Contents

Ι	\mathbf{Th}	esis overview	1					
1	Introduction							
	1.1	Background	3					
	1.2	Engine emissions and control	7					
		1.2.1 After-treatment systems	9					
		1.2.2 After-treatment monitoring	10					
	1.3	Scope of the work	10					
	1.4	Objectives	11					
	1.5	Thesis organization	12					
	Refe	erences	13					
2	State of the art: Emissions control and monitoring							
	2.1	Introduction	17					
	2.2	Selective catalytic reduction	19					
	2.3	Ammonia slip catalyst	24					
	2.4	After-treatment control and diagnosis	25					
	2.5	On-board monitoring	27					
		2.5.1 Reductant agent monitoring	28					
		2.5.2 NOx sensors	28					
		2.5.2.1 NOx sensor cross-sensitivity	30					
		2.5.3 NH3 sensor	33					
	2.6	Conclusion	34					
	References							
II	Ez	xperimental set-up and performed tests	41					

 $\mathbf{43}$

	3.1	1 Engine							
	3.2	3.2 After-treatment structure and monitoring							
	3.3	3.3 Control environment							
4	Eng	ngine test procedure 49							
	4.1	Test p	procedure	49					
	4.2	nditioning	50						
		4.2.1	Method 1 – Performed to aged and new catalyst \ldots .	51					
		4.2.2	Method 2 – New catalyst $\ldots \ldots \ldots \ldots \ldots \ldots$	51					
	4.3	Ammo	onia injection strategy	52					
		4.3.1	Standard injection	52					
		4.3.2	Off-line optimisation	53					
		4.3.3	Real-time optimisation	54					
		4.3.4	Injection failure simulation	54					
	4.4	Engin	e test	55					
		4.4.1	Steady-state cycles	55					
		4.4.2	Driving cycles	56					
5	NO	x and	NH3 slip prediction models	61					
	5.1	Introd	luction	62					
	5.2	Zero-c	limensional model	62					
		5.2.1	SCR Zero-dimensional model	63					
		5.2.2	Model results	67					
		5.2.3	SCR+ASC Zero-dimensional model with reduced states	70					
	5.3 Cross-sensitivity models								
		5.3.1	Cross-sensitivity cell temperature model	73					
		5.3.2	Model results	76					
		5.3.3	NH3-dependent and constant cross-sensitivity	77					
		5.3.4	Model results	79					
		5.3.5	Comparison between cross-sensitivity estimation methods	80					
	5.4	Contr	ol-oriented models	83					
		5.4.1	Artificial neural networks	84					
			5.4.1.1 Model results \ldots \ldots \ldots \ldots \ldots	88					
		5.4.2	Sensor signal analysis model	91					
			5.4.2.1 Model results	94					

		5.4.3	Data fusion – Kalman filter)5		
		5.4.4	Extended Kalman filter applied to the models) 7		
			5.4.4.1 Model results	99		
	5.5	Slip p	rediction based on different sensitivities of NOx sensors			
		to am	monia)3		
		5.5.1	Model results)4		
	Refe	rences)5		
6	Afte	er-trea	tment control and diagnosis 10)9		
	6.1	Introd	uction	0		
	6.2	Impac	t of the ammonia injection strategy and the catalyst			
		ageing	on the NOx and NH3 slip $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 11$	1		
	6.3	Ammo	onia injection fault observation	12		
	6.4	Ammo	onia injection fault diagnosis	17		
		6.4.1	Proposed methodology extended to control-oriented mod-			
			els and observer	26		
	6.5	Result	s and discussion $\ldots \ldots 12$	29		
		6.5.1	Real-time strategy application for constant failure in			
			ammonia injection	29		
		6.5.2	Real-time strategy application for ammonia injection			
		-	system degradation	30		
	6.6	.6 Emissions assessment under ammonia injection failure a				
	0 7	alyst ageing				
	6.7	b. <i>i</i> Proposed methodology extended to the ASC catalys				
		nuntar	eous diagnosis of animonia injection faiture and catalyst	27		
		ageing	Pool time diagnosis for constant ammonia injection failure 1/)) 10		
		679	Real time diagnosis for ammonia injection degradation 1/	19		
		0.7.2	Unknown againg state diagnosis	16		
	Rofo	0.7.3		EU 1 Q		
	neie	iences		EO		
7	Opt	imisat	ion of dynamic systems 15	j 1		
	7.1	Introd	uction)1		
	7.2	Optim	al control problem	53		
	7.3	Mathe	ematical methods for dynamic optimisation) 4		
		7.3.1	Dynamic programming	54		
	<u> </u>	7.3.2	Direct methods)5		
	7.4	Off-lin	e Optimisation $\ldots \ldots 15$	6		
		7.4.1	Optimisation results	58		

	7.5	On-lin	e optimis	sation	163		
		7.5.1	MPC m	ethodology for SCR+ASC system	164		
		7.5.2	Optimis	ation results	168		
	Refe	erences			172		
I١	/ (Conclu	sions ar	nd future work	175		
8	Cor	Conclusions and future work					
	8.1	Main o	ions \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	178			
		8.1.1	Control	-oriented models	178		
			8.1.1.1	Data-driven models	178		
			8.1.1.2	Zero-dimensional physical models	179		
			8.1.1.3	Extended Kalman filter	179		
		8.1.2	After-treatment system monitoring and diagnostic				
			8.1.2.1	Ammonia injection failure	180		
			8.1.2.2	Catalyst ageing state	180		
		ation of dynamic systems	181				
			8.1.3.1	Off-line optimisation	181		
			8.1.3.2	On-line optimisation	181		
	8.2	Future	e work .		181		
		8.2.1	Stochast	tic models embedded in the on-line optimisation			
			approac	h	182		
		8.2.2	Integrat	ion of after-treatment system models into a hy-			
			brid veh	nicle design	182		
	Refe	erences			182		
R	efere	ences			183		