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Fast Partial Quantile Regression

Álvaro Méndez Civieta∗ † M. Carmen Aguilera-Morillo‡ †

Rosa E. Lillo∗ †

Abstract

Partial least squares (PLS) is a dimensionality reduction technique used as an alter-

native to ordinary least squares (OLS) in situations where the data is colinear or high

dimensional. Both PLS and OLS provide mean based estimates, which are extremely

sensitive to the presence of outliers or heavy tailed distributions. In contrast, quantile

regression is an alternative to OLS that computes robust quantile based estimates. In

this work, the multivariate PLS is extended to the quantile regression framework, ob-

taining a theoretical formulation of the problem and a robust dimensionality reduction

technique that we call fast partial quantile regression (fPQR), that provides quantile

based estimates. An efficient implementation of fPQR is also derived, and its perfor-

mance is studied through simulation experiments and the chemometrics well known

biscuit dough dataset, a real high dimensional example.

keywords: partial-least-squares; quantile-regression; dimension-reduction; outliers; robust.

1 Introduction

Partial least squares (PLS) [Wold, 1973], [Wold et al., 2001] is a dimensionality reduction

technique commonly applied to two data blocks (predictors and responses) that works by

projecting the available data into a latent structure. The key idea behind PLS is that it

can summarize the predictors into a small set of uncorrelated latent variables that have

maximal covariance with the responses. PLS has proven to be a versatile alternative to

ordinary least squares (OLS), obtaining parsimonious models even when dealing with ill-

posed multicollinear problems, commonly found in different areas of scientific research such

as chemometrics, social science or medicine. See for example [Nguyen and Rocke, 2002],
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where it is used in a tumor classification problem. In recent years PLS has also received

attention when dealing with the increasingly common problem of high dimensional data, in

which the number of observations is small and the number of variables is very large. In

this regard, Boulesteix and Strimmer [2006] successfully applied PLS to a genomic dataset.

Partial least squares is based on the cross-covariance matrix between predictors and response,

and on least squares models. Least squares models are known to behave nicely when the

errors are normally distributed, but there is no guarantee that the normality will be satisfied

in many experimental data problems, where heavy tailed distributions, and even outliers are

expected to be found. This makes PLS extremely sensitive to the presence of outliers or non

normal data. The solution to this problem has traditionally been centered in robustifying

the least squares estimator in which PLS is based, see for example [Serneels et al., 2005]

where they make use of a robust M-regression estimator, or [Acitas et al., 2020], where a

partial robust adaptive modified maximum likelihood estimator is proposed, among others.

Quantile regression [Koenker and Bassett, 1978] is an important statistical methodology

that allows to describe the conditional quantiles of a response given a set of covariates. Fit-

ting the data at a set of quantiles provides a more comprehensive picture of the response

distribution than does the mean, and as opposed to least squares, quantile regression is re-

sistant to outliers, and can deal with heavy tailed distributions and heteroscedasticity, the

situation when variances depend on some covariates. Specifically, when the center of the

distribution is of interest, the least absolute deviation (LAD), also called median regres-

sion, a particular case of quantile regression, provides more robust estimators than least

squares regression. In recent years many papers have been published extending quantile

regression to the high dimensional framework by performing variable selection, see for ex-

ample Wu and Liu [2009] where an adaptive lasso for quantile regression is introduced, or

[Mendez-Civieta et al., 2021], where an adaptive sparse group lasso for quantile regression is

proposed. However, to the best of our knowledge there is very little work on quantile based

dimension reduction techniques. A well known PLS implementation is given by the NIPALS

algorithm [Wold, 1973]. Dodge and Whittaker [2009] extended the NIPALS algorithm for

univariate response problems to the quantile regression framework. They proposed a quan-

tile covariance metric based on the quantile regression slope and used this metric to modify

the univariate NIPALS, a modification that they called partial quantile regression (PQR).

The work from Dodge and Whittaker [2009] lays the foundation for an extension of PLS to

the quantile regression framework, however we find some shortcomings in the development

of the methodology and the algorithmic implementation that should be addressed. First, it

has no background on what is the optimization problem that their PQR algorithm is solving.

Second, it is centered in univariate response problems, providing no solution for multivariate

response problems commonly found in fields such as chemometrics. Third, the computation
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time of their quantile coviariance, key in the algorithmic implementation, grows linearly

with the number of variables, making solving high dimensional problems computationally

expensive. The main contribution of our work is centered in addressing these problems. We

define the optimization problem that the fPQR algorithm solves and study different quan-

tile covariance alternatives [Li et al., 2015], [Choi and Shin, 2018]. We provide an efficient

implementation of fPQR, greatly reducing the computation time when compared with that

of [Dodge and Whittaker, 2009] while achieving more accurate predictions. We also provide

an implementation suitable for multivariate response settings. The result is a methodology

that parallels the nice properties of PLS: it is a dimension reduction technique that obtains

uncorrelated scores maximizing the quantile covariance between predictors and responses.

But additionally, it is also a robust, quantile based methodology suitable for dealing with

outliers, heteroscedastic or heavy tailed datasets. The median estimator of the fPQR al-

gorithm is a robust alternative to PLS, while other quantile levels can provide additional

information on the tails of the responses.

The rest of the paper is organized as follows. In Section 2 a brief introduction of the PLS

algorithm for multivariate response is provided. Section 3 introduces the fPQR algorithm and

studies different options for a quantile covariance metric. Section 4 tests the performance of

the proposed fPQR algorithm in three synthetic dataset frameworks studying the quality of

the estimated β coefficients and the prediction error. In Section 5, the proposed algorithm

is used in a real high dimensional data example. Some computational aspects are briefly

commented in Section 6, and the conclusions are provided in Section 7.

2 The PLS model for multivariate response

Let X ∈ Rn×m and Y ∈ Rn×l be two data matrices, samples drawn from some unknown

population following the linear model,

yi = xiB + εi, i = 1, . . . , n, (1)

where yi ≡ (yi1, . . . , yil) is the vector containing the response variables for the i-th observa-

tion, xi ≡ (xi1, . . . , xim) contains the predictive variables, B ∈ Rm×l is the matrix containing

the coefficients from the linear relations, and εi ≡ (εi1, . . . , εil) is the error term. Without

loss of generality, consider that both X and Y are mean centered. The PLS regression

methodology works by assuming the existence of a latent structure,

X = TP t + E; Y = TQt + F, (2)
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where T ∈ Rn×h is the scores matrix formed by h (usually being h� m) linear combinations

of the original variables, P ∈ Rm×h and Q ∈ Rl×h are loadings matrices and E ∈ Rn×m and

F ∈ Rn×l are random error matrices. The aim of PLS regression is precisely to regress the

response matrix Y onto the h latent variables, stored in the scores matrix T , defining this

way a low-dimensional regression model,

yi = tiΓ + ε∗i , i = 1, . . . , n, (3)

where Γ is the matrix of regression coefficients. PLS is an iterative algorithm in which the

scores in T are obtained sequantially. There are multiple definitions of the PLS algorithm

available in the literature, being NIPALS [Wold, 1973] and SIMPLS [de Jong, 1993] the most

frequently used ones. Here a version of NIPALS that will be useful in the implementation of

the fPQR algorithm is considered:

Step 1: Define X0 = X and Y0 = Y .

Step 2: Compute Sa = X t
a−1Ya−1 the sample covariance matrix.

Step 3: Obtain the eigen decomposition of SaS
t
a and take wa as the eigenvector associated

to the largest eigenvalue.

Step 4: Calculate the X score vector as ta = Xa−1wa.

Step 5: Calculate the X loading vector as pa =
X t
a−1ta
ttata

.

Step 6: Calculate the Y loading vector as qa =
Y t
a−1ta
ttata

.

Step 7: Deflat the matrix Xa−1 from the information already explained by scores t1 and

obtain Xa = Xa−1 − tapta.

Step 8: Deflat the matrix Ya−1 from the information already explained by scores ta and

obtain Ya = Ya−1 − taqta.

Iterate through steps 2-8 until all h components are computed. Observe that the deflation

process stated in step 7 ensures that the score matrix T will be orthogonal. Once all the

required components have been computed, the parameter estimates Γ̂ from equation (3) are

obtained solving the low dimensional least squares model,

Γ̂ = arg min
Γ

{
‖Y − TΓ‖2

}
. (4)
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Finally, one can project the estimate Γ̂ back into the original sub-space spawned by X

and obtain,

B̂ = W (P tW )−1Γ̂. (5)

PLS is essentially a covariance maximization problem where, at each iteration a+ 1, the

objective function being solved is defined as,

wa+1 = arg max
w,‖w‖=1

{
cov(Xaw, Ya) cov(Xaw, Ya)

t
}
, (6)

where X0 = X and Y0 = Y , and the solution is the eigenvector associated to the largest

eigenvalue λ1,

SaS
t
awa = λ1wa. (7)

Posing PLS as a covariance optimization problem opens the door to the possibility of

using alternative covariance definitions. Traditionally, robust versions have been considered

in order to obtain robustified PLS algorithms, see for example [Hubert and Branden, 2003].

In this work we are interested in defining not only a robust PLS estimator, but an estimator

linked to the quantiles of the response matrix, giving the possibility to study the tails of the

response matrix and not just the central behavior. As a solution to this question, a robust

quantile based dimension reduction technique that we call fast partial quantile regression

(fPQR) is introduced in the next section.

3 Fast partial quantile regression

There are two key steps in the definition of the fPQR methodology. First, the usage of a

quantile covariance metric linked to the quantiles, instead of the traditional covariance, that

is linked to the mean. As it will be discussed in Section 4, the metric that we consider to

be the best alternative was proposed by Li et al. [2015], although other alternatives [Dodge

and Whittaker, 2009], [Choi and Shin, 2018] will also be studied along Sections 3.3 and 4.

Second, the estimation of the Γ coefficients defined in equation (3). In the PLS algorithm,

these coefficients are estimated using ordinary least squares, but in the fPQR algorithm a

quantile regression model is used instead ensuring that the Γ̂ estimates remain linked to the

quantiles of the response matrix Y .

3.1 A quantile covariance

In a very interesting work, Li et al. [2015] extended the usage of autoregressive models

to the quantile framework by defining a novel measure suitable for examining the linear
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relationships between any two random variables for a given quantile τ ∈ (0, 1), a measure

that they called quantile correlation. Given two random variables Z1 and Z2, take Qτ,Z2
as

the τ -th quantile of Z2 and Qτ,Z2
(Z1) as the τ -th quantile of Z2 conditional to Z1. Then

it is possible to demonstrate that Qτ,Z2
(Z1) is independent of Z1 if and only if the random

variables I(Z2 − Qτ,Z2
> 0) and Z1 are independent, where I(·) is the indicator function.

This fact motivated the definition of the quantile covariance proposed in their work as,

qcovτ{Z1, Z2} = cov
{
I
(
Z2 −Qτ,Z2

> 0
)
, Z1

}
= E

{
ψτ
(
Z2 −Qτ,Z2

)
(Z1 − EZ1)

}
,

(8)

where ψτ (w) = τ − I(w < 0). Being based on a traditional covariance makes this quantile

covariance easy and fast to compute. Additionally, although this definition is proposed for

random variables, it can be extended to random vectors, making it possible to adapt to

the data matrices found in multidimensional problems. Observe however that, opposed to

the traditional covariance, this quantile covariance does not enjoy the symmetry property,

that is, qcovτ (Z1, Z2) 6= qcovτ (Z2, Z1). Nevertheless, the lack of symmetry of the quantile

covariance does not affect the algorithm proposed in this work, as it is defined for regression,

where the roles of independent and dependent variables are clearly specified and the data

matrices do not play a symmetric role. A complete definition of this metric can be found in

[Li et al., 2015] where they study a nice relation between this metric and the slope from a

quantile regression model, and also the asymptotic properties of the estimator.

3.2 The fPQR algorithm

The objective function that the fPQR algorithm solves is obtained by adapting the objective

function from a PLS model as it was defined in equation (6) using the quantile covariance

introduced in Section 3.1,

wa+1 = arg max
w,‖w‖=1

{
qcovτ (Xaw, Ya)

t qcovτ (Xaw, Ya)
}

= arg max
w,‖w‖=1

{
wtX t

aψτ (Ya −Qτ,Ya)ψτ (Ya −Qτ,Ya)tXaw
}
,

(9)

where ψτ (w) = τ − I(w < 0). The solution to this equation is the eigenvector associated to

the largest eigenvalue λ1,

X t
aψτ (Ya −Qτ,Ya)ψτ (Ya −Qτ,Ya)tXawa = λ1wa. (10)

Based on this idea, the main steps of the fPQR algorithm are defined below,
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Step 1: Take τ ∈ (0, 1) the quantile level of interest.

Step 2: Define X0 = X and Y0 = Y .

Step 3: Compute Sa,τ = qcovτ (Xa−1, Ya−1) the sample quantile covariance matrix.

Step 4: Obtain the eigen decomposition of Sa,τS
t
a,τ and take wa as the eigenvector associated

to the largest eigenvalue.

Step 5: Calculate the X score vector as ta = Xa−1wa.

Step 6: Calculate the X loading vector as pa =
X t
a−1ta
ttata

.

Step 7: Calculate the Y loading vector as qa =
Y t
a−1ta
ttata

.

Step 8: Deflat the matrix Xa−1 from the information already explained by scores t1 and

obtain Xa = Xa−1 − tapta.

Step 9: Deflat the matrix Ya−1 from the information already explained by scores ta and

obtain Ya = Ya−1 − taqta.

Iterate through steps 2-8 until all h components are computed. In order to obtain the

parameter estimates Γ̂ in the PLS algorithm, a least squares model was solved following

equation (4), but in the fPQR algorithm this is substituted by a quantile regression model

solving,

Γ̃ = arg min
β

{
1

n

n∑
i=1

ρτ (yi − ttiΓ)

}
, (11)

where ρτ (u) = u(τ − I(u < 0)) is the quantile regression loss check function. Using a

quantile regression model here ensures that the Γ̂ estimates remain linked to the quantile of

the response matrix Y . Finally, one can project Γ̂ back into the original sub-space spawned

by X as it was done in the PLS models in equation (5). The fPQR is an algorithm that

shares many of the benefits of PLS:

• It is a dimension reduction technique suitable for multicollinear or high dimensional

data;

• The new scores obtained by the algorithm are orthogonal;

• It maximizes the quantile covariance between predictor and response.

But it also has some additional properties:
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• It is a robust methodology, suitable for dealing with outliers or heteroscedastic data;

• It can provide an estimation of the central behavior of the response conditional to

the predictors, but additionally can provide an estimation of any other quantile of the

response, conditional to the predictors, obtaining a complete view of the distribution

of the response.

3.3 Other quantile covariance metrics

In Section 3.2, the fPQR algorithm was defined as an optimization problem where a quantile

covariance metric is maximized. Although the metric proposed by Li et al. [2015] was used in

the definition of the algorithm, it is possible to consider alternative versions of fPQR based

on other quantile covariance metrics. Along this section, two other candidates, defined

by [Dodge and Whittaker, 2009] and [Choi and Shin, 2018] are considered, showing their

definition and some properties related to the fPQR performance.

3.3.1 A quantile covariance from Dodge and Whittaker [2009]

Take two random variables Z1 and Z2 following the linear model,

Z2 = Z1β + ε. (12)

The analytical solution of the ordinary least squares estimator for model (12) is,

β̂ = var(Z1)−1 cov(Z1, Z2). (13)

Dodge and Whittaker [2009] take advantage of this fact and define a quantile covariance in

terms of the quantile regression estimator, mimicking the relation between the OLS estimator

and the traditional covariance displayed in equation (13). Consider the quantile regression

estimator,

β̃ = arg min
β
{E ρτ (Z2 − βZ1)} , (14)

where ρτ (u) = u(τ − I(u < 0)) is the quantile regression loss check function. Then the

quantile covariance proposed by Dodge and Whittaker [2009] is obtained as,

qcov∗τ (Z1, Z2) = var(Z1)β̃, (15)

where β̃ is the quantile regression estimator defined in equation (14). Here the superscript

“∗” differentiates this quantile covariance from the one defined in Section 3.1. There are

some remarks worth mentioning:
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• The extension of this quantile covariance to a multidimensional setting is not as

straightforward as in the traditional covariance or in the quantile covariance proposed

by Li et al. [2015]. Given a random vector U ≡ (U1, . . . , Um), the quantile covariance

qcov∗τ requires to solve a quantile regression model. If the number of variables in the

vector U changes, the value of the quantile regression coefficients associated to the vari-

ables would also change, affecting the quantile covariance metric. Additionally, when

dealing with a high dimensional scenario this would require solving a high dimensional

quantile regression model, which is not feasible. The only way to ensure that the re-

sults of this quantile covariance are stable and are also feasible in high dimensional

problems is to compute it univariatedly. This way, the computation of the quantile

covariance between U and Z2 requires to solve m univariate quantile regression models,

where m is the dimension of U , greatly affecting the computation time as the number

of variables increase;

• As happened with the quantile covariance defined by Li et al. [2015], this quantile

covariance is not symmetric. This means that qcov∗τ (Z1, Z2) 6= qcov∗τ (Z2, Z1)

Additionally to the quantile covariance described above, the key contribution of Dodge

and Whittaker [2009] was the adaptation of the univariate NIPALS algorithm to the quantile

regression framework. The main differences between their proposal (PQR) and the work

developed here (fPQR) are listed below:

• In the work developed here, the optimization problem that the fPQR algorithm solves

is clearly defined, and based on this definition, the algorithm is proposed. Opposed

to this, Dodge and Whittaker [2009] simply defined the algorithm as a modification of

the univariate PLS NIPALS, without studying the optimization problem;

• The fPQR algorithm allows Y to be a multivariate response matrix while the PQR

algorithm is limited to univariate responses;

• As it will be seen in Section 4, the covariance considered in the fPQR algorithm allows

the algorithm to run significantly faster than the PQR algorithm.

3.3.2 A quantile covariance from Choi and Shin [2018]

Given two random variables Z1 and Z2, the Pearson correlation between the two variables

can be seen as the geometric mean of two OLS slopes, β2.1 of Z1 on Z2 and β1.2 of Z2 on Z1,

cor(Z1, Z2) = sign(β2.1)
√
β2.1β1.2. (16)
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Based on this idea, Choi and Shin [2018] proposed a quantile correlation coefficient defined

as the geometric mean of two quantile regression slopes,

qcor∗∗τ (Z1, Z2) = sign(β2.1(τ))
√
β2.1(τ)β1.2(τ), (17)

where the superscript “∗∗” is used to differentiate this metric from the ones from [Li et al.,

2015] and [Dodge and Whittaker, 2009]. A full review of the properties of this metric can

be found in the original paper [Choi and Shin, 2018] but there are some remarks that are

worth mentioning:

• The computation of this quantile covariance metric relies in solving two quantile re-

gression models. This means that the extension of this metric to a multivariate setting

faces the same problems as [Dodge and Whittaker, 2009]. Given a random vector

U ≡ (U1, . . . , Um) in order to ensure the stability and feasibility of the results obtained

with this metric, it must be computed univariatedly. The computation of qcor∗∗τ (U,Z2)

requires thus to solve 2m univariate quantile regression models, where m is the dimen-

sion of U , greatly affecting the computation time;

• Opposed to the other quantile metrics under study, this is the only metric that is

symmetric, meaning that qcor∗∗τ (Z1, Z2) = qcor∗∗τ (Z2, Z1).

Take into account that the fPQR algorithm requires a quantile covariance, and not a

quantile correlation. Although not defined in the original paper, it is possible to obtain an

estimation of a quantile covariance based on equation (17). Observe that,

qcor∗∗τ (Z1, Z2) = sign (β2,1(τ))
√
β2,1(τ)β1,1(τ)

= sign (β2,1(τ))

√
qcov∗τ (Z1, Z2) qcov∗τ (Z2, Z1)

var(Z1) var(Z2)
,

(18)

where qcov∗(·, ·) refers to the quantile covariance introduced in Section 3.3.1. This way, a

symmetric quantile covariance can be defined as,

qcov∗∗τ (Z1, Z2) = sign(β2,1(τ))
√

qcov∗τ (Z1, Z2) qcov∗τ (Z2, Z1). (19)

4 Numerical simulation

This section shows the performance of the proposed fPQR methodology under different syn-

thetic datasets. The three quantile covariances under study, proposed by [Li et al., 2015],

[Dodge and Whittaker, 2009] and [Choi and Shin, 2018] are compared here. Additionally,
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the algorithm is compared against PLS, taken as a benchmark model, and the partial robust

adaptive modified maximum likelihood estimator (PRAMML), proposed by Acitas et al.

[2020], which is a robust PLS alternative for univariate response models. In order to com-

pare the quantile estimation provided by fPQR with the mean estimations from PLS and

PRAMML, the quantile level of the fPQR is fixed at τ = 0.5 (the median estimation). For

each dataset D, a partition into two disjoint subsets, Dtrain and Dtest is considered. Dtrain is

used for training the models, this is, solving the model equations. Dtest is used for testing

the models prediction accuracy. The following metrics are computed, where “#” denotes

the cardinal of a set:

• ‖β̂ − β‖2: the euclidean distance between the estimated coefficients and the true

coefficients;

•
1

#Dtest

∑
(ŷi − yi)2: the mean squared error between the estimated response and the

true response;

• Eτ =
1

#Dtest

∑
ρτ (yi − xtiβ̂): a quantile error metric between the estimated response

and the true response;

• The execution time of each algorithm measured in seconds.

Remark. These simulations compare the results of the fPQR algorithm with the results from

PLS and PRAMML. For this reason, the quantile level is fixed at τ = 0.5 and the mean

squared error is among the metrics considered. However, when dealing with other quantile

levels, the mean squared error is not a suitable metric, as it does not take into account the

quantile being computed. In such scenarios the quantile error metric is a better alternative.

4.1 Simulation 1

The following simulation scheme is an adaptation taken from Mendez-Civieta et al. [2021].

The idea behind this scheme is to simulate the behavior found in the increasingly common

problem of sparse high dimensional data, where the number of variables is very large, and

not all the variables affect the response, being some of them just noise. This problem can be

found in many different areas of scientific research such as genetics [Boulesteix and Strimmer,

2006] or climate data [Chatterjee et al., 2011], and an interesting solution is the usage of

dimension reduction techniques like PLS or the proposed fPQR algorithm. Take the model,

y = Xβ + ε, (20)
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Table 1: Simulation 1. Sparse high dimensional framework considering a χ2(3) error.

∥∥∥β̂ − β∥∥∥ 1

#Dtest
‖ŷ − y‖22 Eτ Execution time

fPQR Li 3.88 (0.58) 21.59 (5.13) 1.82 (0.21) 0.038 (0.01)
fPQR Dodge 4.05 (0.62) 23.02 (5.98) 1.88 (0.23) 38.65 (1.649)
fPQR Choi 4.95 (0.94) 31.48 (11.40) 2.20 (0.35) 76.78 (2.716)
PLS 8.03 (2.03) 75.42 (37.21) 3.37 (0.79) 0.004 (0.001)
PRAMML 6.64 (1.37) 52.11 (20.66) 2.82 (0.54) 0.358 (0.047)

where the predictors matrix X is generated from a standard normal distribution and the

error term is generated following a chi squared distribution with 3 degrees of freedom, a

distribution known to be heavy tailed and non symmetric. This will favor the usage of

robust estimators. Since we are interested in the high dimensional framework, a sample size

of n = 100 training observations and m = 100 predictive variables is considered. Out of

the 100 predictive variables, 30 are generated from a standard uniform distribution and the

remaining 70 have value 0, meaning that these 70 variables do not affect the response variable

and are simply noise in the model. Although in real datasets the number of components in

the model should be found based on some sort of cross-validation process, in this simulation

it is fixed, taken equal to the number of significant variables, h = 30. Additionally, a sample

of 500 observations is generated as test set. Observe that this fact does not affect the

consideration of the simulation being high dimensional, as the algorithms are trained with

a number of observations equal to the number of variables. This data generation process is

repeated 100 times, and the results are summarized in terms of the mean value and standard

deviation value (shown in parenthesis) of each metric computed.

Results from this simulation scheme are displayed in Table 1. In terms of the euclidean

distance of the β coefficients, the best results are obtained by the fPQR Li estimator, followed

by the other quantile based alternatives, while PLS obtains the worst results, as expected

since the normality assumptions are not met. Observe also that the standard deviation of

this metric is smallest in the fPQR Li, indicating more stable results. In terms of prediction

accuracy both in terms of the mean squared error and the quantile error, the best results are

obtained also by the fPQR Li algorithm, followed by the fPQR Dodge and achieving again

the smallest standard deviation values. Finally, regarding the execution time the fastest

algorithm was PLS and the second fastest was fPQR Li, while PRAMML took on average 10

times longer than fPQR Li. One can also see the large execution times using fPQR Dodge

or fPQR Choi alternatives. This is due to the way these covariances are computed, requiring

to solve, at each iteration of the algorithm, m = 100 univariate quantile regression models

in the case of Dodge metric, and 2m = 200 models in the case of Choi metric, as it was

discussed in Section 3.3.
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Table 2: Simulation 2. Sparse high dimensional framework with multidimensional response,
considering a χ2(3) error.

∥∥∥β̂ − β∥∥∥ 1

#Dtest
‖ŷ − y‖22 Eτ Execution time

fPQR Li 5.16 (0.42) 15.14 (1.85) 1.52 (0.09) 0.10 (0.013)
fPQR Dodge 6.11 (0.48) 16.37 (2.18) 1.58 (0.10) 116.645 (2.139)
fPQR Choi 6.70 (0.51) 21.55 (3.89) 1.81 (0.16) 232.64 (7.088)
PLS 8.61 (1.01) 32.01 (6.55) 2.21 (0.21) 0.023 (0.004)
PRAMML 12.06 (1.38) 56.03 (11.74) 2.93 (0.30) 1.02 (0.063)

4.2 Simulation 2

A second simulation is considered where we study the problem of having a multivariate

response variable, very common in the field of chemometrics. Take,

Y = XB + ε, (21)

where the predictors matrix X of size n = 100 and m = 100 is generated from a standard

normal distribution, and the matrix of coefficients B has size m = 100 and l = 3. This

defines a problem where the response matrix Y has l = 3 dimensions. Out of the 100

predictive variables, 30 are generated from a standard uniform distribution and the remaining

70 have value 0, and finally the error term is generated following a chi squared distribution

with 3 degrees of freedom. In this simulation, the number of components obtained by the

algorithms is taken equal to the number of significant variables, h = 30. Additionally, a

sample of 500 observations is generated as test set and the simulation is repeated 100 times

to ensure the stability of the results. Algorithms PLS and fPQR can deal directly with

multivariate response matrices, but PRAMML solves only univariate models, for this reason

in this simulation the predictions from PRAMML are obtained by solving l = 3 independent

univariate models.

Results from this simulation scheme are displayed in Table 2. The best results in terms

of the euclidean distance and prediction error are achieved by the fPQR Li algorithm, closely

followed by fPQR Dodge. The fPQR Li algorithm also displays the smallest standard devi-

ations, meaning that the results are stable. The PRAMML estimator is outperformed here

by all the other algorithms including PLS, probably due to the inability to directly solve

multivariate problems, requiring to solve those in a univariate manner. In terms of execu-

tion time, the fastest algorithm is PLS, while fPQR Li is the second fastest running 10 times

faster than PRAMML. The fPQR Dodge and Choi algorithms are again the slowest.
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Table 3: Simulation 3. Euclidean distance of β coefficient estimations under different error
distributions.

N(0, 1) t1 Slash

(n,m, h) = (100, 10, 2)

fPQR Li 0.19 (0.13) 0.25 (0.15) 0.37 (0.23)
fPQR Dodge 0.19 (0.13) 0.26 (0.16) 0.38 (0.24)
fPQR Choi 0.49 (1.37) 3.46 (55.95) 1.69 (5.70)
PLS 0.19 (0.10) 6.23 (22.57) 12.00 (58.51)
PRAMML 0.16 (0.10) 0.23 (0.14) 0.31 (0.19)

(n,m, h) = (15, 60, 4)

fPQR Li 0.79 (0.33) 1.61 (1.25) 2.21 (1.45)
fPQR Dodge 0.90 (0.40) 1.84 (1.56) 2.49 (1.70)
fPQR Choi 6.74 (42.19) 18.78 (176.08) 28.25 (231.58)
PLS 1.14 (0.42) 14.94 (68.17) 29.55 (183.84)
PRAMML 0.61 (0.31) 1.02 (0.62) 1.42 (0.98)

4.3 Simulation 3

The last simulation considered takes the scheme from [Serneels et al., 2005] and [Acitas et al.,

2020]. Consider the model,

y = Xβ + ε = TP tβ + ε, (22)

where X = TP t ∈ Rn×m is the predictor matrix, T ∈ Rn×h is a scores matrix and P ∈ Rm×h

is a loadings matrix. T and P are generated based on a N(0, 1) distribution, and β ∈ Rm

is the vector of true coefficients, generated based on a normal distribution with mean 0 and

standard deviation 0.001. Three possible error distributions are considered for ε ∈ Rn: a

standard normal distribution, a t1 distribution, which is symmetric as the normal distribution

but with heavier tails, and a slash distribution (defined as a standard normal distribution

divided by a standard uniform distribution), which is heavy tailed and non symmetric. The

number of components in the model is fixed, equal to the dimension of the latent loadings h.

This process is repeated 500 times. Two cases are defined based on changes in the number

of training observations n, variables m and components h,

• A low dimensional example: (n,m, h) = (100, 10, 2);

• A high dimensional example: (n,m, h) = (15, 60, 4).

Results from this simulation are shown in Tables 3 and 4. In terms of the euclidean

distance of the β coefficients, one can see that PRAMML estimator obtains the best results

closely followed by fPQR Li and Dodge algorithms, being both competitive alternatives. It is

worth remarking the fact that fPQR Li and Dodge outperformed PLS even when considering

a normal distribution for the error term, where PLS is expected to excel. Finally, fPQR
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Table 4: Simulation 3. Execution time

fPQR Li fPQR Dodge fPQR Choi PLS PRAMML

(n,m, h) = (100, 10, 2)

0.015 0.27 0.54 0.0006 0.017

(n,m, h) = (15, 60, 4)

0.017 2.99 5.94 0.0007 0.021

Choi consistently provides the worst results. The execution time is affected by the number

of observations n, variables m and l, and components h, but not by the error distribution,

for this reason Table 4 shows the execution time regardless of the error distribution. PLS

is the fastest algorithm, while fPQR Li is the second fastest closely followed by PRAMML.

Results regarding prediction accuracy are not included in this simulation scheme because the

error distributions considered generated outliers with very large values, providing predictions

where the mean squared error values were very large and very similar regardless of the

algorithm.

The three simulations displayed in this section remark the fact that, among the three

quantile covariances under study, the best alternative for the fPQR algorithm is the quantile

covariance proposed by Li et al. [2015], as it consistently provides the smallest prediction

errors and the smallest euclidean distance of the β coefficients. Additionally, it is by far

the fastest of the three algorithms, having a computation based on a traditional covariance

rather than in solving univariate quantile regression models, as is the case with the other

quantile covariances considered. Comparing the fPQR Li algorithm for the median with

PLS shows that it outperformed PLS in all the scenarios considered in terms of prediction

accuracy and euclidean distance of the β coefficients. When comparing it with robust PLS

alternatives like PRAMML, it is worth remarking the fact that fPQR Li can be used to

solve multidimensional response problems while PRAMML requires to face this situation by

solving univariate models, as discussed in Section 4.2. Additionally, one can see that fPQR

Li is a competitive alternative in terms of prediction accuracy and euclidean distance of the

β coefficients, providing better estimations in two of the three simulations, and being com-

petitive in the last one. In terms of execution time, fPQR Li also outperformed PRAMML

in all the simulations. But the fPQR algorithm has an additional advantage when compared

with any PLS based methodology: PLS based methodologies can only obtain estimations for

the mean of the response matrix, while fPQR can obtain estimations for different quantile

levels. This allows to study not only the central behavior of the response variable, but also

the behavior at any other quantile of interest, like the tails of the distribution.
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Figure 1: Biscuit dataset: NIR spectra of the biscuit dataset.
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5 Real data analysis: Biscuit data

The biscuit data was first introduced in Osborne et al. [1984]. This dataset contains four

response variables, concentration of fat, flour, sucrose and water, of 72 biscuit dough samples,

where 40 observations usually define a training set and 32 a prediction set. In this analysis,

and following the steps from [Hubert and Branden, 2003], the variable fat was removed

because it showed small correlation coefficients with the other constituents and a larger

variance. The rest of the response variables show larger correlations and similar variances,

and for this, a multivariate analysis is considered. The objective is to predict the values of the

three response variables based on NIR spectra measurements taken every 2 nm from 1200 up

to 2400. The same preprocessing steps as in [Hubert et al., 2002] and [Hubert and Branden,

2003] were performed, obtaining a NIR spectra prediction matrix of m = 600 dimensions,

shown in Figure 1, and a response matrix of l = 3 dimensions whose distribution is shown

in Figure 2. Observe that the response variables are non normal. Actually, the three of

them show certain degree of skewness and are heavy tailed, scenario where algorithms based

on normality assumptions like PLS may face problems. Observation 23 is known to be an

outlier, [Osborne et al., 1984] suggests that the compositional data of this observation is

in error. However, following the steps from [Hubert and Branden, 2003], it is kept in the

dataset.

Using this dataset, a comparison of fPQR Li, PLS and PRAMML estimators is performed.

The quantile level is taken as τ = 0.5 so that quantile based results can be compared with

the mean based results from PRAMML and PLS. Since the PRAMML estimator solves only

univariate models, the predictions from this estimator are obtained by solving 3 independent
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Figure 2: Biscuit dataset: Response matrix distribution.
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univariate models. The first step is to select the number of components to be computed.

This is done by performing 5-fold cross validation on the training set, and the objective

is to minimize the mean squared error of the predictions. A range of possible number of

components going from 2 up to 7 components is considered here. Although it is more

common to start the range of the number of components at 1, here the starting number

of components was limited to 2 by the PRAMML algorithm, as this algorithm requires a

minimum number of 2 components in order to be executed. Figure 3 shows the CV results,

concluding that three is the best number of components for any of the models considered.

As was mentioned above, observation 23 is known to be an outlier. However, typically

one does not know if there are outliers in the dataset or, if any, if those are in the training set

or the test set. For this reason here two final models are built. The first includes observation
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Table 5: Biscuit data: Test mean squared and quantile regression errors.

1

#Dtest
‖ŷ − y‖22 Eτ

Outlier in training set

fPQR Li 0.491 0.25
PLS 0.614 0.29
PRAMML 0.527 0.25

Outlier in test set

fPQR Li 1.93 0.33
PLS 1.87 0.32
PRAMML 2.11 0.34

23 in the training set and addresses the more complicated problem of having an outlier in

the training part. If a model has good predictive results under this circumstance, it implies

that it is capable of generalizing correctly, not being influenced by the outlier while making

predictions. The second model includes observation 23 in the test set. Both models are built

using the optimal number of components found before, three, and the mean squared error

and quantile error of the prediction of each model are computed on the test set. Table 5

shows the results. When the outlier is included in the training set, one can see that the best

result is obtained by fPQR Li, followed by the PRAMML estimator, and PLS obtains the

worst result. This suggests that fPQR is the most robust alternative, not influenced by the

presence of the outlier while building the model. If the outlier is in the test set, the best

results are obtained by PLS, closely followed by fPQR, while PRAMML obtains the worst

results. This suggests that fPQR is a good compromise for dealing with outliers in any of

the two scenarios.

An additional advantage of fPQR Li is that it can provide estimations for different quan-

tile levels. Take for example the first model and observation 41, which is the first one in the

test set. This observation has values flour= 16.44, sucrose= 47.65 and water= 12.57, and

the median prediction obtained using fPQR Li for τ = 0.5 is flour= 15.68, sucrose= 48.39

and water= 12.82. But one can also calculate an estimation of any other quantile of interest,

obtaining this way prediction intervals. For example, the prediction for the 10% percentile

of the response is flour= 15.24, sucrose= 47.67 and water= 12.39 for a small biscuit dough

given the associated NIR spectra values, while the 90% percentile for a large biscuit dough

has values flour= 17.22, sucrose= 48.41 and water= 13.10. The fPQR Li algorithm can thus

provide a complete picture of the distribution of the response matrix.
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6 Computational aspect

All the simulations and analysis commented in Sections 4 and 5 were run in a computer with

an Intel Core i7-10750H CPU (2.6GHz) processor with 32GB RAM memory running the O.S.

Windows 10. The computation of the fPQR has been developed in Python 3.8.5 (Anaconda

Inc.). The quantile covariance metrics introduced in Section 3.3 required solving quantile

regression models. Those were solved using the Python package ASGL, built on top of the

CVXPY optimization framework for Python [Diamond and Boyd, 2016] and Mosek solver

[ApS, 2021]. The PRAMML estimator was computed using the R package ‘rpls’ [Filzmoser

et al., 2020], as there was no Python implementation for this methodology.

7 Conclusion

In this paper the fast partial quantile regression (fPQR) algorithm has been introduced.

This algorithm extends the PLS models to the quantile regression framework. The result is a

dimensionality reduction technique that parallels the nice properties of PLS models but that

is linked to the quantiles of the response matrix, being robust to the presence of outliers and

heteroscedastic data. As discussed in Section 3, the key idea behind fPQR is the definition of

the objective function that it maximizes in terms of a quantile covariance metric, and in this

work different metrics are considered [Li et al., 2015], [Dodge and Whittaker, 2009], [Choi

and Shin, 2018]. Section 4 studies the performance of the fPQR algorithm using the different

quantile metrics in a set of synthetic datasets, concluding that the best results in terms of

prediction accuracy, euclidean distance of the β coefficients and execution time are obtained

using the quantile covariance defined by Li et al. [2015]. Additionally, the performance of

the fPQR algorithm is compared with PLS and PRAMML [Acitas et al., 2020] estimators,

showing that, if the median estimation is computed, fPQR is a competitive alternative

to other robust PLS algorithms, but additionally, fPQR can obtain estimates for different

quantile levels of the response matrix, providing a complete picture of its distribution. The

performance of the proposed work is also studied in a real high dimensional dataset containing

NIR spectra measurements, where fPQR Li obtains the best results.
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