
Chemometrics and Intelligent Laboratory Systems 225 (2022) 104563
Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemometrics
Defining multivariate raw material specifications in industry 4.0

Joan Borr�as-Ferrís a,*,1, Daniel Palací-L�opez a,1, Carl Duchesne b, Alberto Ferrer a

a Multivariate Statistical Engineering Group, Department of Applied Statistics and Operational Research and Quality, Universitat Polit�ecnica de Val�encia, Val�encia, Spain
b Chemical Engineering Department, Laval University, Quebec, Canada
A R T I C L E I N F O

Keywords:
Industry 4.0
Design space
Model inversion
Partial least squares
Prediction uncertainty
Raw material multivariate specifications
* Corresponding author. Department of Applied
46022, Val�encia, Spain.

E-mail address: joaborfe@eio.upv.es (J. Borr�as-F
1 These authors have equal contributions.

https://doi.org/10.1016/j.chemolab.2022.104563
Received 2 November 2021; Received in revised fo
Available online 15 April 2022
0169-7439/© 2022 The Authors. Published by Else
A B S T R A C T

A novel methodology is proposed for defining multivariate raw material specifications providing assurance of
quality with a certain confidence level for the critical to quality attributes (CQA) of the manufactured product.
The capability of the raw material batches of producing final product with CQAs within specifications is estimated
before producing a single unit of the product, and, therefore, can be used as a decision making tool to accept or
reject any new supplier raw material batch. The method is based on Partial Least Squares (PLS) model inversion
taking into account the prediction uncertainty and can be used with historical/happenstance data, typical in
Industry 4.0. The methodology is illustrated using data from three real industrial processes.
1. Introduction

Raw materials properties are usually considered as Critical Input
Parameters (CIPs) because their variability has an impact on Critical
Quality Attributes (CQAs) of the final product. Thus, as commented by
Duchesne and MacGregor [1], the development of specification regions
for rawmaterials is crucial to ensure the desired quality of the product. In
this paper, we propose a novel method to define a multivariate raw
material specification region that is expected to provide assurance of
quality with a certain confidence level for the CQAs. Our approach
overcomes the drawbacks of the current industrial practice of setting
univariate specifications for each property of raw material and allows the
producer to make a decision on accepting or rejecting a raw material
batch based on the confidence of producing good product quality prior to
starting the manufacturing process.

Despite their importance, specifications are usually defined in an
arbitrary way based mostly on subjective past experience, instead of
using a quantitative objective description of their impact on CQAs.
Furthermore, in many cases, univariate specifications on each property
are designated, with the implicit assumption that these properties are
independent from one another. As a consequence, significant amounts of
raw materials whose properties are correlated may be misclassified, as
appropriate or otherwise, when univariate specifications are considered,
as it is shown in Fig. 1.

Let us consider a raw material with two correlated properties, Z1 and
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Z2 (see Fig. 1) used in the manufacturing of a particular product with
final product quality Y. The elliptical region “A” is the true multivariate
region in Z1 and Z2 such that any batch of raw material used with Z1 and
Z2 properties falling within it will provide good product quality (i.e.,
within the Y quality specification limits). On the contrary, raw material
batches with properties outside this elliptical region correspond to un-
acceptable raw material batches, as they lead to poor product quality
(i.e., outside the Y quality specification limits). The square region “B”
corresponds to the univariate specification region when accepting the
same variance on each individual property as the multivariate region. In
this case, accepting raw material batches with properties outside region
“A” and inside region “B” leads to manufacturing products with final
product quality Y outside its specification limits. To avoid this, com-
panies are forced to shrink the univariate specifications from region “B”
to the region “C”, at the cost of rejecting acceptable raw material batches
(i.e., those outside region “C” but inside region “A”). Another conse-
quence of setting these more restrictive univariate specifications is an
increase in costs in the acquisition of raw material batches with tighter
variations in their properties.

Multivariate specifications provide, therefore, much insight into what
constitutes acceptable raw material batches when their properties are
correlated (as usually happens). In order to cope with this correlation
several authors suggest using multivariate approaches, such as Partial
Least Squares (PLS) regression, to improve the definition of rawmaterials
specifications.
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Fig. 1. Problem of using univariate specifications on correlated raw material properties (Z1 and Z2).

J. Borr�as-Ferrís et al. Chemometrics and Intelligent Laboratory Systems 225 (2022) 104563
The first systematic study was reported by De Smet [2], where PLS
regression is used first to build a model between rawmaterials properties
and CQAs by using historical data. Then, a boundary in the model sub-
space is defined within which most of the values for the raw materials
properties associated with good CQAs can be found. This multivariate
region (in the latent space) can then be used to accept or reject new
batches of raw materials. The key assumption of this method is that
variability in the CQAs results exclusively from variations in the raw
materials properties of a single material. Duchesne and MacGregor [1]
generalized this method by assuming that both variation in rawmaterials
properties and in process operating conditions are responsible for CQAs
variations. Uncontrolled variability in the operating conditions will in-
crease the variability of the CQAs and require tightening specifications
on the raw material properties to make up for it. On the other hand,
properly tuned feedback and feedforward controllers may compensate
for CQAs variations allowing for wider raw material properties specifi-
cations [3]. Later on, García-Mu~noz [4] extended the
Duchesne-MacGregor method to combine data from multiple scales (e.g.
lab or pilot scale and commercial scale) with different processing con-
ditions and control strategies.

These approaches, however, focused on defining multivariate speci-
fication regions on the multiple properties of a single raw material. To
overcome this limitation, MacGregor et al. [5] extended them to deter-
mine the acceptability of new raw materials from multiple suppliers and
with multiple measured properties, as well as to assess the suitability of
combining specific batches of raw materials currently in inventory to
minimize the risk of manufacturing a poor quality product. Finally, Azari
et al. [6] proposed a sequential multiblock PLS algorithm to better sort
the contribution of raw materials and process operating conditions on
CQA variations, considering two types of raw materials in this study.

In the aforementioned references, the aim was to determine the
boundary in the latent space of the historical data that best separates
acceptable from unacceptable raw materials by direct mapping (i.e.,
those leading to good and poor CQAs, respectively). Nonetheless, the
general shape (e.g., an ellipsoid or a straight line) and locus of such
boundary was decided based on subjective criteria, trying to best balance
2 Type I risk is defined as the proportion of truly acceptable batches of raw
materials that is rejected by the customer under a given specification region;
type II risk consists of the proportion of truly unacceptable batches of raw
materials that is accepted by the customer under a given specification region
[1].
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out the type I and type II risks.2 In contrast to this, García-Mu~noz, Dolph,
and Ward [3] emphasized the use of mathematical and statistical models
as an objective way to define such specifications by linking them with
specification limits for CQAs. Thus, given a desired set of CQAs, and in
order to predict an appropriate set of raw materials properties, it is
necessary to carry out the inversion of the model relating inputs (raw
materials properties) with outputs (CQAs). Recently, Paris, Duchesne and
Poulin [7] carried out a comparison between direct mapping and model
inversion stating their advantages and drawbacks.

However, when inverting PLS models, their prediction uncertainty is
also back-propagated [8,9]. This issue has not been addressed in the past
when defining multivariate raw materials specifications and, thereby, all
the methods commented above are considered as descriptive approaches
focused on historical data, lacking a probabilistic interpretation. For that,
uncertainty is accounted in the form of prediction intervals, with a
certain confidence level, finding a window within which any batch with
rawmaterial properties is expected to produce product with CQAs within
specification limits with at least the predefined confidence level. In this
regard, this window refers to the estimation of the so-called Design Space
(DS), which is defined as the multidimensional combination and inter-
action of inputs variables (e.g., raw material properties) and process
conditions that have been demonstrated to provide assurance of quality
[10]. A preliminary approach to frame the DS by prediction intervals was
used by Whitcomb and Anderson [11], but in the original space of inputs
variables and using data from a Design of Experiments (DOE).

Although not explicitly applied to the definition of multivariate
specifications, Bayesian approaches [12–14] can be used to include the
model-parameter uncertainty and estimate the probability map of
meeting the specifications imposed on the CQAs being used to identify
the DS [15]. However, these methodologies define the DS by means of a
predictive approach instead of carrying out the model inversion. There-
fore, the representation of the DS a priori requires the discretization of
the multidimensional input domain by sampling algorithms. Then,
simulation methods, such as Markov-Chain Monte Carlo techniques, are
required for each discretization point to determine if it is within the DS.
Hence, these approaches do not represent analytically the DS in the input
domain, with the additional drawback of being computationally costly.

The novelty of this paper is the implementation of the frequentist
probabilistic interpretation in the definition of the multivariate specifi-
cation region for raw materials in the latent space. For that, we propose a
method to define analytically a window in the latent space of the raw
material properties that is expected to provide assurance of quality for
the CQAs with at least a certain confidence level.



3 Although the derivation of the DF for PLS is not straightforward, they are
expected to be low in comparison with the number of observations when dealing
with historical data, N � df tends to N, thus having a negligible effect on esti-
mating the prediction uncertainty.
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The paper is organized as follows. Data requirements for defining
multivariate specification are first discussed, followed by a description of
PLS model regression and the analytical definition of its inversion. How
PLS inversion addresses the definition of multivariate specifications by
considering a probabilistic approach is then presented. Finally, the
methodology is illustrated by means of three industrial case studies.

2. Data requirements

The data required for developing raw materials multivariate specifi-
cations following the methodology proposed in this paper involves two
blocks, Z and Y. Z (N � M) is a matrix of inputs which includes a total of
Mmeasurements characterizing the properties of each of the N batches of
a particular raw material, and the Y (N � L) output matrix consists of L
measurements of the CQAs of the final product obtained for each one of
the N corresponding batches.

Furthermore, process variations may be under tight control to
attenuate some raw material variations, whenever the eventual effect of
such variability on the CQAs can be compensated by control systems.
Specifications for incoming raw materials are nonetheless required,
however, to account for variations in raw materials whose effect on the
CQAs cannot be compensated by control systems. Therefore, if this sit-
uation prevails in the future there is no need to consider process data to
establish the specification regions associated to the latter source of
variation.

3. Latent variable regression model inversion

3.1. PLS regression model

PLS regression [16,17] is a latent variable-based approach used not
only to model the inner relationships between the matrix of inputs Z and
the matrix of output variables Y, but also to provide a model for both.
This fact gives them a very nice property: uniqueness and causality in the
reduced latent space no matter if the data come either from a DOE or
daily production process (historical/happenstance data) typical in In-
dustry 4.0 [18,19]. The PLS regression model structure can be expressed
as follows:

T¼Z ⋅W* (1)

Z¼T ⋅ PT þ E (2)

Y¼T ⋅QT þ F (3)

where the columns of the matrix T (N � A) are the PLS scores vectors,
consisting of the first A latent variables (LVs) from PLS. These score
vectors explain most of the covariance between Z and Y, and each one of
them (ta, a ¼ 1, 2, …, A) is estimated as a linear combination of the
original variables with the corresponding “weight” vector (wa, a ¼ 1, 2,
…, A) (Eq. (1)). These weights vectors are the columns of the weighting
matrix W* (M � A).

The PLS scores vectors are also good “summaries” of Z according to
the Z-loadings (PðM � AÞ) (Eq. (2)) and good predictors of Y according
to Y-loadings (QðL � AÞ) (Eq. (3)), where EðN�MÞ and FðN�LÞ are
residual matrices. The sum of squares of F is an indicator of how good the
model is in predicting the Y-space, and the sum of squares of E is an
indicator of how well the model explains the Z-space.

In order to evaluate the model performance when projecting the n-th
observation zn onto it, the Hotelling T2 in the latent space T2

n and the
Squared Prediction Error SPEzn are calculated [20]:

τn ¼W*T ⋅ zn (4)

T2
n ¼ τTn ⋅ Λ

�1 ⋅ τn (5)
3

SPEzn ¼ðzn � P ⋅ τnÞT ⋅ ðzn �P ⋅ τnÞ¼ eTn ⋅ en (6)

where zn refers to the n-th row extracted from Z being defined as a col-
umn vector, en is the residual column vector associated to the n-th
observation, Λ�1 is defined as the (A� A) diagonal matrix containing the
inverse of the A variances of the scores associated with the LVs, and τn is
the column vector of scores corresponding to the projection of the n-th
observation zn onto the latent subspace of the PLS model.

The Hotelling T2 statistic of an observation (T2
n ) is the estimated

squared Mahalanobis distance from the center of the latent subspace to
the projection of such observation onto this subspace. The SPE statistic
gives a measure of how close (in an Euclidean way) the n-th observation
(zn) is from the A-dimensional latent space. Upper confidence limits (with
a specified confidence level) for both statistics, SPElim and T2

lim, can be
calculated for Phase I (model building) and Phase II (model exploiting)
based on theoretical distributions [21,22]. The normality assumption on
which these calculations are based is usually quite reasonable in practice.
Alternatively, these confidence limits can be obtained from distribution
free methods by repeated sampling [23]. The only requirement is to have
a large reference dataset. Besides, if this large dataset is available (as with
historical/happenstance data), confidence limits for Phase II can also be
used in Phase I. In the following sections, SPE and T2 99% confidence
limits are calculated from theoretical distributions.

Once the PLS regression model has been fitted, it can be used directly
in order to obtain the prediction vector corresponding to a particular
observation, zobs, fulfilling that T2

obs � T2
lim and SPEzobs � SPElim for Phase

II, as

byobs ¼Q ⋅ τobs ¼ Q ⋅W*T ⋅ zobs (7)

However, predictions are not free from uncertainty, yielding predic-
tion errors. Three different sources of uncertainties can affect the pre-

diction error eobsl of the l-th response variable byobs
l given a new observation

zobs [24]: (i) measurement uncertainty in both the regressor matrix (Z)
and the response matrix (Y) used to calibrate the PLS model, (ii) un-
certainty in the estimated model regression parameters, (iii) and uncer-
tainty due to the unmodeled part of the response variable (structural
model uncertainty).

Estimation of prediction uncertainty is done by using Ordinary Least
Squares (OLS) as Faber and Kowalski [25] suggested. Although this
approach is an approximation, it was observed to yield good results in
practice [26]. First, it is assumed that the prediction error eobsl follows a
normal distribution with zero mean and variance σ2eobsl

(Eq. (8)).

eobsl ¼ yobsl � byobs
l � N

�
0; σ2eobsl

�
(8)

Therefore eobsl =seobsl
follows a t-statistic with N – df degrees of freedom

and, consequently, the ð1�αÞ prediction interval (PIyobsl
) on yobsl is

calculated as:

PIyobsl
¼ byobs

l � tN�df ;α

=

2
⋅ seobsl

(9)

where N is the number of the PLS model calibration samples, df the
degrees of freedom consumed by the model (it is set equal to the number
of LVs of the model3), α the false alarm rate for the prediction interval
(i.e. (1- αÞ � 100 confidence level) and seobsl

the estimated standard de-

viation of the prediction error. The latter is calculated using Eq. (10)
when taking into account the second and third sources of uncertainty
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mentioned above. Note that to estimate the first source of uncertainty
requires explicit knowledge about error variance in Z and y, that is
estimated from replications and thus this limits its use in practice.
However, it seems to be more practical to assume that second and third
sources of uncertainties dominate and to ignore the first one [26].

seobsl
¼ SEl ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hobs þ 1

N

r
(10)

In the above expression, hobs is the leverage of the observation (Eq.
(11)) and SEl the standard error of calibration (Eq. (12)).

hobs ¼ τobs
T ⋅ ðTT ⋅ TÞ�1 ⋅ τobs (11)

SEl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1

�
yn;l � byn;l�2

N � df

s
(12)

where yn;l and byn;l are, respectively, the measured and estimated values of
the l-th response variable for the n-th observation in the calibration
dataset.

3.2. PLS model regression inversion and null space

The objective of model inversion is to find (predict) a window of
inputs (raw materials properties, process conditions, etc.) for a desired
product quality. Jaeckle and MacGregor [27] proposed a framework for
the inversion of PLS models using historical data available on the process
operating conditions and on the corresponding product quality. Using
standard regression or machine learning models, the inversion is inade-
quate because those models do not contain any information about the
covariance structure and, consequently, the inversion solution of the
model almost certainly does not respect previous structural relationships,
leading to unfeasible solutions. By contrast, when inverting a PLS model
the inversion solution belongs to the latent space (defined by the latent
variables) and, therefore, such solution is constrained to be physically
feasible and consistent with the sets of process conditions and correlation
structure from the past. In this respect, the PLS model inversion has been
demonstrated to be a valid tool to support the development of new
products and their manufacturing conditions using historical data in
several case studies [28–33].

When considering the inversion of a PLS model (Eq. (1) and Eq. (3)),
the set of rawmaterials properties (column vector znew) that will yield the
desired set of CQAs (column vector ydes) are obtained by solving the
following system of linear equations:

ydes ¼Q ⋅ τnew (13)

where τnew is the vector of scores corresponding to the projection of the
observation znew, which is estimated by the inversion of the PLS model:

τnew ¼ f�1
�
ydes

�
(14)

Then, znew is estimated going back from the latent space to the raw
materials properties space as follows:

znew ¼P ⋅ τnew (15)

Eq. (15) clearly shows that the solution znew, obtained by the PLS
model inversion, is a linear combination of the loading vectors pa (col-
umns of P) and thus belongs to the latent space. Besides, notice that the
PLS model inversion involves solving a system of linear equations rep-
resented in a matrix form (Eq. (13)), where there are as many linear
independent equations as the rank of Y (rY ), and the number of unknown
variables corresponds to the dimensionality of the latent space (A). Thus,
three possible cases are considered based on dimensions rY and A:
4

� rY > A: the most likely case is that no solution provides the desired set
of CQAs, but the least squares solution can be obtained as follows:

τnew ¼ðQT ⋅QÞ�1 ⋅QT ⋅ ydes

� rY ¼ A: a single solution exists that provides the desired set of CQAs.

τnew ¼Q�1 ⋅ ydes

� rY < A: it corresponds to an underdetermined system of linear
equations, and has multiple solutions forming a vector space whose
dimension is the difference between A and rY . Hence, multiple solu-
tions τnew fall into a (A� rY )- dimensional subspace of the A-dimen-
sional space, that theoretically yields the same desired set of CQAs.
This subspace is so-called Null Space (NS) and, in such a case, the
model inversion requires defining such a space.

The latter situation (rY < A) corresponds to the most common case
and, for that reason, it has been widely studied. Jaeckle and MacGregor
[28] defined the hyper-plane related to the NS by both the solution given
by the pseudo-inverse with minimal Euclidean norm as a point which
belongs to the NS (Eq. (16)), and the orthogonal directions referring to
null variations in CQAs (A – 1 linearly independent vectors parallel to the
NS).

τnew ¼QT ⋅ ðQ ⋅QTÞ�1 ⋅ ydes (16)

García-Mu~noz et al. (2006) extended this approach proposing a linear
equation system where each equation defines the NS for each CQA as
proposed by Jaeckle and MacGregor [28] (i.e., by both a point and
orthogonal directions of null variations).

On the other hand, Palací-L�opez et al. [9] defined the NS for each l-th
CQA by the analytical equation of a (A� 1)-dimensional hyper-plane,
which spans the multiple inversion solutions for such l-th CQA. The
general form of a hyperplane only requires a constant (v0 l) and a single
orthogonal vector to the NS (vl). This vector corresponds to the direction
of maximum variation of the l-th CQA. The intersection of all these NS (if
they exist) gives the same solution as the one proposed by Jaeckle and
MacGregor [28].

In this work, it is assumed that all variables are centered and scaled to
unit variance as a pre-treatment. Thus, the l-th NS is defined as follows:

v0 l þ vTl ⋅ τ
NS;l ¼ 0

v0 l ¼ �ydesl

vl ¼ ql

(17)

where ql is the l-th row of Q. When applied to all L CQAs:

v0 þ V ⋅ τNS ¼ 0

v0 ¼

2664
v01
v02
⋮
v0L

3775 ¼ �ydes ; V ¼

266666664
vT1
vT2
⋮
vTL

377777775 ¼ Q
(18)

Indeed, Eq. (18) is equivalent to Eq. (13) but expressed as the inter-
section of the L NSs (if it exists). To put it briefly, Fig. 2 shows the PLS
model inversion by means of a simple example. In this example, there are
three raw material properties (M ¼ 3) and the focus is on the l-th CQA,
and a PLS model has been previously fitted using two components (A ¼
2). Then, given a desired l-th CQA, multiple solutions are predicted,
which will theoretically result in such l-th CQA. These solutions belong to
the one-dimensional NS.



Fig. 2. Simple example of the model inversion where there are three raw materials properties and the focus is on the l-th CQA, and a PLS model has been fitted by
two components.
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4. Defining multivariate specifications in the latent space

As commented above, establishing the multivariate raw material
specification regions in the latent space is equivalent to defining the
multidimensional combination and interaction of raw materials proper-
ties that have been demonstrated to provide assurance of quality (i.e., the
DS of raw materials). Hence, both terms (multivariate specifications re-
gion and DS) are used interchangeably in the remainder of the paper.
4.1. Design space with no uncertainty

If there is not prediction uncertainty, the DS must be defined as a
region in the latent space associated with raw materials properties such
that these properties yield an expected value of CQAs, according to Eq.
(7), within their specification limits.

Besides, since PLS is an empirical model based on historical data, any
new set of raw materials properties must respect the correlation structure
and range of this historical data [28]. Regarding the correlation structure:
since the DS is defined in the latent space, it ensures new observations to
behave in the same way as the ones used to create the model, in the sense
that the correlation structure of the model is respected. Regarding the
historical range: when considering the Hotelling T2 confidence limit as a
raw material specification limit, the new set of raw material properties
are constrained to be within historical ranges by a multivariate approach.
Additionally, historical univariate ranges for each property (and other
constraints) might be included.

In this study, we initially focus on the l-th CQA and, hence, vector ydes

degenerates to scalar ydes, and matrix Q degenerates to vector qTl ðl �
th row of matrix Q). Besides, one might face three scenarios
depending on the kind of specifications for it:
Fig. 3. The Design Space in the latent space, for the three scenario
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(1) yl ¼ ydesl . In this first scenario, a specific value of the l-th CQA is
required.

(2) yLSLl � yl � yUSLl . In the second scenario, it is desired that the l-th
CQA is between a lower specification limit (yLSLl ) and an upper
specification limit (yUSLl ).

(3) In the third scenario, only one specification limit is considered,
which might be lower (yLSLl � yl) (scenario 3i) or upper (yl � yUSLl )
(scenario 3ii).

Following the same framework as in Figs. 2 and 3 shows the DS in the
latent space for the latter three scenarios assuming a PLS model with no
uncertainty.

In the first scenario, the desired specific value for the l-th CQA yields a
one-dimensional NS and, the DS is defined by the intersection of this NS
and the Hotelling's T2 confidence region. In the same way, in the second
and third scenarios, each specification limit is defined in the latent space
by its associated NS. Thus, the DS in the latent space is defined by the
intersection of the scores fulfilling the specifications' NSs and the
Hotelling T2 confidence region.

Until now, the DS has been defined without taking into account the
prediction uncertainty. However, since empirical models are subject to
uncertainty, when a PLS model is inverted, the uncertainty is back-
propagated to the calculated inputs (i.e., the DS calculation is probabi-
listic) [8,9].
4.2. Design space with uncertainty

4.2.1. Bracketing the design space
When prediction uncertainties are present, the DS without uncer-

tainty shown in Fig. 3 does not correspond to the true DS. Therefore, it
s, assuming a PLS model with no uncertainty. NS: null space.
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might be possible to improve the estimation of the DS by running a set of
experiments designed within the input domain that have already been
used in the past (i.e., the so-called Knowledge Space (KS)). However,
exploring the entire KS may be impractical due to the high number of
experiments that may be needed to account for the variability in all
accessible inputs [8]. For that reason, several approaches have already
been proposed in order to define a subspace of the historical KS where the
true DS is likely to lie with a predefined confidence level. This subspace is
called the Experimental Space (ES).

In particular, Facco et al. [8] present a methodology to account for the
backpropagation of the prediction uncertainty in model inversion to
bracket the DS. This methodology resorts to the calculation of the pre-
diction interval considering only the inversion solution by means of the
pseudo-inverse (Eq. (16)). However, this approach does not consider the
difference in the amplitude of the confidence region due to the leverage
of different sets of scores along the NS. A proposed solution was given by
Palací-L�opez et al. [9] leading to non-linear confidence limits.

A graphical interpretation of the methodology proposed by Palací-
L�opez et al. [9] is shown in Fig. 4 assuming the first scenario (yl ¼ ydesl ).

Fig. 4 shows that, as expected, moving along the NS one would obtain
the same prediction of the l-th CQA. Nevertheless, due to model uncer-
tainty, it does not guarantee to obtain exactly such a prediction. When
considering the prediction uncertainty, a prediction interval which is
expected to contain the true value of an individual value with a pre-
defined confidence level can be calculated. Note that, since the predic-
tion interval depends on the leverage of the observation (Eq. (9), Eq. (10)
and Eq. (11)), its amplitude is expected to be lower for observations close
to the centre of projection (small leverage) than for those far away from it
(high leverage) [9]. Then, the prediction intervals for the multiple so-
lutions are backpropagated when the model is inverted. Thus, the KS is
restricted in such a way as to identify an experimental space in the latent
space, which has a high probability of containing the true DS. However,
this does not mean high probability of providing assurance of quality,
which is what we are interested in when defining multivariate
specifications.

4.2.2. Proposed definition of the High-Confidence Design Space
The proposed methodology for defining multivariate raw material

specifications is motivated by Facco et al. [8] and Palací-L�opez et al. [9]
ideas when back-propagating the uncertainty, but framing the knowl-
edge space with a different purpose. The ES has a high probability of
containing the true DS at the expense of including unacceptable raw
material batches. By contrast, in this paper we propose considering the
prediction uncertainty in a different way, when the model is inverted, in
order to define a subspace of the KS where there is assurance of quality
with a certain confidence level. For ease of understanding of the pro-
posed methodology, we illustrate the second scenario (Fig. 5) where it is
Fig. 4. FIRST SCENARIO: The methodolog
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desired that l-th CQA is between yLSLl and yUSLl .
As discussed above, even though working in the NS associated with

the specification limit leads to a predicted value between specifications,
it might yield out of specifications values for the l-th CQA due to pre-
diction uncertainties. For that reason, focusing on the yLSLl , one should
accept rawmaterials properties such that its projection in the latent space
leads to a lower endpoint, which is equal or higher than the yLSLl , thus
delimiting a lower confidence region (Eq. (19)).

yLSLl � qTl ⋅ τ
new � tα =

2 ;N�df ⋅ senewl
(19)

When calculating this confidence limit for the multiple solutions
along the NS of yLSL

l , a non-linear boundary is obtained for the yLSLl as is
shown in Fig. 5a. Such boundary in the latent space refers to the Lower
Specification Confidence Limit (LSCL). If working in the LSCL there will
be a high probability to obtain the l-th CQA higher than the yLSL

l .
In the same way, considering the yUSLl , one should accept raw mate-

rials properties such that its projection in the latent space leads to an
upper endpoint which is equal or lower than the yUSLl , thus delimiting an
upper confidence region (Eq. (20)).

yUSLl � qTl ⋅ τ
new þ tα =

2 ;N�df ⋅ senewl
(20)

Following an analogous reasoning as before, another non-linear
boundary, called Upper Specification Confidence Limit (USCL), is ob-
tained for the yUSL

l (see Fig. 5b). If working in the USCL there will be a
high probability to obtain the l-th CQA lower than the yUSL

l .
Appendix A shows the analytical expression, which allows calculating

the score belonging to both the lower and upper specification confidence
limits given its respective score in the NS for the l-th CQA. Although Eq.
(19) and Eq. (20) refer to one-sided prediction intervals, the t-statistic is
calculated at the α=2 significance level because two specifications limits
are considered. In the case of having one specification limit (i.e., third
scenario), Eq. (19) or Eq. (20), as appropriate, would be used at α sig-
nificance level.

The intersection regions delimited by the LSCL, USCL and the
Hotelling T2 confidence ellipsoid, delimits the so-called High-Confidence
Design Space, i.e., the Multivariate Raw Material Specification Region,
where any batch of raw material properties results in a prediction in-
terval for the CQA within specifications. Therefore, from a frequentist
probabilistic interpretation, these batches are expected to produce
product with CQAs within specification limits with a confidence level
equal or higher than 1� α. In other words, this definition of the High-
Confidence DS has been demonstrated to provide assurance of quality
with at least a certain confidence level (Fig. 5c). The High-Confidence DS
is a potential opportunity to establish real-time release (RTR), which is
defined as the ability to evaluate and ensure the acceptable quality of
y proposed by Palací-L�opez et al. [9].



Fig. 5. SECOND SCENARIO: Graphical interpretation of the proposed definition of the High-Confidence Design Space. (a) lower specification confidence limit (LSCL).
(b) upper specification confidence limit (USCL). (c) Splitting the KS into High-Confidence Design Space, Warning Space and Low-Confidence Space.
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final product based on inputs variables (e.g., raw material properties)
without using end-product testing [10].

Additionally, the intersection between the region bounded by the two
NSs corresponding to the yLSLl and yUSLl , and the Hotelling's T2 confidence
region, but outside the High-Confidence DS, defines the so-called
Warning Space (Fig. 5c). Note that, although this space does not
belong to the Multivariate Raw Material Specification Region as defined,
it does not necessarily imply the rejection of batches. In fact, batches
lying within the Warning Space lead to predicted values between speci-
fications, but they result in prediction intervals for the CQA partially
outside of specifications given the predefined confidence level 1� α.
Namely, there is no assurance of quality due to the prediction uncertainty
and, hence, RTR testing is not feasible. Instead of that, end-product
testing may be employed, which usually involves undertaking specific
lab-testing procedures on samples of the final product. This could be
interesting when rejecting all batches in the Warning Space is not
affordable. Finally, the Low-Confidence Space (Fig. 5c) leads to predicted
values outside specifications. Although batches lying within this sub-
space may lead to response values between specifications, most of the
time such values are expected to be outside.

Therefore, following the proposed approach, the KS is split into three
regions: High-Confidence DS, Warning Space and Low-Confidence Space,
providing a strategy where RTR or end-product testing, can be used as
needed.
Fig. 6. SECOND SCENARIO: Effect of the uncertainty on the H

7

Note that, the High-Confidence DS is more restrictive that the un-
known true DS, and the less uncertainty there is, the more similar the
High-Confidence DS and the true DS are, as it is graphically shown in
Fig. 6.

High uncertainty in the data is reflected in a low goodness of pre-
diction model. But this does not limit the proposed methodology, indeed,
the lower goodness of prediction, the more crucial it is to take un-
certainties into account if product quality is to be guaranteed. In that
point, the authors would like to challenge the widely held view that a low
goodness of prediction model is useless and point out that low goodness
of prediction model, typical from the industry 4.0 environment, can be
useful if being cautious. In this sense, García-Mu~noz and Mercado [34]
already worked in a real process under control where a LV regression
model, that had the ability to systematically predict 21% of the vari-
ability in the quality attribute, was used with a great potential for
improvement. However, in certain situations a low goodness of predic-
tion model may be a warning of non-linearities in the original dataset
that is not captured adequately by the linear PLS model [35].

To summarize, Fig. 7 shows the DS (if there is not uncertainty in the
model), the experimental space and our proposed High-Confidence DS
for all scenarios.

The first scenario is a particular case of the second scenario where
yLSLl ¼ yUSLl . In this case, there is not intersection between the LSCL and
USCL and, therefore, the High-Confidence DS does not exist. Up to this
igh-Confidence DS related to the DS without uncertainty.



Fig. 7. Comparison of the DS (without uncertainty), ES and High-Confidence DS for the three scenarios.
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point, we have defined the High-Confidence DS for the l-th CQA. The
joint High-Confidence DS for the L CQAs will be obtained as the inter-
section of the L High-Confidence DSs for each CQA.

5. Exploiting the model

Once multivariate raw material specifications have been defined as
discussed above, the model can be used to inspect every new batch of raw
material, zobs (Phase II). This allows the user to predict if the CQAs of the
product, that would be manufactured using any new raw material batch,
would be within specifications, and consequently accept or reject the raw
material batch prior to introducing it into the production process. The
procedure for that is as follows:

(4) Mean-center and scale zobs using the same mean and scaling factor
used on the calibration data when the PLS model was developed in
Phase I.

(5) The scores τobs are obtained from the linear combinations of mean-
centered and scaled raw materials properties according to Eq. (4),
and the SPEzobs is obtained according to Eq. (6).

(6) The final decision on whether to accept or reject a new raw ma-
terial batch is up to the user based on the values of SPEzobs and τobs.
When the SPEzobs is higher than SPElim, this suggest that their
properties reflect a different correlation structure than that of the
raw material batches from the historical dataset used to build the
PLS model. It is then impossible to predict with the fitted PLS
model the impact of this raw material batch on CQAs of the final
product. Besides, in such a case, one could use the SPE contribu-
tion plot in order to examine which raw material properties
contribute the most to this high SPE value, providing the supplier
with useful information about deviations in the batch raw mate-
rial properties. Regarding the projection in the latent space τobs, if
these scores fall within the High-Confidence DS, this batch will be
expected to produce product with CQAswithin specification limits
with at least a certain confidence level. Note that, instead of
rejecting all the high SPEzobs and high T2

obs raw material batches,
one may also process some of them (when deviations are not too
important), incorporate them as new design points to augment the
historical data matrices Z and Y, and fit a new PLS model in order
to better define sequentially the multivariate specification region.

6. Industrial case studies

6.1. First industrial case study: cereal extraction process

Historical data collected from a maize cereal extraction process is
8

used to illustrate the proposed methodology. A schematic representation
of such process is shown in Fig. 8.

The maize is fed to the production process where, initially, it is
cleaned to free the maize of all kinds of impurities and then it is steeped.
Subsequently, a grinding process takes place to grind the harder parts of
the maize, followed by a degerminating process so that germ is separated
from the fiber, gluten, and starch. Finally, after a sieving process carried
out to separate the fiber, a primary separator splits by centrifugal force
the stream in two fractions: gluten and slurry starch. The latter has a great
interest as it has become a major industrial raw material.

The data available in this case are a compilation of eight raw material
properties (Z) of maize: promatest value, protein, acid value, specific
weight, burnt grain, broken grain, starch and extractable lipids, and one
response variable y (extraction yield of starch slurry). These variables are
easily registered in order to assess the feasibility of a raw material batch.
In total, 989 historical batches/observations were measured: Z (989� 8)
and y (989 � 1), and they were divided randomly in two sets: calibration
set (70%) for Phase I and exploiting set (30%) for Phase II. Besides, a
lower specification limit of 69% is considered for the response variable
(i.e., this case refers to the scenario 3i).

Leave-one-out cross-validation (CV) was used for selecting the num-
ber of PLS components. Thus, two LVs were chosen to fit a PLS model
(R2

Zcum ¼ 36:8%, R2
Ycum ¼ 26:8% and Q2

Ycum ¼ 25:1%) using the 693
calibration observations (Phase I). The R2 values (goodness of fit) give
the percentage of the total sum of squares of y and Z, respectively, that
are explained by the fitted PLS model, while the Q2

Ycum (goodness of
prediction) gives the percentage of the total sum of squares of y that can
be predicted with the PLS model by CV. In Phase I it is also crucial to
validate the model by monitoring charts for SPE and T2 (shown in Fig. 9),
in order to determine whether historical/happenstance data are consis-
tent with normal process conditions (i.e., common cause process
variations).

Fig. 9 shows that none of the historical batches exhibit any unusual
behaviour caused by special cause process variations. Notice that,
although some of them slightly exceed the upper confidence limit, they
correspond approximately to 1% false alarm rate (expected when using
99% confidence limits). Fig. 10 illustrates the 99% Hotelling T2 confi-
dence limit, the NS associated with the LSL, and its 90% confidence limit
when considering the prediction uncertainty (i.e., the Low Specification
Confidence Limit. LSCL). The intersection of all confidence regions,
defined by their limits, yields the High-Confidence DS (i.e., the proposed
multivariate rawmaterial specifications in the latent space) within which
there is assurance of obtaining superior or equal yields to 69% with at
least 90% confidence level.

To evaluate the performance of the definition of the multivariate raw
material specification region, a diagnostic test is carried out using the



Fig. 8. Schematic representation of the maize cereal extraction process.

Fig. 9. First industrial case study: Monitoring charts for SPE and T2 in Phase I.

Fig. 10. First industrial case study (scenario 3i): Graphical definition of the High-Confidence DS (Multivariate Raw Material Specification Region), Warning Space and
Low-Confidence Space by showing (a) calibration data and (b) exploiting data.
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validation set. In particular, type I risk, type II risk and the Negative
Predictive Value (NPV) are calculated for the High-Confidence DS. The
NPV is the proportion of batches that actually result in a good product out
of all those within the High Confidence Design Space, and, hence, this
metric is directly connected to the definition of the High-Confidence DS
9

itself.
De Smet [2] and Duchesne and MacGregor [1] approaches would

have ended up defining a straight line or an ellipsoid in a subjective way,
that would best balance type I and type II risks in Fig. 10a. Besides, if the
PLS model was of a higher dimension (A�3), it would be difficult to
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decide the general shape and locus that best defines the separation be-
tween good and poor quality, unlike the proposed approach, which does
not suffer from such handicap regardless of the dimensionality of the
latent space. On the other hand, García-Mu~noz, Dolph, and Ward [3]
would have obtained a wider region, akin to the DS without considering
the uncertainty (the joint of High-Confidence DS and Warning Space).
However, because of the uncertainty, this approach would result in
accepting almost every batch of raw materials (no matter if they are
acceptable or unacceptable), leading to 9% type I risk, 90% type II risk
and 75% NPV with exploiting data (see Fig. 10b). None of these ap-
proaches are probabilistic, and therefore they do not allow knowing the
confidence level in meeting the final product quality specifications.

By contrast, our High-Confidence DS is defined with at least a 90%
confidence level of obtaining superior or equal yields to 69%. Thus, one
would expect that, of the batches lying within the High-Confidence DS,
90% or more would be acceptable batches (the NPV for the High-
Confidence DS is 93.3%). On the other hand, the High-Confidence DS
leads to 75.0% type I risk and 5.6% type II risk. This means that if only
Fig. 11. First industrial case study (scenario 3i): High-Confidence DS (Multivariate R
several confidence levels with exploiting data.

10
batches lying within the High-Confidence DS are accepted, 5.6% of un-
acceptable batches of raw materials will be accepted at the expense of
rejecting 75.0% of acceptable batches. These results are the consequence
of the low PLS goodness of prediction (Q2

Ycum ¼ 25:1%) in this case study,
due to the fact that historical data presents a low signal to noise ratio.
Alternatively, one could accept batches lying within the Warning Space
knowingly that the NPV in such space would be 70.8% and, hence, likely
end-product test should be required. Another option would be to balance
the type I and type II risks by modifying the confidence level of the High-
Confidence DS. Fig. 11 shows the High-Confidence DS for different
confidence levels (50, 70, 90 and 99%) with exploiting data. The corre-
sponding type I risk, type II risk and NPV for the High-Confidence DS, and
NPV for the Warning Space are shown in Fig. 12. Note that, the 50%
confidence level case corresponds to the DS without considering the
uncertainty.

Fig. 11 shows that as confidence level increases, a tighter High-
Confidence DS is spanned, thereby, the type II risk is reduced at the
expense of increasing the type I risk, as is shown in Fig. 12. Therefore, the
aw Material Specification Region), Warning Space and Low-Confidence Space for
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confidence level of the High-Confidence DS must be chosen according to
the users by balancing the consequences of having type I and type II
errors in their processes, and the total amount of such errors. Besides, for
all cases, the NPV is equal or higher than its corresponding confidence
level as expected.

In order to investigate how PLS goodness of prediction Q2
Ycum affects

the performance of the High-Confidence DS a simulation study is carried
out. In these simulations we assume that the true model relating Z and y
is, indeed, the one calculated by the calibration set. Hence, individual
values of y, yobs, are obtained using Eq. (21) given a batch of rawmaterial
zobs and the weighting matrices q L ¼ 1Q ¼ qT and W*:

yobs ¼ qT ⋅W*T ⋅ zobs þ eobs (21)

where eobs is an independent random noise value from a normal distri-
bution with zero mean and standard deviation σ. By modifying the value
of such standard deviation, one can create simulated datasets yielding
PLS models with different goodness of prediction. Fig. 13 shows the
High-Confidence DS with 90% confidence level of obtaining superior or
equal yields to 69% for different datasets simulated from the exploiting
dataset by using a standard deviation of 0.025, 0.1, 0.5 and 1 yielding
Q2

Ycum of 90.8%, 72.5%, 38.7% and 20.8%, respectively. 2000 batches
have been simulated for each dataset to obtain more accurate results with
respect to the original data.

Fig. 13 shows that the lower the noise standard deviation, the higher
the goodness of prediction and, consequently, the clearer the discrimi-
nation between acceptable and unacceptable raw materials. Besides,
regardless the goodness of prediction, the proposed method defines the
multivariate specification region given the same confidence level (90%).
As can be see, lower values for the goodness of prediction result in nar-
rower multivariate specification region where more acceptable material
Fig. 12. First industrial case study (scenario 3i): type I risk, type II risk and NPV
for the High-Confidence (HC) DS, and NPV for the Warning Space (WS) vs
confidence level.
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is rejected to guarantee such confidence level. This will affect the type I
and type II risks as shown in Fig. 14.

Fig. 14 shows that with moderate/high values of Q2
Ycum it is feasible to

obtain High-Confidence DS with high confidence level and low type I and
II risks, and high NPV. For example, given desired yields equal or supe-
rior to 69%, the High-Confidence DS with 90% confidence level and σ ¼
0:025 (Q2

Ycum ¼90.8%) leads to 9.6% type I risk, 7.0% type II risk and
99.0% NPV. However, with low values of Q2

Ycum it is more critical to
consider the prediction uncertainty for guarantying quality (i.e., high
NPV in the High-Confidence DS) at the expense of increasing the type I
risk.

Note that the apparently bad performance for low values of Q2
Ycum is

solely due to the nature of the data and not the methodology, as noise
refers to random variation with no pattern, and therefore usually un-
avoidable and unpredictable.

In case of desiring to increase the signal-to-noise ratio of the data sets,
some process excitation is needed. Multivariate design of experiments
can be used such that it provides the greatest amount of additional in-
formation with respect to the information available in the existing
dataset [36]. Considering these new observations from experimentation
in addition to the historical/happenstance data will improve the esti-
mation of the DS (i.e., wide multivariate specification region with high
confidence level and low type I and type II risks will be obtained).

A sensitivity analysis was undertaken to assess the robustness of the
High-Confidence DS with respect to i) the observations used to build the
PLS model, and ii) the number of PLS components.

i) Happenstance data

To evaluate the sensitivity analysis of the High-Confidence DS with
respect to happenstance data, the initial data set (989 historical batches/
observations) are divided 100 times randomly in two sets: calibration set
(70%) and exploiting set (30%). Then, the High-Confidence DS with a
90% confidence level is calculated each time using the corresponding
calibration set. Fig. 15 shows the boxplots of the distribution of type I
risk, type II risk and NPV for the High-Confidence DS, and NPV for the
Warning Space from all PLS models using their corresponding exploiting
set. Besides, as example, Fig. 16 shows the High-Confidence DS for two of
the 100 models generated.

Fig. 15 shows that Type I and II risks, and NPV hardly vary for the
different PLSmodels, and Fig. 16 shows that both subsets lead to a similar
region of the High-Confidence DS.

ii) Number of PLS components

The number of components to be used is a very important property of
a PLS model and their choice must be done according to the purpose of
such model. In our case study, we have evaluated how changes in the
number of components may affect the type I and type II risks of the High-
Confidence DS with 90% confidence limit. Table 1 shows that no relevant
differences in the performance of the diagnostic test are observed when
adding PLS components. The reason for this is the fact that the goodness
of prediction (Q2

Ycum) is quite similar among the models.
6.2. Second industrial case study: petrochemical process

This industrial case study refers to a catalytic afterburner used as
control device for oxidation of undesirable combustible gases in a
petrochemical process. The properties of the catalyst have an impact on
the afterburn quality process and, hence, it is not only crucial to deter-
mine the raw material properties of the catalyst, but also define its
multivariate specifications for ensuring such quality.

The historical/happenstance data available are a compilation of nine
properties of the afterburn catalyst (Z) related to regenerated catalyst
percentage, catalyst density, particle size distribution and chemical



Fig. 13. High-Confidence DS (Multivariate Raw Material Specification Region), Warning Space and Low-Confidence Space for simulated data with different noise
variability σ.
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composition, and one response variable y (afterburn yield). In total, 9971
historical batches/observations were measured, and they were divided
randomly in two sets: calibration set (70%) for Phase I and exploiting set
(30%) for Phase II. Besides, a lower and upper specification limits are
considered for the response variable, hence this case refers to the second
scenario.

Leave-one-out CV was used for selecting the number of PLS compo-
nents. Thus, two LVs were chosen to fit a PLS model (R2

Zcum ¼ 56:3%,
R2
Ycum ¼ 73:6% and Q2

Ycum ¼ 73:5%) using calibration observations
(Phase I). This is a case study with a moderate goodness of prediction
(Q2

Ycum). None of the historical observations exhibit any unusual behav-
iour caused by special cause process variations based on SPE and T2

charts in Phase I (charts not shown).
12
Fig. 17a illustrates the High-Confidence DS with a 90% confidence
level resulting in 41.6% type I risk, 9.6% type II risk and 98.0% NPV with
exploiting data. However, if uncertainty had not been considered, 17.2%
type I risk, 34.7% type II risk and 95.0% NPV would have been obtained.
As expected, Fig. 17b shows that as confidence level increases, the type II
risk is reduced at the expense of increasing the type I risk. It should be
noticed that the type I and II risks and NPV not only depend on the
goodness of prediction but also on other factors such as the scenario, the
value of the specification limits or the validation data. For that reason,
different case studies with the same Q2

Ycum could result in slightly
different type I and II risks for the same confidence level, as it happens if
comparing the simulated case for the first case study using a standard
deviation of 0.1 (Fig. 14b) and the second case study (Fig. 17b).



Fig. 14. Type I risk, type II risk and NPV for the High-Confidence (HC) DS, and NPV for the Warning Space (WS) vs confidence level for simulated data with different
noise variability σ.
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On the other hand, since in the second case study there is a substantial
variation in the goodness of prediction when adding the second PLS
component, the sensibility analysis of the number of the PLS components
is also undertaken (Table 2).

Unlike the first case study (Table 1), Table 2 shows relevant im-
provements in the reduction of type I and II risks when adding the second
PLS component, but not after adding more components. For that reason,
it is concluded that the CV criterion for the selection of two PLS
13
component results in good performances indices.

6.3. Third industrial case study: blown film process

In order to illustrate the proposed methodology in a case study with a
high goodness of prediction, we consider data collected from an indus-
trial blown film process presented by Duchesne and MacGregor [1]. In
this example, 10 resin properties (Z) and 25 film characteristics (Y) were



Fig. 15. Boxplots of type I risk, type II risk and NPV for the High-Confidence
(HC) DS, and NPV for the Warning Space (WS) (from the 100 PLS models
using their corresponding exploiting set).

Table 1
First industrial case study (scenario 3i): Goodness of prediction (Q2

Y ; cum), type I
risk, type II risk and NPV for the High-Confidence (HC) DS, and NPV for the
Warning Space (WS) as a function of the number of PLS components (High-
Confidence DS for 90% confidence level).

A Q2
Y ; cum ð%Þ Type I ð%Þ Type II ð%Þ NPV HC DS ð%Þ NPV WS ð%Þ

1 24.3 76.3 6.9 91.4 70.8
2 25.1 75.0 5.6 93.3 70.8
3 25.2 74.1 4.2 95.1 70.3
4 25.3 74.1 5.6 93.5 69.6
5 25.3 74.1 5.6 93.5 69.8
6 25.3 74.1 4.2 95.1 69.8
7 25.3 74.1 4.2 95.1 70.0
8 25.3 74.1 4.2 95.1 70.0
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measured for a series of 55 films/observations, but one of these obser-
vations was dismissed due to unusual behaviour. In addition, an overall
judgment of film quality for the specific market into low, medium and
high suitability is available for each film. This quality variable would be
used for mapping the region of high film quality according to the De Smet
[2] and Duchesne and MacGregor [1] approaches. But, since our
approach defines the High-Confidence DS from specification limits in
film characteristics, such quality variable was used to define the product
acceptance limit that best discriminate high from medium and low
quality. In fact, due to the high correlation of film characteristics, only a
lower specification limit for one characteristic was required, referring to
scenario 3i. Thus, in total 54 samples were analyzed: Z (54 � 10) and y
(54 � 1) and they were divided randomly in calibration set (70%) and
exploiting set (30%).

Two LVs were chosen by Leave-one-out CV to fit a PLS model
(R2

Zcum ¼ 58:0%, R2
Ycum ¼ 89:5% and Q2

Ycum ¼ 85:0%). None of the his-
Fig. 16. Graphical definition of the High-Confidence DS (Multivariate Raw Materia
models generated: (a) and (b).
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torical observations exhibit any unusual behaviour caused by special
cause process variations based on SPE and T2 charts in Phase I (charts not
shown).

Fig. 18 illustrates the High-Confidence DS with a 90% confidence
level resulting in 0% type I risk and 0% type II risk with exploiting data.
The same results would be obtained by De Smet [2] and Duchesne and
MacGregor [1] approaches, and without considering the prediction un-
certainty. This result was expected and suggests that when having high
goodness of prediction, considering prediction uncertainty is less critical.
However, this situation is not frequent when working with histor-
ical/happenstance data, typical from Industry 4.0.

7. Conclusions

In this paper, we propose a novel approach to define an analytical
expression for defining the multivariate rawmaterial specification region
in the latent space where there is assurance of quality with a certain
confidence level for the CQAs of the final product (i.e., the so-called
High-Confidence design space). Thus, it would allow evaluating the
capability of the raw material batches of producing product with CQAs
within specification limits, before producing a single unit of the product,
and based on that information, making a decision about accepting or not
the supplier raw material batch. This is totally different to existing
l Specification Region), Warning Space and Low-Confidence for two of the 100



Fig. 17. Second industrial case study (scenario 2): (a) Graphical definition of the High-Confidence (HC) DS (Multivariate Raw Material Specification Region), Warning
Space (WS) and Low-Confidence by showing exploiting data. (b) Type I risk, type II risk and NPV for the High-Confidence DS, and NPV for the Warning Space vs
confidence level.

Table 2
Second industrial case study (scenario 2): Goodness of prediction (Q2

Y ; cum), type I
risk, type II risk and NPV for the High-Confidence (HC) DS, and NPV for the
Warning Space (WS) as a function of the number of PLS components (High-
Confidence DS for 90% confidence level).

A Q2
Y; cum ð%Þ Type I ð%Þ Type II ð%Þ NPV HC DS ð%Þ NPV WS ð%Þ

1 47.3 66.7 16.9 94.0 86.4
2 73.5 41.6 9.6 98.0 83.5
3 74.2 40.5 8.1 98.3 83.7
4 74.5 41.4 7.5 98.4 83.0
5 74.5 41.5 7.2 98,5 82.8
6 74.6 40.6 6.6 98.6 82.9
7 74.7 41.3 7.5 98.4 83.5
8 74.9 40.3 7.8 98.4 82.8

Fig. 18. Third industrial case study (scenario 3i): Graphical definition of the High-C
and Low-Confidence by showing exploiting data.
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approaches that evaluate (and also accept or reject) raw material batches
based on their raw material properties but not on the desired final
product properties.

This methodology is based on the inversion of the PLS model, and the
most remarkable advantages are:

� It can be used with historical data (i.e., daily production data not
coming from any experimental design but with varying raw material
properties, typical from Industry 4.0 environment) since, when fitting
PLSmodels, causality can be inferred in the latent space, which allows
the meaningful inversion of the model.

� It considers a multivariate approach providing much insight into what
constitutes acceptable raw material batches when their properties are
correlated.
onfidence DS (Multivariate Raw Material Specification Region), Warning Space
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� The use of mathematical and statistical models as a way to define such
raw material specifications by linking them with specification limits
for CQAs of the final product.

� It allows a frequentist probabilistic interpretation. The multivariate
raw material region is expected to produce product with CQAs within
specification limits with a confidence level equal or higher than (1�
α) � 100.

� It provides the analytical definition of the limits of the multivariate
raw material specifications.

� It provides a strategy where RTR (for batches in the multivariate raw
material specification region or High-Confidence Design Space), or
end-product testing (for batches in the Warning Space) can be used as
needed.

The methodology presented here is illustrated using three industrial
case studies.

Our approach assumes that if process variations are correlated with
raw material properties due to control actions through manipulated
variables, they will remain in place in the future. However, several works
have already emphasized that such control actions could be improved in
order to compensate for some of the raw materials variability [3,5,6].
Hence, wider raw materials specifications can be used if an effective
process control system attenuating most raw material variations is
implemented. In this sense, future research is needed to model the re-
lationships between not only rawmaterials properties and CQAs, but also
process conditions. The proposed approach provides a good starting
point when raw material multivariate specifications, defined analytically
by considering a probabilistic approach, are precisely linked with CQAs
of the final product. Finally, the logical extension of defining raw ma-
terial specifications is to measure how far suppliers can consistently
operate inside such specifications in order to select them by means of
multivariate capability indices. This will deserve future work.
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Appendix A. Specification confidence limits when considering the prediction uncertainty for the l-th CQA

Let τNS be a vector of scores belonging to the NS associated to either the upper or lower specification limit for the l-th CQA (ySLl ), and τSCL the vector of
scores belonging to such specification confidence limit. Thus, the vector defined by ðτNS �τSCLÞ is orthogonal to the NS (i.e., as vector vl defining the
hyperplane of the NS (Eq. (17)), and the direction depends on whether it refers to yLSLl (τLSCL) or yUSLl (τUSCL):�
τNS � τSCL

�¼ vl ⋅ λ (A.1)

where λ is a scalar that can be negative or positive depending on it referring to the τLSCL or τUSCL, respectively. Besides, the lower (if yLSLl is considered) or
upper (if yUSLl is considered) endpoint of its prediction interval must match the specification limit.

ySLl ¼ qTl ⋅ τ
NS (A.2)

ySLl ¼ qTl ⋅ τ
LSCL � tα =

2 ;N�df ⋅ seLSCLl
(A.3)

ySLl ¼ qTl ⋅ τ
USCL þ tα =

2 ;N�df ⋅ seUSCLl
(A.4)

By substitution and reorganization of either Eq. (A.1), Eq. (A.2) and Eq. (A.3), or Eq. (A.1), Eq. (A.2) and Eq. (A.4) the same quadratic equation is
defined (Eq. (A.5)).
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s2eSCLl
⋅ t2

α

=

2 ;N�df
¼ �

qTl ⋅ vl
�2 ⋅ λ2 (A.5)
Notice that there will be a negative solution attributed to the yLSLl and a positive solution attributed to the yUSLl . Furthermore, since s2eSCLl
depends on

the leverage of the unknown τSCL (either τLSCL or τUSCL) according to Eq. (10) and Eq. (11), it must can be expressed as a function of τNS by taking into
account Eq. (A.1) as follows:

s2eSCLl
¼ SE2

l ⋅
�
vTl ⋅ ðTT ⋅ TÞ�1 ⋅ vl ⋅ λ2 � 2 ⋅ vTl ⋅ ðTT ⋅ TÞ�1 ⋅ τNS ⋅ λ þ 1þ 1

=Nþ τNS
T ⋅ ðTT ⋅ TÞ�1 ⋅ τNS

�
(A.6)

Substituting Eq. (A.6) in Eq. (A.5):

SE2
l ⋅

�
vTl ⋅ ðTT ⋅ TÞ�1 ⋅ vl ⋅ λ2 � 2 ⋅ vTl ⋅ ðTT ⋅ TÞ�1 ⋅ τNS ⋅ λ þ 1þ 1

=Nþ τNS
T ⋅ ðTT ⋅ TÞ�1 ⋅ τNS

�
⋅ t2

α

=

2 ;N�df
¼ �

qTl ⋅ vl
�2 ⋅ λ2 (A.7)

and reorganizing terms:

a ⋅ λ2 þ b ⋅ λþ c ¼ 0 (A.8)

where:

a¼ SE2
l ⋅ v

T
l ⋅ ðTT ⋅ TÞ�1 ⋅ vl ⋅ t2α =

2 ;N�df
� �

qTl ⋅ vl
�2

b¼ � SE2
l ⋅ 2 ⋅ v

T
l ⋅ ðTT ⋅ TÞ�1 ⋅ τNS ⋅ t2

α

=

2 ;N�df
(A.9)

c¼ SE2
l ⋅

�
1þ 1

=Nþ τNS
T ⋅ ðTT ⋅ TÞ�1 ⋅ τNS

�
⋅ t2

α

=

2 ;N�df

The values of λ that satisfy Eq. (A.8) are the solutions of a quadratic equation and, as commented above, there will be a positive and a negative one.
Besides, it is known that c is positive given terms that define it. For all this, it can be deduced that the quadratic function is concave down (i.e., the
second derivative is negative) and, consequently, a must be negative. Because a is negative and c is positive, it is determined that the discriminant
ðb2 �4 ⋅a ⋅cÞ is positive and, therefore, there are two distinct roots as follows:

λ1 ¼�bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4 ⋅ a ⋅ c

p

2 ⋅ a
λ2 ¼ �b� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4 ⋅ a ⋅ c
p

2 ⋅ a
(A.10)

where both of them are, by definition, real numbers. Since the root of the discriminant is higher than b and a is negative, it is deduced that λ1 is negative
(it refers to yLSLl ) and λ2 is positive (it refers to yUSLl ). Thus, Eq. (A.11) shows the analytical expression of the specification confidence limits when
considering the prediction uncertainty.

τLSCL ¼ τNS � vl ⋅ λ1 τUSCL ¼ τNS � vl ⋅ λ2 (A.11)
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