes were even more interesting (Table 2). In our rabbit 

lines, both genes have lost the reference allele present in the rabbit reference genome 

OryCun v2.0.103 and display two different variants of the INDEL in their 3’UTR region. 

In both genes, one of the INDEL variant (the alternative variant for the reference 

genome) was fixed in the line with a high VE of LS. The other (a new variant) was fixed 

in the line with a low VE of LS (Table 2). The MC2R gene encodes the adrenocorticotropic 

hormone (ACTH) receptor, which controls ACTH and the level of cortisol [38]. Cortisol 

is an important molecule that regulates fat metabolism to mobilize glucose and mediates 

stress response and inflammatory response [39]. ENSOCUG00000006264 is an 

orthologue of the retinol binding protein 1 (RBP1) gene that is involved in the 

homeostasis of retinoid acid (RA) and the regulation of the vitamin A metabolism. 
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Retinoid acid could be involved in many immunological functions, such as the control of 

inflammatory and tolerogenic immune response [40]. 

When comparing the results with previously identified VE loci (vQTL), we found evidence 

of the implication of the immune system in VE, in line with the results reported by 

Argente et al. [8] and Beloumi et al [35]. In their GWAS, they identified genes that are 

related to the triggering of inflammatory response [9, 11] and belong to the HSP (heat 

shock protein) gene family [10, 11, 41], which can also modulate stress response, 

inflammatory response as well as the levels of glucose and fatty acids [42], and the 

fertilization and preimplantation of embryos [43]. Elevated levels of cortisol induce the 

synthesis of HSP to trigger stress response and cellular adaptation [44-46]. The INDEL 

variant on the MC2R gene could affect the stability of the transcribed mRNA, affecting 

the expression of the ACTH receptor that modulates the cortisol response. Thus, 

differential cortisol response could affect the stress and inflammatory response of 

animals, supporting the evidence of an effect on animal resilience [8, 35-37]. 

Animals can maintain their performance (be more resilient) when they can discriminate 

environmental stimuli from background. Berghof et al. [5] proposed VE as a measure of 

animal resilience, while Argente et al. [8] showed that the line with a low VE of LS was 

more resilient than the line with a high VE of LS. According to Colditz and Hine [7], the 

immune system, cell receptors, and nervous and sensory structures are essential for 

coping with environmental disturbances. In this study, we identified 59 genes that are 

involved in the immune system, 23 in sensory perception, six in animal behaviour and 

35 in the nervous system [see Additional file 3], which support the correlated response 

of VE of LS in rabbit resilience [8]. Among these 59 genes, SLC18A1, FBXL20, and again 

MC2R were highlighted because they had also GO related to the modulation of the 

nervous system and/or behaviour [see Additional file 6]. However, the role of the 

highlighted candidate genes in controlling VE of LS and animal resilience requires further 

studies to investigate their direct effect on the VE of LS. Although the 373 identified genes 

with functional mutations were considered as candidate genes for VE of LS, their direct 

or indirect implication in modulating the VE of LS needs to be assessed. 

6. CONCLUSIONS 

We identified 373 candidate genes with functional mutations for VE of LS in rabbits by 

combining independent methods of detection of signatures of selection and WGS data. 

These genes supported the biological pathways that were previously reported to be 

related to VE of LS and involved in immune response, lipid and carbohydrate metabolism 

and stress response. These candidate genes could also explain the correlated response of 
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the VE of LS in embryo implantation, embryo survival and litter size. Two novel INDEL 

variants were fixed in the line with high VE of LS and absent in the line with low VE of LS, 

one in the MC2R gene and one in the ENSOCUG00000006264 gene. These promising 

functional mutations are located in genes that are involved in stress response and in the 

retinoid acid biosynthetic process, which could also control the immune response, 

respectively. This study expands on a previous GWAS for VE of LS in rabbits and 

identified additional molecular mechanisms and pathways for VE of LS and animal 

resilience. However, the real implications of these genes in VE of LS still need to be 

assessed through functional analyses. 
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Additional file 1 

File format: xlsx 

Title: Relevant FST windows with a weighted FST value higher than 0.35. 

Description: Signatures of selection identified using FST. For each relevant FST window, 
the position is indicated according to the chromosome (OCU) and location in Mb. This 
table summarises the minor allele frequency (MAF) for each population and the weighted 
FST value for each FST window. 

Additional file 2 

File format: xlsx 

Title: Localization of true-signatures of selection identified with each method of 
detection in generation 11 and validated in generation 13. 

Additional File 3 

File format: xlsx 

Title: Classification of candidate genes in general biological processes according to their 
gene ontologies (GO). 

Description: An in-house R script was used to group the gene ontology (GO) of the 
candidate genes in general biological pathways. For that, we created a dictionary for each 
biological pathway with their keyworks (for example, cytokine for immune system). 
Then, we matched these keywords with the GO description of each gene extracted from 
Ensembl 103 [see Additional file 6] using the package biomaRt. Each description 
containing the keyword was assigned to its biological pathway. Gene with GO terms for 
which it was difficult to assign a biological process were included in the category of 
“Other Processes”, for example, MutSbeta complex. All keywords were extracted from 
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the literature. The percentage of each biological pathway was calculated as the ratio 
between the number of GO identified in the biological pathway (Xi) relative to the total 

number of GO (N); 
𝑋𝑖

𝑁
𝑥100. Using this in-house R script, we obtained a general vision of 

the pathways based on the GO of the candidate genes. This is an initiative named 
PATHionary. You can support it with your knowledge through the following link; 
https://forms.gle/yAt3S2JDUEzQxoLu9 

Additional file 4 

File format: xlsx 

Title: Total number of INDEL identified in the true signatures of selection for the 
environmental variance of litter size.  

Description: INDEL identified by WGS data analysis to be located in a UTR or splicing 
region or with a frameshift effect. For each variant, the position is indicated according to 
the chromosome (OCU) and base pair (bp) location. REF shows the allele in the reference 
genome (Oryctolagus cuniculus v2.0.103) and ALT the alternative variant identified in 
the rabbit lines. Low and High show the allelic distribution in each line where 0 indicates 
the reference allele, 1 the alternative allele, and 2 a new variant. 

Additional file 5 

File format: xlsx 

Title: Total number of SNVs identified in the true signatures of selection regions for 
environmental variance of litter size.  

Description: SNVs identified by WGS analysis to be located in a UTR or splicing region 
or with a frameshift effect. For each variant, the position is indicated according to the 
chromosome (OCU) and base pair (bp) location. REF shows the allele in the reference 
genome (Oryctolagus cuniculus v2.0.103) and ALT the alternative variant identified in 
the rabbit lines. Low and High show the allelic distribution in each line where 0 indicates 
the reference allele, 1 the alternative allele, and 2 a new variant. 

Additional file 6 

File format: xlsx 

Title: Gene ontologies and descriptions of each candidate gene identified in the true 
signatures of selection, using biomaRt. 
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1. ABSTRACT 

1.1. BACKGROUND 

Understanding how the host’s microbiome shapes phenotypes and participates in the 

host response to selection is fundamental for evolutionists and animal and plant 

breeders. Currently, selection for resilience is considered a critical step in improving the 

sustainability of livestock systems. Environmental variance (VE), the within-individual 

variance of a trait, has been successfully used as a proxy for animal resilience. Selection 

for reduced VE could effectively shift gut microbiome composition, reshape the 

inflammatory response, triglyceride and cholesterol levels, and drive animal resilience. 

This study aimed to determine the gut microbiome composition underlying the VE of 

litter size (LS), for which we performed a metagenomic analysis in two rabbit populations 

divergently selected for low (n=36) and high (n=34) VE of LS. Partial least square-

discriminant analysis, and alpha- and beta-diversity were computed to determine the 

differences in gut microbiome composition among the rabbit populations.  

1.2. RESULTS 

We identified 116 KEGG IDs, 164 COG IDs, and 32 species with differences in abundance 

between the two rabbit populations studied. These variables achieved a classification 

performance of the VE rabbit populations of over than 80%. Compared to the high VE 

population, the low VE (resilient) population was characterised by an 

underrepresentation of Megasphaera sp., A. muris, B. rodentium, R. bromii, B. togonis 

and Eggerthella sp., and greater abundances of A. shahii, A. prutedinis, O. splanchnicus, 

L. fermentum and Sutterella, among others. Differences in abundance were also found 

in pathways related to biofilm formation, quorum sensing, glutamate, and amino acid 

aromatic metabolism. All these results suggest differences in gut immunity modulation, 

closely related to resilience. 

1.4. CONCLUSIONS 

This is the first study to show that selection for VE of LS can shift the gut microbiome 

composition. The results revealed differences in microbiome composition related to gut 

immunity modulation, which could contribute to the differences in resilience among 

rabbit populations. The selection-driven shifts in gut microbiome composition should 

make a substantial contribution to the remarkable genetic response observed in the VE 

rabbit populations. 
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2. BACKGROUND 

The dynamics and composition of gut microbiome have a substantial impact on the host’s 

phenotypes. Previous studies on livestock have suggested that microbial variation 

contributes to production phenotypes, explaining between 13% and 33% of key traits [1-

2]. It is thus fundamental for evolutionists and animal and plant breeders to understand 

how the host’s microbiome shapes phenotypes and contributes to host response to 

selection [3], even though the complexity of microbiome inheritance and microbiome 

heritability (host genetics controlling microbiome) make this a challenging topic.  

The livestock industry is demanding more sustainable production systems and resilience 

is one of the critical traits to be improved, this being the ability of individuals to maintain 

or quickly recover their performance after environmental disruptions [4]. In the last few 

years environmental variance (VE) has successfully been used as a key measure of animal 

resilience [5-7]. VE is defined as the within-individual variance of a trait. Animals 

showing a low VE for a given trait seem to cope better with environmental disturbances 

that affect this trait and show lower mortality [6-7]. Quantitative genetics and genomic 

studies in different species underline the close association of VE with the inflammatory 

response [8-11], while variations in gut microbiome composition can regulate the health 

status of individuals [12]. Conversely, the immune system, particularly the inflammatory 

signals, play an important role in the development of intestinal disorders and 

autoimmunity [13-15]. Selection for VE might therefore effectively shift gut microbiome 

composition, affecting the inflammatory response and driving animal resilience [7].  

This study aimed to determine the microbiome composition underlying the VE of litter 

size (LS). For this we performed a metagenomic analysis considering the compositional 

nature of the data in two rabbit populations divergently selected for high and low VE of 

LS [16]. The populations were selected from the same environmental conditions, this 

being an exceptional biological material to confirm the host-microbial evolution. They 

showed a notable genetic response to disruptive selection for VE of LS, with a notable 

correlated response in resilience, mortality, and biomarkers of the immune response 

[7,11]. The genomic analysis also found relevant genes associated with the variation in 

the VE of LS, supporting the link between the inflammatory response and the VE [9-10]. 

3. METHODS 

A divergent selection experiment for high and low VE of LS was carried out on generation 

13 rabbits at the Miguel Hernández University in Elche, Spain [16]. The rabbits were kept 

in the same room under the same environmental conditions. Cecum samples were 
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collected from 70 does (36 from the population with low VE of LS and 34 from the 

population with high VE of LS) slaughtered after their first parity. These samples were 

homogenized in 50 mL Falcon tubes and aliquoted in 2mL cryotubes for immediate 

snap-freezing in liquid nitrogen and storage at -80ºC until processed.  

Bacterial DNA was isolated from 0.15 g of cecum samples using the DNeasy PowerSoil 

Kit (QIAGEN Inc, Hilden, Germany). DNA concentration and purity were estimated by 

measuring the 260/280 ratio with a Nanodrop ND-1000 and verifying by a QubitTM 4 

Fluorometer (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, USA). Whole bacterial 

genomes were sequenced at the FISABIO Sequencing and Bioinformatic Service 

(Valencia, Spain) by Illumina NextSeq 500 in 150 bp paired-end reads. Average coverage 

was set to 4,000,000 million paired-end reads per sample with a minimum of 2,000,000 

paired-end reads. The shotgun library was made by the Nextera XT DNA Library 

Preparation Kit (Illumina Inc., San Diego, CA, USA). 

Quality control of raw FASTQ files was done on FASTQ v0.11.06 software [17] and two 

raw FASTQ files were discarded from the analysis to low sequencing quality. Before 

analysing the whole metagenome data, the raw FASTQ files were pre-processed. The host 

genome (Oryctolagus cuniculus genome v.2.0.101) was removed by a pipeline that 

included the Bowtie2 v4.1.2 [18], SAMtools v1.2.1 [19], and BEDTools v2.29.0 software 

[20]. The full pipeline is available in Additional File 1. Illumina adapter removal and 

quality trimming of reads were performed on Trimmomatic v0.39 software [21] using 

“leading” and “trailing” settings of 8 bases with a minimum length of 96, a sliding 

window of 10, and a minimum quality score of Q15 [see Additional File 2]. The cleaned 

FASTQ files were analysed with the “default” settings of the “seqmerge” mode of 

SqueezeMeta v1.3.1 software [22] [see Additional File 3]. This software is a fully 

automatic metagenomic analysis pipeline that uses the latest publicly available version 

of the GeneBank nr, eggNOG, KEGG and PFAM database for taxonomic and functional 

assignment (for further details see Tamames & Puente-Sánchez, 2019 [22]). Each output 

dataset had the count abundance of j variables; the KEGG IDs (j=5008), COG IDs 

(j=14,577), or the taxonomic ranks per sample. The taxonomic rank dataset was split into 

four different groups: phylum (j=108), family (j=277), genus (j=647), and species 

(j=573).  

All the statistical analyses were done in R [23]. A principal component analysis of each 

dataset was computed to remove outlier animals, according to the population structure. 

Of the 70 animals, 34 from the low VE of LS (resilient) population and 28 from the high 

VE (non-resilient) population remained in the datasets. Variables with almost 20% zeros 
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[24] within each population or in total (without a relevant difference of zeros among 

populations higher than 0.5) were removed, and one count was added to all datasets to 

deal with the remaining zeros. The data were transformed by the additive log-ratio (ALR) 

transformation to consider their compositional nature [25], using one fixed variable as 

denominator or reference variable (𝑥𝑟𝑒𝑓), with all the other variables as numerator (𝑥𝑗): 

𝐴𝐿𝑅(j|𝑟𝑒𝑓) = 𝑙𝑜𝑔 (
𝑥j

𝑥𝑟𝑒𝑓
) = log(𝑥j) − log(𝑥𝑟𝑒𝑓) (1) 

where the number of total ALR is j-1, j being the total number of variables in the dataset. 

The dataset reference variable (KEGG IDs, COG IDs, and taxonomic ranks) was selected 

according to three requirements suggested by Greenacre et al. (2021) [25]: (a) the lowest 

variance of the log-count abundance (log(𝑥𝑗)), (b) a high-count abundance (𝑥𝑗), and (c) 

a Procrustes correlation higher than 0.9 to avoid lack of isometric in the transformed 

datasets. We used the lowest coefficient of variation of the log(𝑥𝑗) to select the reference 

variables instead of the lowest variance. For KEGG and COG IDs datasets, we used the 

count abundance of the RecA gene (K03553 and COG0468, respectively) as the reference 

variable, as suggested in the SqueezeMeta software manual [22]. The RecA gene is 

present in most bacteria, archaea, and eukaryotes organisms and has a low copy number 

variation between taxa [26]. In our dataset the gene RecA for KEGG IDs and COG IDs 

overcame all the requirements to be a reference variable [25]. We selected the following 

reference variables for each taxonomic rank dataset; the phylum Firmicute, the family 

Lachnospiraceae, the genus Butytivibrio, and the species Clostridium bacterium. ALR 

transformed data was auto-scaled to mean 0 and standard deviation 1 before performing 

any statistical analysis.  

Partial least square-discriminant analysis (PLS-DA) was used to identify the relevant 

genes and taxa to classify the rabbits among high and low VE of LS. The PLS-DA models 

were computed on the mixOmics package in R [27]. A categorical vector Y of length n 

was used as input, indicating the rabbit population of each sample (resilient = 34 and 

non-resilient = 28), and an X matrix 𝑛 × j dimensions, where n is the number of samples 

and j the number of ALR. A PLS-DA model with ten components was fitted for each ALR-

transformed dataset (KEGG IDs; j=4,150, COG IDs; j=10,893, phylum; j=35, family; 

j=96, genus; j=212, species; j=196). An iterative process was done until each model 

reached the highest classification performance or a balanced error rate (BER) lower than 

0.02. In each iteration, the optimal number of components for each model was selected 

considering the BER displayed for the Mahalanobis distance, computed by 4-fold cross-

validation repeated 100 times. Feature/Variable selection was performed using the 
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variable important prediction (VIP) i.e., the influence of the variables on the model 

projection and classification for the number of components previously selected. The 

optimal number of variables to select were those with a VIP higher than 1 [28].  

The prediction performance of the final models was validated by two tests: a confusion 

matrix and a permuted-confusion matrix. The former was constructed by 4-fold cross-

validation repeated 10,000 times. The models’ accuracy and precision were calculated 

considering the resilient population as the true positive value. We also computed a 

permuted-confusion matrix randomizing the categorical Y vector of the rabbit 

populations to check whether the classification performance of the final models was 

spurious. These were considered spurious when the percentage of true positives in the 

permuted-confusion matrix was far from 50% (random probability of two categories). A 

full record of the method used is included in Additional Files 4-6.  

Bayesian statistics [29] was used to determine the relevance of the difference between 

the two rabbit populations in the microbial genes and taxonomy selected by PLS-DA [see 

Additional File 7]. The analysis was by four chains with a length of 50,000 iterations, a 

lag of 10, a burn-in of 1,000 iterations and flat priors. To check whether the model 

converged the R-hat statistic had to be below 1.05 [30]. The marginal posterior 

distribution of the differences among the resilient minus non-resilient population was 

computed to estimate its posterior mean and the probability of the difference being 

higher (if the difference is positive) or lower (if negative) than 0 (P0). The posterior mean 

of the differences was indicated as units of standard deviations (SD) of each variable (unit 

of SD). Variables with an SD higher than 0.5 and a P0 higher than 0.9 were considered 

the most relevant for the classification and differentiation of the two rabbit populations. 

The alpha- and beta-diversity were computed using the ALR at the species level to 

measure the differences in microbiome composition among the rabbit populations. The 

alpha-diversity was measured by Shannon’s (H’) and inverse Simpson indexes. The same 

indexes analysed the species diversity and evenness in the samples. Differences in the 

distribution of alpha-diversity among rabbit populations were considered when the p-

value of a Mann-Whitney U test was lower than 0.05. Beta-diversity was measured by 

the Bray-Curtis dissimilarity matrix and a nonmetric multidimensional scaling (NMDS) 

was carried out to retrieve the loadings of the first two dimensions. Differences in 

microbial species composition were tested by the permutational multivariate analysis of 

variance (PERMANOVA; p-value <0.05) on the loadings of the two first MDS 

dimensions. A full record of the alpha- and beta-diversity calculation is included in 

Additional file 8.  
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4. RESULTS AND DISCUSSION 

After the additive log-ratio (ALR) transformation, the partial least square discriminant 

analysis (PLS-DA) identified 361 relevant variables, including: 116 KEGG IDs, 164 COG 

IDs, 6 phyla, 15 families, 28 genera, and 32 species. Most models achieved a high 

classification performance of the rabbit populations in terms of resilience potential, 

given that rabbits with high VE are considered less resilient than those with low VE (Table 

1) [see Additional Files 4-6]. The best models were those using the KEGG and COG IDs 

for functional assignment and the species level for taxonomic assignment (Table 1). The 

models using counts from functional assignment allowed higher discrimination than 

those from the taxonomic assignment (Table 1). The taxonomic ranks were inferred from 

the functional assignment [22], having a lower statistical power for discriminating 

between the two rabbit populations (Fig.1) due to the loss of information in the 

assignment.  

Table 1. PLS-DA model specifications using counts from genes and taxa of 
the resilient and non-resilient rabbit populations 

PLS-DA 
model 

N(a) Component(b) Classification 
performance(c) 

Accuracy* Precision* 

   Resilient(d) 
Non-
resilient(e) 

  

Phylum 6 2 66.68 66.32 0.67 0.66 
Family 15 3 78.97 78.89 0.79 0.79 
Genus 28 1 74.28 82.70 0.79 0.81 
Species 32 2 84.87 88.87 0.87 0.89 
KEGG 116 3 99.83 99.77 1 1 
COG 164 3 99.88 99.99 1 1 

PLS-DA models with taxa were those with phylum, family genus and species. PLS-DA models with 
genes were those with the KEGG and COG IDs 
(a) Number of variables in the final model 
(b) Number of components in the final model 
(c) Final PLS-DA model classification performance (%) of each rabbit population. (True positive 
value from the total assignation to each rabbit population). 
(d)Population with low VE of LS 
(e)Population with high VE of LS 
* Accuracy and precision of the final model considering the resilient population as true positive. 

Likewise, the higher (Fig.1A) had less discrimination power than the lower taxonomic 

ranks (Fig. 1B). Clustering counts in the higher taxonomic ranks (phylum or family) 

could hide their variation between the populations due to grouping bacteria with 

dissimilarity in their functions. The results show that a few species (32) were relevant for 

the classification among the two rabbit populations, obtaining an accuracy of 0.87 and a 

precision of 0.89 (Table 1). These results were supported by the alpha- and beta-diversity 

scores, which did not differ between the two rabbit populations (Fig. 1D-F), indicating 

that in general both populations have a similar microbiome composition except for a few 

species identified by the PLS-DA.  
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The Bayesian statistical analysis [see Additional File 7] showed that 303 variables 

(including both genes and taxa) from the initial 361 identified by PLS-DA analysis (Table 

1) had a posterior mean of the differences among the rabbit populations of at least 0.5 of 

the SD of the variable [see Additional File 9] in which the probability of differences being 

higher or lower than 0 (P0) was higher than 0.97. The Bayesian results showed that most 

of the variables included in the PLS-DA models (Table 1) are key variables for 

discriminating between rabbit populations, with relevant differences in mean abundance 

[see Additional File 9]. These differences must have arisen because of the divergent 

selection for VE of LS, since the animals were coetaneous and kept under the same 

environmental conditions (diet, management, temperature, etc). 

Relevant results in the PLS-DA models using the taxonomic ranks are detailed below. 

The species Alistipes shahii (0.60 unit of SD), Alistipes putredinis (0.51), Odoribacter 

splanchnicus (0.58), and Limosilactobacillus fermentum (0.57) was more abundant in 

the resilient animals (Fig.2), as were the higher taxonomic ranks of these species (Fig. 

2): genera Odoribacter (0.83), Alistipes (0.75), Lactobacillus (0.56) and Rikenella 

(0.51); families Odoribacteraceae (0.84) and Rikenellaceae (0.74); and the phylum 

Bacteroidetes (0.59). Health-beneficial properties have been reported from these taxa, 

in part due to their effects on the inflammatory and immune adaptive response [31-33]. 

These effects on the immune system have been suggested to be mediated by short-chain 

fatty acids (SCFs) and Th17 cells. SCFs have anti-inflammatory properties [12, 34] and 

differentiation of Th17 cells is essential for the host to develop a correct tolerance to 

foreign and non-pathogenic commensal species, playing an important role in gut 

immunity [35].  
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Figure 1. Gut microbiome composition dissimilarity. Representation of the first (Comp 1) and 
second components (Comp 2) of the final partial least square-discriminant analysis (PLS-DA) models (Table 
1) and alpha- and beta-diversity scores from the resilient (red) and non-resilient (blue) rabbit populations. 
PLS-DA plotting was performed using three different datasets: (A) phyla abundances, (B) species 
abundances, and (C) KEGG IDs abundances. The alpha- and beta-diversity scores were calculated with the 
additive log-ratio of each species abundance according to a reference species (Clostridium bacterium). 
Alpha-diversity was computed using (D) Shannon’s H index and (E) Inverse Simpson index. Beta-diversity 
was computed by calculating (F) the Bray Curtis dissimilarity matrix. Differences among populations were 
established with a p-value lower than 0.05. 

Harmful microbial species such as Acetatifactor muris (-0.72 of SD unit) and 

Eggerthella sp. (-0.63) were more abundant in the non-resilient rabbits (Fig.2), which 

was consistent with their associations with autoimmunity and inflammatory diseases 

[36-37]. Species like Megasphaera sp. (-0.75), Bacteroidetes rodentium (-0.70), 

Ruminococcus bromii (-0.67), and Bacteroides togonis (-0.63) also showed higher 

abundance in the non-resilient population (Fig.2).  Although we did not find any 

evidence in the literature of a possible negative effect of these species on the host-health 

status, the effect of microbial species on individual health still remains unclear. There 

are discrepancies in the literature on the gut microbiome composition related to health 

and disease. Species such as Alistipes putredinis have been identified as both beneficial 

and harmful species [31, 36], as have the genus Sutterella (0.83) and the family 

Sutterellaceae (0.60), with a higher abundance in resilient rabbits (Fig.2). The Sutterella 
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genus was identified in healthy and inflammatory bowel disease patients [38], 

particularly in those with Ulcerative Colitis [39]. The studies could only suggest the 

participation of the Sutterella genus in the modulation of the inflammatory response 

[39] through the alteration of IgA levels, an important immunoglobulin to neutralize 

pathogens and prevent infections [40]. All relevant species for the classification between 

the resilient and non-resilient animals can find in the Additional File 9.   

 

Figure 2. Principal component analysis of gut microbiome composition. Representation of first 
(PC1) and second principal component (PC2) of the additive log-ratio transformation of the relevant 
variables for distinguishing between resilient and non-resilient populations. SD indicates the unit of 
standard deviations of each variable from the posterior mean of the differences between the marginal 
posterior distributions of the rabbit populations. The SD colour gradient highlights the degree of difference, 
blue and red being the greatest differences among the rabbit populations. The blue-shaded area indicates 
that higher microbiome abundance in the non-resilient population. The red-shaded area indicates higher 
microbiome abundance in the resilient population. SCP:  Proteins involved in signalling and cellular 
processing; ABC transp: Proteins of the family ABC transporter; Quorum S.: Proteins involved in quorum 
sensing. PilB, PilC, PilM and PilT: proteins that conform the pilus. 

We also identified differences in relevant pathways that might contribute to the 

differences in VE and resilience between the rabbit populations. We identified 42 KEGG 
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IDs in signalling and cellular processing [see Additional File 4-5], which were generally 

more abundant in the non-resilient population (Fig.2). We also highlighted those KEGG 

and COG IDs related to the ABC transporters (50), Quorum sensing (11) and pilus protein 

conformation (4), three components essential to form biofilms [41-42], which have been 

associated with both an ill and a healthy gut, so again it was necessary to identify the 

tipping point between a beneficial or harmful effect [43]. The genes aconitate hydratase 

(K01681; -0.73), glutamate synthase (K00284; -1.1), and glutamate 

formiminotransferase (K13990; 0.80) also showed differences between the rabbit 

populations (Fig.2), differences that could suggest different ways of synthesizing L-

glutamate, according to the substrate used. Non-resilient animals could have reduced 

levels of glutamine, which might shift their microbiome balance and inflammatory 

response towards a worse health status [44]. Differences in the genes belonging to the 

chorismite metabolism were also found for chorismate mutase (K14170; -0.94) and 

chorismate lyase (K18240; 0.78). There are few studies in the literature on the impact of 

these enzymes’ end-products (prephenate and 4-hydroxybenzoate, respectively), even 

though these genes are important for the metabolism of the aromatic amino acids 

phenylalanine, tyrosine, and tryptophan, which are linked to mucosal integrity and 

immune homeostasis in the gut [45]. They could thus be important for the modulation 

of VE and animal resilience. All relevant genes for the classification between the resilient 

and non-resilient animals can find in the Additional File 9.    

Since microbial inheritance is complex, more research is required to understand the 

implication of the differences in the microbiome composition found in this study. The 

microbiome variability between these two rabbit populations could be an effect or a cause 

of the remarkable genetic response for VE of LS [16]. Microbial species with a 

contribution to the phenotype can be selected throughout generations, while selection 

could also modify the microbiome composition of species with microbial heritability; i.e., 

influenced by the genome of the host and not necessary with a contribution to the 

selected trait [3, 46]. A number of studies show how the host genome shapes the 

microbial abundance of around 10-97% of total microbial species, microbial heritability 

ranging between 0.008 and 0.64 [47-48]. In these rabbit populations several genomic 

regions were associated with the differences in VE [9-10], so that the underlying genes 

might also affect the gut microbiome composition. For instance, the DOCK2 gene 

identified as associated with the rabbit population on the rabbit chromosome 3 [9-10] 

has been suggested to modify gut microbiome composition in a study on knockout mice 

[49]. Further studies are needed to determine the implications of the host genome on 

shaping the VE of LS and animal resilience. 
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Microbiome composition is multifactorial and different species could have different roles 

in health, according to the host genotype, diet, microbial interactions, and environmental 

factors, among others [12, 50]. Standardized factors affecting the gut microbiome 

composition are necessary to obtain reproducible results. This study has an advantage 

over other studies, as diet and environmental conditions were the same for both rabbit 

populations for 13 generations and the rabbits were coetaneous. Controlling these factors 

allowed us to decipher the commensal consortia or microbiome composition possibly 

associated with the VE selection studied. Our results suggest that modulating gut 

immunity functions mediate some of the differences in resilience among rabbit 

populations [7, 11]. 

5. CONCLUSIONS 

This is the first study to show that selection for VE of LS can shift the gut microbiome in 

animals under the same environmental conditions. We identified 116 KEGG IDs, 164 

COGs IDs and 32 species with differences in abundance between two rabbit populations 

with outstanding differences of VE for LS after 13 generations of selection as a result of 

the VE selection performed. The resilient rabbit population (with low VE of LS) had lower 

abundance of Megasphaera sp., A. muris, B. rodentium, R. bromii, B. togonis and 

Eggerthella sp., and greater abundance of A. shahii, A. prutedinis, O. splanchnicus, L. 

fermentum and Sutterella, among others. Differences in abundance were also found in 

pathways related to biofilm formation, quorum sensing, glutamate, and amino acid 

aromatic metabolism. The results suggest that differences in gut immunity modulation 

could drive the differences in resilience among rabbit populations. We also suggest that 

DOCK2 could be one of the host’s genes that influence gut microbiome composition. Due 

to the limited information in this field, further studies should be carried out to validate 

these results. 
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1. ABSTRACT 

1.1. BACKGROUND 

The gut metabolites are key actors in the host-microbiota crosstalk and can have either 

beneficial or detrimental effects on the host. In livestock, the study of the gut 

metabolome is emerging. Its study could help to understand their effects on key traits 

such as animal resilience and welfare. Furthermore, we could expand our knowledge 

about host-gut interactions. Animal resilience has now become a critical livestock trait 

because of the high demand for more sustainable productions. Environmental variance 

(VE), the within-individual variance of traits due to environmental factors, is used as a 

measure of resilience. Studying the gut microbiome composition can reveal the 

mechanisms behind animal resilience due to its influence on host immunity. The aim of 

this study was to identify the gut metabolites underlying the differences in the resilience 

potential of animals from a divergent selection for VE of litter size (LS). We performed 

an untargeted gut metabolome analysis in two rabbit populations divergently selected 

for low (n=13) and high (n=13) VE of LS. Partial least square-discriminant analysis and 

Bayesian statistics were computed to determine dissimilarities in the gut metabolites of 

the rabbit populations. 

1.2. RESULTS 

We identified 15 metabolites that can discriminate between rabbit populations with a 

prediction performance of 99.18% for resilient and 90.42% for non-resilient populations. 

These metabolites were suggested to be biomarkers of animal resilience as they were the 

most reliable: glycerophosphoglycerol, equol, behenoylcarnitine, arachidoylcarnitine, 

ethyl beta-glucopyranoside, 3-(4-hydroxyphenyl)lactate, N6-acetyllysine, 5-

aminovalerate, betaine, succinylcarnitine and palmitoyl dihydrosphingomyelin. Five of 

them were suggested to come from the microbiota metabolism, being indicators of 

dissimilarities in the microbiome composition between the rabbit populations. A low 

abundance of acylcarnitines and metabolites derived from the phenylalanine, tyrosine, 

and tryptophan metabolism were found in the resilient population. These pathways can 

impact the inflammatory response and the health status of animals. 

1.3. CONCLUSIONS 

This is the first study to identify gut metabolites that could act as potential resilience 

biomarkers. These results supported the differences in the resilience between the rabbit 

populations, that were generated by the selection for VE of LS. Then, the selection for 
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environmental variance modified the gut metabolome which could be another factor to 

modulate animal resilience. However, further studies will be needed to determine the 

causal role of these metabolites in health and disease. 

2. BACKGROUND 

The gut metabolites are key actors in the host-microbiota crosstalk and can have either 

beneficial or detrimental effects on the host [1-3]. They can act in the gut or travel 

through the plasma to reach the host’s tissues, influencing the functions of the liver, 

brain, and immune system [4]. Gut metabolites can be derived from (i) the microbiota, 

due to the conversion of non-digestible components from diet or to synthesis “de novo”, 

(ii) the host, and (iii) the diet. Moreover, metabolites from the host could be modified by 

the gut microbiota (5-6). In livestock, the study of the gut metabolome is emerging. 

Recently, gut metabolome dissimilarities have been found in traits such as feed efficiency 

[7-8], and milk yield protein [9]. Thus, the study of the gut metabolome could help to 

expand the knowledge of host-gut interactions. Furthermore, it will allow to understand 

their effects on key traits such as methane emissions and animal resilience. 

Animal resilience has become a critical trait in the livestock system because of the high 

demand for a more sustainable livestock system. Resilience is the ability of animals to 

maintain or quickly recover their production performance despite an environmental 

perturbation [10]. Environmental variance (VE) was highly correlated with animal 

resilience, becoming an interesting trait to measure resilience [10-12]. Indeed, animals 

with low VE for a given trait seem to cope better with environmental disturbances [11-

12]. Quantitative genetics and genomic studies in different species underline the 

importance of the immune system in modulating animal resilience [13-16]. The gut 

metabolome is closely related to the modulation of the immune system [3, 17], so the 

study of the gut metabolome could insight into promising mechanisms underlying the 

animal’s resilience. 

A previous metagenomic study found differences in microbiome composition (genes and 

species) between two rabbit populations selected for high and low VE of litter size (LS) 

[18]. These lines showed a notable genetic response to the selection performed, as well 

as correlated responses in resilience indicators [12,14]. The present study is an extension 

of the previous metagenome study [18] and aims to identify the gut metabolites related 

to the resilient potential of these rabbit populations. The gut microbiome is a complex 

ecosystem and is strongly influenced by environmental factors [19-20], and the 

metabolite origin [6]. The reduction of cofounded factors is necessary to correctly 

decipher the gut metabolome variability behind the complex traits.  The rabbit 



 

114 
 

populations used in this study were coetaneous and were selected under the same 

environmental conditions and diet throughout 13 generations.  Thus, they were an 

exceptional material to unravel the gut metabolites which can act as biomarkers of 

resilience.   

3. METHODS 

The rabbits used in this study belonged to the 13th generation of a divergent selection 

experiment for high and low VE of LS carried out at the University Miguel Hernández of 

Elche, Spain [21]. Cecum samples were collected from 28 does (14 from both 

populations) sacrificed after their first parity by an intravenous injection of sodium 

thiopental at a dose of 50mg/kg of body weight (Thiobarbital, B. Braun Medical S. A., 

Barcelona, Spain). The samples were homogenized in 50 mL Falcon tubes and aliquoted 

in 2mL cryotubes for immediate snap-freezing in liquid nitrogen and storage at -80ºC 

until processed.  

Untargeted metabolite analysis of the gut content was conducted on the Metabolon 

Discovery HD4 platform. The samples were prepared by the Hamilton Company's 

automated MicroLab STAR® system. Prior to extraction, several recovery standards were 

added for quality control (QC) purposes. The proteins were precipitated in methanol 

under vigorous shaking for two minutes followed by centrifugation to recover chemically 

diverse metabolites. The resulting extract was divided into five aliquots and the organic 

solvent was removed by a TurboVap® (Zymark).  

The gut content metabolites were profiled by Ultrahigh Performance Liquid 

Chromatography (UPLC)-Tandem Mass Spectrometry (UPLC-MS/MS) methods with 

negative and positive ion mode electrospray ionization (ESI). All the methods used a 

Waters ACQUITY UPLC system (Waters, Milford, MA, USA) and a Q-Exactive high 

resolution/accurate mass spectrometer (Thermo Fisher Scientific) interfaced with a 

heated electrospray ionization (HESI-II) source and an Orbitrap mass analyser operated 

at 35,000 mass resolution. The aliquots were dried and reconstituted in solvents 

compatible with the method used and containing standards at fixed concentrations to 

ensure injection and chromatographic consistency. QC samples were injected 

throughout the platform run to remove artifacts and background noise and to distinguish 

biological variability from process/instrument variability.  

Of a total of five aliquots, two were analysed by two separate reverse phases (RP)/UPLC-

MS/MS methods with acidic positive ion mode ESI. One was chromatographically 

optimized for more hydrophilic compounds, and the other for more hydrophobic 
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compounds. To detect the former, the aliquot was gradient eluted from a C18 column 

(Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 

0.05% of perfluoropentanoic acid (PFPA) and 0.1% of formic acid (FA). To detect the 

latter, the aliquot was gradient eluted from the same C18 column but using methanol, 

acetonitrile, water, 0.05% PFPA and 0.01% FA, and was operated at an overall higher 

organic content. The third aliquot was analysed by RP/UPLC-MS/MS with basic negative 

ion mode ESI using a separate dedicated C18 column and eluted with methanol, water 

and 6.5mM of Ammonium Bicarbonate at pH 8.  The fourth aliquot was analysed via 

negative ion mode ESI with a HILIC column (Waters UPLC BEH Amide 2.1x150mm, 1.7 

µm) using a gradient of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. 

The last aliquot was reserved for backup. Raw data files were obtained after a tandem 

mass spectrometry analysis, alternating between MS and data-dependent MSn scans, 

using dynamic exclusion. The scan range varied slightly between methods but covered a 

70-1000 mass to charge ratio (m/z).  

Raw data were extracted, peaks were identified, and QC was processed on Metabolon 

hardware and software. A total of 765 metabolites were identified by a library that 

included three criteria of more than 3300 authenticated standard components: retention 

time/index (RI), mass to charge ratio (m/z), and chromatographic data including 

MS/MS spectral data. All three criteria can be used to distinguish and differentiate 

metabolites. Metabolite quantification was based on the area-under-the-curve of 

detected peaks.  

All statistical analyses were done in R [22]. A principal component analysis was 

computed using 480 metabolites (with no missing values) from a total of 765. Of the 28 

animals, 13 from the low VE of LS (resilient) population and 13 from the high VE (non-

resilient) population remained in the datasets. Metabolites with more than 20% zeros 

[23] within each population or in total (without a relevant difference of zeros among 

populations higher than 50%) were removed. The remaining zeros were replaced by the 

half of minimum peak intensity identified by the UPLC-MS/MS method to which each 

metabolite belonged. A total of 654 metabolites from 26 samples (13 from resilient and 

13 from non-resilient populations) were transformed using the additive log-ratio (ALR) 

transformation, due to the compositional nature of metabolomic data [24]. The reference 

variable (𝑥𝑟𝑒𝑓; Uracil nucleotide) was the one with the lowest coefficient of variation. The 

ALRs were calculated following: 
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𝐴𝐿𝑅(j|𝑟𝑒𝑓) = 𝑙𝑜𝑔 (
𝑥j

𝑥𝑟𝑒𝑓
) = log(𝑥j) − log(𝑥𝑟𝑒𝑓) (1) 

where the number of total ALR is j-1, being j the total number of variables in the dataset. 

Procrustes correlation was performed to check lack of isometry in the transformed 

dataset [25]. ALR transformed data were auto-scaled with mean of 0 and standard 

deviation of 1. 

A partial least square-discriminant analysis (PLS-DA) was performed to identify the 

most relevant metabolites to discriminate resilient from non-resilient populations. The 

PLS-DA model was computed on the mixOmics packages in R [26], using a categorical 

vector y, indicating the rabbit population of each sample, and a matrix X with the ALR 

of each metabolite for each sample. The optimal number of components were those with 

the lowest balance error rate (BER) for the Mahalanobis distance, computed by 4-fold 

cross-validation repeated 100 times. Metabolites with a contribution to the model 

prediction (VIP) lower than 1 were removed from the dataset, and a new PLS-DA model 

was computed [27]. PLS-DA model computing and variable selection were performed 

until the highest classification performance (lowest BER) was achieved.  

The prediction performance of the final model was validated using a confusion matrix 

and a permuted-confusion matrix. The former was constructed by 4-fold cross-validation 

repeated 10,000 times using the Mahalanobis distance to predict the rabbit populations. 

The models’ accuracy and precision were calculated considering the resilient population 

as the true positive value. We also computed a permuted-confusion matrix randomizing 

the categorical y vector of the rabbit populations to check whether the prediction 

performance of the final models was spurious, that is when the percentage of true 

positives in the permuted-confusion matrix was far from 50% (random probability of two 

categories). 

Bayesian statistics were used to determine the relevance of the difference in the 

metabolite abundance between the two rabbit populations using a model with a single 

effect of line and flat priors for all unknowns.  Marginal posterior distributions of the 

unknowns were estimated by MCMC (Gibbs sampling) using four chains with a length of 

50,000 iterations, a lag of 10, and a burn-in of 1,000 iterations. The posterior mean of 

the differences in metabolite abundance was estimated as the mean of the marginal 

posterior distribution of differences between the resilient minus the non-resilient 

population. These differences were indicated as units of standard deviations (SD) of each 

metabolite (unit of SD). Moreover, the probability of the difference [28] being higher (if 

the difference is positive) or lower (if negative) than 0 (P0) was calculated. We calculated 
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an approximation of the FDR from Storey (2003) [29] by using the cumulative posterior 

error probability (PEP), similar to the q-value, to establish the threshold for the 

identification of relevant metabolites. The PEP was calculated as (1 - P0)/0.5. We 

assumed a cumulative PEP of 0.05, meaning that approximately 5% of the relevant 

metabolites identified were false positives. Later, an analysis for assigning the biological 

origin of each relevant metabolite was performed using the tool metOrigin [30]. 

4. RESULTS 

The study included 26 rabbits from resilient (13) and non-resilient (13) populations, from 

whose gut contents a total of 765 untargeted metabolites were identified. The Bayesian 

statistical analysis identified 66 metabolites with relevant differences in abundance 

between both populations (with units of SD higher than 0.67) [see Additional File 2]. The 

PLS-DA model for these 66 metabolites showed a prediction performance of 71% for the 

non-resilient and 90% for the resilient populations. We found that from the 66 relevant 

metabolites 29% were associated with a co-metabolism because both host and 

microbiota can produce the metabolite, the12% were associated with the microbiota (de 

novo synthesis), and 27% with other sources (24% food related and 3% drug related). 

From the 66 relevant metabolites, 32% (21) of them could not be traced back to their 

origins (Fig. 1B). The most representative pathways were the long-chain fatty acids 

(LCFAs) acylcarnitines metabolism, the histidine metabolism, endocannabinoid 

metabolites, glycine, serine and threonine metabolism, and tryptophan metabolism (Fig. 

1A) [see Additional file 2].  
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Figure 1. Pathway and biological origin of the metabolites with a relevant difference in 
abundance between the rabbit populations. A) Pathways of the 66 metabolites identified with 
relevant dissimilarities in their abundance between the resilient and non-resilient rabbit populations. B) 
Biological origin of the 66 metabolites with a relevant difference in abundance between the rabbit 
populations. “Co-metabolism” refers to the metabolites shared between the host and the microbiota. 
“Microbiota” are the microbiota-derived metabolites. “Food related” are the metabolites obtained from the 
diet. “Drug” refers to the drug-related metabolites. “Unknown” refers to the metabolites with unknown 
biological origin. 

We also performed an optimized PLS-DA to obtain the most relevant metabolites for 

reaching the highest prediction performance. We identified 15 metabolites with a 

prediction performance of 99.18% for the resilient population and 90.42% for the non-

resilient (Fig. 2.A). These metabolites were the behenoylcarnitine (C22), the 

arachidoylcarnitine, ethyl beta-glucopyranoside, 3-(4-hydroxyphenyl)lactate, 5-

aminovalerate, glycerophosphoglycerol, succinylcarnitine, equol, cysteine s-sulfate, 

betaine, serine, palmitoyl dihydrosphingomyelin, thiamine, and aconitate. All of them 

are proposed as potential resilience biomarkers due to the low error for the prediction of 

each rabbit population achieved by the model. 13 of these 15 metabolites matched those 

identified in the Bayesian analysis as the relevant ones for the difference in abundance 

between the rabbit populations [see Additional file 2]. The two non-overlapping 

metabolites, the aconitate and thiamin, showed the lowest contribution to the optimized 

PLS-DA model (Fig. 2B) and a difference in abundance of 0.5 units of SD. The 13 most 

reliable metabolites seemed to be derived from the diet (behenoylcarnitine, 

arachidoylcarnitine, succinylcarnitie, betaine and palmitoyl dihihydrosphingomyelin), 
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the microbiota (3-(4-hydroxyphenyl)lactate, 5-aminovalerate and equol), and a co-

metabolism between the host and the microbiota (N6-acetyllysine, serine). For the 

metabolites ethyl beta-glucopyranoside, glycerophosphoglycerol and cysteine s-sulfate 

no origin was determined.  

 

Figure 2. Final PLS-DA model. A) Representation of the first (Comp 1) and second (Comp 2) 
components of the PLS-DA used to discriminate rabbits belonging to resilient (red) and non-resilient (blue) 
populations. B) Representation of the posterior mean differences, given as units of standard deviation (SD), 
and the variable importance on prediction (VIP) of the metabolites included in the final PLS-DA model. Blue 
dots are relevant metabolites identified as more abundant in the non-resilient population. Red dots are the 
relevant metabolites identified with greater abundance in the resilient line. Black dots are metabolites 
included in the final PLS-DA model but did not overcome both thresholds: a VIP > 1 and a posterior mean 
of the differences higher than 0.5 SD. 

5. DISCUSSION 

The study of the gut metabolome could help to unravel its effects on key traits in 

livestock. In this study, we found differences in the metabolite profile [Additional file 2] 

of the rabbit populations with differences in resilience potential [12]. The Bayesian 

analysis identified 66 metabolites with dissimilarities in their abundances between the 

rabbit populations and good PLS-DA prediction performance. Nevertheless, 13 out of the 

66 metabolites achieved the highest prediction performance to classify the resilient from 

non-resilient animals. Hence, these metabolites were proposed as potential biomarkers 

for resilience. Our study also showed that 27 of the 66 metabolites (5 of 13 candidates of 

resilience biomarkers [see Additional file 2]) were related to the microbiota (Fig.1B). 

These results suggested a different microbiome composition between the rabbit 

populations that agrees with a previous metagenomic study for genes and taxa using the 

same rabbit populations [18]. Additionally, we identified that 16 of 66 metabolites (5 of 

15 candidates of resilience biomarkers [see Additional file 2]) showed a biological origin 
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related to the feeding (Fig. 1B). These results suggested differences in the use of dietary 

compounds between the rabbit populations because of the host itself or their microbiota. 

Relevant functions were identified for four of the five resilience biomarkers related to 

microbiota-derived metabolites (equol, 3-(4-hydroxyphenyl)lactate, 5-aminovalerate, 

N6-acetyllisine and serine). Equol (0.93 units of SD) is from the daidzein metabolism. It 

can develop neuroprotective effects [31] and trigger the immune response as it enhances 

macrophages and protects from oxidative stress [32]. Our rabbits were sacrificed after 

their first parity. The high levels of equol in the resilient animals could have helped to 

reduce the inflammatory response triggered by the parity, a highly stressful event for the 

dam. Moreover, this stressful event may be increased the levels of the biomarker 3-(4-

hydroxyphenyl)lactate (-1.04 units of SD) in the non-resilient population, a metabolite 

from tyrosine degradation that has been associated with non-alcoholic hepatic liver 

diseases [33]. This metabolite could be involved in a gut-liver crosstalk due to the 

differences found in plasma levels of cholesterol and triglycerides between these rabbit 

populations (after a challenge) [12,14].  5-aminovalerate and N6-acetyllysine are 

products of lysine degradation (KEGG ID: C00431). The 5-aminovalerate is the 

precursor of 5-aminovaleric acid betaine (5-AVAB). This reaction used betaine (another 

resilience biomarker identified in this study; Fig. 2B) such as a methyl substrate donor 

to form the 5-AVAB [34]. It should be misidentified in some studies, so its role in health 

and disease is still unclear (see Haikonen et al. [34] for more information). Likewise, we 

did not find any evidence for the implication of the N6-acetyllysine in pathways related 

to animal resilience. On the other hand, the catabolism of the identified resilience 

biomarker serine (-0.69 unit of SD) was suggested to be related to the adaptation of 

pathogens during the inflammation process [35]. To support the relevance of this 

pathway, the glycine, an interconverted molecule to serine (KEGG ID: C00037), was 

identified with a difference of -0.68 units of SD between the rabbit populations. 

However, we cannot know how the serine levels are acting in the non-resilient 

population. In any case, it would be relevant to study its implication in animal resilience 

given its role in modulating bacterial pathogenesis.  

Other metabolites derived from the AAA metabolisms (such as the abovementioned 3-

(4-hydroxyphenyl) lactate) were identified in our study (Table 1). This is consistent with 

the dissimilarities in AAA biosynthesis genes (chorismite mutase and lyase) found in a 

previous metagenomic study using the same rabbit populations [18]. AAA metabolism 

can control health and disease [36], acting directly on the gut or on distal organs (i.e. 

liver, kidney or brain) [37]. Moreover, they can modulate inflammatory bowel diseases 

[37-39] as well as liver diseases such as hepatic inflammation and steatosis [37, 40]. Our 
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results showed high levels of kynurenine and anthranilate (Table 1) in the no-resilience 

rabbit population, the rabbit population that showed higher levels of CRP (an 

inflammation biomarker) [12]. High levels of these two metabolites were also found in 

individuals under stress with inflammation [41]. As the animals were sacrificed after 

their first parity, the overrepresentation of kynurenine and anthranilate in the non-

resilient population could pinpoint a higher susceptibility to stress and inflammation in 

this population. Unexpectedly, the indole was found in low concentration in the resilient 

line (Table 1). This metabolite has protective functions in the gut as maintaining the 

intestinal barrier integrity and immune homeostasis to avoid dysbiosis during an 

inflammation response [42,43]. An in-depth study would be needed to really understand 

the interplay of this metabolites derived from the tryptophan on animal resilience. 

Table 1. Metabolites from aromatic amino acids (AAAs) metabolism with 
relevant differences between the non-resilient and resilient populations. 

Pathway Metabolite µH-L
(a) P0

(b) HPD95(c) 

Tyrosine metabolism     
 3-(4-hydroxyphenyl)lactate -1.04 99.67 [-1.55, -0.22] 
Phenylalanine 
metabolism 

    

 N-acetylphenylalanine -0.82 98.17 [-1.57, -0.04] 
 Phenyllactate  0.71 96.38 [-0.04, 1.52] 
Tryptophan metabolism     
 Kynurenine -0.79 97.80 [-1.55, -0.22] 
 Anthranilate -0.75 97.27 [-1.51, 0.04] 
 Oxindolylalanine -0.74 96.91 [-1.51, 0.03] 
 Indole -0.69 95.77 [-1.49, 0.10] 

(a)Posterior mean of the differences between the non-resilient and the resilient populations.  
(b) Probability of the difference being higher (if positive) or lower (if negative) than 0. 
(c) High posterior density interval of 95%. 

The metabolites behenoylcarnitine, arachidoylcarnitine, steroylcarnitine, 

palmitoylcarnitine, and formiminoglutamate are also highlighted. The 

behenoylcarnitine and the arachidoylcarnitine were identified as potential resilience 

biomarkers while the other ones only showed relevant differences in their abundance 

between the rabbit populations [Additional file 2]. The former four metabolites are long-

chain fatty acylcarnitines (LCFA). Acylcarnitines are biomarkers of gut dysbiosis [44] 

and high levels of LCFA in the gut have been identified as a biomarker for inflammatory 

bowel diseases (IBD) due to mitochondrial dysfunction in the colonocytes [45]. A correct 

integrity and functionality of the intestinal epithelial barrier and colonocytes are 

essential to gut immunity homeostasis and pathogenesis [46-48]. These results could 

suggest differences in the assimilation by the gut of long-chain fatty acid for energy 

purposes that could influence the gut integrity and immunity. The latter, the 

formiminoglutamate, belongs to the histidine catabolism to L-glutamate. A low 

abundance of this metabolite was found in the resilient animals of this study [see 
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Additional file 2]. This result is in line with a previous metagenomic study that found an 

overrepresentation of the glutamate formiminotransferase in the resilient population 

[18].  Our findings suggested differences in the L-Glutamate metabolisms between the 

rabbit populations. Glutamate is an important neurotransmitter that can act in the gut, 

spinal cord, and brain, participating in the gut-brain axis and influencing the 

inflammatory response [49]. Lastly, for the metabolites palmitoyl 

dihydrosphingomyelin, ethyl beta glucopyranoside, glycerophosphoglycerol and 

cysteine-s-sulfate (potential resilient biomarkers; Fig. 2B) we can not hypothesize about 

the biological mechanisms affecting the animal resilience because their effects on the 

host are still unclear. We only can suggest that these metabolites are important to predict 

and classify between the rabbit populations used in this study.  

6. CONCLUSIONS  

This is the first study to identify gut metabolites which that could act as potential 

resilience biomarkers. The results supported the differences found in resilience potential 

between the rabbit populations, that were generated by the selection for VE of LS. These 

differences could be due to the levels of acylcarnitines and metabolites derived from 

amino acid metabolism such as aromatic amino acids (tryptophan, phenylalanine and 

tyrosine), glycine, serine and glutamate. Moreover, relevant metabolites such as the 3-

(4-hydroxyphenyl)lactate could be involved in a host-gut crosstalk. The selection for 

environmental variance modified the gut metabolome. Thus, the gut metabolome could 

be another factor to explain the differences in resilience between the rabbit 

populations.  However, further studies will be needed to properly determine the origin 

and mode of action of each metabolite to unravel their causal role in health and 

disease, as well as in the host-gut crosstalk 
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9. ADDITIONAL FILES 

Additional files are available with the preprint at https://doi.org/10.21203/rs.3.rs-
1808216/v1 

Additional File 1 

File format: .html 

Title: Additional File 1 

Description: Full pipeline with all the metabolomic analyses 

Additional File 2 

File format: .xlsx 

Title: Additional File 2 

Description: Results of the Bayesian statistical analysis. File includes (from left to right) 
the metabolite ID, posterior mean of the differences among the resilient and non-
resilient populations (meanDiff), the probability of the difference being higher (if the 
difference is positive) or lower (if negative) than 0 (P0), the highest posterior interval 
density of 95% (HPD95), the chemical name of the metabolites and the general and 
specific pathways in which they are involved, the posterior error probability (PEP), the 
cumulative PEP, the metabolites identified by the Bayesian analysis (Bayes), the 
metabolites identified by the PLS-DA (PLS), and the biological origin determined for 
each metabolite. 
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1. ABSTRACT 

1.1. BACKGROUND 

Animal and plant breeders study the microbiome as another source of phenotypic 

variability, affecting both the mean and the variance of traits. Differences in gut 

microbiome composition have been widely identified for key traits in livestock. Then, 

including the microbiome information in the breeding schemes could be useful in 

improving livestock populations. However, the complexity of the microbiome makes it 

difficult to model across species and traits. Moreover, the expensive sequence-based 

techniques limit the availability of empirical data to study microbiome composition at 

scale to decipher key animal breeding questions. Thus, in this study, we aimed to develop 

simuGMsel, a simulation tool to study the role of the microbiome in animal breeding. 

1.2. RESULTS 

simuGMsel simulates the inheritance of genome and microbiome between generations 

and their effect on livestock phenotypes in addition to the environmental effects. The 

microbiome is a function of the host genome effect and interaction among microbial 

species and the environment. Different scenarios can be simulated by varying several 

parameters to define the genome and the microbiome of founder populations. We tested 

simuGMsel by simulating an in-silico replica of a real rabbit divergent selection 

experiment across 13 generations of phenotypic selection. An expected divergent trend 

was observed for all the scenarios simulated when considered the microbiome effect. 

Microbial heritability affected the selection response when the microbial species had a 

lower fitness due to allow reducing their variability. Furthermore, scenarios that 

included the microbial species interactions showed the greatest phenotypic response. 

1.3. CONCLUSION  

simuGMsel enables simulation of genome and microbiome to study their coevolution 

and effect on phenotype in animal breeding programs. As such, it provides a research 

platform to test different hypotheses and scenarios related to the role of the microbiome 

in animal breeding. The presented simulation study showed that the selection based on 

phenotype generated changes in the genome and microbiome and highlighted the 

importance of microbial heritability, the symbiosis among species, and the fitness of 

microbial species as key variables impacting response to selection. simuGMsel will 

enable future studies on the role of the microbiome in animal breeding, including 

genome-assisted and microbiome-assisted selection. 
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2. BACKGROUND 

The coevolution of both the genome and the microbiome drives the adaptation of plants 

and animals [1-3]. As a result, animal and plant breeders began to study the microbiome 

as another source of phenotypic variability which can affect both the mean and the 

variance of traits (see the review of Henry et al., 2021[4]). Differences in gut microbiome 

composition have been widely identified for key traits in livestock such as feed intake [5-

6], growth performance, and carcass quality in pigs [7], feed intake in chickens [8], milk 

protein yield [9] and methane emissions in cattle [10], and intramuscular fat and 

environmental variance in rabbit [11-12]. Then, including the microbiome information 

in the breeding schemes must be useful to improve the progress of livestock populations 

[13]. 

The complexity of the microbiome makes difficult its modelling across species and traits. 

A stable microbiome is assembled by the acquisition and colonization of 

microorganisms. The former depends on the individual’s exposure to different 

environmental sources such as their mother (pregnancy, birth, and suckling process) [14-

16], the diet [17] and the housing environment [18]. Colonization is most dependent on 

the survival and growth potential of each microbial specie, as well as on the individual 

immune system and the tissue (gut, skin, mouth, vagina, etc.). Host genome could affect 

around 5-10% of the microbiome compositions variability [19-20], being the most 

variability due to environmental factors [21]. Although most microbial species seem to 

be influenced to a low or moderate degree by the host genome [22]. Furthermore, the 

lack of consensus on theoretical models and analytic methodologies constrains 

comparisons between experiments and learning how various microbiome-related factors 

impact the animal’s phenotype. 

The expensive sequence-based techniques limit the availability of empirical data to study 

microbiome composition at scale to decipher key questions for animal breeders such as 

how the selection response is influenced by: (i) the microbiome composition, (ii) the 

microbial heritability, (iii) the microbial interactions and (iv) the microbiome 

inheritance (dam or environment). Thus, in this study, we proposed a simulation 

approach to uncover the effect of the microbiome on the selection response of critical 

traits for livestock systems. This simulation is based on a phenotypic selection 

considering both the genome and the microbiome inheritance. Different scenarios were 

implemented to consider the contribution of the genome and/or the microbiome on the 

phenotype, as well as to model the microbial heritability. Furthermore, microbial 

interactions could be considered to know if the symbiosis among microorganisms is a 
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key factor to determine the overall effect of the microbiome. This is a tool under 

development, so further implementations and optimization will be included.  

3. METHODS 

The developed simulator allows users to simulate a host genome (G), the microbiome 

composition (M), and the animal’s phenotype (P) as a function of G, M, and the 

environment (E). The simulator uses a combination of custom R-code available at 

github.com/HighlanderLab/ccastorebollo_metagenomics_sim. 

 

Figure 1. Simulation scheme. G: genome, M: microbiome, P: phenotype, EM: environment over M, EP: 
Environment over P. Arrows indicate causality. G has an effect α on P, determined by the QTLs, and ꞵ on M, 
determined by a proportion of the QTLs with an effect on P. M is also influenced by its species composition 
due to symbiosis interaction among them, being this effect determines by γ. P is a combination of G, M, and 
EP. 

3.1. GENOME SIMULATION 

The simulation of the individual genome is performed with the R packages AlphaSimR 

[23]. Users can specify a huge number of parameters to simulate the haplotypes in the 

founder population such as the demographic history of the population under study, the 

number of segregating sites, the effective population size, and the number of 

chromosomes to simulate, among others. The quantitative trait is simulated under the 

additive model, indicating its mean (µ), phenotypic variance (𝜎𝑃
2) and heritability (h2), 

and the number of QTLs per chromosome. The allele substitution effects of QTLs (𝜶) are 

sampled from a gamma distribution 𝜶~Г(k=0.2, θ=1) with the parameters suggested by 

Perez-Enciso et al. (2021) [24]. 

3.2. MICROBIOME SIMULATION 

Four steps are implemented in the simulator to compute the microbiome composition of 

each animal: (i) microbial species distribution, (ii) microbial heritability, (iii) symbiosis 

or microbial interaction, and (iv) microbiome composition.  

https://github.com/HighlanderLab/ccastorebollo_metagenomics_sim
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i. Microbial species distribution 

Microbial species abundance is considered another complex trait. So, to simulate it, the 

microbial species distributions were first established. For that, a vector with the average 

abundances of a set of microbial species (µ) is computed with a negative binomial 

distribution, 𝑥𝑘~NB(r=2, q=0.0001) for 108 total cells. This initial vector is the 

distribution of the microbial species abundance in the environment (Environmental 

microbiome; EM) for the selection process, being EM constant throughout generations. 

To consider that the microbial species can grow differently in the individual with respect 

to the environment, the initial vector is sorted to establish the mean distribution of the 

microbial species abundance in the parental microbiome or PM (𝝁𝑷𝑴). Microbial 

variability in the individual is modulated by defining a microbial fitness. This fitness 

account for the stability of the growth performance of each microbial species in the 

individual. For that, a coefficient of variation (CV) is assigned to each microbial species 

based on real data. This CV applies to the 𝝁𝑷𝑴 allowing to obtain the standard deviation 

of the abundance distribution for each microbial specie. This abundance distribution is 

the variability that we can observe for a determined microbial specie in the population. 

We considered that this variability is generated due to the contribution of the host 

genome, the symbiosis relationship among species, and the environment over M (EM). 

Thus, our definition of fitness refers to the inverse of the coefficient of variation. For low 

values of CV, the fitness of the microbial species is higher.  

ii. Microbial heritability 

The simulation tool allows to define the effect of the host genome on the microbial 

species abundance, i.e., a microbial heritability effect or ℎ𝑚
2 . This effect follows a gamma 

distribution 𝜷~Г(k=0.2, θ=1) and establishes the percentage of the microbial species 

variability due to the host genome (𝜎ℎ𝑔
2 ). Users can define the percentage of the 

individual QTLs that is affecting a determine number of microbial species. Default values 

are set to 10% for both QTLs and microbial species affected, with the restriction that 50% 

of the microbial species with an effect on the phenotypes must be influenced by the host 

genome. Moreover, the user can define the ℎ𝑚
2 , that is the degree of the host genetic 

variance contribution to the abundance variability. This ℎ𝑚
2  is equal for all the microbial 

species to simplify the result interpretation. We can simulate simultaneously four 

different scenarios depending on if the ℎ𝑚
2  has a low, medium, high, or null value. Default 

values are set to 0.1 for the low microbial heritability (LMH) scenario, 0.3 for the medium 

microbial heritability (MMH) scenario, and 0.6 for the high microbial heritability 

(HMH) scenario. Scenarios without microbial heritability (NMH) and only with the 
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contribution of the microbiome (M) or de genome (G) can also be simulated. For the M 

scenario, a microbial heritability of 0.2 is set by default.  

 

Figure 2. A hierarchical model for the calculation of the microbiome composition. A) Genotype 
of i individuals of j SNPs. Blue and yellow SNPs are quantitative trait loci (QTL) with an effect on the 
phenotype (blue) or on the phenotype and the microbiome (yellow). Grey SNPs do not have an effect on the 
phenotype. B) Stable microbial species abundances or (xik)0 for the microbial species k in individual i, 
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considering only the host-genetic and the environmental effect. M0 is the stable microbiome composition in 
the entire population. C) Symbiosis matrix (S) harbouring the microbial species interactions. A gamma 
distribution Г(k=0.2, θ=5) is applied to each column of the S-matrix to obtain the matrix with the interaction 
effects among species (γk). D) Calculation of the fluctuation in the microbial species abundance or (xik)s due 
to the symbiosis effect over the stable microbiome of the individual i for the microbial species k.  E) Total 
microbiome composition for the entire population (M). M is the combination of the stable microbiome plus 
the fluctuation due to the microbial species interaction. 

iii. Symbiosis or microbial interactions 

Symbiosis relationships are established in the simulation to consider that a part of the 

variability in M is due to the interaction among the microbial species. Users can model 

the interaction variance (𝜎𝑆
2) as a percentage of the environmental variance for the 

microbial species abundance (𝜎𝐸𝑚
2 ). Default is established as the 20% of 𝜎𝐸𝑚

2 . The types 

and subtypes of symbiosis relationships (Table 1) are based on Coyte and Rakoff-

Nahoum (2019) [25]. These are (I) positive interactions, which include commensal and 

cooperative interactions; and (II) negative interactions, which include competitive, 

exploitation, and ammensalism interactions. Users can define the percentage of each 

one. By default, these are set to 20% for each subtype of microbial interaction. Most of 

the symbiosis relationships were suggested to be negative interactions [25]. In this line, 

we considered 60% of negative interactions, and 40% of positive interactions with this 

percentage assignment. The interaction is modelled as 0 (neutral interaction), 1 (positive 

interaction), and -1 (negative interaction). In this way, a symbiosis matrix with s x k 

interactions was constructed with the effect of the interaction between the species and k 

(Fig. 2C). The degree of the effect of all interactions for each microbial species k is 

randomly sampled from a gamma distribution, γ𝑘~Г(k=0.2, θ=5).  

Table 1. Types of symbiosis relationships among microbial species and 

their interaction effects when both species are in the individual. 

Type Subtype Effect 
  Species A Species B 
I. Positive    
 I. Commensalism 0 + 

 II. Cooperation + + 
II. Negative    
 I. Competitive − − 
 II. Exploitation + − 
 III. Ammensalism 0 − 
III. Neutral  0 0 

Symbols +, − and 0 indicate the effect of the interaction on the abundance of the species, being + 
when increases, − when decreases, and 0 when do not change (0) its abundance in the presence 
of the other species.  
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iv. Microbiome composition 

Microbial species abundance is treated as another quantitative trait, so their observed 

variability can be simplified as:  

𝝈𝒎
𝟐 = 𝝈𝒉𝒈

𝟐 + 𝝈𝒔
𝟐 + 𝝈𝑬𝒎

𝟐  (1) 

The abundance of each microbial species is computed independently and then, the 

symbiosis matrix is applied to take the microbial species interaction into account and 

generate a correlation between the microbial species. Therefore, we consider that each 

microbial species has a stable abundance determined by the host genome and the 

environmental effects. Therefore, the stable microbial species abundance is computed 

following the Pérez-Enciso et al. (2021) [24]: 

(𝑥𝑖𝑘)0 = µ𝑘 +∑𝑧𝑖𝑗𝛽𝑗𝑘

𝐽

𝑗=1

+ 𝑒𝑖𝑘 (2) 

where (𝑥𝑖𝑘)0 is the stable abundance of the specie 𝑘 in the individual 𝑖; µ𝑘 is the average 

abundance of the specie 𝑘 in the base population; ∑ 𝑧𝑖𝑗𝛽𝑗𝑘
𝑛
𝑗=1  is the genetic value (𝑔𝑣𝑖𝑘) 

of individual 𝑖 for the abundance of specie 𝑘, where 𝑧𝑖𝑗 is the genotype of SNP 𝑗 for 

individual 𝑖 coded as 0, 1 or 2 according to the reference allele, and 𝛽𝑗𝑘 being the 

substitution allele effect of SNP 𝑗 for the abundance of the species 𝑘; and 𝑒𝑖𝑘 is the 

residual of individual 𝑖 for the species 𝑘 distributed as N(0, 𝜎𝑒𝑘
2 ), where 𝜎𝑒𝑘

2  is residual 

variance for the species 𝑘. The 𝑔𝑣𝑖𝑘 were distributed with mean 0 and variance 𝜎ℎ𝑔
2

𝑘
. 

All stable microbial species abundance for the entire population is computed before 

applying the symbiosis matrix. The aim of the symbiosis matrix is to model a fluctuation 

in the microbiome composition due to the abundance observed in the stable microbiome 

for each microbial specie. This fluctuation in the stable microbial species abundance is 

computed as:  

(𝑥𝑖𝑘)𝑠 = ∑(𝑥𝑖)0 ∙ γ𝑘

𝐾

𝑘=1

 (3) 

where (𝑥𝑖𝑘)𝑠 is the abundance due to the microbial species interactions of specie k in the 

individual i, (𝑥𝑖)0 is the stable abundance in the individual 𝑖 (Eq. 2), and γ𝑘 is all the 

interaction effects for the species k. The (𝑥𝑖𝑘)𝑠 is distributed with mean 0 and variance 
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𝜎𝑠
2
𝑘

. Finally, the total microbiome composition is computed as the sum of the stable 

microbial species abundance plus the fluctuation over this one: 

𝑥𝑖𝑘 = (𝑥𝑖𝑘)0 +(𝑥𝑖𝑘)𝑠 (4) 

3.3. PHENOTYPE SIMULATION  

The phenotype is simulated as: 

𝑦𝑖 = µ𝑃 +∑𝑧𝑖𝑗𝛼𝑗

𝑛

𝑗=1

+∑𝑥𝑖𝑘𝜔𝑘

𝑚

𝑘=1

+ 𝑒𝑖 (5) 

where 𝑦𝑖 is the phenotype of individual 𝑖; µ𝑃 is the phenotypic mean in the base 

population; ∑ 𝑧𝑖𝑗𝛼𝑗
𝑛
𝑗=1  is the genetic value of individual 𝑖 (𝑔𝑣𝑖) , where 𝑧𝑖𝑗 is the genotype 

of individual 𝑖 for the SNP 𝑗 code as 0,1 or 2 according to the reference allele, and 𝛼𝑗 is 

the allele substitution effect of the SNP 𝑗; ∑ 𝑥𝑖𝑘𝜔𝑘
𝑚
𝑘=1  is the microbiome value of 

individual 𝑖 (𝑚𝑣𝑖), where𝑥𝑖𝑘 is the abundance of species 𝑘 in individual 𝑖 (see equation 

4) and 𝜔𝑘 is the effect of species 𝑘 on the host phenotype; and 𝑒𝑖 is the residual of 

individual i distributed as N(0, 𝜎𝑒
2), and 𝜎𝑒

2 is the residual variance. The contribution of 

both genome and microbiome on the phenotype is modelled using the established values 

for the heritability (h2) and microbiability (m2) to determine the genetic (𝜎𝑔
2) and 

microbiome variance (𝜎𝑚
2 ). By default, h2 and m2 are set to 0.15. The individual’s 𝑔𝑣 are 

Normally distributed with mean 0 and variance 𝜎𝑔
2

 and the 𝑔𝑣 with mean 0 and variance 

𝜎𝑚
2 . Furthermore, users can establish the number of microbial species with 𝜔𝑘, that is the 

effect of the microbial species on the phenotype. This effect follows a gamma distribution 

𝜔𝑘~Г(k=0.2, θ=5). 

3.4. INHERITANCE 

The simulator allows to implement a selection process base on the phenotype for one-

way or for divergent selection. Mating and genome inheritance are simulated using the 

AlphaSimR package [23]. In the base population, the breeding females will be those 

individuals with the highest phenotypic performance. Breeding males will be full sibs of 

the best breeding females. Users can determine the number of breeding males and 

females. The default is set to 125 females and 25 males. Each breeding male is mated with 

the number of breeding females that the user defines (Default 5 females per male), 

avoiding a close relationship among them. In the following generations, the breeding 

females are selected as in the base population, and the breeding males will be males from 

the offspring of the best female for each sire (best mating). Users can define the number 



 

136 
 

of generations and the number of offspring per litter. By default, we set the number of 

generations to 13 and the litter size to 8.  

Microbiome inheritance is modelled based on the relative abundance (RA) of each 

microbial species for the breeding females and the environmental microbiome. Breeding 

males do not contribute to the microbiome composition of the offspring under this 

assumption that is the common management in livestock system [13]. Offspring will 

inherit a percentage of the PM from their mother and another percentage from the EM. 

The microbial species that will be sampled from the PM and the EM will be determined 

by the RA of each specie. The RAs are used as a probability to random sample the 

microbial species from each microbiome source (PM or EM). The users can establish the 

percentage of species that we can sample from the PM and the EM. By default, we define 

that offspring would inherit 80% of the microbial species from the mother or PM and 

20% from the EM. These percentages determine the number of microbial species present 

in each offspring that would grow according to equations 1 and 3.     

3.5. PARAMETER ESTIMATIONS 

The estimation of the h2 and m2 was performed to check the smooth running of the tool. 

Estimations were calculated using the genotype and the microbiome from the base 

population. The genotype included 200K SNPs and the microbiome all those microbial 

species present in at least one individual. Bayes B and Bayes C models were used to 

estimate the parameters using the R packages BGLR (CITA) and the Equation 5. We set 

the number of iterations to 10,500, the burn-in to 2500, and the lag to 5 (Default) for 

both methods. In the Bayes B model, we used the default parameters from BGLR 

package. In Bayes C model, we used as prior π for the probability of SNPs and microbial 

species being included in the model with effect and variance of the probability simulated. 

Thus, for SNPs π~Beta (p0 = 5, π0 = 0.02) and for microbial species π~Beta (p0 = 5, π0 = 

0.035). We used the proposal from Pérez-Enciso et al. (2021) [26] to estimate the h2 and 

the m2. Estimates were calculated 50 times with each methodology.  

4. RESULTS 

Application of the simulation tool in a divergent selection process 

The tool allowed to successfully simulate a divergent selection process considering 

different scenarios in which heritability (h2), microbiability (m2) and microbial 

interaction (ℎ𝑚
2 ) can be modelled. Default values were used in this example. A clear 

divergent trend was observed for all the scenarios simulated with and without microbial 

interaction [Additional file 1]. The total number of microbial species shaping the 
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phenotype was 35. From them, a total of 22 microbial species were assigned to be a 

positive contribution and 13 a negative effect (Fig. 3). Of the 22 with a positive effect, 15 

showed microbial heritability while only six of the 13 with a negative effect were 

influenced by the genotype. Lower fitness values were observed for 4 microbial species 

with a positive effect on the phenotype higher than 10 (Fig. 3). These four microbial 

species were influenced by the host genome. Any microbial species with a low fitness (a 

coefficient of variation higher than 0.25) and a high negative effect on the phenotype was 

found (Fig 3).  

 

Figure 3. Microbial species effect on the phenotype (𝝎𝒌). The graph represents the effect of each 
microbial species on the individual phenotype with respect to the fitness of each one. Fitness is the base 10 
logarithm of the inverse of the coefficient of variation assigned to each microbial specie. Triangle is microbial 
species affected by the host genome (with microbial heritability; beta: ꞵ) while dot is microbial species not 
affected by it. Colours are the mean for the relative abundance (RA) of each microbial species in the parental 
microbiome (PM), meaning a low abundance of the light blue colour and a high abundance of the red colour. 
The red rectangle is the section of values with an effect higher than ten (in absolute values) and a coefficient 
of variation higher than 0.5 (Fitness of 0.3) and the yellow rectangle is the section with a coefficient of 
variation between 0.5 and 0.25 (fitness of 0.6). 

Microbiome abundance was considered as another quantitative trait following Pérez-

Enciso et al. (2021) [24] but with some modifications (Eq. 4). This assumption allowed 

to simulate in a simpler way the microbial species abundance in each individual with or 

without a symbiosis effect (Table 1; Eq. 3). Furthermore, we used the relative abundance 

of each microbial species from the mother and a shared environment as the probability 

of being acquired by the offspring. The establishment of each microbial species in the 

offspring was determined by their microbial fitness which is constant throughout the 

simulation process. That means that the microbiome trends observed across the 

selection process [Additional file 1] are a response to the selection based on the 

phenotype by effective implementation of the microbiome inheritance. Furthermore, the 

estimation of the h2 and m2 were calculated at the base population 50 times using Bayes 
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B and Bayes C models (Fig. 4). Bayes C method was most precise in estimating the h2 and 

m2 because variable π was set to the exact number of QTLs and microbial species 

affecting the phenotype. In the G scenario, with Bayes B the mean of the estimations of 

h2 was 0.19 and 0.03 for m2 while with the Bayes C model was 0.17 for h2 and 0.01 for m2 

(Fig. 4). In the M scenario, with Bayes B the h2 was 0.08 and the m2 was 0.18 while with 

Bayes C the h2 was 0.03 and the m2 was 0.14 (Fig. 4). The other scenarios all of them 

showed a mean of the estimations of 0.19 for h2 and 0.18 for m2 with Bayes B and 0.16 

for h2 and 0.14 for m2 with Bayes C (Fig. 4). All estimates were quite close to the value set 

by default in the simulation that was 0.15 for both (Fig. a). That means that the developed 

R code was working properly with the parameters established. 

 

Figure 4. Boxplot of the estimates of h2 and m2 using Bayes B and Bayes C methods. The base 
population was simulated 50 times to obtain repeated estimations for each parameter. The microbiome was 
computed considering the symbiosis effect. Boxplots for h2 values are in blue while boxplots for m2 values 
are in red. The black horizontal line represented the simulated value for the h2 and m2. Bayes C and Bayes B 
models are represented with stripes or not in the boxplot, respectively. Background colours represented each 
scenario simulated, being G (grey): genome scenario; M (dark blue) the microbiome scenario; NMH (light 
blue): non microbial heritability; LMH (green); low microbial heritability; MMH (yellow): medium microbial 
heritability; and HMH (red): high microbial heritability.  

Microbiome shaped in a different degree the phenotype depending on the 

selection performed 

The trend of the phenotypic value [Additional 1] showed differences depending on the 

selection performed, i.e., to decrease or increase the trait performance (Fig.5). For the 

divergent line selected for decreasing the phenotypic value (Fig. 5A), the low line, the 

microbiome effect allowed to improve the phenotypic selection response, with a 

difference of 1.3 points in the mean between the G and M scenarios (without considering 

the symbiosis effect) (Fig. 5A). We simulated the phenotype of litter size in rabbit, so this 

1.3 point meaning 1.3 kids more in the M scenario than in G scenario. For the divergent 
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line selected for increasing the phenotypic value (Fig. 5B), the high line, the G scenario 

overcame the M scenario (Fig. 5B) with a difference in mean of 1.1 kids. In the high line, 

when the microbiome is computed the phenotypic response was lower than when the 

genome was considered (Fig. 5B). Moreover, when microbial heritability was considered 

in the simulation, the phenotypic response increased with respect to the G and M 

scenario (G) for the high line (Fig. 5B). In general, the phenotypic response in the last 

generation observed in the low line was greater than in the high line since the differences 

in the phenotypic mean respect the base population was higher in this population (Fig. 

5).  

 

Figure 5. Boxplots of the phenotypic values on the last generation for all scenarios simulated. 
The values are the changes in the mean of the phenotypic values with respect to the base population after 13 
generations of selection. The values were obtained after 100 simulations of each scenario.  A) Absolute 
phenotypic values observed in the divergent line selected for decreasing the trait (Low line). Absolute values 
were computed in the low line to observe selection response in the same scale. B) Phenotypic values observed 
in the divergent line selected for increasing the trait (High line). Each colour represents a simulated scenario, 
being G: only genome effect on the phenotype (grey); M: only microbiome effect on the phenotype (Blue 
dark) and NMH (light blue), LMH (green), MMH (yellow), and HMH (red) are different scenarios with both 
the effect of the microbiome and the genome on the phenotype. Differences between these scenarios lay in 
the degree of the microbial heritability simulated, NMH: the scenario without microbial heritability; LMH; 
the scenario with a low microbial heritability; MMH; the scenario with medium microbial heritability; and 
HMH: the scenario with high microbial heritability. Interactions are indicated with stripes in the boxplot.   

Differences in the phenotypic trends between the lines depend on the genetic and 

microbiome response observed in each one. The microbiome response was higher than 

the genetic response for the low line (Fig. 6A) while these responses were opposite in the 

high line (Fig 6B). That explains why the G scenario obtained higher phenotypic values 

than the M scenario at the last generation for the high line (Fig. 5B). The highest mean 

for the genetic value was 3.52 in the low line and 2.47 in the high line for the G scenario. 

The highest microbiome values were observed in the M scenario with interaction (6.25) 
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for the low line (Fig. 6A) and in the HMH scenario without interaction (1.85) for the high 

line (Fig. 6B). On the other hand, the low line showed an increase in the microbiome 

values and a decreasing in the genetic values when the symbiosis effect was modelled. In 

the high line, no differences were observed for the genetic values when the symbiosis was 

considered. However, for scenarios with both the G and M effects, the high line showed 

greater microbiome values at the last generation as the microbial heritability increased, 

when no microbial interaction was modelled. No differences in the microbiome values 

were observed for these scenarios when the symbiosis effect was considered. 

 

Figure 6. Boxplots of the genetic and microbiome value on the last generation for all 
scenarios simulated. The values were obtained after 100 simulations of each scenario. A) Absolute values 
observed in the divergent line selected for decreasing the trait (Low line). Absolute values were computed in 
the low line to observe the selection response on the same scale. B) Values observed in the divergent line 
selected for increasing the trait (High line). The genetic values are in blue, and the microbiome value is in 
red.   Background colours represented each scenario simulated, being G (grey): genome scenario; M (dark 
blue) the microbiome scenario; NMH (light blue): non microbial heritability; LMH (green); low microbial 
heritability; MMH (yellow): medium microbial heritability; and HMH (red): high microbial heritability.  

Symbiosis enhanced the selection response 

Differences were observed in the scenarios when the interaction is modelled (Fig 5-6). 

Scenarios that included the microbial species interactions showed higher differences in 

their phenotypic values in the last generation with respect to the base population (Fig. 

5).  For the low line, a difference in the mean of the phenotypic values of one kid is 

observed between the M scenario with and without microbial interaction (Fig. 5A). When 

both, genome and microbiome influenced the phenotype, subtle differences were 

observed with the inclusion of the microbial interaction effect. Furthermore, no 

differences dependently of the microbial heritability were observed (Fig. 5A). A different 

effect of the symbiosis on the response to selection was observed in the high line (Fig. 
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5B). Dissimilarities in the phenotypic value with or without interaction was decreasing 

at the time that the microbial heritability increase for this line (Fig. 5B).  Scenario with 

symbiosis showed higher phenotypic values until a strong microbial heritability was 

modelled (Fig 5B; HMH scenario), being 0.5 higher the HMH without symbiosis than 

with symbiosis in the high line.   

5. DISCUSSION 

In a traditional framework, the variability of the phenotype observed were assumed to 

be a consequence of the individual genome and the environment [27]. However, the 

microbiome can also shape phenotypes [1-4]. Thus, the coevolution between the 

microbiome and individual genome allows the adaptation and evolution of species [1-3], 

being of interest to animals and plant breeders. However, the microbiome is composed 

by living organisms influenced by a multitude of factors so deciphering it is still a 

challenge [28]. Complications of the microbiome and genome coevolution lie in the 

microbiome inheritance because it depends on the colonization of the microbial species 

in the new host [14-15,18, 29-31]. In this tool, we suggested a successful microbiome 

inheritance based on splitting the colonization into two actions: (i) the acquisition of 

microbial species and (ii) the establishment of these ones in the offspring. The (i) was 

modelled considering the relative abundance of the microbial species from the mother 

and a simulated constant environment as the probability of random sampling to the 

offspring. In our example, we considered that the mother does the major contribution to 

the microbiome of the offspring. However, it seemed that the mother only contributes to 

a few microbial species in the adult individual and that the microbiome composition is 

highly influenced by the diet and the housing environment [17-18]. The user can change 

the degree of acquisition of microbial species from the environment and the mother to 

explore these scenarios and observe their effects on the selection response.  

The establishment of the mature microbiota depends on the education of the host 

immunity [32]. Then, (ii) was developed and assigned a fitness value to each microbial 

species that is a coefficient of variation to modulate their ability to survive in the new 

individual due to their own genes. For that, we used the approach suggested by Pérez-

Enciso et al. (2021) [24] were each microbial species were considered another 

quantitative trait (Eq. 1). Moreover, we determine that some part of the abundance of the 

microbial species is influenced by the host genome [22] and the community of bacteria 

present in the host [25,33]. Microbial heritability and symbiosis effect were considered 

key factors to determine the final abundance of the microbiome (Fig. 2). Fitness was 

constant across all the simulations as well as the symbiosis effect. That means that the 

observed microbiome trend [Additional file 1] is a response to the selection based on the 
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phenotype. Hence, assumptions made in this simulation tool to model the microbiome 

inheritance showed promising results, considering both the contribution of a parental 

and environmental microbiome.  

An asymmetry response was observed for the phenotypic, genetic, and microbiome 

values (Fig 5-6) in the divergent selection carried out. The G and M scenario showed that 

the selection response is more favourable to decrease than increase the trait (Fig 5). In 

the G scenario, the phenotypic response was higher in the low line (Fig 5.) suggesting 

that the effect of the QTLs was more favourable for decreasing the phenotype than for 

increasing it. For, the M scenario, the same trend was observed although the number of 

microbial species affecting positively the trait (22) was higher than those affecting 

negatively (13). This could be a consequence of the high fitness of the microbial species 

with a high negative effect on the phenotype (Fig. 3). Fitness is a variable that represents 

the stability for the growth of the microbial species, i.e., the fluctuation of their 

abundance from the mean. There are four microbial species with a high positive effect 

showing also low fitness values. This means that these microbial species showed high 

fluctuations from their mean abundance. So, the abundance distribution of these 

microbial species is highly variable, which could increase the noise in the individual 

phenotype avoiding selecting the best reproductive animals and decreasing the selection 

response. Hence, the number of stable microbial species seems to be more important 

than the number of species affecting the trait. This is supported by the low phenotypic 

value observed in the M scenario respected to the G scenario (Fig. 5B) which is in line 

with the challenge to select the best breeding animals when highly noisy microbial 

species are. influencing the trait. We also observed that with the inclusion of the 

symbiosis effect, the noise associated to the microbiome is reduced and the selection 

response is increased (Fig. 5) since the fluctuation of the abundance value of low fitness 

microbial species is also reduced (Fig. 5B). Furthermore, the negative effect of the fitness 

on the selection response seemed to be reduced by the microbial heritability (the host 

genome). In the high line which was more affected by fitness, higher phenotypic (Fig. 5B) 

and microbiome values (Fig. 6B) were observed when the microbial heritability 

increased.  The four microbial species with low fitness were influenced by the host 

genome (Fig. 3) meaning that this component is key to reducing and controlling the 

microbiome fluctuations. Along the same line, symbiosis allowed to obtain better 

phenotypic values since part of the environmental variance is associated with the 

community of microbial species in the individual. Then, microbial species fitness, 

microbial heritability, and symbiosis must be carefully considered in the construction of 

strategies to properly improve the selection response using the microbiome information.  



 ___________________________________________________________ simuGMsel 

143 
 

6. CONCLUSION 

This is the first simulation tool to model the coevolution of the genome and the 

microbiome in a selection process based on the phenotype. The key to this tool is the 

implementation of microbiome inheritance. It is constructed in R and based on 

AlphaSimR so different scenarios could be implemented by the user. We performed a 

first approximation, showing as the selection based on the phenotype is successful and 

generated phenotypic, genetic, and microbiome responses. The results obtained 

highlight the importance of microbial heritability, symbiosis, and microbial species 

fitness as key actors to obtain a proper selection response of traits.  Further updates will 

be implemented in this tool for performing genomic or microbiome selection to decipher 

their effect on the phenotypic response of key traits. 
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9. ADDITIONAL FILES 

Additional file 1 

Selection trends with and without microbial interactions for all scenarios 
throughout 13 generations of divergent selection. A) and B) are the phenotypic 
trends for each scenario under the assumption of microbial interaction (B) or not (A). C) 
and D) are the genotypic trends with (D) and without (C) microbial interactions. E) and 
F) are the microbiome trends with (F) and without (E) interactions. Trends are plotted 
as the confidence interval of the values for 100 simulations of the divergent selection 
process for each scenario. Each line represents the mean for the values of each scenario 
for the high or low divergent population. Each colour represents a simulated scenario, G: 
only genome effect on the phenotype (grey); M: only microbiome effect on the phenotype 
(Blue dark) and NMH, LMH, MMH, and HMH are different scenarios with both the 
effect of the microbiome and the genome in the phenotype. Differences between these 
scenarios lie in the degree of microbial heritability simulated, being NMH: the scenario 
without microbial heritability; LMH; the scenario with a low microbial heritability; 
MMH; the scenario with medium microbial heritability; and HMH: the scenario with 

high microbial heritability. 
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CHAPTER 8: GENERAL DISCUSSION 

1. INTRODUCTION 

The residual variance of traits, referred in this project as VE, is under genetic control. 

That means that some of the dissimilarities among individuals observed in the VE result 

from a genetic variation in response to microenvironmental factors [1-2]. Response to 

selection for VE was observed in divergent selection experiments [3-5]. A low VE was 

positively correlated with productive traits such as birth weight [6-7] and milk daily yield 

[8] and negatively correlated with health traits [9-12] and animal resilience [10-11]. 

Moreover, the inclusion of VE as a breeding goal could homogenize production on farms 

by its reduction. VE is a promising trait to improve animal resilience and welfare [10-13] 

to reach a more sustainable livestock system. This thesis used animals from a divergent 

selection experiment for high and low VE of litter size (LS) carried out in the University 

of Miguel Hernández in Elche. They showed an outstanding genetic response to the 

selection for VE of LS [3] as well as differences in their resilience potential [10], being an 

exceptional biological material to study animal resilience through the VE. Thus, this 

thesis aimed to investigate the molecular basics of these rabbit populations to gain 

insight into the biological mechanisms of animal resilience. This thesis focused on 

studying the genome (Chapter 3 and 4) and the gut microbiome (Chapter 5 and 6) 

because both are important to shape phenotypes. Moreover, selection could act in both 

the genome and the microbiome allowing their coevolution. To study that, we developed 

a tool for simulating the host-genome and microbiome evolution throughout a 

phenotypic selection process (Chapter 7). 

2. IDENTIFICATION OF CANDIDATE GENES FOR THE VE 

In Chapter 3, GWAS was performed to identify candidate genes that could influence the 

VE and animal resilience. Two methodologies were implemented because SNPs or 

variants' size effect strongly depends on the model used [14]. We used single marker 

regression (SMR) and Bayesian multiple marker regression (BMMR) to perform the 

GWAS. The combination of both methodologies allowed us to obtain more reliable 

genomic regions associated with the VE. The principal problem of SMR is the 

overestimation of the SNP effect because it fits one SNP in each model, considering all 

SNPs independently among them [15]. Moreover, there is no consensus on the threshold 

for controlling the number of false positives and negatives to correct the multiple testing 

performed by SMR. Thus, using another methodology could help to detect the true SNP 

associated with the trait. The BMMR methodologies also have limitations because they 

depend on the genomic architecture assumption [14]. For instance, we used Bayes B to 
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perform the BMMR analysis, considering that approximately only 100 SNPs influenced 

the VE. Other methodologies allow estimating the number of SNPs affecting the trait to 

avoid making assumptions (i.e., Bayes Cpi). However, our sample size (367 animals) was 

insufficient to implement them.   

We detected four genomic regions in the Oryctolagus cuniculus chromosome (OCU) 3, 

7, 10, and 14, which only explained the 8.6% of the total genetic variance for the VE. That’s 

a common problem in GWAS studies for most complex traits because there are a vast 

number of variants with small effect sizes [16-18]. Thus, the genetic variance explained 

for each variant is rather small, making their identification difficult. Proper sample size 

and SNP density and distribution are necessary to correctly estimate the SNP effect and 

obtain adequate statistical power to detect most of the QTLs. Likewise, VE has a low to 

moderate heritability (0 to 0.21) and its estimation depends on the animal species, the 

trait and the methodology used to calculate it [19-20]. In our rabbit population, the 

heritability estimation was from 0.05 to 0.11 (0.08 on average). Thus, there is a lot of 

noise due to environmental variability, which complicates the estimation of the SNP 

effect on the population. Inappropriate estimation of the SNP effect hinders the 

identification of the causal variants. For that, in Chapter 4 we tried to map most of the 

QTLs for the VE without calculating the effect size of SNPs. We used methodologies for 

identifying signatures of selection (SS) regardless the phenotype. SS allows using 

animals without phenotypic records. We used the same animals from the GWAS (from 

the base population and generation 11) and another 93 animals from generation 13 

(without phenotype) to validate the results.  

SS methodologies try to identify a disruption in the patterns of the inheritance of neutral 

alleles, which will indicate genomic regions harbouring causal variants under selection 

[21]. Low correlations among statistics were reported by Ma et al. (2015) [22], González-

Rodríguez et al. (2016) [23], and Sosa-Madrid et al. (2020) [24]. Thus, we used intra- 

and inter-population analyses to explore most of the possible patterns generated by 

selection. We searched for the reduction in the local variability (Runs of homozygosity; 

ROH), variation in the linkage disequilibrium between populations (varLD), and 

differences in the allele frequencies between populations (FST). The combination of 

multiple methodologies with different assumptions was proposed to detect most SS [21, 

25]. Thanks to this study (Chapter 4), we identified another 134 genomic regions under 

selection pressure for VE of LS. These regions were validated on the animals from 

generation 13. An overlapping between these genomic regions and those identified by the 

GWAS (Chapter 3) was expected. However, no overlapping regions were identified. That 

could be due to the restrictive threshold used to determine true signatures of selection 
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(above or equal to the weighted FST value at percentile 99.9). With a modification of the 

threshold for the weighted FST values, we identified the genomic region on OCU3 (51-

51.75Mb) as SS (Chapter 4) which was previously found in the GWAS (Chapter 3). For 

that, we considered a 98 percentile instead of the 99.9 percentile for the weighted FST 

values. Only a few studies showed overlapping results among GWAS and SS [24, 26-29]. 

That may be because these studies used high heritable traits (intramuscular fat) [24, 27] 

or a large selection process (40 generations) [28-29]. Hence, the overlapping region on 

OCU3 (Chapter 3 and Chapter 4) could indicate that it is a segregating region relevant 

to the VE.  

All genomic region identified in Chapter 3 and Chapter 4 was considered genomic 

regions with candidate genes for the VE because each methodology used different 

assumptions and algorithms, limiting the identification of QTLs for VE. However, GWAS 

and SS methodologies do not allow the identification of causal variants due to the large 

LD generated by selection and the low effective population size in livestock populations 

[30-31]. Moreover, causal variants are not usually included in the SNP chips. For all that, 

both studies were complemented with a whole genome sequencing (WGS) analysis to 

discover the functional mutation in the genomic regions identified for the VE. DNA pools 

with 27 males for each rabbit population were used to compare the whole genome and 

identify functional mutations in the transcription unit of the genes (UTR region, exon, 

and splicing site). These animals were all the sires from animals of generation 11 (used 

in GWAS and SS), so most of the genetic information of the population was sequenced. 

DNA pools give reliable estimates of the allele frequencies, although they confound low 

frequent variants with sequencing errors [32]. This complicates accurately identifying 

rare variants. However, it is a good approximation to search for the most critical 

functional variants at a more affordable price. 

We expected that the candidate genes were involved in pathways related to the immune 

system since other GWAS for VE suggested this (see the review of Iung et al., 2020 [20]). 

Moreover, Argente et al. (2019) [10] showed that the rabbit lines used in this study 

showed differences in their resilience potential, as well as in inflammatory biomarkers 

such as CRP, measured after the stressful condition of the parity [33]. These results 

suggested a link between VE and animal resilience through the immune system. The 

immune system is essential to perceive and respond to environmental disturbances for 

modulating animal resilience [34-35]. The proposed candidate genes identified in 

Chapter 3 and Chapter 4 were related to important biological processes for animal 

resilience; the immune response (DOCK2, HDAC9, ITGB8, HUNK), stress response 

(ENSOCUG00000021276, MC2R), development of sensory structures (FOXI1, FGF18, 
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ECA1C), behaviour (FBXL20) and nervous system (MC2R, SLC18A1, FBXL20). Genes 

from the family of the heat-shock protein (HSP) were identified for the VE by Sell-Kubiak 

et al. (2015) [36] in pigs, Iung et al. (2018) [37] in cattle, and Morgante et al. (2015) [38] 

in Drosophila Melanogaster. In Chapter 3, we identified the HDAC9 gene that can 

control the expression of genes from the HSP family such as HSP70 [39], in line with 

these previous GWAS results for VE. Then, it seems that independently of the resilience 

indicator used, the HSP protein is critical to control the VE. HSP is related to the response 

to heat stress by boosting the immune response and countering cell damage [40-42], so 

it could be critical for modulating animal resilience. Furthermore, in Chapter 4, we found 

the GATA3, FKBP10, KAT2A, CYP1B1, BRCA1, PGM3, and ACE genes with pleiotropic 

function in the immune response, lipid and carbohydrates metabolism, and reproduction 

and embryo development. These genes are functional mutations whose alleles are fixed 

in these rabbit populations. Their pleiotropic functions could explain the differences 

between the rabbit populations generated by the VE selection for immunological 

biomarkers [33], litter size [3, 43], reproductive traits [43-44], triglycerides and 

cholesterol plasma levels and animal resilience [10]. 

DOCK2, INSYN2B, and FOXI1 are the only genes with functional mutation harboured in 

the genomic regions identified in both Chapter 3 and Chapter 4 (with a less restrictive 

threshold for FST values). DOCK2 is important for developing the inflammatory response 

[45] since its expressed in most hematopoietic cells such as monocytes, macrophages, 

and lymphocytes [46-47]. The functional mutation identified by WGS was found in the 

3’UTR, the splicing site, and on an exon that could greatly impact the gen's functionality. 

The alternative allele is absent in the resilient population and is segregating in the non-

resilient population. These results may indicate differences in the expression and 

functionality of the DOCK2 gene. The FOXI1 gene was identified as relevant to develop 

sensory structures such as the inner ear [48]. We did not find much information about 

the INSYN2B gene in the literature. However, it seemed that its paralog, the INSYN2A 

gene, is important to modulate a correct nervous system (GeneCards [49]), so it could 

develop a similar function. These genes are functional mutations on the 3’UTR (FOXI1) 

and the 5’UTR (INSYN2B), which could affect the stability and expression of their 

mRNA. Functions of all these three genes are related to the biological mechanisms which 

may influence animal resilience: immune system, sensory perception, and nervous 

system. Further studies are necessary to know their real implications in modulating 

animal resilience. There are the most reliable genes found in this study because they were 

identified as associated with the VE (Chapter 3) and with differences in their allele 

frequency (Chapter 4; FST value) between the rabbit populations. 
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Another important gene identified in this study (Chapter 3) was the gen 

ENSOCUG00000021276, an orthologue to the human MRAP (melanocortin receptor). 

The MRAP gene can modulate the expression and function of the MC2R gene [50-51] 

found with signatures of positive selection in Chapter 4. MRAP forms a complex with 

MC2R to respond to the adrenocorticotropin hormone or ACTH [50] for stimulating 

cortisol production, a biomarker of the stress response [52]. Different levels of cortisol 

were shown in the rabbit populations [10], which is in line with the function of the 

MRAP/MC2R complex. The genes found in Chapter 3 and Chapter 4 were not previously 

identified for VE or animal resilience. However, genes with similar functions were 

recently identified in studies for heat stress in cattle [53], pig [54] and sheep [55], and 

disease resilience in pigs [56-57]. Further studies are necessary to really know their 

implications on the control of the immune and stress response and therefore modulate 

animal resilience.  

3. DISSIMILARITIES IN THE MICROBIOME 

COMPOSITION 

The results from Chapter 5 and Chapter 6 showed that the selection for VE modified the 

microbiome composition between the rabbit populations. We expected differences in 

alpha- and beta-diversity between the rabbit lines. However, we observed that the 

microbiome composition was generally the same for both lines, as alpha- and beta-

diversity did not show relevant differences in diversity and richness (Chapter 5). High 

microbial diversity is related to a healthy and resilient gut because it allows individuals 

to cope better with gut disturbances [58-59]. However, there is functional redundancy 

among microbial species [60-62]. The relevance lies in the functionality (genes) of the 

microbiome instead of the microbial species itself because its function is most conserved 

[63]. Unrelated taxa can have a similar subset of genes, and the acquisition and 

colonization of each one depends on a huge number of factors [64-65]. Selection will act 

on the microbial species genes, selecting functionality that affects the phenotype. Indeed, 

the acquisition of microbial species with healthy properties should be most important 

than the diversity because they can directly control the growth of harmful bacteria [66]. 

This implies bacterial cell communications to determine microbial interactions.  

Differences in bacterial cell communication can be supported by differences in the 

abundance of genes related to quorum sensing and ABC transporters (Chapter 5). Both 

are important to develop proper bacterial cell communication to control gene expression 

and pathogenesis [67-68]. Moreover, these genes are important to the development of 

biofilms. A biofilm is a community of associated bacteria assembled in a matrix and 
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adhered to a surface [69-70]. The formation of biofilms allows the optimization and 

coordination of activities and functions [69-70]. The simulation developed in Chapter 7 

showed that microbial interactions are critical in shaping phenotypes and controlling the 

microbiome composition. Moreover, we showed that the phenotypic selection response 

was the greatest with the inclusion of microbial interaction in the model (Chapter 7). This 

could explain the outstanding selection response observed in these rabbit lines [3]. On 

the other hand, biofilms are a source of bacteria to protect against high-stress levels [71]. 

Selection for VE generated differences in the susceptibility to stress between the rabbit 

populations [10, 33], which could be influenced by microbial interactions. A proper 

understanding of microbial interaction is needed to accurately determine the overall 

effect of the microbiome on the phenotype. The results from Chapter 6 and Chapter 7 

suggested that microbial interactions are important to modulate the VE and animal 

resilience and boost the phenotypic selection response.  

Diet [72] and housing environment [73] are major factors in determining the gut 

microbiome. These two factors were the same for both rabbit populations, so microbial 

species acquisition should have been the same through the selection process. Moreover, 

they belonged to the same base population. The differences found in the microbiome 

composition could be explained by (i) an influence of the host genome on the 

colonization and persistence of some microbial species or by (ii) the selection of those 

species with effect on the VE. Chapter 7 shows a good tool for studying the implications 

of the microbiome composition in the phenotype. We observed that the strength of the 

trends for the microbiome value was influenced by the microbial species heritability. 

Microbial heritability seemed critical for microbial species with high variability or low 

fitness values (Chapter 7). Microbial heritability may be important to maintain the 

stability of the microbiome by reducing their abundance fluctuations among individuals. 

Hence, increasing the microbiome stability may allow reducing the environmental noise 

to select the breeding animals and thus increasing the selection response (Chapter 7). 

However, the microbiome strongly also depends on the relationship or symbiosis 

between the bacteria species.  

 i. Influence of the rabbit genome 

Searching for genes that could modify the microbiome composition, we found that 

DOCK2 and ACE genes could be involved. The DOCK2 gene located in the genomic 

region identified in Chapter 3 and Chapter 4 was suggested to modulate the microbiome 

composition and the susceptibility to pathogen infections like Citrobacter rodentium 

[74]. A reduction in the abundance of the genus Lactobacillus was found in the knockout 
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DOCK2 mice, indicating higher susceptibility to C. Rodentium. In our study, the genus 

Lactobacillus showed an increased abundance in the resilience line (low VE), supporting 

their low susceptibility to stress conditions. Lactobacillus could activate the Treg cells and 

control gut inflammation after pathogen infection [75]. The same applies to the ACE 

gene. This one produces the substrate (Angiotensin II) for its homologous ACE2 to 

produce Angiotensin I. Mutant mice for ACE2 showed different microbiome 

composition, which could be a consequence of the dysregulation of tryptophan 

homeostasis, affecting the gut integrity and immunity [76]. An incorrect substrate 

bioavailability for ACE2 generated by ACE action could influence the gut microbiota via 

the tryptophan metabolism. The findings in Chapter 6 support this result showing 

differences in the levels of metabolites from tryptophan metabolism between the rabbit 

populations. Hence, both DOCK2 and ACE could modulate the microbiome composition 

and consequently animal resilience. We suggested that the rabbit genome could be 

influencing the abundance of the microbial species in the gut. However, direct empirical 

analyses are needed to validate this hypothesis. Moreover, the implications of the other 

candidate genes in the gut microbiome composition must be studied. 

 ii. Microbial species affecting the VE 

Selection for VE could have modified the microbiome composition by selecting microbial 

species affecting the VE. We showed that animal resilience and VE are highly related to 

the immune system (Chapter 3 and Chapter 4) [10, 33], so we expected differences in 

beneficial and harmful bacteria between the rabbit populations, which could influence 

the health status of the animals, affecting their susceptibility to stress conditions. In 

chapter 5, we found in the resilient population an overrepresentation of beneficial 

bacteria belonging to the genus Rikenella, Lactobacillus, Alistipes, and Odoribacter, 

being the most representative species Alistipes prutedinis, Alistipes shahii, Odoribacter 

splanchnicus and Limosilactobacillus fermentum. Moreover, harmful species such as 

Acetatifactor muris and Eggerthella sp. were more abundant in non-resilience animals. 

Likewise, the study of the gut metabolome (Chapter 6) revealed gut-derived metabolites 

such as equol, 3-(4-hydroxyphenyl)lactate, 5-aminovalerate, N6-acetyllisine and serine, 

supporting the differences in the microbial species composition between the rabbit 

populations. The genus Lactobacillus seems to be a promising probiotic due to its 

beneficial properties for maintaining the gut epithelial barrier, modulating gut 

immunity, and controlling pathogen infections [75]. Likewise, a recent study suggested 

that this genus could also contribute to develop a protective mechanism to cope with heat 

stress [77]. Likewise, tryptophan metabolism has been related to the Lactobacillus genus 

[78], so we expected an overrepresentation of their metabolites in the resilient line. 
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However, in Chapter 6, we observed that the tryptophan metabolites indole, kynurenine, 

and anthranilate, showed a high abundance in the non-resilient population. The 

degradation of tryptophan to metabolites such as kynurenic acid and aryl indole seems 

important in mediating the inflammation process [78-79]. Elevated levels of kynurenine 

and anthranilate are found in individuals under stress and inflammation [80]. Rabbits 

were under high-stress conditions given they were slaughtered after their first parity. The 

overrepresentation of kynurenine and anthranilate in the non-resilient population could 

pinpoint a higher susceptibility to stress and inflammation in this non-resilient 

population. This is in line with the higher levels of CRP (an inflammation biomarker) 

found in this population [33], which could activate the tryptophan metabolism to counter 

its effects [78, 81-82]. Unexpectedly, the indole was found in low concentration in the 

resilient line (Table 1). This metabolite has protective functions in the gut as maintaining 

the intestinal barrier integrity and immune homeostasis to avoid dysbiosis during an 

inflammation response [83-84]. An in-depth study would be needed to understand the 

interplay of these metabolites derived from tryptophan on animal resilience. Moreover, 

the HDAC9 gene identified in Chapter 3, which could modulate the expression of HSP70 

and the functions of Treg cells, modulate the inflammation in the gut. Thus, functional 

mutation of this gene could increase the inflammation levels in the non-resilient line. 

This is also supported by the high levels of long-chain fatty acylcarnitines shown in non-

resilient animals, biomarkers of inflammation in the gut [85]. 

We identified other derived metabolites from the aromatic amino acid (AAA) metabolism 

(phenylalanine, tyrosine, and tryptophan). This is consistent with the dissimilarities in 

AAA biosynthesis genes (chorismite mutase and lyase) found in Chapter 5. Results from 

Chapter 5 and Chapter 6 highlighted the importance of this pathway to the VE. However, 

the implications of AAAs metabolism remain unclear because these depend on the active 

metabolites, which determine the beneficial or harmful effect for the host [86]. 

Moreover, gut-derived metabolites could not act directly in the gut but in other organs 

and tissues, inducing crosstalk with the host. For instance, the 3-(4-

hydroxyphenyl)lactate, an end-product of tyrosine metabolism, is a biomarker of liver 

disease [87] and was overrepresented in the non-resilient line. This could suggest that 

gut-derived metabolites in the resilience animal could affect liver functions. This is 

supported by the differences between these rabbit lines in plasma cholesterol and 

triglyceride levels found by Argente et al. (2019) [10]. Likewise, overlapping results from 

Chapter 5 and Chapter 6 were found for the synthesis of formiminoglutamate as 

differences in its enzyme, the glutamate formiminotransferase, were found among the 

rabbit populations. This could also suggest the importance of histidine degradation and 

the synthesis of L-GLutamate for VE and animal resilience. However, further studies are 
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needed to properly determine each metabolite's origin and mode of action  to unravel 

their causal role in health and disease, as well as in the host-gut crosstalk. 
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CHAPTER 9: GENERAL CONCLUSIONS 

This is the first thesis to unravel the biological mechanisms underlying animal resilience 

using the VE of LS. In this thesis, we found relevant genes, taxa, and gut metabolites 

involved in controlling stress and immune response. The results could explain the 

differences in resilience potential between the rabbit populations, which were generated 

by selection for VE of LS. Moreover, relevant genes for the development of the neural 

system and sensory receptors such as olfactory receptors were identified, which is also 

important to determine animal resilience. This thesis suggested that the microbiome 

composition changed due to (i) an effect of the host genome and (ii) the selection of 

relevant microbial species for the VE. The candidate genes DOCK2, ACE, and HDAC9 

could modify the gut microbiome composition. Beneficial species such as Rikenella, 

Lactobacillus, Alistipes prutedinis, Alistipes shahii, Odoribacter splanchnicus, and 

Limosilactobacillus fermentum were selected in the resilient lines, increasing their 

abundance. In contrast, harmful species such as Acetatifactor muris and Eggerthella sp. 

were decreased. Furthermore, we found overlapping results between all the analyses 

performed that suggest a relevant implication of the aromatic amino acid metabolism 

and the L-glutamate synthesis in the phenotype of the VE. These metabolisms could be 

influencing the susceptibility of animals to stress conditions which supported the 

differences in the resilience potential between the rabbit lines. Further studies are 

needed to validate all these results and determine their real implications in VE and animal 

resilience. Moreover, this is the first thesis developing a tool (simuGMsel) for simulating 

a selection process with the inheritance of both the genome and the microbiome. These 

results agree with those found in the microbial study highlighting the importance of 

microbial interactions and microbial heritability for shaping the VE and modulating 

animal resilience. simuGMsel enables simulation of genome and microbiome to study 

their coevolution and effect on phenotype in animal breeding programs. 
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CHAPTER 10: IMPLICATIONS 

The real implication of this thesis is the contribution to generate knowledge about the 

mechanisms underlying animal resilience, highlighting the importance of the immune 

system. This is the first step to develop strategies and future works to improve animal 

resilience. Genes and causal variants identified could be used for genomic selection, as 

well as the bacteria identified for a selection based on the microbiome. A selection 

combining genomic and metagenomic information can improve the selection response, 

as we showed in the results generated by simulation. Moreover, gut-derived metabolites 

with evidence of crosstalk can be used as biomarkers to identify resilient animals in 

plasma, avoiding the extraction of faecal samples to determine the microbiome 

composition. However, further studies are necessary to validate their presence in the 

animals' plasma. In the future, gene editing, faecal microbial transfer, and probiotics 

could be developed to test their effects on animal resilience following the knowledge 

starting in this thesis. If success is obtained, animal resilience could be improved 

following these strategies with the aim of search a more sustainable livestock system. 

Lastly, the simulation tool developed could help to study microbiome composition at 

scale to decipher key animal breeding questions. 
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CHAPTER 11: REMARKABLE LIMITATIONS 

i. Sample size 

For genomic analyses, the moderate sample size used is sufficient to detect the most 

relevant genomic regions for the VE. However, due to the low heritability of the VE, a large 

sample size should be used to have good statistical power and better estimate the SNP 

effect. For metagenomic, the cost of this technique complicates the use of a considerable 

number of animals. This study was based on category assignation (at the population 

level), so a low sample size could be used. Proper sample size will allow for separating 

the true effect from the environmental noise, reducing the false positives and negatives 

in the analyses.  

ii. Genome annotation 

Oryctolagus cuniculus genome is poorly annotated. Recent updates to the Ensembl 

database considerably changed the genes harbouring the relevant genomic regions. The 

Ensembl Version from Chapter 2 and Chapter 3 changed markedly. Essential genes such 

as DOCK2 were reviewed using the genome version from Chapter 3. An ID changed its 

name from Ensembl, but its description determines that this gene is orthologous to the 

DOCK2 gene. The information did not change in this case, but all the other genomic 

regions must be reviewed.  

iii. Inferences 

Effects of the genes, microbiome, and metabolites were based on functions reported in 

the literature. So, no direct effects were validated for all the inferences and hypotheses 

made in this project. Moreover, the selection trait was the VE, and we assumed that the 

impact of the candidate genes and the microbiota must also influence the animal 

resilience. Experimental analyses must be needed to validate all the hypotheses made in 

this project. Furthermore, we could lose promising genes or microbiota because of their 
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effects on the VE and resilience have not been described previously in the literature. 

There is a lack of information. For instance, the microbiome is an emerging field, and 

there are no previous VE studies. We based all our inferences on the implications of the 

gut microbiome on the health status of the individual.  
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CHAPTER 12: FURTHER PERSPECTIVES 

i. Transcriptomic analysis 

Transcriptomic analysis for VE is complicated because we do not know the tissue to 

analyse. Transcriptomic analyses of the epithelial gut barrier could be a good 

approximation due to its direct implications for gut immunity and microbiome 

composition. Moreover, some candidate genes such as HDAC9 were found to be a 

protective effect on the gut due to the expression of HSP, a protein related to the VE in 

several studies.  

ii. Target metabolites in the gut 

Target metabolites could help validate the project's results and the implications of the 

tryptophan metabolism for the VE. Moreover, we could not identify other candidate 

metabolites in this project, such as SCFAs, which could be targeted with a higher-

performance technique.  

iii. Genomic and metagenomic interaction 

Analyses to establish the link between the genome and microbiome must be needed, but 

a large sample size is necessary. Likewise, the taxa and gut-derived metabolite 

relationship must be studied.  

iv. Untargeted metabolite from blood samples 

This must be useful to know the bioavailability of gut-derived metabolites in the 

plasma, which could be an indicator for gut-host crosstalk. Moreover, we can identify 

other molecules directly influencing VE and resilience.  

v. Update the simulation tool 
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Made a new version with the implementation of a microbial gene model to study the 

functional redundancy of the microbiome. Made a version to implement a genomic and 

microbiome selection.  

All of them are proposals for further studies that could complement and validate the 

results of this project. Any of them, except point 5, will be really developed due to 

technical issues.  
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CHAPTER 13: CONSIDERATIONS 

VE was correlated negatively with health and reproductive traits and positively with 

performance traits such as average milk yield and litter size. So, including VE as a 

selection criterion for improving animal resilience must be carefully evaluated. Other 

studies are necessaries to know the relation between the mean and the variance of the 

trait used. Moreover, if the improvement of animal resilience involves a detriment of key 

traits, a balance must be found to improve animal resilience without drastically 

worsening production. 
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