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Abstract
Nowadays, the �eld of virtual reality is becoming increasingly more popular: many applications are
surfacing, with be�er results each passing day. 3D information of the scene that will be rendered in
virtual reality is mandatory for it to be realistic. �at 3D information can be used to compute the
depth of a scene and allow rendering virtual scenes that achieve realistic levels of depth, making the
user perceive it as he/she would in the real world.

�e 3D information can be captured by means of a plenoptic camera, which is a specialized cam-
era that can capture the depth of a scene, along with the image corresponding to the scene itself.
Common approaches to compute the depth of an image (known as depth map) require, in general,
long computation time which makes it impossible to use the computed depth in real-time applica-
tions, making plenoptic cameras much more suitable for the job.

Rendering virtual views can be achieved with a technique called Depth Image Based Rendering
(DIBR). It uses real images captured by some camera and their respective depths to synthesize virtual
views located in between the reference images. �is technique, combined with plenoptic cameras,
would enable view synthesis in real-time.

�is master thesis evaluates the performance of plenoptic 2.0 cameras for DIBR. It will also
present a reproducible methodology that can be used for any kind of depth-sensing device. To eval-
uate the performance of the plenoptic camera, a dataset of images will be captured using a RayTrix
plenoptic 2.0 camera. �en, depth estimation using tools will be performed. �ose tools are the
MPEG-I reference so�ware Depth Estimation Reference So�ware (DERS) and the open source 3D
reconstruction so�ware Colmap. DIBR will be performed using the depth maps generated by these
two o�ine approaches, as well as with the depthmap generated in real-time by the plenoptic camera.
�e synthesized views will be used as a measure for quality assessment of the depth maps generated
by each one of the three approaches. �ere will be two view synthesis experiments: one using only
one view as reference and the other using multiple views as reference. Finally, a comparison with
another depth-sensing device, he Azure Kinect, will be done.

Results show that the best depth maps are yielded by DERS, followed by RayTrix. Colmap falls
behind because its depth maps are very limited since they are incomplete, but having great potential.
Lastly, performance of RayTrix camera is be�er than the one of Azure Kinect when capturing close
detail in the scene, whereas the Kinect can capture a wider area.

Keywords: plenoptic camera, Depth Image Based Rendering, view synthesis, Virtual Reality,
depth estimation, depth-sensor, assessment, total focus image, RayTrix, Calibration, DERS, Colmap,
RVS, RLC, RPVC.



Resumen
Hoy en dı́a, el campo de la realidad virtual se está volviendo cada vez más popular: están surgiendo
muchas aplicaciones, con mejores resultados cada dı́a que pasa. Información 3D de la escena que se
renderizará en realidad virtual es necesaria para que ésta sea realista. Esa información 3D se puede
usar para calcular la profundidad de una escena y permitir renderizar escenas virtuales que alcanzan
niveles realistas de profundidad, haciendo que el usuario las perciba como lo harı́a en el mundo real.

La información 3D se puede capturar por medio de una cámara plenoptica, que es una cámara
especializada que puede capturar la profundidad de una escena, junto con la imagen correspondi-
ente a la misma. Los enfoques comunes para calcular la profundidad de una imagen (conocidos
como mapas de profundidad) requieren, en general, un tiempo de computación prolongado, lo que
hace imposible utilizar la profundidad calculada en aplicaciones en tiempo real, lo que hace que las
cámaras plenopticas sean mucho más adecuadas para el trabajo.

El renderizado de vistas virtuales se puede lograr con una técnica llamada Depth Image Based
Rendering (DIBR). Utiliza imágenes reales captadas por alguna cámara y sus respectivas profundi-
dades para sintetizar vistas virtuales situadas entre las imágenes de referencia. Esta técnica, combi-
nada con cámaras plenopticas, permitirı́a sı́ntesis de vistas en tiempo real.

Este trabajo de �nal de máster evalúa el rendimiento de las cámaras plenoptic 2.0 para DIBR.
También presenta una metodologı́a reproducible que se puede utilizar para cualquier tipo de dispos-
itivo de detección de profundidad. Para evaluar el rendimiento de la cámara plenoptica, se capturará
un conjunto de datos de imágenes utilizando una cámara plenoptica 2.0 RayTrix. Luego, se realizará
la estimación de la profundidad utilizando herramientas. Esas herramientas son el so�ware de ref-
erencia MPEG-I Depth Estimation Reference So�ware (DERS) y el so�ware de reconstrucción 3D de
código abierta Colmap. DIBR se realizará utilizando los mapas de profundidad generados por estos
dos enfoques o�ine, ası́ como con el mapa de profundidad generado en tiempo real por la cámara
plenoptica. Las vistas sintetizadas se utilizarán como medida para evaluar la calidad de los mapas
de profundidad generados por cada uno de los tres enfoques. Habrá dos experimentos de sı́ntesis de
vistas: uno usando solo una vista como referencia y el otro usando múltiples vistas como referencia.
Finalmente, se realizará una comparación con otro dispositivo capaz de capturar la profundidad, el
Azure Kinect.

Los resultados muestran que los mejores mapas de profundidad son producidos por DERS, segui-
dos por los de RayTrix. Colmap se queda atrás porque sus mapas de profundidad son muy limitados
ya que están incompletos, pero tienen un gran potencial. Por último, el rendimiento de la cámara
RayTrix es mejor que el de Azure Kinect al capturar detalle en la escena, mientras que Kinect puede
capturar un área más amplia.

Palabras clave: cámara plenoptica, Depth Image Base Rendering, sı́ntesis de vistas, realidad
virtual, estimación de profundidad, sensor de profundidad, evaluación, imagen de enfoque total,
RayTrix, calibración, DERS, Colmap, RVS, RLC, RPVC.



Resum
Avui dia, el camp de la realitat virtual s’està tornant cada cop més popular: sorgeixen moltes apli-
cacions, amb millors resultats cada dia que passa. Informació 3D de l’escena que es renderitzarà en
realitat virtual és necessària perquè sigui realista. Aquesta informació 3D es pot fer servir per calcu-
lar la profunditat d’una escena i permetre renderitzar escenes virtuals que arriben a nivells realistes
de profunditat, fent que l’usuari les percebi com ho faria al món real.

La informació 3D es pot capturar per mitjà d’una càmera plenòptica, que és una càmera espe-
cialitzada que pot capturar la profunditat d’una escena, juntament amb la imatge corresponent. Els
enfocaments comuns per calcular la profunditat d’una imatge (coneguts com a mapes de profundi-
tat) requereixen, en general, un temps de computació prolongat, cosa que fa impossible utilitzar la
profunditat calculada en aplicacions en temps real, cosa que fa que les càmeres plenòptiques siguin
molt més adequades per a la feina.

El renderitzat de vistes virtuals es pot aconseguir amb una tècnica anomenada Depth Image
Based Rendering (DIBR). Utilitza imatges reals captades per alguna càmera i les seves profunditats
respectives per sintetitzar vistes virtuals situades entre les imatges de referència. Aquesta tècnica,
combinada amb càmeres plenòptiques, permetria sı́ntesi de vistes en temps real.

Aquest treball de �nal de màster avalua el rendiment de les càmeres plenoptic 2.0 per a DIBR.
També presenta una metodologia reproduı̈ble que es pot fer servir per a qualsevol tipus de dispositiu
de detecció de profunditat. Per avaluar el rendiment de la càmera plenòptica, es capturarà un con-
junt de dades d’imatges utilitzant una càmera plenòptica 2.0 RayTrix. Després, es farà l’estimació de
la profunditat utilitzant eines. Aquestes eines són el programari de referència MPEG-I Depth Esti-
mation Reference So�ware (DERS) i el programari de reconstrucció 3D de codi obert Colmap. DIBR
es farà utilitzant els mapes de profunditat generats per aquests dos enfocaments o�ine, aixı́ com
amb el mapa de profunditat generat en temps real per la càmera plenoptica. Les vistes sintetitzades
s’utilitzaran com a mesura per avaluar la qualitat dels mapes de profunditat generats per cadascun
dels tres enfocaments. Hi haurà dos experiments de sı́ntesi de vistes: un usant només una vista com
a referència i l’altre usant múltiples vistes com a referència. Finalment, es farà una comparació amb
un altre dispositiu capaç de capturar la profunditat, l’Azure Kinect.

Els resultats mostren que els millors mapes de profunditat són produı̈ts per DERS, seguits pels
de RayTrix. Colmap es queda enrere perquè els seus mapes de profunditat són molt limitats ja que
estan incomplets, però tenen un gran potencial. Finalment, el rendiment de la càmera RayTrix és
millor que el d’Azure Kinect en capturar detall a l’escena, mentre que Kinect pot capturar una àrea
més àmplia.

Paraules clau: càmera plenòptica, Depth Image Base Rendering, sı́ntesi de vistes, realitat vir-
tual, estimació de profunditat, sensor de profunditat, avaluació, imatge d’enfocament total, RayTrix,
calibració, DERS, Colmap, RVS, RLC, RPVC.



Résumé
De nos jours, le domaine de la réalité virtuelle devient de plus en plus populaire : de nombreuses
applications voient le jour, avec de meilleurs résultats de jour en jour. Pour reconstituter la scène
virtuellement, les informations 3D de celle-ci sont nécessaires. Ces informations 3D peuvent être
utilisées pour calculer la profondeur d’une scène et perme�re le rendu de scènes virtuelles a�eignant
des niveaux de profondeur réalistes, perme�ant à l’utilisateur de les percevoir comme il le ferait dans
le monde réel.

Les informations 3D peuvent être capturées au moyen d’une caméra plénoptique, qui est une
caméra spéci�que capable de capturer la profondeur d’une scène, ainsi que l’image qui lui corre-
spond. Les approches courantes pour calculer la profondeur d’une image (appelée cartes de pro-
fondeur) nécessitent généralement un long temps de calcul, ce qui rend impossible l’utilisation de la
carte de profondeur calculée dans les applications en temps réel, incitant les caméras plénoptiques
à être beaucoup mieux adaptées à ce genre d’applications.

Le rendu de la vue virtuelle peut être réalisé avec une technique appelée Depth Image Based
Rendering (DIBR). Ce�e technique utilise des images réelles capturées par une caméra et leurs pro-
fondeurs respectives pour synthétiser des vues virtuelles situées entre les images de référence. Celle-
ci, associée à des caméras plénoptiques, perme�rait une synthèse des vues en temps réel.

Ce mémoire évalue les performances des caméras plénoptiques 2.0 pour la synthèse de vues en
utilisant DIBR. Il présente également une méthodologie reproductible qui peut être utilisée pour
tout type de dispositif de d’acquisition de profondeur. Pour évaluer les performances de la caméra
plénoptique, un ensemble de données d’image sera capturé à l’aide d’une caméra plénoptique RayTrix
2.0. Ensuite, l’estimation de la profondeur sera faite à l’aide d’outils. Ces outils sont le logiciel de
référence MPEG-I Depth Estimation Reference So�ware (DERS) et le logiciel open source de recon-
struction 3D Colmap. La synthèse de vue par DIBR sera réalisé en utilisant les cartes de profondeur
générées par ces deux approches, ainsi que la carte de profondeur générée, celle-ci en temps réel,
par la caméra plénoptique. Les vues synthétisées seront utilisées pour évaluer la qualité des cartes
de profondeur générées par chacune des trois approches. Il y aura deux expériences de synthèse de
vues : l’une utilisant une seule vue de référence et l’autre utilisant plusieurs vues de référence. En�n,
une comparaison sera faite avec une autre caméra, l’Azure Kinect, elle-aussi capable d’acquérir la
profondeur d’une scène.

Les résultats démontrent que les meilleures cartes de profondeur sont produites par DERS, suivi
de RayTrix. Colmap étant la dernière car ses cartes de profondeur sont incomplètes, mais elles ont
un grand potentiel. En�n, la caméra RayTrix est plus performante que l’Azure Kinect pour capturer
les détails de la scène, tandis que la Kinect peut capturer une zone plus large.

Mots-clés: caméra plénoptique, Depth Image Base Rendering, synthèse de vues, réalité virtuelle,
estimation de profondeur, capteur de profondeur, évaluation, image à plusieurs focus, RayTrix, Cal-
ibration, DERS, Colmap, RVS, RLC, RPVC.
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1 Introduction and content
1.1 Introduction
Nowadays, the �eld of Virtual Reality (VR) is becoming more and more popular: controlling robots
or drones, automated cars, 3D videoconferences or gaming are just examples of it. Contrary to what
general masses think, Virtual Reality applications are not only the ones that use a head-mounted
display, there are many more. Free point television [1,2], for example, is an emerging technology
that allows to user to change the point of view of which the TV program is being seen: move the
aerial view of a football match however the user wants, even making it not follow the ball, could be
an example of it.

In order to perform VR correctly, the user must feel like he/she is ”transported” to the virtual
world. Depth perception is key to achieve that. In the case of using a head mounted display, the
so-called 6 Degrees of Freedom (6DoF) must be achieved, which allow not only to see your sur-
roundings depending on your position, but also to get closer or further from the objects that one
sees. It allows natural movement, as if one was really there, in another world. In order to achieve
that, 3D information of the scene must be taken into account.

�at 3D information can be acquired mainly in two di�erent ways. �e �rst would be estimating
it a�er the capture of multiple images. With those images one could generate 3D reconstruction, a
point cloud or perform stereo matching. �e second option would capturing it directly along with
an image using a specialized device, a plenoptic camera. A plenoptic camera (e.g. RayTrix [3]) cap-
tures in one shot hundreds of tiny images thanks to a Lenslet objective (an objective composed of
hundreds of micro lenses). �e advantage of the produced Lenslet images is that they contain the
3D information of the scene. It presents as a main advantage that it is able to capture 3D informa-
tion directly and immediately, whereas estimating it from a set of images requires time and much
computation.

With the 3D information, onemay extract depth from it. �is depth information greatly increases
realism in VR applications. But not only depth perceptionmust be of quality to achieve realism, tran-
sition between images must also be. Smooth transitions can be performed if one captures a lot of
images from di�erent positions, following a path, but too many images would be required, making it
a titanic task. �at can be solved with view synthesis: generating by computer synthetic images that
are in between the images that have been captured with a camera, reducing the number of pictures
to be physically captured by a lot.

�is view synthesis can make use of the depth extracted from the 3D information of the scene
by means of a technique called Depth Image Based Rendering (DIBR). �is technique makes use of
pictures captured by a camera and the depth of the scene (known as depth map) to synthesize new
views in between. Using a that set of images to estimate depth can produce good results, but that
estimation is slow. �is makes it extremely di�cult, if not impossible, to perform DIBR with regular
cameras in real-time applications. �is leaves room to use devices specialized in depth acquisition,
such as plenoptic cameras.

�is thesis has as a main objective assessment of plenoptic cameras for DIBR real-time applica-
tions. As a secondary objective, a reproducible pipeline, which can be used in other experiments, is
proposed. To achieve those objectives, DIBR is performed using the depth captured by means of a
RayTrix plenoptic camera, and then be compared with two depth estimation approaches: the stan-
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dard so�ware Depth Estimation Reference So�ware (DERS) and the open source so�ware Colmap.

A dataset of images using a plenoptic camera is captured. �is dataset contains images shot from
slightly di�erent positions: 9 of them are in a 3x3 matrix, and are separated 3cm from each other. 58
more images are positioned in the middle row of the matrix, with a distance of 1mm with respect
to each other. �en, depth estimation is performed using the o�ine approaches DERS and Colmap.
Finally, view synthesis takes place, using a tool known as Reference View Synthesized (RVS). �e
synthesized views are assessed for quality, and are used as a metric of the performance of the depth
information generated by each approach. �is view synthesis is performed using only one view as
reference: using the central view as reference, along with its depth map, the rest are synthesized. In
addition, a li�le experiment in which view synthesis using multiple reference images is performed.
In this case, the central view of the matrix is generated using the corners as reference. �is approach
is closer to real-world applications. Finally, the performance of the RayTrix camera is compared to
that of another depth sensing device: Azure Kinect.

1.2 Content of the�esis
�is thesis is divided into three main sections. �e �rst one will be an state-of-the-art explaining key
concepts to understand the whole thesis. It will include a discussion to illustrate the di�erence be-
tween regular and plenoptic cameras and key concepts on depth computation and DIBR.�e distinct
tools and so�ware that will be used in the experiment will also be introduced. �e second chapter
will be the main topic of the thesis: the experimentation. It will have four main steps: acquisition,
depth estimation, view synthesis and quality assessment. Finally, a comparison of performance with
the Azure Kinect will be performed.
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2 State of the art
In this section, we de�ne the concepts necessary to completely understand the experiment per-
formed during the elaboration of this thesis. We will �rst start with an introduction to the light
�eld, which will be necessary for the following part, acquisition. In the acquisition section, di�erent
types of that will be used in the experiment will be explained. Next, depth computation, mentioning
several di�erent approaches to perform it. Finally, some words on Depth Image Base Rendering, ex-
plaining the concept. Several tools that will be used during the experiments will also be introduced
throughout the di�erent sections.

2.1 Light Field
A light �eld is a vector function that describes the amount of light that traverses all points in space
in all possible di�erent directions, thus giving three-dimensional information. In imaging, it can be
represented as nxn matrix of images [4]. �ese images, also called views, capture the same scene,
but from slightly di�erent perspectives. �ese small di�erences allow to capture that light re�ected
and refracted from the scene in di�erent directions, thus generating a light �eld. Other option to
create a light �eld is 3D reconstruction. �is approach also requires to capture (or synthesize) a
certain amount of images from di�erent perspectives.

Figure 1: 3D information extracted from a light �eld

2.2 Acquisition
Acquisition might be one of the most crucial steps when rendering real scenes in virtual reality. In
order to show the complexity and advantages of a plenoptic camera with respect to what normally
is considered as a standard or regular camera, this section will explain how both of them work,
showing the crucial di�erences among them. Some brief words will also given about Azure Kinect
[5].
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2.2.1 Regular Cameras
When thinking of ”regular” cameras, many types can come to mind: digital cameras, instant cam-
eras or even �lm cameras. All of them share the same mechanism to capture images, with slight
di�erences, specially between digital-type cameras and non-digital ones. Digital cameras can show
the image in a screen immediately a�er the picture is taken, whereas the non-digital ones can’t. But,
in general, they share the same mechanism. Note that we are talking about cameras that capture
light from the visible spectrum, we are not taking into account specialized cameras like infrared or
ultra-violet.

Any type of ”regular” camera can be used to capture scenes that can be rendered for virtual reality
applications, but it is recommended to use a high-quality camera. Such cameras can be single-lens
re�ex (SLR) or digital single-lens re�ex (DSLR) camera, being the la�er one of the most commonly
used in professional photography nowadays.

In this document, we will be focusing mostly on the design of SLR cameras, but the mechanism
through which the other types of cameras take images is the same, the main di�erence will be how
the user sees what it is going to be captured by the camera.

(a) SLR camera mechanism 1 (b) Basic elements of a re�ex camera 2

Figure 2: Regular cameras

Figures 2a and 2b show the basic components and mechanism of a SLR camera. Light enters
through the aperture and goes through the lenses. �en it is re�ected on the mirror and enters the
viewing system, that allows the user the see what is going to be captured. When the shu�er is re-
leased, the mirror will move, allowing the light to be capture by the sensor, thus creating the picture.

In order to control the amount of light that enters inside the camera, the aperture and the shu�er
are used. �e aperture is the main opening, and can be adjusted to be bigger or smaller by over-
lapping plates called the aperture ring. It is typically installed with the lens, and to adjust it one
normally need to rotate it. Adjusting the aperture allows the camera to focus on shorter or longer
distances: with a narrow aperture, the depth of �eld increases. �is means that objects that are far
from the camera will be in focus. On the contrary, when the aperture is wide, the objects that will
be focused will be the ones that are close to the camera.

Regarding the shu�er, it is used to control the amount of time the sensor is exposed to the light
that is entering the camera through the aperture and the lenses. It works in the most simple of man-
ners: it opens, the sensor is exposed to light, and then closes. �e duration for which the shu�er is

1Image taken from Howthingswork.org.
2Image taken from Wikipedia.
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open or released is called shu�er speed or exposure time. �is exposure time can be used to blur the
image, and, when done properly, give the impression of movement in still photograph.

When too li�le light is let into the camera, the image will be darker or under-exposed. Other-
wise, it will be pale, or over-exposed. Adjusting both the shu�er speed and the aperture is crucial
when taking quality pictures. It is worth mentioning that a longer shu�er time can be compensated
with a smaller aperture, and vice versa.

With respect to the lenses, many types of lenses exist, but the two main types are prime lenses,
which have a �xed focal length, and zoom lenses, whose focal length is variable. �e shape of the
lens is also important: convex lenses (converging lenses) will focus the light on one point, while
concave ones (diverging lenses) will disperse it.

Note that most of modern cameras include a microprocessor, which will be able to calibrate the
camera automatically, up to a certain point, to help the user capture quality images.

Figure 3: Basic camera lens 3

In Figure 3, we can see the basic mechanism of a simple converging lens, which is able to create
an image of the object whose light is re�ected on the lens. In the image, S1 is the distance between
the object and the lens, S2 the distance between the lens and the image and f the focal distance.
Inside a camera, the sensor would be placed at distance S2 from the lens, exactly where the image
would be formed, in order to capture it.

Di�erent con�gurations of lenses (thickness, shape, etc.) or even multiple lenses at a time can
be used to achieve several results.

2.2.1.1 Camera Parameters
Camera parameters [6] describe the camera properties (intrinsic parameters) and the location and
orientation of the camera (extrinsic parameters). Intrinsic camera parameters depend on the char-
acteristics of the camera, such as resolution, principle point, focal length and skewness. On the
other hand, extrinsic camera parameters refer to the physical position of the camera in space: its

3Image taken from Wikipedia.
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rotation and translation, always with respect to some reference. Both type of parameters are usually
represented in the form of a matrix:

I =

0

@
↵x � u0

0 ↵y v0
0 0 1

1

A E =

✓
R3x3 T3x1

01x3 1

◆
(1)

I represents the 3x3 intrinsic parameter matrix. ↵ represents the focal length in terms of pixels,
� the skew coe�cient between the x and y axis, and u0 and v0 refer to the pixel coordinates of the
principle point (center of the captured image by rule of thumb).

E refers to the extrinsic parameters matrix, which is 4x4. In it, R3x3 refers to the rotation 3x3
matrix and T3x1 to the translation column vector of three components.

Camera parameters are used to perform transformations on images, as well as in image synthesis.

2.2.1.2 Camera Parameter Calibration using Colmap
Colmap [7] is an open-source general-purpose Structure-from-Motion (SfM) [8] and Multi-View
Stereo (MVS) [9] pipeline with a graphical and command-line interface. It o�ers a wide range of
features for reconstruction of ordered and unordered image collections.

It can perform 3D reconstruction and extract the camera parameters from it. It needs as input
the set of images one needs their camera parameters and/or their depth maps.

To obtain the camera parameters (both intrinsic and extrinsic), it takes several points, known as
features, of all the inpu�ed images, normally thousands of points, and tries to identify where they
lie in 3D space, generating something similar to a point cloud. Since it knows what points corre-
spond to what image and how they moved to match the same 3D position, it can infer the camera
extrinsic parameters (position and rotation) of each camera. Note that the program assumes each
image corresponds a di�erent camera. For the intrinsic parameters, it will use di�erent methods
which depend on the camera type the user has chosen, which normally are a simpli�ed versions of
the camera types (and intrinsic parameters by extension) o�ered by OpenCV [10].

Refer to Appendix B.5 for further information on installation and operation.

2.2.2 Plenoptic Cameras
Plenoptic cameras, also known as light �eld cameras [11,13], are a special kind of cameras which
are able to capture information about the light �eld from the scene they are capturing. �at means
they are able to capture the intensity of the light, but from di�erent angles thanks to their intrinsic
architecture. �is is the main di�erence between plenoptic and regular cameras, since regular cam-
eras are only capable of capturing the intensity of the light of the scene in just just angle.

One of the main advantages of plenoptic cameras is that one can extract the depth of the image
from it. �e other great advantage is the possibility to capture several ”would-have-been” views.
�at is, capturing the same image multiple times, but with small displacement between each of the
captured views.
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Plenoptic cameras can be divided into two main types: standard plenoptic cameras, also known
as plenoptic 1.0 cameras, and (multi-) focused plenoptic cameras, or plenoptic 2.0 cameras.

2.2.2.1 Standard Plenoptic Cameras
Plenoptic cameras introduce a mechanism to capture the light �eld of a scene: the lenticular array
[11], or, in other words, an array of microlenses (Figure 4). �is array of microlenses must be focused
on the principal plane of the main lens, and must be placed right next to the sensor. One can think
of this array of microlenses as an array of small cameras, all aimed at the main lens. �is mechanism
could be compared to taking a lot of small pictures of areas of a bigger picture at once, and merging
them together in the same resulting image.

Figure 4: Optical system of a standard plenoptic camera
[12]

�is con�guration presents one main problem. Since the size of the sensor is the same as in a
regular camera but we are using the cells to capture information of the same area several times, the
resolution in general will be much smaller than in a regular image. �at is, we are dividing one
macropixel, which would correspond to a regular pixel in a normal camera, into n subpixels, which
correspond to the actual cells of the sensor. In a normal camera, the mapping was 1-to-1, but now
the mapping is 1-to-n, thus decreasing the resolution if the sensor size is kept the same. �at is the
same as saying that we are obtaining n views from one macropixel.

In order to capture quality images [12], the f-number, which is the aperture diameter divided by
the focal length, of both the main lens and the microlens array must be adequate. If the main lens’
f-number is bigger (i.e. its aperture is smaller relative to its focal length), then the pixels are cropped
and the resolution is wasted. Otherwise, they overlap too much, thus contaminating each other’s
signals.

Once the image is processed, it will give what is called a lenslet image. Since it was captured
using a standard plenoptic camera, it would be a standard lenslet image or lenslet 1.0 image. From
it, one can extract up to n views from original scene from which the image was taken. �at can be
achieved by selecting the appropriate pixels to synthesized the di�erent views.

One of the main advantages is the possibility to refocus digitally the already-captured image.
�is can be achieved just shi�ing and adding the di�erent sub-aperture images, which correspond
to the di�erent views.
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2.2.2.2 Focused Plenoptic Cameras
Further development in the �eld led to (multi-) focused plenoptic cameras:

Figure 5: Focused plenoptic camera
[13]

Its main di�erence with the standard plenoptic camera is that the microlens array is placed ei-
ther before or behind the focal plane of the main lens, that is, at a certain distance from the sensor,
instead of right next to it [13]. In Figure 5, the position of the microlenses satis�es the equation 1/a +
1/b = 1/f, where a, b, and f are, respectively, the distance from the microlens to the main lens image
plane, the distance from the microlens to the sensor, and the focal length of the microlens. �is
allows to use bigger microlenses than the ones used in the standard plenoptic cameras, which leads
to integrate data across the di�erent microlens images instead of integrating the data from within
the microlens images, giving a new format of image as a result: focused lenslet image or lenslet 2.0
image.

�is new way of generating the data allows to highly increase the resolution. �e main reason
is that we are using several pixels per microlens, since they are bigger. Taking into account that
plenoptic cameras can capture multiple angular directions, when rendering with just one angular
direction, we would obtain a total of M samples. �is would give a �nal resolution of M times the
original resolution of the standard plenoptic camera.

Another advantage of the focused plenoptic camera with respect to the standard plenoptic cam-
era is the ability to focus certain parts of the captured images during the rendering process: when
transforming the lenslet image to obtain regular images that are agreeable to the human eye. �is
is allowed by the dedicated rendering algorithm used by this type of cameras. �e main idea is to
select a pitch from each one of the microlens images. �at pitch is de�ned by the number of pixels
of the macroimage. �en, a square of pixels is selected from each one of the microimages and put
together to form the �nal image. Figure 6 shows it schematically:
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Figure 6: Focused plenoptic camera rendering algorithm
[13]

A di�erent pitch size would correspond to a di�erent depth. Choosing di�erent pitch sizes, one
could render the same image but with di�erent focus.

Using the same pitch size when rendering images will create artifacts in areas which are not
focused. In order to solve this issue, one can use di�erent pitch sizes for di�erent areas. �at way,
there will be a main focused area and the non-focused area without artifacts. �is can be achieved
by estimating the depth of each microlens image and choosing the pitch accordingly to its depth
and the depth of its own neighbours. However, it has a drawback: the resulting image will have ”all
in-focus”.

To solve that problem, a blending method was introduced, which consists in averaging the same
spatial point across multiple microlens images. Combining the depth estimation and the blending
methods, one can focus the rendered image at a certain distance with a minimal amount of artifacts.

It is also worth mentioning that, recently, multi-focused plenoptic cameras have been developed.
�ese cameras use the same basic design as a focused plenoptic camera, but having microlenses in
its lenticular array with three di�erent focal lengths, instead of having them all the same focus. With
those three types, one can get three di�erent images of just one spot with di�erent focuses. Higher
spacial and angular resolution can be achieved, leading to the capture of even more information
with just one shot.

2.2.2.3 Reference Lenslet content Convertor
RLC stands for Reference Lenslet content Convertor [14,15,16,17]. �is so�ware belongs to the stan-
dard MPEG-I (Moving Picture Expert Group - Immersive).

�is tool converts a lenslet image obtained from a multi-focused plenoptic camera, i.e. RayTrix
camera, into an array of 5x5 multi-view images. �is array can be considered as an array of normal
images that capture the same scene but from a slightly di�erent point of view, as explained in the
previous section.
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It works as follows: �rst it needs to estimate a patch size, as explained in the section of focused
plenoptic cameras. In this case, since it is a multi-focused plenoptic camera, it need to take into con-
sideration the di�erent focal lengths of the microlenses. �is patch is computed using the Laplacian
of all the viewpoints (images).

�en, integration of di�erent types of microlenses is in order. To do so, a weighting averaging
method is used. �is method will take into account the type of the microlens, as well as the patch
size used. �at will lead to a great-quality multi-view image array, with high resolution and li�le
artifacts. Figure 7 shows this process schematically.

Figure 7: Choosing and integrating the patches in RLC
[15]

It takes as input the lenslet image one wants to convert, the con�guration �le for the camera
with which the lenslet image has been taken and a parameter �le. In this parameter �le, the paths
to the lenslet image and the con�guration �le are speci�ed, as well as the output path for the multi-
view images and the options the user wants to use.

Refer to Appendix B.2 for further information on installation and operation.

2.2.2.4 Reference Plenoptic Virtual camera Calibrator
�e Reference Plenoptic Virtual camera Calibrator [18,19,20], or RPVC, is a pipeline that belongs
to the standard MPEG-I. It includes a set of scripts that are used to calibrate subaperture views of
plenoptic 2.0 camera arrays. �at is, to calculate the camera parameters of the plenoptic cameras
and transform them into camera parameters which can be used by normal cameras to simulate the
plenoptic camera by taking several shots. Figure 8 shows the basic pipeline to be followed, which
will be explained further in the following lines:
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Figure 8: RPVC pipeline
[18]

First of all, one needs to use RLC to obtain the 5x5 array of multi-view images from a lenslet
image. �en, using the so�ware Colmap to obtain the intrinsic and extrinsic camera parameters.
�e central view (image 13) will then be registered using the camera parameters from the plenoptic
camera.

Next, the 24 remaining images need to be registered. �eir own individual camera parameters,
both extrinsic and intrinsic, have to be calculated using the parameters of the plenoptic camera. �is
is achieved using Colmap to compute their own camera models and the scripts provided with RPVC
to adjust the format. �en, with Colmap their depth maps are computed.

Finally, using the depth maps, camera models and the central views, the �nal camera parameters
for each one of the reaming 24 subaperture views is computed and registered.

�ey are simply a collection of Python scripts, so they only need Python [21] to be installed in
order to execute, along with Colmap and RLC.�ey can be downloaded from this repository.

2.2.3 Azure Kinect
Microso� Azure Kinect is an active depth-sensing device that uses time of �ight in order [22] to
sense depth. Time of �ight will be brie�y explained in Section 2.3.3.

Figure 9: Azure Kinect
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One of the particularities of the Kinect is that it uses two cameras to perform RGBD acquisition:
one for colour (thus capturing RGB) and another for the depth. Since those are two di�erent sensors,
they are placed in di�erent physical location inside the device, thus possibly generating disocclusion
artifacts.

2.3 Depth Computation
Depth computation, as it name suggests, consists in estimating the depth of each one of the ele-
ments found in an image. In this section, several approaches will be discussed, being some of them
inherent to the camera that is being used to capture the scene whose depth will be computed.

Regardless of the method used, the �nal product of depth computation is a depth map. It is a
1-channel image in which the pixels take the value of the depth of each correspondent pixel in the
reference image. Since it is encoded in only one channel, it will be in grayscale format. Typically
close objects (low depth) will be represented in brighter colours (white), whereas far objects (high
depth) will be represented in darker colours (black).

Figures 10a and 10b show an image and its respective depthmap, generated usingDERS. Both im-
ages are taken from the Rabbit Dataset, captured by the LISA group at Université Libre de Bruxelles
(ULB) [23,24,25,26].

(a) View (b) Depth map

Figure 10: View and depth map

2.3.1 Depth Computation with Regular cameras
When capturing data making use of regular camera, depth must be computed a�er the acquisition
has �nished. Indeed, since the depth computation must be performed a�erwards the capturing, it
won’t be possible to use the depth computed in real-time applications. In the case of regular camera,
the depth must be estimated, contrary to plenoptic camera, where the depth can be sensed with the
light �eld at capture. Depth estimation techniques generally require the capture of several images
of a scene from di�erent positions or viewpoints, and then comparing them.

2.3.1.1 Stereo Matching
Stereo matching [27] is a technique that makes use of the displacement between of the objects that
appear in images that capture the same scene from di�erent positions. Since we are talking about
images, we can only measure those di�erences in position in terms of pixels. �is di�erence in pixels
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is called disparity.

�e disparity is calculated by comparing pixels or windows of pixels along the horizontal line in
which they appear. Note that this is only true if the images that are being compared are perfectly
aligned. In the case where they are not perfectly aligned, the line that will be followed won’t be the
horizontal line, but an epipolar line [27]. Regardless of the line that will be followed, the technique
is the same: a window surrounding a pixel is taken from one image and moved along that line in
the other image(s) until they match. �e number of pixels the window has moved is counted, and
that is the disparity.

Once the disparity has been calculated, it has to be transformed into real depth. Disparity will
be inversely proportional to depth. Indeed, when an object is close to the camera (has low depth),
the disparity will be very high, since the object will move quite a lot from one view to the other(s).
On the contrary, when an object is far away from the camera (has high depth), the disparity is very
low, since the object will remain in a very similar place.

One problems arises because the metrics are di�erent: the depth is continuous and the disparity
is discrete. �is will make thematching impossible unless the depth is discretized. When discretizing
the depth, we talk about depth layers. �ese layers will be ”bigger” when the depth values are high,
thus making it more di�cult to appreciate depth in objects that are far away. �e opposite happen
with close objects. Depth can be obtained from disparity using the following equation:

Z(d) =
1

d
N�1 ⇤ (

1
Znear

� 1
Zfar

) + 1
Zfar

(2)

where Z is the depth obtained from disparity d, and Znear and Zfar represent the closest and
furthest depth layers. N is the total amount of layers.

2.3.1.2 Depth Estimation with Colmap
Colmap can also estimate the depth of the images using a number, generally �ve, of other images
as reference, using a dense reconstruction procedure, also giving a 3D mesh as a �nal result. It will
output both normal and depth maps, both of type photometric and geometric, generating a total of
four di�erent maps.

Normal maps refer to the direction of the normal of the objects that are in the scene, having a
normal per pixel in this case. On the contrary, depth maps show the depth of each pixel, as explained
before. Normal maps will be discarded since they serve no purpose within the present project.

Geometric maps are the ones that pay a�ention to the shape and geometry of the objects present
in an image or scene: contours, texture, shadows, etc. (in other words, features) in order to perform
a 3D reconstruction, or to generate a depth map. On the other hand, photometric maps take into
account how the objects re�ect the light and how much light is received at each pixel to perform
the reconstruction.

Refer to Appendix B.5 for further information on installation and operation.
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2.3.1.3 Depth Estimation Reference So�ware
DERS, Depth Estimation Reference So�ware, as its name implies, is a so�ware that estimates the
depth of a given image, creating what is called a depth map. It’s a so�ware that belongs to the
standard MPEG-I. It has had several revisions throughout the years it has been in development
[28,29,30,31]. In the latest versions it is called RDE, or Reference Depth-Estimation [32,33].

To compute the depth of the given reference image, several search images are given to the algo-
rithm, as well as the depth range of the image. �en, it uses an algorithm, which consists mainly in
three di�erent parts: matching cost, temporal enhancement and graph cut.

For the matching cost part, it will compute, for every search image and depth, the cost of as-
signing some depth value to a pixel of the reference image leading to the correspondent pixel in the
search images, using a modi�ed Sum of Absolute Di�erence (SAD) algorithm between the reference
and the chosen search image, making use of a 3x3 pixel window. �e cost has a total of three com-
ponent, one per channel of a YUV image. �is process is repeated for all the pixels of the reference
image. �en, the chosen cost for each pixel will be the minimal one between the costs with respect
to each reference image. Figure 11 shows the idea:

Figure 11: DERS matching cost scheme
[32]

Note that, depending on the baseline (distance between the cameras that take the images), the
pixel displacements can vary a lot: ranging from a lot of pixels to less than a pixel, so an accuracy
of sub-pixels will be needed.

Next step is the temporal coherence. �is part will only be useful with video, since it has mul-
tiple frames and, by extension, images. �e objective of this part of the algorithm is to make sure
that, in two consecutive frames, the same pixel has the same depth. �is is done to avoid giving the
impression that the pixels’ distance changes over time, giving bad results when synthesizing video
using the DIBR technique. To achieve this, a motion map is used. �is motion map will be set to
true when a given window of pixels moves with respect to that same window in the previous frame.
�is motion of pixels is detected by the di�erence in their luma components. �en, once it is known
which pixels move, the rest, which are static, are forced to have the same depth.

�e third and �nal part of the algorithm, the graph cut, is used to improve the quality of the
depth map given by the two previous parts. �is �rst depth map will have di�erent problems, since
for each pixel it will have a chosen the lowest cost to assign a depth, so there may be inconsistencies
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between values of adjacent pixels. In order to solve this problem, a graph cut optimization algo-
rithm, with a Markov Random Field graph, is used to �nd the optimal depth map. �is algorithm
will also make use of reliability and smooth maps, that will help when choosing the optimal depth of
untextured areas, since those normally pose problems because the cost will be the same for di�erent
depth values.

It takes as input the image the user wants to calculate its depth (reference image) and several
more search images (at least two) which will help to tool to generate the depth map. It will need a
con�guration �le in which several parameters will need to be speci�ed, such as the method used,
as well as the paths to the input images and to the output �les. Refer to Appendix B.3 for further
information on operation and installation.

2.3.2 Depth Computation with Plenoptic Cameras
In the case of plenoptic cameras, depth estimation will be performed using the light �eld that the
cameras captures. Of course, the same approaches for depth estimation used for regular cameras
can be applied for plenoptic cameras, but the bene�ts of the plenoptic cameras would not be used,
so it is a much be�er approach to make used of the captured light �eld.

In the case of the plenoptic 2.0 camera manufacturer RayTrix, a so�ware called RxLive [34] is
provided. �is so�ware allows to perform depth computation at the same time an image is captured,
thus depth maps can be obtained in real-time, allowing the possibility of using the sensed depth in
real-time applications. Note that there is no exact information on how the depth is computed by
RayTrix.

2.3.3 Depth Computation with Azure Kinect
Azure Kinect uses a completely di�erent approach: time of �ight. �e principle behind it is simple:
it projects rays to the scene and captures the time those rays take to go back to the camera. With
that time, the distance can be inferred. Time of �ight is an active depth-sensing method, since it is
actively sending rays to the scene to measure depth.

2.4 Depth Image Based Rendering
Depth Image Based Rendering [27], or DIBR for short, is a technique that has been in development
for many years and it allows to generate new synthetic views (or images) of a scene that have not
been captured directly by a camera. To put it simple, images captured by virtual cameras (non-
existent cameras) are generated by computer using images that have been captured by real cameras
placed in certain known positions. In order to do so, other views (or images) of the scene captured
by some camera must be provided, as well as depth maps of those same views. With that, one can
generate the uncaptured views which are in between the ones that have been captured with the
camera. �is approach is an alternative to 3D reconstruction of the scene, and it is very useful for
di�erent applications, such as 3D video.

�e most common approach for DIBR is using arrays of cameras to capture the scene and then
synthesize the views in between with the help of depth maps, as mentioned before. �e quality of
the depth maps has a high impact on the quality of the synthesized views, so it is crucial to use an
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adequate and reliable approach when performing DIBR to achieve an acceptable quality.

One of the main problems of view synthesis using the DIBR technique is the occlusion/disoc-
clusion problem. In one view, one object may be hiding what is behind it, but on another view that
same hidden part might be visible. Since we need at least two views to infer depth, one must be
very careful when capturing them, since the occluded area in one view is disoccluded in the other,
thus not making it possible to calculate the depth of that area precisely because it only appears in
one view. It could also happen that the view to be synthesized contains a disoccluded area, but the
reference views and their depth maps have that same area occluded. �is issue can be solved with
the capture of more than two views and from di�erent, but still similar, perspectives.

2.4.1 DIBR for Regular Cameras
Regular cameras can only capture one RGB image per shot, so to perform DIBR with regular cam-
eras one must take several shots in order to capture multiview content. With only one camera, the
process will be slower: each time a shot is taken the camera must be moved to the new position.
�e other approach would be to make use of multiple cameras in di�erent positions that take shots
at the same time. �is second approach is generally the most used one, since it is not possible to
capture multiview video with just one camera (unless what is captured in the video is repeatable,
which is not normally the case in real applications).

Once the multiview content is captured with the cameras, the depth maps must be estimated.
�ere are several approaches and techniques to estimate the depth of an RGB image, such as stereo
matching, but all of them are o�ine techniques that require a certain amount of time, some of them
being very slow in order to produce high quality maps. One example can be the DERS so�ware. It
produces high quality depth maps from RGB images, but it is quite slow, specially as higher qual-
ity is required. �is makes it extremely di�cult, if not impossible, to perform DIBR with regular
cameras in real-time applications. �is leaves room for the use of specialized cameras, such as RGB-
Depth (RGBD) cameras that use time of �ight to generate depth maps in real-time (Azure Kinect),
or plenoptic cameras (RayTrix).

2.4.2 DIBR for Plenoptic Cameras
As explained before, plenoptic cameras are devices that allow to capture the light �eld of a scene
by using a microlens array, which in practice translates to capturing an array of n images or views,
that have a small displacement between them. Plenoptic cameras allow to export lenslet images, as
well as total focus images, which are the ”all-in-focus” version of the lenslet image that has been
captured. �at, along with the depth estimation they perform, makes it possible to perform DIBR in
real-time applications.

2.4.2.1 DIBR using Lenslet Images and RLC
Lenslet images are the main type of image captured by plenoptic cameras. �ey are the direct result
of using a lenticular array in a camera when capturing an image. In general, they are structured
in a hexagonal-like pa�ern, as shown in Figure 12. �e shown picture is part of the Rabbit Dataset
captured by the LISA group at Université Libre de Bruxelles (ULB).
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Figure 12: Lenslet image

Using so�ware such as RLC one may obtain an array of nxn normal images from this lenslet im-
age. With this array of images, one may estimate their depth maps using several o�ine approaches,
in the same way they are estimated when using regular cameras. �e main bene�t of using lenslet
images is that one does not need an array of regular cameras to take multiple images, with just one
camera and one shot the user can capture multiview content.

Another possible approach is to use the depth map estimated in real-time by the plenoptic cam-
era, which corresponds to the central view of the array of images. For example, if the lenslet image
is transformed into an array of 5x5, the depth map would correspond to image number 13, if they
are numbered starting with 1 from le� to right, and then from up to down.

Using a set-up with multiple plenoptic cameras, one is able to capture a lot of di�erent views at
once using lenslet images. Its main drawback is the price of the cameras since commercial plenoptic
2.0 cameras are very expensive. Transforming lenslet content into multiview images requires time,
but since the depth map is already provided by the camera in real-time, the total amount of time is
much less than estimating the depth maps o�ine, which makes it possible to use DIBR in real-time
applications.

2.4.2.2 DIBR using Total Focus Images by RxLive
Plenoptic cameras allow to obtain what is called a total focus image a�er processing the lenslet im-
age, which is, in short, the central view of the array of images obtained from a lenslet image. Figure
10a could be considered the total focus version of Figure 12, although it has been obtained using
RLC.�ese total focus images can be obtained in real-time in the case of RxLive and RayTrix. Figure
13 is a total focus image, directly exported from RxLive.

17



Figure 13: Total focus image

When performing DIBR with total focus images, one can again use o�ine techniques to esti-
mate the depth map of the total focus image, given that multiple views of the same scene have been
captured from di�erent positions, but this approach is not practical since it is basically the same as
performing DIBR with regular cameras using a much more expensive device. �e real strenght of
the plenoptic 2.0 cameras using total focus images is using the depth map generated in real-time by
the camera, such that no time is lost generating normal images from a lenslet picture, nor generating
an o�ine depth map. �is approach is the fastest one, thus completely enabling DIBR for real-time
applications.

Once again, it has the same drawback as in the lenslet image approach: having multiple plenop-
tic 2.0 cameras is very costly in terms of money. �ere exist some approaches to simulate plenoptic
cameras by means of normal cameras in order to save money, but at the cost of speed and time. An
example of simulation of plenoptic cameras can be found at [35].

It is important to note that, using dedicated so�ware and the plenoptic 2.0 camera’s API, one
can merge both the lenslet and total focus approaches and gain the bene�ts of both: the speed of
obtaining the in real-time the total focus image and its respective depth map, as well as obtaining
the set of sub-aperture views from the lenslet image.

2.4.3 Reference View Synthesizer
�e Reference View Synthesizer [36,37,38,39], or RVS, is the tool used to generate new views using
other reference views and some depth maps. �is so�ware belongs to the standard MPEG-I.

�e way it works is as follows. First, it needs the camera parameters, i.e. the extrinsic parameters
(position, rotation, etc.) and intrinsic parameters (focal length, lens distortion, etc.) for reference
image/s and the image/s one wants to synthesize. It will also need the depth maps of the reference
images. With that, the tool is able to form, from the reference images, triangles with pixels that have
the same depth. �en, those triangles are rotated and translated according to the camera parameters
of the reference view and the new view. �at may cause some distortion in the new image due to a
disocclusion. Next, the image will be upscaled during the rasterization of the warped triangles we
just obtained. With that, we will have one new upscaled image per reference view.
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In order to improve the quality of the resulting image, the several new upscaled images need to
be blended together. To do so, their pixels will be divided into high-frequency and low-frequency.
�e low-frequencies are then averaged together, whereas the high-frequencies will take as value the
pixel of the highest weight. �is will result into an image of higher quality.

�e �nal step is to ”�ll-in the gaps”. Gaps can happen because the reference views may not in-
clude certain parts of the image that the synthesized view would, so that part is unknown. To solve
this issue, these gaps will be inpainted, that is, giving those pixels a value according to the values of
the surrounding pixels. �is will only be performed if the area to be inpainted is small enough. Also,
regarding the inpainting algorithm it uses, it is worth noting that it takes into account the depth of
the pixels in order to avoid inpainting with values of pixels with a very di�erent depth, which could
lead to very bad results if their colours are not similar.

Figure 14 shows two images. �e one on the le� is the synthesized image without removing
the warped triangles. On the right, the disocclusion caused by these warped triangles is removed,
but there are some black areas that require inpainting. Examples of these small areas can be found
between the legs of the man that is closest to the camera, or the area below the object on the le�
with a red and white triangles texture.

Figure 14: Warped triangles image vs Clean image
[37]

�e tool takes as input the reference views, along with their respective depth-maps. It will also
need to use the camera parameters, both for the reference views and the views the user wants to
synthesize. All these information will put put in a con�guration �le, where other options, such as
the blending method, will be set by the user according to its needs. Refer to Appendix B.4 for further
information on installation and operation.

2.4.4 Previous Works on DIBR with Plenoptic Cameras
In the case of immersive applications, there has not been many research on plenoptic 2.0 cameras.
Recently, study for assessing plenoptic 2.0 cameras for real-time DIBR [40] applications was pub-
lished. In that work, the authors do a study of viability for using plenoptic 2.0 cameras for DIBR in
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real-time immersive applications.

�e procedure they do for evaluating the quality of plenoptic 2.0 camera depth maps generated
in real-time (at least at 30 fps) is very similar to the one that will be presented in this thesis in Section
5, even using the same so�ware. Figure 15 shows the pipeline they use:

Figure 15: Evaluation pipeline for synthesized views using Raytrix Plenoptic 2.0 camera with its
depth (top row) and estimate depth map by DERS (bo�om row)

[40]

As shown in the �gure, they �rst calibrate the cameras, then capture a dataset with a RayTrix
plenoptic 2.0 camera generating the depth maps and validating them. �en, they synthesize virtual
views using the RVS tool and the depth maps obtained with the RayTrix camera. In order to assess
the quality, they compare it with the synthesized images using depth maps generated with the of-
�ine tool DERS, which generates high quality depth maps, and then they compare it using IV-PSNR.
It is important to note that the depth maps generated by the RayTrix camera need some processing
in order adjust to the format accepted by the RVS tool.

In their work, Razavi et. al. synthesize virtual views using multiple reference views. �at allows
to generate the virtual views without occlusion/disocclusion artifacts, and that is how it is done in
real applications. In order to do so, they need to perfectly calibrate the camera, both for intrinsic
parameters and extrinsic parameters. RxLive and OpenCV are used for calibration. Even a�er doing
the calibration, their results have some artifacts due to small miscalibration errors, although those
artifacts are not very noticeable, thus the quality of their results if quite high, both subjectively,
checking the results visually, and objectively, using IV-PSNR. �ey �nally conclude that plenoptic
2.0 cameras are suited for real-time DIBR applications, although further research is needed in the
case of video, paying special a�ention to time coherence artifacts.

In the case of this thesis, since the main objective is to evaluate the quality of depth maps gener-
ated by di�erent approaches, DIBR will be performed using only one view as reference, in order to
avoid calibration issues that are outside of the scope of this work. Note that using just one view as
reference to perform DIBR is enough to assess the quality of a depth map. Having said that, in the
Appendices it can be found how to perform camera calibration using di�erent approaches, for the
sake of completeness and future developments, as well as in Section 3.5 shows the results of using
multiple reference views for synthesis of one virtual view using the di�erent approaches, illustrating
the problems that might arise if the calibration is not perfectly done, paying special a�ention to the
plenoptic 2.0 camera approach, whose calibration is harder since the depth map must be adapted
and be in conjunction with the camera parameters obtained during camera calibration.
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3 Pipeline forDepthEvaluation of Plenop-
tic 2.0 Cameras and Results

�is research targets assessment of plenoptic 2.0 cameras for DIBR, as well as the creation of a
solid and reproducible pipeline in order to do so. In fact, this pipeline can be used for assessing
the performance of any depth-sensing camera that could potentially be used in DIBR. �e present
chapter will address all the work that has been done in order to achieve the mentioned objectives.
It will be explained, step by step, how the proposed pipeline can be carried out. �e pipeline will
be divided into four di�erent phases that must be completed sequentially, one a�er the other, being
Acquisition, Depth estimation, View synthesis and Evaluation. In each phase, there are several
activities to be performed. Figure 16 shows the proposed pipeline in a schematic way:

Figure 16: Pipeline of work

�e �rst step is the acquisition. A RayTrix plenoptic 2.0 camera will be used for that, capturing a
total of 102 images: a 3x3 matrix (9 images) of views distanced by 3 centimeters, 58 images distanced
by 1 millimeters, that will take place in between the images of the second row of the matrix, and
�nally 35 extra pictures that will be used for calibration and generating a 3D mesh with Colmap.
Note that the images that will be captured are total focus, instead of lenslet.

Once the full dataset has been captured, then we proceed with the depth estimation. For that,
we will use three di�erent approaches: DERS, Colmap and RayTrix. In the case of Colmap, the 3x3
matrix and the 35 extra views will be used to perform a 3D rendering of the scene, that will allow
to extract depth maps of the required images. For DERS, only the 3x3 matrix will be used as input,
obtaining as output the depth maps of those same images. RayTrix, on the other hand, will generate
its own depth maps at the time of the capture. �ey will be processed accordingly to adjust to the
format required by RVS.

Having obtained both the views and their depth maps, we can continue with view synthesis.
Using the central view of the 3x3 matrix as reference view, 30 images to its le� and 30 images to its
right will be synthesized. �e positions of those virtual views are di�erent by 1 millimeter to the
right or to the le�, depending on the direction. Of course, the furthest virtual views (distanced by 30
millimeters) in each direction will coincide with two of the views of the 3x3 matrix, since those are
separated by 3 centimeters. For the li�le experiment with multiple views as reference, the central
view of the matrix will be generated, using the corners of the matrix as reference.
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Finally, in the evaluation step, both PSNR and IV-PSNR will be performed, using the images cap-
tured by the RayTrix as ground truth.

3.1 Acquisition of Datasets with RayTrix
In this section, it will be explained how the datasets of images have been captured, showing the
acquisition setup and the speci�cs of the RayTrix camera used.

3.1.1 RayTrix Camera
�e RayTrix camera used is the RayTrix R8 [41], with a lens of 25 millimeters focal length. It is a
multi-focused plenoptic 2.0 camera. It has the capability of changing the lens to other with di�erent
focal lenses, using c-mount. Its maximum frame rate is 30 frames per second (fps) and it has a lateral
resolution of 2 Megapixels. It has a micro-lens array (MLA) aperture F/Number of 2.8. Its pixel size
is 2.24 microns, and it has an electronic shu�er of the rolling type, with global start. It is connected
to the PC using the high speed USB 3.0, its image sensor is made by Toshiba and the 4D plenoptic
sensor baseline is quite small (XS, according to its technical details).

Figure 17: RayTrix R8 plenoptic 2.0 camera

In order to use it, one needs the so�ware RxLive. �is so�ware is able to capture image and
video. It can generate real-time lots of di�erent data: lenslet image, total focus image, depth maps,
point clouds, 3D images, 3D meshes, etc. One may modify the parameters to suit many di�erent
needs, and it can be done online during capture or o�ine, a�er capture. Consult the Appendix B.1
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or the RayTrix website for further information.

Before performing the acquisition, the RayTrix camera must be calibrated so that it perceives
depth correctly in order to generate correctly depth maps, 3D meshes, etc. Further information can
be found in the Appendix C.3.

3.1.2 Acquisition Setup
In order to capture all the required images for the experiment, an acquisition setup is required. �e
RayTrix camera has been a�ached to a robot to enable precise 3D movement. �at enables knowing
the position of the camera at all times, so that the matrix of 3x3 images can be captured maintaining
the distance of 3 centimeters between all views at all time. �at same robot has been used to captured
the images that distance from each other 1 millimeter, since its accuracy is high enough. �e robot
can be controlled from the PC with which the RxLive so�ware is operated, so the pictures can be
taken each time the robot is moved.

Figure 18: Acquisition robot with the RayTrix camera a�ached

In the case of the 35 extra views, those have been taken ”by hand”. �at is, the camera has been
detached from the robot and faced manually towards the scene. In this case, it is not important
the position of the camera, since the purpose of this extra pictures is that Colmap can use them to
generate its 3D reconstruction, since with the 3x3 matrix is not enough because the images are too
similar between them.
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�e scene has been set in table in front of the robot. �e camera is about 1.1 meters from the
wall, and the object from the scene that is closest to the camera is about 0.8 meters away. A total of
four lamps have been used in order to illuminate correctly the scene.

Figure 19: Scene ready to be captured

Figure 20: Complete acquisition setup
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3.1.3 Dataset
As mentioned before, the dataset is comprised of a total of 102 images. All these images are total fo-
cus instead of lenslet, since it is faster to acquire total focus than capturing lenslet content and then
transforming into a matrix of regular images using RLC. Also, for the purpose of the experiment,
there is no need to obtain multiview content per shot, with just the total focus picture is enough.

�e dataset can be divided into three parts: a 3x3 matrix of images (9 in total) separated by 3
centimeters each. �ese images are numbered starting with 1 from le� to right, then top to bo�om,
so the central view is number 5. �en, 58 images with 1 millimeter separation and 35 extra shots
taken by hand. �e 58 images separated by 1 millimeter can be divided into two groups of 29 each:
29 are in between the central view of the matrix (view 5) and the one to its le� (view 4), and the
other 29 have the same distribution but on the right direction, so they are placed in between views
5 and 6. Figure 21 shows how those images are distributed graphically:

Figure 21: Main distribution of the dataset

�e red dots correspond to the 3x3 matrix images: where top le�would be view 1, center view 5
and bo�om view 8, all of them separated by 3 centimeters in both X and Y directions. On the other
hand, the red line represents the 58 1 millimeter-separated images.

�e 3x3 matrix will be used for generating the depth maps using DERS, the row of 61 views
displaced by 1 millimeters (58 + 3 (central, le� and right)), for view synthesis, using the central
view as reference and the rest as ground truth when doing the evaluation of performance. Also, the
corners (views 1, 3, 7 and 9) will be used to synthesize view 5 (center) in the multiview experiment.
�e central view of the matrix corresponds to Figure 22. As observed in the �gure, the �eld of view
(FoV) of the RayTrix camera is very narrow, taking into account that the distance from the camera
to the wall is 1.1 meters and not all the objects appear completely in the picture.
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Figure 22: Central view of the matrix

Finally, the 35 remaining images, only serve the purpose of helping Colmap reconstruct a 3D
model of the scene. With that reconstruction, one can export camera parameters that can be used
for view synthesis, as well as for generating depth maps with DERS.

It is also worth mentioning that the dataset that has been explained is the main one, but several
other have also been captured in order to experiment, and some of the images from other datasets
will be shown along the document.

All the images are of size 1920x1080 pixels. �ey have been exported in JPEG format with 24-bit
encoding from RxLive. �is encoding has been chosen over 64-bit with PNG because Colmap does
not work properly with 64-bit images.

3.2 Depth Estimation
Once the whole dataset has been acquired, we can proceed with the next step, that is depth esti-
mation. As mentioned before, three di�erent approaches to obtain depth maps will be used: using
the MPEG-I so�ware DERS, the open source 3D reconstruction so�ware Colmap and RayTrix online
depth estimation, using RxLive to process and export the data.

3.2.1 Depth Estimation using Colmap
As mentioned in the previous sections, Colmap is an open source so�ware that o�ers a general-
purpose Structure-from-Motion and Multi-View Stereo pipeline. It can do many things, but in the
case of the experiment, it will be use for two purposes: estimate the camera parameters, both intrin-
sic and extrinsic, and perform 3D reconstruction, enabling extraction of depth maps for the images
we need.
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Colmap will make use of all the 102 images of the dataset. Once those have been inpu�ed, the
reconstruction can be started. A type of camera must be chosen in order to perform the reconstruc-
tion. ”Simple pinhole” camera model is chosen, since, a priori, the images taken by the RayTrix have
no distortion and the camera parameters are unknown. Before the reconstruction, the features of
the dataset must be �rst extracted and then matched. Once that is done, we can perform the 3D
reconstruction:

Figure 23: Colmap’s 3D reconstruction

With the reconstruction complete, the camera parameters can be exported as text. �en, using
the script colmap to json.py from the RPVC pipeline, we can transform the parameters to JSON for-
mat, which will be usable by DERS and RVS. Note that it will output the camera parameters for all
the cameras: they correspond to each one of the 102 images used for the reconstruction. �e param-
eters for the 35 extra images will be discarded, since they won’t be needed. �e intrinsic parameters
will be the same for all images since the same camera has been used to capture them all, and the
extrinsic parameters will re�ect the position and rotation of each one of them. In the case of the
extrinsic parameters, Colmap extracts them ”up to scale”. �at is, the units of the parameters are not
known. In the case of this project, the position metrics were very similar to decimeters (assuming
some small error), so decimeters was the unit used in all the con�guration �les.

A�er the 3D reconstruction is complete, we can start with the dense reconstruction. �is will
output a 3D model that can be visualized with an external tool, but also the depth maps for all the
102 pictures. It will output two types of depth maps: photometric and geometric, as explained the in
the Colmap section. Figures 25 and 26 show the photometric and geometric depth maps respectively,
along with the reference view in Figure 24. Ho�er colours mean that the objects are far from the
camera, whereas colder colour signify the objects are close to it, both in photometric and geometric
depth maps.

As it can be noted, both depth maps have missing data. It is more noticeable in the geometric
depth map, since the missing data is coloured in black, whereas in the photometric one it looks like
noise. �is happens whenever Colmap �nds a texturless area, such as the faces of the cubes which
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are uniform in colour. In order to try to solve it, the window size patch of the algorithm used to
generate the depth maps can be increased up to size 20 (by default it’s of size 5).

Figure 24: Reference view (Colmap)

Figure 25: Colmap’s photometric depth map

28



Figure 26: Colmap’s geometric depth map

A�er increasing the size to 20, the depth maps obtained are shown in Figures 27 and 28.

Figure 27: Colmap’s photometric depth map (patch size 20)

Figure 28: Colmap’s geometric depth map (patch size 20)
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Once again, even a�er increasing the patch size to the maximum size supported, the depth maps
still have missing data. Another notable thing is the loss of quality and sharpness: the unicorn in
the patch size 20 depth maps appears bigger than it actually is. �is is specially notable in the head,
more precisely in the horn and the ears. �at happens in both photometric and geometric depth
maps:

(a) Patch size 5 (b) Patch size 20

Figure 29: Unicorn’s head, photometric

(a) Patch size 5 (b) Patch size 20

Figure 30: Unicorn’s head, geometric

Since the areas using patch size 20 are relatively small and are inside regions (borders in general
are well de�ned, regardless of the patch size), we decided to inpaint the depth maps using OpenCV
[42]. It o�ers two di�erent algorithms: Telea (method from Alexander Telea) and NS (Navier-Stokes
based method). A�er several experiments, the Telea method works be�er with the depth map gener-
ated using window size patch 20. Note that this inpainting method will only work properly because
the edges of the objects are well delimited and it won’t mix depth values that are not within the
region.

In general, Colmap’s depth maps have good quality: the objects and edges are well de�ned, and
it works very well when the objects are very textured. On the other hand, with textureless objects,
it does not work as well: there is a lot of missing data, and some regions may not be well de�ned,
mixing with other regions. Figures 31a and 31b show an example of this: the pencil is mixed with
the background in the depth map, leading to the same result in the synthesized view.
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(a) Depth map (b) Synthesized view

Figure 31: Pencil image

Note that the dense reconstruction to obtain the depth maps is quite demanding for the com-
puter and takes quite a lot of time, specially in the case of using the maximum window size patch,
which takes much more time to complete than using a window size patch of 5.

�e generated depthmaps are in binary format, so to transform them the script called dense to exr.py
from the RPVC pipeline has been used to change its format to EXR, which is accepted by RVS. Note
that not every depth map will be used: only the corners of the 3x3 matrix (views 1, 3, 7 and 9) and
the central view (view 5) are useful.

3.2.2 Depth Estimation using DERS
To generate depth maps using DERS, the camera parameters exported previously from Colmap will
be used. In this case, only four �ve maps will be generated: views 1, 3, 5, 7 and 9 from the 3x3 matrix.
DERS will use what are called search views in order to synthesize the depth map of the reference
view. In order to do so, all 9 images from the matrix will be used as search views in all �ve depth
maps synthesis. In general, it would su�ce to use two search views and the reference view, but to
increase quality we decided to use all 9 pictures.

In order to generate them, the images have been transformed to YUV420 format using FFmpeg
[43], which is an open so�ware to perform multimedia conversion between formats. �e output
�les are in format YUV400 16le, which uses 16-bit low endian enconding. It is a greyscale format.
Brighter colours mean the objects are close to the camera, whereas darker ones mean the opposite.
In the case of the color black, it means there is missing data, the same as in Colmap’s depth maps.

�e depth maps generated using DERS and Colmap’s camera parameters will be on the same
scale and units as the parameters, so no need for special treatment.
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Figure 32: Reference view 5 (DERS)

Figure 33: DERS depth map (view 5)

DERS also takes quite some time to �nish generating one depth map, and it is also quite demand-
ing on the computer. But, as can be seen in Figure 33, the result is very good, smooth and precise. It
is also worth noting that it needs texture to perform well, the same as Colmap, as there can be seen
slight di�erences in depth in areas where there should be no di�erence, such as in the rubik cube,
or some drawings on the cubes, like the apples or the bananas.
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3.2.3 Depth Estimation using RxLive
�e third and �nal approach for generating depth maps is using RayTrix’s native depth maps, ex-
ported from the RxLive so�ware. In this experiment, RxLive 5.0 has been used. In this case, the �le
exported is the coloured depth map, in greyscale, to match the DERS output format.

In this case, special treatment is needed, since RayTrix uses its own scale, as mentioned in Section
3.3. Once the depth map values have been normalized according to the RayTrix scale using the
formula presented in [40] and that is depicted in Equation 3, they can be used inmultiview synthesis,
since they will now match the scale of the camera parameters, which is the real physical scale. In
the case of view synthesis using only one reference, there is no need to normalize them. �e reason
behind it is that no synchronization of the position of multiple reference images (to synthesize one
view) is needed, thus there won’t be any misalignment between the objects.

Dm(x, y) = Zmin +
DRayTrix(x, y) ⇤ (Zmax � Zmin)

255
(3)

Where Dm represents the normalized depth of each pixel, DRayTrix the depth assigned by the
RayTrix to each pixel, and Zmin and Zmax the minimum and maximum values that the RayTrix as-
signed to its depth map.

Figure 34: Reference view 5 (RayTrix)
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Figure 35: RxLive depth map (view 5)

�ese depth maps are captured at the same time as the total focus images. �ey only need some
post-processing to improve the quality using RxLive.

As seen on Figure 35, the quality of the depth map is very good, although is has some small ar-
tifacts due to the refraction of the light and how it is captured by the micro-lens array. �ose small
artifacts can be eliminated, but at the cost of losing quality on other areas. Once again, brighter
colours mean proximity and darker colours mean bigger distance.

3.3 View Synthesis
With the depth maps generated, view synthesis can be performed. Only one view will be used as
reference, being this one the central image of the 3x3 matrix. With that, 60 virtual views will be
synthesized, 30 to the le� of the reference and 30 to the right, using RVS in all the cases. �is view
synthesis will be performed three times: one using Colmap’s depth maps, another using DERS depth
maps and, �nally, a third one using RayTrix native depth maps.

As mentioned previously, the synthesized images will be 1 millimeter away from each other, so
the �rst one will be separated 1 millimeter from the reference view to the le�, the next one separated
2 millimeters to the le�, until a distance of 30 millimeters (or 3 centimeters) is achieved, in both le�
and right directions. �e performance is expected to be similar in both directions. �e reference im-
age, along with the images displaced 5mm and 30mm to the le� are depicted in Figures 36, 37 and 38.

In each section, it will also be discussed the quality of the synthesized views, that will be the
measure of the quality of the depth maps generated by each approach, since the quality of the depth
is crucial when performing DIBR.
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Figure 36: Reference view

Figure 37: View moved 5mm to the le�

Figure 38: View moved 30mm to the le�

35



3.4 Objective�ality Assessment
In this section, it will be discussed objectively using metrics well known in the industry. Note that
in most cases, the subjective method of quality assessment through visual checking takes preference
over objective methods such as PSNR. �e reason for this is that, objective methods only take into
account di�erences in pixel value, but visually one can clearly see if there is something wrong with
the image or not. �ere might be the case where the objective measure is high, but visually one
clearly notices very important defects that have a big impact in realism.

3.4.1 �ality Measures
�e quality measures chosen will be two: PSNR and IV-PSNR. Both are very similar metrics, being
the �rst a more general approach and the second the specialized approach for immersive video.

3.4.1.1 Peak Signal-to-Noise Ratio
Peak Signal-to-Noise Ratio, or PSNR for short, is a metric that has been used for quality assessment
of images. It is a ratio between the maximum value a pixel can take and the noise that can e�ect the
quality. It is measured in decibels (dB), and the higher the value is, the higher quality the image has.
It can be calculated using the following equation:

PSNR = 10 log10(
MAX2

MSE
) (4)

WhereMAX is the maximum possible value a pixel can take (this will depend on the encoding),
and MSE is the Mean Squared Error.

In the case of colour images, since each bit has three channels, the MSE is the sum over all
squared di�erences for each colour. Another alternative could be to transform the image to another
colour space, and then use MSE normally.

Regarding the values of the metric, any image below 20dB has a bad quality, between 20dB and
30dB any image would get a pass, between 30dB and 40dB the image quality is good and above 40dB
it’s extremely good.

3.4.1.2 Immersive Video Peak Signal-to-Noise Ratio
Immersive video PSNR, or IV-PSNR, is a new metric, which is the version of PSNR adapted to the
needs of immversive video. It was presented in [44]. Its main di�erence with normal PSNR is that,
instead doing it pixel by pixel, it uses a window to perform pixel shi� in order to �nd the pixel,
within that window, more suitable to perform the comparison with the ground truth image. It also
incorporates a global component di�erence, in order to address any changes that may occur globally
in one image (or frame of a video) and that are correct. �e formulation to calculate IV-PSNR is the
following:

IV � PSNR = 10 log10(
MAX2

IV �MSE
) (5)
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MAX is once again the maximum possible value that a pixel in an image can take, and IV-MSE is
the immersive video mean squared error. �e di�erence between IV-MSE and normal MSE is that it
takes the di�erence between the value of the selected pixel and the pixels within a speci�ed window
such that the error is minimized, thus choosing the most similar pixel of the window.

In general, it outperforms PSNR in immersive video, and it can also be used for other applica-
tions that are not in the �eld of immersive video, virtual reality, etc.

�e tool used for measuring each one of the synthesized images can be found in the following
repository [45]. It can perform PSRN, IV-PSNR and WS-PSNR, but only the �rst two will be taken
into account. Graphics for each approach will be shown, representing the drop of quality in PSNR
or IV-PSNR as the distance increases.

3.4.2 Objective Assessment of View Synthesis using Colmap
Depth Maps

In the case of Colmap, two graphics are presented: one for PSNR and another one for IV-PSNR.�e
six di�erent approaches have been grouped together, so they can be compared more easily.

Figure 39: Colmap, PSNR
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Figure 40: Colmap, IV-PSNR

As expected, both graphs are almost equal, mostly sharing the shape. IV-PSNR values are higher,
since the metric is more permissive than regular PSNR. Regarding the results, the best one is yielded
by geometric inpainted depth maps, with window size patch of 20. �is matches the visual assess-
ment, since subjectively they also have the best quality. In the case of photometric depth maps with
patch size 20, there is no di�erence in the metrics, both in PSNR and IV-PSNR, since both lines have
the same value. �at means the inpainting has not had any positive e�ect on the view synthesis.

On the other hand, photometric depth maps clearly outperform geometric depth maps without
inpainting, since photometric, even with window size 5, greatly outperforms geometric with size
20. One possible reason for this is that geometric depth maps have more missing data than photo-
metric, thus when synthesising views that missing data will lower the metric. Objectively, it seems
it is be�er to have the noise of di�erent colours generated by the use of photometric depth maps
than the missing data, even though a�er the visual check it would be preferable to have missing data
instead of generalized noise. On the other hand, synthesizing to the right seems to have a slightly
be�er performance, both in PSNR and IV-PSNR, specially noticeable in geometric depth maps.

In general, the results are quite low, being the maximum value of geometric inpainted depth
maps of 17.87 and 24.82 for PSNR and IV-PSNR respectively. �is is due to the missing data in the
synthesized views in textureless areas, meaning heavier processing of the depth maps is needed in
order to generate high quality virtual views.

3.4.3 ObjectiveAssessment ofViewSynthesis usingDERSDepth
Maps

In the case of DERS, we have the following graph:
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Figure 41: DERS, PSNR and IV-PSNR

In this case, both PSNR and IV-PSNR values are higher when the synthesized view is close and on
the le� of the reference view. On the other hand, the right hand side has a slightly be�er performance
when generating views far from the reference. �e values themselves are quite higher, compared
to the ones obtained a�er using Colmap’s depth maps, being the maximum values of 27.48dB and
33.61dB for PSNR and IV-PSNR respectively. Another thing to highlight is that, on the le� side, the
quality drops very quickly as the distance increases, referring to close distances (between 1mm and
5mm). �at is also the case in the right side, but between 1mm and 3mm. �e main reason for that
is that the disocclusion artifact forming the ”shadow” of the unicorn is starting to appear.

When synthesizing to the right, the drop of quality in closer distances is more irregular, since
there are views that are further away than others but have higher values, and quality by extension.
�is might be result of the physical structure of the scene, yielding a di�erence in performance de-
pending on the direction of the synthesis.

3.4.4 ObjectiveAssessment ofViewSynthesis usingRxLiveDepth
Maps

�e PSNR and IV-PSNR values for the views synthesized using RayTrix’s native depth are repre-
sented in Figure 42. Note that it is not the same image as the one shown in Figure 41, there are
subtle di�erences.
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Figure 42: RayTrix, PSNR and IV-PSNR

As observed in the �gure, the curves are almost exactly the same as the DERS ones. Maximum
values correspond to the view distanced 1mm to the le� of the reference: 27.47db for PSNR and
33.57dB for IV-PSNR. �ose values are extremely close to the ones obtained with DERS, and quite
higher compared to Colmap. �e reason behind such similarity in values betweenDERS and RayTrix
might be the disocclusion artifacts that appear inDERS synthesized images in the form of a ”shadow”
of the unicorn. Indeed, the performing both PSNR and IV-PSNR in the pixels of that area, the result
will drop signi�cantly. In the case of RayTrix it will remain higher because the synthesized views
do not have big disocclusion artifact, they are much smaller, and the area has been warped to �t in,
yielded much higher values a�er calculating the metrics for those regions.

We can arrive at the same conclusions we arrived with DERS: the right side is more irregular,
probably due to the physical characteristics of the scene captured, and on the le� side the perfor-
mance decreases faster with the distance, being specially noticeable in the closes range of proximity
(5 to 1 millimeters).

A�er the objective quality assessment, apparently the depth maps generated by RayTrix are of a
quality equivalent to the ones generated byDERS, although they will need some processing to adjust
the scale of the values to the one of the camera parameters. But, subjective quality assessment says
otherwise: DERS synthesized views are much sharper in edges, specially as the distance increases
(see next section). On the other hand, Colmap produces good quality depth maps, but they are very
limited due to the fact that they have a lot areas with missing data in zones were the texture is uni-
form. Taking into account that Colmap is an open source so�ware, there is room for evolution and
improvement, making it possible to address this issue in the future. Another solution might be to
perform heavier processing in the depth maps than the simple inpainting that has been performed,
leading thus to be�er results, since the basics like edge detection and right depth detection are there.
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3.5 Subjective�ality Assessment
Subjective quality assessment will be performed by visualization of each one of the synthesized
views, paying special a�ention to speci�c areas such as objects with much detail and texture, sur-
faces with not much texture and edge.

3.5.1 Subjective Assessment of View Synthesis using Colmap
Depth Maps

In the case of Colmap we have a total of six possibilities: photometric and geometric, with window
patch size of 5, 20 and 20 with inpainting. With that we can check the quality of each one of the
possible depth maps, and then later decide which one is more suitable depending on the application.

Two images to the le� direction will be shown using each approach, with distances of 5 millime-
ters and 30 millimeters.

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 43: Ground truth (Colmap)

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 44: Geometric, window patch size 5
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(a) 30 mm to the le� (b) 5 mm to the le�

Figure 45: Geometric, window patch size 20

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 46: Geometric, window patch size 20, inpainted depth map

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 47: Photometric, window patch size 5
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(a) 30 mm to the le� (b) 5 mm to the le�

Figure 48: Photometric, window patch size 20

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 49: Photometric, window patch size 20, inpainted depth map

Magni�ed regions are shown next in order to be�er show detail in areas with a lot of texture
(unicorn), edges and areas with li�le texture (edges and faces of cubes):

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 50: Geometric, window patch 5, unicorn
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(a) 30 mm to the le� (b) 5 mm to the le�

Figure 51: Geometric, window patch 5, edges and �at areas

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 52: Geometric, window patch 20, unicorn

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 53: Geometric, window patch 20, edges and �at areas
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(a) 30 mm to the le� (b) 5 mm to the le�

Figure 54: Geometric, window patch 20, inpainted depth map, unicorn

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 55: Geometric, window patch 20, inpainted depth map, edges and �at areas

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 56: Photometric, window patch 5, unicorn
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(a) 30 mm to the le� (b) 5 mm to the le�

Figure 57: Photometric, window patch 5, edges and �at areas

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 58: Photometric, window patch 20, unicorn

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 59: Photometric, window patch 20, edges and �at areas
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(a) 30 mm to the le� (b) 5 mm to the le�

Figure 60: Photometric, window patch 20, inpainted depth map, unicorn

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 61: Photometric, window patch 20, inpainted depth map, edges and �at areas

As seen in the images, and being compared with the ground truth, we can say, subjectively,
that the quality of the synthesis increases with the window patch size, specially in the case of the
inpainted result, where all the objects are almost perfect. On the other hand, the performance of
the geometric depth maps is be�er in general, since photometric maps produce noise in the form
of ”moved colour” in the synthesized views, as it can be appreciated specially in Figure 49a. It is
also worth noting that areas with no texture still remain uncolored. �at happens because the depth
maps have no values in there.

On the other hand, as the distance is increased, the quality of the synthesis decreases. �is be-
comes more noticeable with the black band on the le� of the images, as well in the ”shadow” of the
unicorn that is very noticeable in 30 millimeters away synthesized views. �e black band on the le�
is there because the reference image does not have information about that area, since it is not in the
picture. Regarding the unicorn ”shadow”, its reason of appearance it disocclusion, since that area
was occluded in the reference by the unicorn and now it is not, hence the artifact takes the form of
the object that was occluding it, the unicorn. �ese artifacts appear not only using Colmap’s depth
maps, but also using DERS and RxLive depths.

While the evaluation remains subjective, it seems that Colmap performs well when generating
depth maps for view synthesis, specially when using geometric depth maps. Its main drawback is
the lack of data when dealing with texturless areas, as it can be observed in the images. But, it is able
to correctly identify borders and assess correctly the depth of the objects, as long as it has enough
reference images to perform the estimation.
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3.5.2 SubjectiveAssessment ofViewSynthesis usingDERSDepth
Maps

In the case of DERS, we no longer have that many options, there is only one choice, which is using
the unique output the so�ware gives.

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 62: Ground truth (DERS)

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 63: DERS

Magni�ed regions are shown next in order to be�er show detail in areas with a lot of texture
(unicorn), edges and areas with li�le texture (edges and faces of cubes):

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 64: DERS, unicorn
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(a) 30 mm to the le� (b) 5 mm to the le�

Figure 65: DERS, edges and �at areas

Using DERS as a tool to generate depth maps, we can visually check that the synthesized views
are almost perfect. �e only noticeable artifacts are the disocclusion of the background behind the
unicorn and the missing data on the le�. It seems that, a�er subjective evaluation, DERS produces
high quality depth maps, as it is implied since it is a tool has been in development for quite some
time and belongs to the MPEG-I standard.

3.5.3 Subjective Assessment of View Synthesis using RxLive
Depth Maps

In the case of RayTrix native depthmaps, when exporting coloured depthmaps from RxLive, the user
can modify several parameters, such as the depth algorithm, the maximum and minimum depth or
the number of iterations among other things, in order to obtained the best quality depth map, and
this can be performed real-time or o�ine. In the case of this work, it has been o�ine, a�er the
capture of the dataset.

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 66: Ground truth (RayTrix)
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(a) 30 mm to the le� (b) 5 mm to the le�

Figure 67: RayTrix

Magni�ed regions are shown next in order to be�er show detail in areas with a lot of texture
(unicorn), edges and areas with li�le texture (edges and faces of cubes):

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 68: RayTrix, unicorn

(a) 30 mm to the le� (b) 5 mm to the le�

Figure 69: RayTrix, edges and �at areas

As observed in the �gures, the quality of the synthesized views is quite high, specially when
the distance is not high. As the distance increases, the straight lines are not straight anymore, but
almost every detail of the objects is kept. Again, there is the black band on the le�, and, in the case
of the disocclusion artifacts, there is no black ”shadow” of the unicorn. Instead, the pa�ern on the
background is stretched to �ll the gaps, even though some small holes remain. �is might happen
because RVS tries to inpaint holes in synthesized views if the those holes are not big. Again, a�er
subjective assessment, it seems that RayTrix native depth maps are of good enough quality, even
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though visually their results seem inferior to those obtained using DERS, specially with bigger dis-
tances.

3.6 View Synthesis for Virtual Reality
In this section, a more practical approach will be taken to assess the quality of depth maps generated
by the three di�erent ways mentioned before. For virtual reality, more than one view must be used
as reference in order to avoid missing data artifact like the black bands on the sides seen previously,
as well as avoiding disocclusion artifacts like the ”shadow” of the unicorn.

In this experiment, image synthesis has been performed using multiple views as reference. �e
central view of the matrix has ben synthesized using the corners of the multiview matrix as refer-
ence. Figure 70 shows it schematically.

Figure 70: Multiview synthesis for view 5 scheme

Once again, there are six synthesized images using Colmap’s depth map, one for DERS and one
for RayTrix native depth.

Figure 71: Reference view 5, ground truth
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(a) Geometric (b) Photometric

Figure 72: Colmap, window size patch 5

(a) Geometric (b) Photometric

Figure 73: Colmap, window size patch 20

(a) Geometric (b) Photometric

Figure 74: Colmap, window size patch 20, inpainted depth map
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(a) Geometric (b) Photometric

Figure 75: Colmap, window size patch 20, inpainted depth map, inpainted synthesized view

(a) DERS (b) RayTrix

Figure 76: DERS and RayTrix

Magni�ed regions are shown next in order to be�er show detail in areas with a lot of texture
(unicorn), edges and areas with li�le texture (edges and faces of cubes):

(a) Geometric (b) Photometric

Figure 77: Colmap, window size patch 5, unicorn
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(a) Geometric (b) Photometric

Figure 78: Colmap, window size patch 20, unicorn

(a) Geometric (b) Photometric

Figure 79: Colmap, window size patch 20, inpainted depth map, unicorn

(a) Geometric (b) Photometric

Figure 80: Colmap, window size patch 20, inpainted depth map, inpainted synthesized view, unicorn
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(a) DERS (b) RayTrix

Figure 81: DERS and RayTrix, unicorn

(a) Geometric (b) Photometric

Figure 82: Colmap, window size patch 5, edges and �at areas

(a) Geometric (b) Photometric

Figure 83: Colmap, window size patch 20, edges and �at areas
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(a) Geometric (b) Photometric

Figure 84: Colmap, window size patch 20, inpainted depth map, edges and �at areas

(a) Geometric (b) Photometric

Figure 85: Colmap, window size patch 20, inpainted depth map, inpainted synthesized view, edges
and �at areas

(a) DERS (b) RayTrix

Figure 86: DERS and RayTrix, edges and �at areas

In the case of Colmap, the image quality keeps increasing with the image patch size, although
surrounding the unicorn there are some noticeable artifacts that are due to the loss of sharpness in
the depth maps. Even a�er inpainting depth maps of patch size 20, in the synthesized views there
are still some small areas with missing data. �at has been solved inpainting the synthesized views
once again, as shown in Figures 75a and 75b. With small patch size, the holes in the synthesized
views are very big, as expected, but the objects are very well de�ned, with no noticeable artifacts
in or around them. In the case of photometric depth maps, there is some noise in the form of the
wrong colour, same issue as with just one reference view, so the conclusion would be to always use
geometric depth maps if possible, or �nd a way to improve the quality of photometric depth maps
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a�er they have been generated by Colmap but before using them for view synthesis with RVS. Note
that the inpainting method for synthesized views is working because the gaps are very small and
within regions of the same colour that are well delimited. It is worth mentioning that in Figures 75a
and 75b colour is di�erent from the rest because, in order to inpaint them, they were transformed
to PNG, since OpenCV does not support YUV format.

Using DERS, visually the results are good in general. �e only artifacts that appear are surround-
ing objects, specially in the around the unicorn. �is is happening because in the depth maps, even
though their quality is good, in each view it has a di�erent value. One possible solution would be
post-process the depth maps and put certain pixels to zero, so that RVS does not take those values
into account when synthesizing the view. �e pixels that should be zero are obtained comparing the
synthesized view with the ground truth, and then making a mask which is the result of the subtrac-
tion of the values of one image to the values of the other, being those values above a certain threshold.

In the case of RayTrix native depth estimation, the result is not good. It clearly su�ers of the so
called ghosting e�ect. �at type of artifact happens when the views are not correctly aligned, so
it puts the objects in several places at the same time. Being not correctly aligned means there are
calibration issues, thus concluding that the camera parameters that have been generated by Colmap
have some small error that is causing the ghosting e�ect. �is is only happening using RxLive ex-
ported depth maps because those are the only ones that use their own scale, DERS and Colmap
generated depth maps use those same camera parameters, thus they are on the same scale. In order
to remove the ghosting e�ect, another calibration method to obtain camera parameters should be
used. In [40], they make use of OpenCV calibration and they obtained good results. It has not been
performed in this work because calibration is out of the scope of the thesis, multiview view synthe-
sis has been performed as a complementary experiment.

Objective measurement of the synthesized images using PSNR and IV-PSNR has also been per-
formed. �e results are shown in the following table, being ordered from higher to smaller values,
taking precedence IV-PSNR:

Method PSNR IV-PSNR
DERS 26.2700 dB 33.3505 dB

Colmap, geometric, inpainted synthesis 26.0597 dB 32.4207 dB
Colmap, photometric, inpainted synthesis 25.3011 dB 30.9426 dB

RayTrix 20.9254 dB 27.1370 dB
Colmap, geometric, inpainted depth 23.6127 dB 26.0597 dB
Colmap, photometric, inpainted depth 16.6326 dB 22.5722 dB

Colmap, photometric, size 20 16.6326 dB 22.5722 dB
Colmap, geometric, size 20 12.7498 dB 19.2263 dB
Colmap, photometric, size 5 12.4751 dB 18.2232 dB
Colmap, geometric, size 5 8.5058 dB 14.6883 dB

Table 1: PSNR and IV-PSNR values for the synthesized views.

Objectively, in terms of PSNR, the best result is yielded by DERS, followed by Colmap’s geomet-
ric depth map with window patch size of 20 inpainting both the depth map and the output image.
RayTrix depth falls behind both DERS and Colmap’s best performances, although this is expected,
since it has ghosting e�ect. With respect to Colmap’s depth map with small patch size or without
inpainting, the PSNR values are very low, but it is expected since it has quite a lot of missing values.
Contrary to what visually can be said, photometric depth maps yield be�er PSNR values when using
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low patch size or no inpainting than geometric depth maps.

With respect to IV-PSNR values, we get to the same conclusion: DERS comes on top, followed
closely by Colmap’s inpainted geometric depth map with window size 20 and inpainted result. �e
remaining methods mantain the same positions as with regular PSNR. As seen before, IV-PSNR
values are higher than regular PSNR. �e values themselves are not very high either, not reaching
34dB in any case. �e only IV-PSNR value below 30dB is the one corresponding to the RayTrix. In
general, the use of the three di�erent approaches is usable in multiview synthesis, but needs further
re�ning to obtain top-quality synthesized views.
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4 Comparison of DepthMaps by RayTrix,
and Azure Kinect vs DERS for DIBR

In this section, a comparison with another depth-sensing device will be addressed. We will be com-
paring the performance of the RayTrix camera against the Azure Kinect.

In the master thesis ”Evaluation of the Azure Kinect depth sensor for view synthesis” [46], Hoet
et. al. perform an evaluation of the Kinect for view synthesis, very similar to the work explained in
this manuscript. Indeed, they use the samemetrics for objective quality evaluation, and the captured
dataset is the same: 3x3 matrix, 58 1 millimeters separated views and 35 extra pictures for calibration
using Colmap. Note that the dataset captures the same scene captured in this work, and in the exact
same positions for the matrix and the 1mm distance, using the same robot. Indeed, that will enable
the comparison.

Figure 87: Capturing se�ing

�e objective of this comparison is to address the strengths and weaknesses of each device com-
pared to the other, since it is not possible to perform a completely objective comparison because the
two cameras have a very di�erent �eld of view: the one of the RayTrix is very narrow, whereas the
Kinect’s one is very wide. �us, we will focus on the di�erence of IV-PSNR values of synthesized
views using the native depth maps with respect to the ones obtained using DERS, always using only
one view as reference for the synthesis, as explained previously. Note that here we are using DERS
as a quality measure. On the other hand, we will also check subjectively certain areas of the syn-
thesized images, such as edges, �at textureless areas and object detail.

First, wewill address IV-PSNR values. As it can be observed in Figure 88, IV-PSNR values both for
RayTrix and Kinect depth synthesized views are shown, along with DERS synthesized views using
the two di�erent cameras. As shown previously, the quality for DERS (RayTrix) and the RayTrix
depth maps have an extremely similar quality, thus almost overlapping. In the case of the Kinect,
the virtual views generated using Kinect’s depth map have worse quality than the ones generated
usingDERS depthmaps. �is di�erence is represented in Figure 89. �e di�erence in quality between

59



RayTrix and DERS is almost 0, whereas in the case of the Kinect the loss of quality is much higher,
specially in views close to the reference. On the other hand, the performance of the Kinect is very
robust, since the loss of quality of far away views with respect to closer ones is very low: 28.75dB
with respect to 32.5dB on the le� side, and 29.01dB with respect to 32.5dB on the right.

Figure 88: RayTrix, Kinect and DERS, IV-PSNR

Figure 89: Loss of quality between RayTrix and Kinect with respect to DERS

Regarding the big di�erence in quality of DERS using RayTrix as capturing device and DERS
using Kinect, it is probably due to the di�erence in the �eld of views of both cameras. Since the
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RayTrix FoV is much more narrow, it will capture only the objects of the scene, and with much more
detail. On the other hand, the Kinect, with a much wider FoV, will also capture the surrounding area
of the scene, at the cost of close detail in objects. We must also take into account that the image
sizes are not the same: RayTrix images are of size 1920x1080 pixels, whereas Kinect’s are 2048x1536
pixels. Note that the Kinect images have been cropped from 4096x3072 to half that size, the original
images have a FoV of 120º. �is cropping has been made in order to make it easier to perform the
visual comparison with RayTrix-captured images. Another big reason for such di�erence in quality
is the aforementioned disocclusion artifacts that appear in the rendered views from the RayTrix,
specially in the case of using DERS depth maps. �at also makes the loss of quality between RayTrix
and DERS almost 0.

To illustrate the di�erence in FoV of both cameras, even a�er cropping Kinect’s images, Figures
90a and 90b are shown, both being the central view of the 3x3 matrix, being the cameras placed
at exactly the same position. �e di�erence is clear: the RayTrix camera captures a fraction of the
image captured by the Kinect, but with much more detail.

(a) RayTrix (b) Kinect

Figure 90: Central view

Next, we will perform subjective assessment, visually. In order to do it, images that are 5 mil-
limeters and 30 millimeters, to the le�, will be compared, using RayTrix or Kinect depth maps. First
it will be shown the whole image, then textureless �at areas, followed by edges and �nally focusing
on the unicorn, since it is the object with most details.

(a) RayTrix (b) Kinect

Figure 91: 5mm to the le�
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(a) RayTrix (b) Kinect

Figure 92: 5mm to the le�, unicorn

(a) RayTrix (b) Kinect

Figure 93: 5mm to the le�, edges and �at areas

With only 5mm distance, the RayTrix camera clearly comes on top. Despite having the missing
information black band on the le�, the rest of image is almost visually perfect. Edges are smooth and
well de�ned, and it is able to capture and synthesize a lot of detail, as seen in the unicorn. On the
other hand, Kinect, has some issues in the edges, having some small artifacts in some of them, while
other are very sharp. In the case of the detail of the unicorn, quite a lot of detail is also kept, but in
the fairy that is riding it there are some artifacts, probably due to the reprojection error because of
the displacement between the RGB and depth sensors. Also, there are some artifacts in the white
and blue cloth in which the objects of the scene are placed. �ese artifacts are due to the limitations
of the depth sensor, since in that area the projected rays do not refract back to the sensor correctly.

(a) RayTrix (b) Kinect

Figure 94: 30mm to the le�
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(a) RayTrix (b) Kinect

Figure 95: 30mm to the le�, unicorn

(a) RayTrix (b) Kinect

Figure 96: 30mm to the le�, edges and �at areas

In bigger distances, 3cm in this case, RayTrix performance decays quite a lot, but the Kinect
maintains a similar performance. In the case of RayTrix, disocclusion artifacts start appearing next
to the unicorn (black areas on the le�). Also, the edges start blurring and are not straight anymore,
similar to what happened with the multiview synthesis. In any case, most of the detail is kept,
specially in the unicorn: its edges are a bit blurry, but one can clearly recognize it without major
issues. In the case of the Kinect, edges have the same quality as before: some are very sharp and
well de�ned, but other contain artifacts, but detail in areas with a lot of texture (the unicorn) is lost,
generating major artifacts a�ecting to the shape and details.

In general, we can conclude that RayTrix plenoptic 2.0 cameras are more suited for capturing
detail. On the ther hand, Kinect is more suited to capture wider angles at the cost of detail. Depend-
ing on one’s needs and restrictions, one must choose one over the other. It must also be taken into
account the cost of each device: the RayTrix camera costs several tens of thousand of euros, whereas
one may acquire the Kinect with several hundreds.

Finally, it is worth noting that in this case, colour correction has not been performed. It is clear
that the colours of the compared images captured by di�erent devices are di�erent, even though
the scene and light conditions were the same during capture. In a future and deeper comparison, it
should be corrected, using the colour correction tool proposed to the MPEG-I standard [47,48]. It
would be specially necessary in the case of using multiple cameras, and it would also help in the
subjective comparison, since the objects would have the exact same colours.
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5 Conclusions and Future Works
5.1 Summary and Conclusion
During the elaboration of this masther thesis, assessment of several approaches for generating depth
maps for view synthesis has been performed. A scene has been captured using a RayTrix plenoptic
2.0 camera, generating a dataset of 67 useful images for view synthesis, 9 of them ordered in a 3x3
matrix, separated by 3 centimeters each, and the rest ordered in a straight line, distanced from each
by 1 millimeters. �en, depth maps have been generated using three di�erent approaches: DERS,
Colmap and RayTrix. With those three possibilities, view synthesis with RVS of the 1 millimeter-
separated images has been performed using one view as reference. Also, a li�le experiment using
multiple reference views has been performed. Finally, a comparison between two depth-sensing
devices, Azure Kinect and RayTrix camera, has been done.

A�er completing the experiment, we observed that the RayTrix plenoptic 2.0 camera is able to
generate depth maps of high-enough quality for DIBR real-time applications, since RayTrix is capa-
ble of generating those depth maps at a maximum rate of 30 frames per second. Regarding Colmap,
we can asseverate it is also a great tool that is available to anybody since it’s open source, but it has
several limitations when generating depth maps, specially when it is encountered with textureless
surfaces. �ose depthmaps are sharp feature detection and depth assessment, but are not completely
�lled, so they would need further processing in order to achieve quality similar to one achieved with
DERS or RayTrix depth maps. Finally, as expected of a standarization tool, DERS is yielding the best
quality depth maps of the three.

In the case of real applications, we observed that it is very important to perform correctly camera
calibration when using RayTrix as a depth sensing device. If not performed correctly and the depth
maps scales properly, the synthesized images will su�er from the ghosting artifacts, as shown in this
work. On the other hand, DERS and Colmap perform be�er with simple camera calibration, since
those depth maps have been generated using the same camera parameters, unlike RayTrix depth
maps, that have their own scale.

With respect to the comparison of the RayTrix camera with the Azure Kinect, we came up to
the conclusion that RayTrix performs be�er in capturing detail at the cost of a smaller �eld of view,
thus the captured are more focused on the main scene. On the other hand, Kinect looses a bit of
detail and sharpness in objects, but it is be�er suited to capture bigger environments or scenes. It
is also important to highlight the di�erence in monetary cost of each device: Kinect costs several
hundreds euros, whereas the RayTrix camera is several tens of thousands euros, being a di�erence
in price in the order of 100.

Finally, as an academic conclusion, the elaboration of this work has allowed me to further in-
crease my knowledge in the view synthesis and DIBR subjects, giving me experience on the �eld.
Having the possibility of making use of a commercial plenoptic 2.0 camera is specially valuable,
since those are such specialized devices not easy to �nd. Also, this work has allowed me to put to
good use the knowledge acquired last year during the elaboration of my MA1 project, simulation of
a plenoptic camera by means of a normal camera, since the tools used in both projects are the same,
as well as the knowledge I acquired was useful for doing this master thesis.
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5.2 Future Research Opportunities
Further research will be needed, repeating the same experiment with di�erent scenes to address if
the results are consistent whatever the captured scene is. On the other hand, the same experiment
can be repeated using several reference views instead of only one when synthesizing virtual views.
�at approachwill be closer to real applications, but more precise camera calibrationwill be required
in the case of using depth maps exported from RxLive. Performing precise camera calibration with
a plenoptic 2.0 camera is much more di�cult than doing so with a regular camera because of the
unique characteristics of this kind of camera.

�e experiment can also be reproduced using multiple cameras to acquire multiview content at
the same. In order to perform it correctly, it would also require colour calibration in order to en-
sure every image has the exact same colours. �is colour calibration can be performed when doing
another comparison with the Azure Kinect too, in order to ensure all the objects in the scene have
the exact same colour, which would help with visual assessment, making the comparison as fair as
possible, taking into account the limitations of each capturing device and their inner characteristics.

Di�erent models of plenoptic cameras, including non-RayTrix devices, also give rise to new
experimentation and assessment. Comparisons between di�erent types of plenoptic cameras could
be made, and even with other depth sensing devices such as the Azure Kinect or Intel Realsense
LiDAR L515 [49], even though this last one has been discontinued.
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Appendices

Here, tools and so�ware that are essential to reproduce the results of thesis are listed and their usage
is explained. Some words on installation for each tool are in order, as well as giving some insight
in their functionalities. In the case of RxLive, some basic functionalities are explained, whereas for
RLC, DERS and RVS the most important parameters for con�guration are described. In the case
of Colmap, it is detailed, step by step, how to obtain camera parameters and depth maps. Finally,
there are some words and insight on camera calibration using two di�erent approaches: Colmap and
OpenCV, as well as for calibrating the RayTrix camera using RxLive.

A YUView
YUView [50] is an open-source cross-platform tool used for analysis and visualization of YUV �les.
�e YUV format is simply a format for storing colour images. Since it is not a common format used
by the average user, a regular PC cannot open it with the default tools, so it needs special treatment.

It has been used to visualize YUV images, as well as to convert them into PNG �les in order to
facilitate handling and visualization.

It can be downloaded from this repository.

B Installation and operation
In this appendix, installation and operation of several tools used in the elaboration of this thesis will
be presented. It could be considered as a basic step by step guide, along with some advice, to operate
correctly the di�erent so�ware, always in conjunction with the rest, as if it was a pipeline.

B.1 RxLive
RxLive can be downloaded from the RayTrix website. Note that it will need a license, that will come
with the purchase of a RayTrix camera, in order for the user to exploit all the so�ware’s functional-
ities, including the most basic ones such as exporting images. �at license will be in a USB dongle,
so it must be plugged in before starting the program for proper detection. In this work, RxLive 5.0
has been used.

Installation is really simple, one must simply follow the installation wizard and the program will
be ready.

Using it is also simple and quite user-friendly. Several tutorials can be found on their website.
Here only the basic functionality will be explained.
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Figure 97: RxLive user interface

To proceed to capture date, the camera must be connected and calibrated. �en, the user must
choose the camera to visualize the scene. �e camera can be chosen on the bo�om le� corner, a�er
RxLive detects it. �en, the program will move to the main menu.

In the main menu, the scene will be viewed in the center. One can choose several visualization
options (lenslet, total focus, basic refocus, 3D rendering, coloured depth map…) by clicking on the
eye bu�on the selecting what is needed. Using the red camera bu�on, one can capture an image,
and with the red circle bu�on a video. �e shu�er speed can also be modi�ed, to let more or less
light in the camera. �e type of �le and format to be exported can be chosen from the saving bu�on,
next to the eye bu�on. �e name of the �le and the path towhere it will be saved can also be speci�ed.

Below the area of where one can name, capture and export the data, the are several presets.
�ese are default con�guration �les that give certain values to the processing and visualization pa-
rameters. �e user can create their own presets.

On the right side of the screen, there are the processing and visualization parameters. In the
processing tab, there are parameters to change the focus, adjust depth and choose the algorithm for
depth estimation. �ese last two have a big impact on the depth maps generated, so they must be
manipulated carefully to obtain good results.

In the view tab, one can choose the colouring pale�e for depth maps, change brightness and
gamma of images, and the maximum and minimum values of depth. �ese values can be adjusted
automatically, and are very important when using depth maps, since these values are the ones used
to adjust its scale.

�e program can also export .ray �les. �ese are light �eld �les, that contain all the information
of the image/s that has been captured. �ese �les can be loaded into RxLive to visualize the captured
data, process it using the processing and visualization tabs, and export it.
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B.2 RLC
To install it, one must simply download the �les from the repository and use the CMake [51] pro-
gram to compile and generate the executable program.

To make use of RLC, one needs a lenslet image, the intrinsic camera parameters and the con�g-
uration �le for RLC to work. �e con�guration �le contains several parameters whose explanation
and options can be found in the repository (along with an example �le).

Figure 98: RLC con�guration �le

In this appendix, only the most important will be discussed (the rest can be le� with default
values, or the same ones as in the example �le):

• viewNum. It refers to the number of views it will generate. It can be either 5 (to generate a
5x5 matrix) or 7 (to generate a 7x7 matrix).

• Calibration xml. It is the path to the intrinsic camera parameters, in xml format. One can
check the example �les to how it is forma�ed.

• RawImage Path. Path to the lenslet image.

• Output Path. Path to where the output must will be le�.

• start frame. Starting frame, interesting for video content.

• end frame. Ending frame, interesting for video content.

• height. Height of the image, in pixels.

• width. Width of the image, in pixels.
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To execute it, one can use the following command line: RLC parameter.cfg, where parameter.cfg
is the con�guration �le. Note that RLC must be added to be path to call it using its name. Otherwise,
one must execute the converting executable �le (which is in the folder generated by CMake during
installation) with parameter.cfg as argument.

B.3 DERS
To install it, use the CMake program to compile and generate the executable program. Note that this
so�ware is not available to the public as of the date this thesis is being wri�en.

DERS only needs the reference views, including the view one want to generate its depth map,
the camera parameters �le and a con�guration �le in JSON format. In Appendix B.5 one can �nd
how to obtain the camera parameters from Colmap in the adequate format for use in DERS.

Figure 99: DERS con�guration �le

�e important parameters of the con�guration �le are the following:

• InputCameraParameterFile. Path to the �le where the camera parameters of the reference
views are.
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• VirtualCameraParameterFile. Path to the �le where the camera parameters of the views to be
synthesized are. It can be the same �le as in InputCameraParameterFile.

• InputCameraNames. Names given in the camera parameters �le to the reference views. �e
view whose depth map is going to be generated must be listed here, and must be the last one.

• VirtualCameraNames. Name given in the camera parameters �le to the view whose depth map
must be generated. It can only generate one depth map at a time.

• ViewImageNames. Path to where the reference image �les are. Admits YUV format. �e view
whose depth map is going to be generated must be listed here, and must be the last one.

• OutputFiles. Path to the output �le, including the name of the �le. Admits YUV format.

• Start frame. Starting frame, interesting for video content. First frame is 0.

• Fps. Number of frames per second, for video content.

• NumberOfFrames. Total number of frames, for video content.

• NumberOfDepthSteps. Number of iterations to perform. 1000 usually yields very good results.

• NearestDepthValue. Maximum possible depth value to be given to the generated depth map.

• FarthestDepthValue. Minimum possible depth value to be given to the generated depth map.

• NearestSearchDepthValue. Maximum possible depth value to search. Normally has the same
value as NearestDepthValue.

• FarthestSearchDepthValue. Maximum possible depth value to search. Normally has the same
value as FarthestDepthValue.

• MinimumValueOfDisparityRange. Maximum possible disparity value to be given to the gener-
ated depth map.

• MaximumValueOfDisparityRange. Minimum possible disparity value to be given to the gen-
erated depth map.

• MinimumValueOfDisparitySearchRange. Maximum possible disparity value to search. Nor-
mally has the same value as MinimumValueOfDisparityRange.

• MaximumValueOfDisparitySearchRange. Maximum possible disparity value to search. Nor-
mally has the same value as MaximumValueOfDisparityRange.

Once it has been installed, one can use DERS by issuing the following command: DERS parame-
ter.json, where parameter.json is the con�guration �le. Note that DERS must be added to be path to
call it using its name.
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B.4 RVS
In order to install and compile, one must download the �les from the repository and use the program
CMake to generate the executable �le.

To use RVS, one needs the reference views to use and their respective depth maps, as well as the
camera parameters of both the virtual view to be synthesized and the reference views. In Appendix
B.5 one can �nd how to obtain the camera parameters from Colmap in the adequate format for use
in RVS. It also needs a con�guration �le in JSON format.

Figure 100: RVS con�guration �le

�e parameters of that con�guration �le will be discussed:

• InputCameraParameterFile. Path to the �le where the camera parameters of the reference
views are.

• VirtualCameraParameterFile. Path to the �le where the camera parameters of the views to be
synthesized are. It can be the same �le as in InputCameraParameterFile.

• InputCameraNames. Names given in the camera parameters �le to the reference views.

• VirtualCameraNames. Names given in the camera parameters �le to the views to be synthe-
sized. It can synthesize more than one view at a time.
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• ViewImageNames. Path to where the reference image �les are. Admits YUV format.

• DepthMapNames. Path to where the depth maps �les of the reference image are. Admits YUV
format.

• OutputFiles. Path to the output �le, including the name of the �le. Admits YUV format.

To execute it, one can use the following command line: RVS parameter.json, where parameter.json
is the con�guration �le. Note that RVS must be added to be path to call it using its name.

B.5 Colmap
Colmap can be downloaded and installed from its documentation website. It o�ers support for Win-
dows, Mac and Linux. In the case of Linux, CUDA support must be manually installed.

To start the program, one must launch the .bat �le on Windows, or run the application on Mac
and Linux.

In order to export camera parameters:

1. Create a new project (File →New project).

2. Create a new database and give it a name.

3. Choose the folder where the images are (theymust be encodedwith less than 64 bits, otherwise
Colmap won’t be able to read them).

4. Perform feature extraction (Processing →Feature extraction, or bu�on with the half colored
and half grey image). Change the cameramodel to SIMPLE PINHOLE and then click “Extract”.

5. Perform feature matching (Processing →Feature matching, or bu�on with the black square
grid). Leave the default se�ings and then click on “Run”.

6. Start reconstruction (Reconstruction→Start reconstruction, or bu�onwith blue “Play” arrow).
One can reset the current reconstruction by clicking on Reconstruction →Reset reconstruc-
tion. �at will allow to create a new reconstruction.

7. In the case any step fails, note that Colmap uses more than 30 images (normally) to work well.
Another solution could be tomake the parameters less restrictive (Reconstruction→Reconstruction
options, or bu�on with grey building with a small pencil).

8. When the reconstruction �nishes correctly, export the parameters (File →Export model as
text). �is will create three �les: images.txt, cameras.txt and points3D.txt.

9. Use script colmap to json.py to obtain the JSON �le with the parameters ready to use (python
colmap to json.py -c path to cameras.txt -I path to images.txt -o outputFile.json). �e script can
be found on the RPVC GitLab repository. Note that the script may need some modi�cation
such as changing the depth map colour space to YUV400 or changing the depth range.

Example of the obtained camera parameters a�er adapting them using the RPVC script:
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Figure 101: Camera parameters

To obtain depth maps:

1. Finish the reconstruction (same steps 1-6 as when extracting camera parameters).

2. Perform a dense reconstruction (Reconstruction →Dense reconstruction, or square bu�on
with the black-grey gradient).

3. Choose a folder (preferably empty) for the data to be stored.

4. Click on bu�on “Undistortion” and wait for it to �nish.

5. Click on bu�on “Stereo” and wait for it to �nish.

6. On the grid, all images with their respective depth maps can be seen (click on the bu�ons for
the depth maps to see them, with the possibility of saving). �e �les are also stored as binary
�les in the folder previously selected. If the resulting depth maps present holes in them (black
areas), one can partially solve the problem by repeating the process in a new empty folder, but
in the “Options bu�on” increase the �eld “window radius” (max value is 20 in Colmap 3.6). It
can also help reducing the �eld “�lter min ncc” or increasing the “max image size”, but the
“window radius” �eld has the biggest impact. Note that this will reduce sharpness in edges.
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7. Use the script called dense to exr.py (python dense to exr.py -d path to binary depth maps –t
geometric/photometric) in the RPVC GitLab repository to transform the binary depth maps
to EXR depth maps that can be used directly with RVS. �ese depth maps may need some
preprocessing, since it is common that they have no data in certain areas which have a plain
basic texture (like a simple colour).

8. To inpaint the depth map, one can use the script inpaint colmap depth.py, modifying it so that
it inpaints the depth maps the user wants. Normally the best result is obtained inpainting the
depthmap obtainedwithwindow radius=20 using theOpenCV inpainting algorithm “TELEA”.

C Camera calibration
Camera calibration is basic when performing view synthesis using multiple reference to generate
virtual views. �ere are several ways to perform camera calibration. In this Appendix, only Colmap
and OpenCV will be discussed. �ese approaches allow to obtain both the intrinsic and extrinsic
parameters.

On the other hand, the RayTrix plenoptic camera must also be calibrated. �is is a di�erent kind
of calibration, since it is used so that the RayTrix uses the right units to estimate distances and depth.

C.1 Using Colmap
Colmap requires at least 30 images to perform camera calibration correctly. �ose images must cap-
ture the same scene, but must not be too similar among them, otherwise Colmap will reject them.

�e so�ware is able to perform this calibration without the need of a known pa�ern, it will do it
using 3D reconstruction and feature matching. �e parameters will be ”up to scale”. �at is, the unit
of the parameters is not known, although they might coincide with real units if studied properly,
but they will vary from one dataset to another.

In order to perform the calibration, the images must be inpu�ed to Colmap. �en start feature
extraction, followed by feature matching and �nally perform the 3D reconstruction. Regarding the
intrinsic parameters, they will depend on the chosen camera model. Colmap o�ers simpli�ed ver-
sions of the camera models implemented in OpenCV. One must choose accordingly depending on
oneselves needs and knowledge. Once the 3D reconstruction has been �nished, one can export the
model (the camera parameters) in several formats, including text. �en the user must adapt them to
the adequate format if they are planned to be used in another application. Further information can
be found on the o�cial documentation, and on Appendix B.5.

C.2 Using OpenCV
OpenCV also is able to perform camera calibration, in order to obtain intrinsic and extrinsic camera
parameters. In this case, it will use a known pa�er, such as a chess or charuco board.

It can obtain intrinsic and extrinsic parameters separately. In the case of intrinsic parameters,
it requires around 30 di�erent images of the pa�ern. �ose images must be of high quality so that
OpenCV is able to detect the features correctly and assess the distances. �e images must also be
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di�erent. To achieve that, the user must rotate the board and take pictures of it in several di�erent
positions, making sure the pa�ern is always visible. Once 30 or more images have been captured,
they can be given to OpenCV to perform intrinsic calibration. It will output the intrinsic parame-
ters matrix with the principle point and the focal distance, as well as the matrix with the distortion
coe�cients. �ese intrinsic parameters can be reused as many times as one wants, as long as the
camera that is going to be used is the same one. In the case of RayTrix, the RayTrix own calibration
must no be changed (see Appendix C.3).

For the extrinsic parameters, one must simple capture the views of which the user wants to ob-
tain the position and rotation of the camera. �en, using the intrinsic parameters, which can be
obtained using OpenCV or could be known by the camera speci�cations, must be used. A�er that,
OpenCV outputs the extrinsic parameters matrix, with the translation and rotation of the camera.

C.3 RayTrix calibration using RxLive
Before using any RayTrix camera, it �rst must be calibrated with RxLive. �e program o�ers a cal-
ibration wizard to help the user with the calibration of the camera. �is calibration also makes use
of a pa�ern, being, in general, a dot pa�ern, where the diameter of the dots and the space between
them must be known.

�e minimal calibration required for a RayTrix to work properly is the calibration of the micro-
lens array (MLA) and the metric calibration).

For the MLA calibration using the wizard, the user must �rst open the MLA calibration wizard,
then follow the instructions: �rst, one must choose a main lens, if it was already registered, or create
a new one. Next, choose an existing con�guration to modify it, or create a new one. �en, the user
must input the focal lens. With prime lenses, minimum and maximum values are the same. In the
case of zoom lenses, they correspond to the maximum and minimum values of the zoom. �en a�er
giving the focus distance, the calibration �lter must be put. Next, a grey image must be captured.
�is grey image (literally an image of grer or white colour) will help to adjust the light intensity
and the shu�er time, as well as the MLA array. For light intensity and shu�er time, the wizard will
show a RGB histogram. It should at least reach 90% illumination. A�er that the main lens should be
adjusted to �t the aperture of the MLA. Micro-lenses images should be touching, without overlap-
ping. With that, the MLA calibration is complete. If the aperture or the main lens are changed, the
process must be repeated.

Regarding the metric calibration, a wizard is also available. In this case, the dot pa�ern will be
used. �e �rst step is to input the point pitch. In order to avoid parallax errors, one can measure the
pitch of 10 points and divide by 10. �en, the calibration target must be put in front of the camera,
tilted, no more than 45 degrees. An image of the pa�ern is captured, and then one must check if
the overlay correctly matches the black dots. If so, they image can be kept, otherwise, it has to be
discarded. �is process must be repeated several times, having the dot pa�ern in di�erent positions.
�e capturing can be stopped when there are point the three depth zones (green, blue and red) on the
histogram. A�er that, it can be switched to 3D mode to check if the grey points as overlapping with
the coloured points. If so, the user can choose a calibration level (3 by default) and calibrate. �en
the wizard will show the results, rating them with stars (maximum is 5) and showing the deviation.
�e deviation must be as low as possible, being 0% the minimum. If the quality is not high enough,
one can take more images, check if the point pitch distance is correct or repeat the whole procedure.
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ANEXO 
 
OBJETIVOS DE DESARROLLO SOSTENIBLE                        
 
 
Grado de relación del trabajo con los Objetivos de Desarrollo Sostenible (ODS). 
 

Objetivos de Desarrollo Sostenibles Alto Medio Bajo No 
Procede 

ODS 1. Fin de la pobreza.     x 

ODS 2. Hambre cero.     x 

ODS 3. Salud y bienestar.     x 

ODS 4. Educación de calidad.     x 

ODS 5. Igualdad de género.     x 

ODS 6. Agua limpia y saneamiento.     x 

ODS 7. Energía asequible y no contaminante.     x 

ODS 8. Trabajo decente y crecimiento económico.    x  

ODS 9. Industria, innovación e infraestructuras.  x    

ODS 10. Reducción de las desigualdades.     x 

ODS 11. Ciudades y comunidades sostenibles.     x 

ODS 12. Producción y consumo responsables.     x 

ODS 13. Acción por el clima.     x 

ODS 14. Vida submarina.     x 

ODS 15. Vida de ecosistemas terrestres.     x 

ODS 16. Paz, justicia e instituciones sólidas.     x 

ODS 17. Alianzas para lograr objetivos.    x  
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Reflexión sobre la relación del TFG/TFM con los ODS y con el/los ODS más relacionados. 
 
En el caso de mi TFM, Depth Image-Based Rendering for Multiview Plenoptic Camera, 
no tiene mucha relación con los ODS, salvo con el ODS 9: Industria, innovación e 
infraestructuras. El TFM trata sobre la técnica Depth Image-Based Rendering para el 
renderizado de escenas sacadas del mundo real para aplicaciones de realidad virtual. La 
realidad virtual es una tecnología emergente que tiene mucha perspectiva de mejora y 
que se puede aplicar en muchos ámbitos: entretenimiento, robótica, comunicaciones, 
transporte, etc., por lo que puede ser una tecnología clave en un futuro no muy lejano 
en muchos ámbitos de nuestra vida, tanto cotidiana como profesional. Va 
especialmente ligada con la innovación, puesto que se pueden reinventar tecnologías y 
metodologías actuales para que se incluya la realidad virtual: operar máquinas de 
manera remota como si uno estuviera allí, o facilitar la inmersión en un entorno 
diferente de en el que físicamente se está son solo un par de ejemplos de posibles 
aplicaciones. Esto ofrece la posibilidad a nuevas empresas a hacerse un hueco en el 
mercado vendiendo nuevos productos innovadores relacionados con la realidad virtual. 
Por otro lado, el TFM también trata las cámaras plenópticas. Este tipo de cámaras hace 
ya años que se inventaron, pero actualmente tienen muy poco mercado y, por tanto, 
pocas empresas las fabrican y las venden. Este tipo de cámaras tienen muchas ventajas 
respecto a una cámara convencional, especialmente en aplicaciones en tiempo real, por 
lo que dar a conocer las bondades de este tipo de cámara es crucial para que en un 
futuro crezca su popularidad, propiciando la aparición de nuevos fabricantes y 
mejorando la competencia dentro de su propio sector. Esto también va relacionado, 
aunque en menor medida, con el ODS 8: Trabajo decente y crecimiento económico. El 
crecimiento económico está claro: la posibilidad de aparición de nuevas empresas en el 
sector de la realidad virtual, así como un posible aumento de la competencia dentro del 
sector de las cámaras plenópticas. En cuanto al trabajo decente, esto dependerá de la 
legislación vigente de cada país, pero lo que está claro es que estas nuevas empresas 
necesitarán contar con personal cualificado para el desarrollo de su actividad, y, siendo 
personal que no es fácil de encontrar (al menos hoy en día) deberían ofrecer unas 
condiciones de trabajo bastante buenas para mantenerlos en su fuerza de trabajo. Por 
último, el ODS 17: Alianzas para lograr objetivos, también tiene algo de relación, aunque 
no directamente con el TFM en sí. En primer lugar, destacar el acuerdo de doble 
titulación entre la Universitat Politècnica de València y la Université Libre de Bruxelles, 
que me ha permitido terminar mis estudios en Bruselas, realizando allí el TFM con 
algunos de los mayores expertos en el campo, que han desarrollado tecnologías de 
estandarización en el campo de la realidad virtual. En segundo lugar, el hecho de 
trabajar allí me ha permitido ver de primera mano la colaboración entre su grupo de 
investigación de realidad virtual con otras universidades, como la Universidad 
Politécnica de Madrid o la Universidad de Nagoya, en Japón, lo cual evidencia que, 
dentro del campo de la realidad virtual, es crucial la colaboración entre investigadores 
y expertos, independientemente de su lugar de procedencia o su lugar actual de trabajo. 
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