
Computer Methods and Programs in Biomedicine 221 (2022) 106895 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

Automatic characterization of human embryos at day 4 

post-insemination from time-lapse imaging using supervised 

contrastive learning and inductive transfer learning techniques 

Elena Payá a , b , ∗, Lorena Bori b , Adrián Colomer a , Marcos Meseguer b , Valery Naranjo 

a 

a Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, 46022, Spain 
b IVI-RMA Valencia, Spain 

a r t i c l e i n f o 

Article history: 

Received 4 January 2022 

Revised 3 May 2022 

Accepted 15 May 2022 

Keywords: 

Supervised contrastive learning 

Inductive transfer learning 

Viability assessment 

Quality assessment 

Embryo grading 

Convolutional neural networks 

a b s t r a c t 

Background: Embryo morphology is a predictive marker for implantation success and ultimately live 

births. Viability evaluation and quality grading are commonly used to select the embryo with the highest 

implantation potential. However, the traditional method of manual embryo assessment is time-consuming 

and highly susceptible to inter- and intra-observer variability. Automation of this process results in more 

objective and accurate predictions. 

Method: In this paper, we propose a novel methodology based on deep learning to automatically evalu- 

ate the morphological appearance of human embryos from time-lapse imaging. A supervised contrastive 

learning framework is implemented to predict embryo viability at day 4 and day 5, and an inductive 

transfer approach is applied to classify embryo quality at both times. 

Results: Results showed that both methods outperformed conventional approaches and improved state-of- 

the-art embryology results for an independent test set. The viability result achieved an accuracy of 0.8103 

and 0.9330 and the quality results reached values of 0.7500 and 0.8001 for day 4 and day 5, respectively. 

Furthermore, qualitative results kept consistency with the clinical interpretation. 

Conclusions: The proposed methods are up to date with the artificial intelligence literature and have been 

proven to be promising. Furthermore, our findings represent a breakthrough in the field of embryology 

in that they study the possibilities of embryo selection at day 4. Moreover, the grad-CAMs findings are 

directly in line with embryologists’ decisions. Finally, our results demonstrated excellent potential for the 

inclusion of the models in clinical practice. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Fertility impairment affects approximately 80 million people 

orldwide. Although infertility rates vary widely, ranging from less 

han 5% to more than 30%, it is estimated that one in ten couples 

uffers from primary or secondary infertility problems [1] . To ad- 

ress this problem, Assisted Reproduction Techniques (ART) were 

eveloped. A typical procedure begins with the retrieval of multi- 

le oocytes from the ovaries of the patient and subsequent in vitro 

ertilization (IVF) by intracytoplasmic sperm injection (ICSI). Then, 
∗ Corresponding author at: Instituto de Investigación e Innovación en Bioinge- 

iería, Universitat Politècnica de València, Valencia 46022, Spain. 
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he zygotes are cultured in incubators; optimal culture conditions 

nd correct embryo selection methods are essential for a successful 

reatment. 

In vitro embryo evaluation has improved considerably over the 

ast 20 years, focusing on the analysis of morphological and mor- 

hokinetic characteristics. Its ultimate goal is to predict embryo 

evelopment and the chances of successful implantation and preg- 

ancy. However, only 30% of embryo transfers result in clinical 

regnancy [2] . To increase the chance of clinical pregnancy, mul- 

iple embryo transfer (MET) has been used. However, MET can re- 

ult in multiple gestation and the associated maternal and neona- 

al risks [3] , leading to significant pressure to move towards sin- 

le embryo transfer (SET). There is a clear need for a rapid, non- 

nvasive, and accurate method to assist in the evaluation of em- 
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ryos, as until now there have been no reliable methods to as- 

ess embryo viability and quality. The introduction of time-lapse 

ncubators allowed continuous monitoring of the embryo, respond- 

ng to the limitations of conventional evaluation by facilitating the 

tudy of embryo development without disturbing the culture con- 

itions. 

Currently, embryos are manually assessed by an expert em- 

ryologist who studies morphology at different stages of develop- 

ent and classifies them into predetermined classes. Morphokinet- 

cs and morphology have been shown to be related to implanta- 

ion success and ultimately live births [4] . However, the traditional 

ethod of manual annotation is time-consuming and highly sus- 

eptible to inter- and intra-observer variability, making it subjec- 

ive and inaccurate [5,6] . Studies with multiple highly trained em- 

ryologists demonstrated large disagreements even with simplified 

rading methods. This can be caused by a range of factors, includ- 

ng the exact timing of the observation or the discretization of a 

ynamic evolution. 

On the one hand, embryo transfer is conventionally performed 

t the cleavage stage (days 2–3 after fertilization), or at the blas- 

ocyst stage (days 5–7 after fertilization). At the latter stage, the 

valuation of expanded blastocysts is more accurate due to the 

ifferentiation of their structures. In addition, attempts to predict 

lastocyst formation and quality have focused mainly on day 3 as- 

essment, but the results are not particularly accurate due to the 

hanges that the embryo can experience. On the other hand, day 

 assessment is not routinely performed by the embryologist, al- 

hough it is an alternative day of selection and transfer. Some stud- 

es show equal implantation and pregnancy rates for embryo trans- 

er at the morula stage (day 4 after fertilization) [7–9] . Taking this 

nto consideration, an accurate evaluation on day 4 post insemina- 

ion, just before the increased complexity of the culture conditions 

emanded in the transition from day 4 to day 5, could allow for 

arly decision making and save time in the clinic. 

In terms of the methods used, older approaches have recently 

een replaced by more efficient new techniques. Deep learning al- 

orithms, specifically, convolutional neural networks (CNNs), have 

een used to address various medical imaging problems. Thus, 

hey have become the technique of choice in computer vision and 

re the most successful type of models for image analysis. Recently, 

eep CNNs architectures such as ResNet [10] have dramatically in- 

reased the progress rate of deep learning methods in image clas- 

ification. The following section briefly describes the evolution of 

he state-of-the-art in the field of embryology with the introduc- 

ion of computer vision and presents the novelty and contributions 

f the work. 

The rest of the paper is structured as follows. Section 3 de- 

cribes the databases used during the study. Section 4 out- 

ines the underlying methodologies, which are composed of two 

trategies: supervised contrastive and inductive transfer learning. 

ection 5 explains the ablation experiments performed during the 

alidation stage. Section 6 shows qualitative and quantitative re- 

ults achieved in the test prediction. Section 7 presents a discus- 

ion about the proposed framework and contributions to the field. 

inally, Section 8 summarizes the main conclusions. 

. Related work 

The emergence of time-lapse incubators has led to a consider- 

ble increase in the development of experimental methods to an- 

lyze the implantation potential and live birth rate (LBR) of IVF 

mbryos from images or videos, particularly in the creation of em- 

ryo selection algorithms (ESAs). Multiple ESAs with different pa- 

ameters, optimal times, and endpoints have been published [11–

4] . However, most of these proposals have not achieved a positive 

redictive value higher than 45% in the selection of good-quality 
2

mbryos with relatively poor clinical outcomes. Moreover, the re- 

ults obtained are different; e.g., Meseguer et al. [11] reports that 

5 has significance with implantation while Cruz et al. [12] does 

ot. These papers recognize that the data used come from fertility 

linics with different annotation protocols and the authors claim 

hat a consensus is needed to achieve an efficient ESA. In global 

erms, the generalization of manual morphological and morphoki- 

etic annotations is very difficult due to the high variability. In this 

ontext, some works were proposed to solve these problems and 

o be able to automate the annotations by emulating the skill of a 

rained specialist in embryo evaluation. 

Regarding morphokinetic analysis, the determination of the 

oment of cell division led to the development of algorithms 

apable of automatically counting the number of blastomeres. 

ifferent methods grouped in segmentation-based [15–17] and 

lassification-based approaches [18–25] can be found in the lit- 

rature. Traditional classification methods performed manual fea- 

ure extraction from image shapes and textures [18–20] , whereas 

ore recent works developed methods based on deep learning 

echniques where the prior extraction of characteristics is auto- 

atically performed [21–23] . Dirvanauskas et al. [26] introduced 

 novel AI technique that used generative adversial network to 

enerate one-, two-, and four-cell stage images. In addition, some 

ethods used consecutive frames, avoiding the individual tracking 

f embryo cells by dynamic programming to enforce monotonicity 

f predictions [24,25] . 

In contrast to morphokinetic analysis, morphological assess- 

ent refers to static appearance. Some studies attempted to clas- 

ify blastocyst using specific characteristics manually obtained such 

s inner cell mass (ICM) area, trophectoderm (TE) area, zona 

ellucida thickness, or expanded blastocyst diameter [27,28] . De- 

pite the reasonable accuracies obtained, these methods required 

dvanced embryological knowledge and several processing steps. 

onsequently, they are not scalable to large datasets or to clinical 

ractice. 

Furthermore, static analysis of morphology has proven to be 

ompletely relevant in embryo assessment and many studies have 

ocused on automating this part by making use of CNNs. They 

olve tasks related to the quality [29–33] , the stage reached [34–

6] , or viability of the embryo [37,38] . Others segmented the em- 

ryo structures at different stages using convolutional encoder- 

ecoder architectures for oocytes [39,40] or blastocysts [38] . In ad- 

ition, there is a need to add external information in order to pre- 

ict the implantation potential or the pregnancy likelihood since 

t can be affected by other variables such as the age of the pa- 

ient, the condition of the uterus or the chromosome abnormalities 

30,41] . 

Khosravi et al. [30] developed a framework (STORK) for blas- 

ocyst quality analysis by training a neural network based on 

he Google Inception architecture [42] using approximately 12,0 0 0 

ime-lapse images. Typical pre-trained deep architectures have 

een widely used, but with the aim of classifying embryos accord- 

ng to whether they are at the blastocyst stage [31,32,35–37] , high- 

ighting some differences. Wang et al. [32] used multiple images 

ith different focal depths so that the network had more informa- 

ion about embryos and Bormann et al. [37] employed a genetic 

lgorithm to weight the outputs of the network during training. 

n a novel way, Rad et al. [38] added a Compact-Contextualize- 

alibrate block that helped guide the feature extraction process 

nd performed segmentation-based classification techniques to 

redict implantation. A different approach developed by Kragh 

t al. [33] to predict the morphological quality of blastocyst struc- 

ures included temporal information by training a CNN with im- 

ges from 90 to 115 h post insemination (hpi) to feed a recur- 

ent neural network (RNN) that connected features from adjacent 

rames. 
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Table 1 

IVI database description. Number of patients with their respective 

cycles. 

Number of patients Number of cycles 

Viability dataset 1289 3014 

Quality dataset 559 830 
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.1. Contribution of this work 

Motivated by the possibilities offered by categorization at day 

 post insemination [43] and by the existing gap in the study of 

mbryos at this stage, AI-based methods are developed for em- 

ryo study based on images exclusively. In particular, this paper 

roposes an innovative framework based on supervised contrastive 

earning and inductive transfer learning for the prediction of em- 

ryo viability and quality at 90 hpi. To the best of the author’s 

nowledge, this is the first study in the embryology field which 

resents an approach based on these novel AI-techniques for au- 

omatic embryo characterization. In addition, we further studied 

ossible day 4 characterization that describes and distinguishes be- 

ween embryos, thus advancing automation and decreasing cul- 

ure time without disturbing development and implantation suc- 

ess rates. 

Several papers have explored the shortcomings of cross-entropy 

oss, such as the lack of robustness to noisy labels [44,45] and 

he possibility of poor margins, leading to reduced generalization 

erformance. The recent emergence of the seminar work on con- 

rastive learning has led to significant advances in self-supervised 

earning approaches [46,47] . The common idea behind contrastive 

earning is to encourage putting an anchor and a positive sample 

epresentation together in the embedding space and separating the 

nchor from the negative samples. 

Inspired by the high performance reported by previous studies 

ased on contrastive learning [4 8,4 9] and by the inefficiency of the 

ross-entropy loss (CEL) function in embryo image analysis, in this 

ork, we propose a supervised contrastive loss for solving viability 

lassification tasks. The contrastive loss outperforms cross-entropy 

n fully supervised learning tasks [50] and has been shown to be 

ore stable to hyperparameter tuning, optimizers, and data aug- 

entation. An encoder convolutional network followed by a pro- 

ection head is trained with supervised contrastive loss (SCL). Re- 

earch of optimal projection heads has not been carried out yet 

50] for this loss function, therefore, we also study the perfor- 

ance of different approaches. 

In parallel, interest in transfer learning techniques has grown 

n recent years. The fundamental motivation is to apply knowledge 

earned previously to solve new problems faster and/or improving 

he performance and the capacity for generalization of predictive 

odels. In particular, it aims to extract knowledge from a source 

ask to infer it in a target task. Transfer learning strategies can 

e classified into various branches depending on the nature of the 

ata and the problem to be solved. Whether the source and tar- 

et domains are the same and the tasks are different but related, 

nductive transfer learning is used. In contrast, if the source and 

arget domains are different but the task is the same, transductive 

ransfer learning is preferred [51] . In this work, an inductive trans- 

er learning (ITL) method is required, since both the source and 

arget domains are embryo images, but the source and target tasks 

re viability and quality embryo estimation, respectively. 

Numerous papers adopt an ITL strategy to solve medical prob- 

ems [52–56] . Caruana et al. [52] used multi-task learning and pro- 

osed an ITL scheme for pneumonia risk prediction. Silver et al. 

53] implemented a task rehearsal method as an approach to life- 

ong learning that used representation of previously learned tasks 

s a source of inductive bias. Zhou et al. [55] proposed an induc- 

ive method to improve the performance of ocular multi-disease 

dentification. 

In summary, the main contributions of this work are: 

• New loss function, SCL, for embryo viability classification in 

charge of maximizing the separation between samples of differ- 

ent classes and minimizing the distance among examples of the 
3 
same classes leading to increase the performance of the classi- 

fication task. 
• Research of different projection head modules for the super- 

vised contrastive framework. 
• Novel inductive transfer learning technique on the embryology 

field for quality embryo classification. 
• First automatic system to analyze 90 hpi images for automatic 

embryo characterization. 
• No requirement of a prior curation step (i.e. manual embryo 

selection) in order to integrate it into clinical practice. System 

uses raw data with no intervention required by an embryolo- 

gist. 

. Material 

This research was a single-center retrospective study carried 

ut at IVI Valencia. We included recipients who underwent ICSI 

ycles for three consecutive years. Embryos were cultured in the 

mbryoScope time-lapse system up to the blastocyst stage. This 

quipment provides images with a resolution of 500 × 500 pix- 

ls which were taken automatically every 10–20 min and in up 

o 7–11 focal planes. Fertilization was evaluated at 16–19 h after 

CSI and confirmed by the presence of two pronuclei and two po- 

ar bodies. Later, the blastocyst was assessed by applying a hier- 

rchic classification procedure based on the standard “Asociación 

ara el Estudio de la Biología de la Reproducción ” (ASEBIR) morpho- 

ogic grading. The embryo images and other patient data collected 

n this study are not publicly available due to reasonable ethics and 

rivacy concerns. 

A private database was created from the cycles described above. 

t contains 3014 embryo cycles from 1289 different patients for the 

evelopment and evaluation of the viability models and 830 em- 

ryo cycles from 559 different patients for the quality models (see 

able 1 ). Quality assessment was performed only on viable em- 

ryos; therefore the dataset is more limited. Both the viability and 

uality datasets were balanced between their two classes. The via- 

ility dataset contained the viable and non-viable labels, while the 

uality dataset included the high and low-quality labels. The latter 

as based on the ASEBIR classification, with high quality corre- 

ponding to classes A and B and low quality to class C. Classes A 

nd B generate discrepancy among embryologists, so we could not 

ntirely rely on the labels. 

From each embryo, two inputs for independent models were 

onstructed consisting of frames at 90 (day 4) and 115 hpi (day 5) 

sing embryo detection and segmentation from the detector and 

ropper modules (see Appendix A ). Note that we also obtained im- 

ges at 115 hpi to validate and compare our models concerning 

he state-of-the-art. From the available focal planes, three were se- 

ected, corresponding to the center and the adjacent focals. The fi- 

al image size, i.e. the input size of the model, was 224 × 224 × 3

one grayscale channel per focus). 

In this work, data partitioning to develop and evaluate the pre- 

ictive models was carried out as follows: 85% for the training 

tage and 15% for the blind test. From the training set, we ran- 

omly split the data again into training and validation subsets ac- 

ording to 90% and 10%. The validation set was used to optimize 

he model hyper-parameters and monitor the fitting of the net- 
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Fig. 1. Overview of the framework proposed to classify embryo viability and quality. Data augmentation module, encoder network, and projection head (blue) are imple- 

mented for the first stage of contrastive learning. The loss function acts by attracting and repelling samples from the same class and different classes, respectively. Then, the 

trained encoder extracts latent features to feed a neural network to classify images according to the viability task (red). The inductive transfer learning technique is applied 

to infer knowledge from a primary task and solve the quality embryo prediction task (green). 
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ork. This partitioning pipeline was performed for both viability 

nd quality tasks. 

Experiments were conducted on the NVIDIA DGX A100 system. 

VIDIA DGX A100 is the universal system for all workloads, pro- 

iding unprecedented compute density, performance, and flexibil- 

ty in 5 petaFLOPs. All the scenarios were implemented in Tensor- 

ow 2.4.0 on Python 3.6. 

. Methods 

In our embryo evaluation scenario, we advocated for a su- 

ervised contrastive strategy to separate viability classes and get 

 rich encoder to improve the quality task. Specifically, we car- 

ied out a two-step scenario as it is shown at the top of Fig. 1

 Section 4.1 ). Firstly, an encoder and a projection head were 

rained with supervised contrastive loss to solve the viability task. 

econdly, a classification network was trained to classify viabil- 

ty classes. Once we obtained this encoder, we applied a transfer 

earning approach for accomplishing the quality task ( Section 4.2 ). 

e used the trained viability models as a source knowledge to 

ransfer information of embryo properties to improve quality mod- 

ls (see bottom of Fig. 1 ). In the following sections, we detail the

ethodology and the learning steps. 

.1. Supervised contrastive learning for viability embryo 

haracterization 

Making use of the two-stage method, we aimed to obtain a 

ich feature space capable of separating viable and non-viable em- 
4

ryo classes. In this section, we describe the supervised contrastive 

ramework and loss function implemented. 

.1.1. Learning framework 

The implemented learning framework is based on Khosla et al. 

tructure [50] , which is similar to that used for self-supervised 

ontrastive learning [47,48] . The overview scheme is shown at the 

op of Fig. 1 . 

During the encoding stage (see blue Fig. 1 – Stage 1 ), we opti- 

ized the supervised contrastive loss to obtain more accurate in- 

er and intra-class boundaries. The embedding network consists of 

hree major components: 

• Data augmentation module, A (·) , that randomly transforms the 

given data, ˜ x = A (x ) , resulting in two correlated views of the 

same sample, denoted by ˜ x 1 and ˜ x 2 . It helps to increase the 

amount of relevant data, thus enabling invariance and general- 

ization. Note that data augmentation was conducted only dur- 

ing training. Random flipping, rotation, and contrast were ap- 

plied to each image with a probability of 0.2. 
• Encoder network, E(·) , which extracts ˜ x to a vector represen- 

tation, r = E( ̃  x ) ∈ R 

D E . Augmented samples are separately input 

to the same encoder, resulting in a pair of representation vec- 

tors. Our framework allows various choices of the base network 

architecture. Supervised contrastive loss (SCL) has shown more 

efficiency for complex encoder architectures. 
• Projection head, P (·) which maps the representations r to 

a lower dimensionality space z = P (r) ∈ R 

D P , where SCL was

applied. Although latent space projections increase perfor- 

mance, the research of the optimal has not been conducted 
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Fig. 2. Representation of normalization function in 2-dimensional space. 
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Table 2 

Classification results reached during the validation step for 

the different base encoder networks. 

ResNet50 VGG16 

Accuracy 0.8277 0.8103 

Precision 0.8349 0.8145 

Sensitivity 0.8161 0.8036 

Specificity 0.8393 0.8169 

F1-Score 0.8254 0.8090 
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yet. Motivated by the latter, we studied different approaches: 

(1) A multilayer perceptron (MLP) with one hidden layer, z = 

W 

2 σ (W 

1 r) where σ is a LeakyRelu non-linear activation. (2) A 

clustering layer for dimensionality reduction where the number 

of clusters is the projection size. (3) A Random Fourier Projec- 

tion (RFP) based on Rahimi et al. approach [57] , which imple- 

ments a mapping from input space to an output space, which 

approximates shift-invariant kernels. The parameters were sam- 

pled from a Gaussian distribution. 

During the classifier training (see red Fig. 1 – Stage 2 ) and for 

he final model, we discarded the projection head P (·) and used 

he trained encoder network E(·) and representation r for resolv- 

ng the embryo characterization for the viability task. The classifier 

(·) was a fully connected layer with a normalization to a prob- 

bility distribution over predicted classes and it was trained with 

ross-entropy loss (CEL). 

.1.2. Supervised contrastive loss 

Given the proposed framework, we used a contrastive loss 

dapted to the supervised domain which aims to maximize the 

greement between different positive pairs (samples that belong 

o the same class) in the latent space while minimizing the agree- 

ent between negative pairs (samples that are from different 

lasses). Before applying the loss function, we normalized the out- 

ut of the projection network to lie on the unitary hypersphere 

 Fig. 2 ), which enables the use of an inner product to measure dis-

ances in the projection space. An l 2 regularization layer outputs 

he normalized vector: 

 = 

˜ z 

|| ̃ z || 2 = 

˜ z √ ∑ 

i ̃  z 2 
i 

+ ε 

For a set of I = { X, Y } independent training samples, where y i 
efers to the ground truth of the i -sample, x i , being i = 1 , 2 , . . . , N

he number of image, the corresponding batch for training consists 

f positive pairs and negative pairs. Then, the loss function is de- 

ned as: 

 

SC = 

∑ 

i ∈ I 
− 1 

| P (i ) | 
∑ 

p∈ P(i ) 

log 
exp (z i · z p /τ ) ∑ 

a ∈ A (i ) exp (z i · z a /τ ) 

here z i = P (E( ̃  x i )) ∈ R 

D P , the symbol · denotes the inner prod-

ct u · v = μT v / ‖ u ‖ ‖ v ‖ between l 2 normalized vectors z i and 

 p , τ ∈ R 

+ is a scalar temperature hyperparameter, and P (i ) ≡
 

p ∈ A (i ) : y p = y i } is the set of all positives samples in the batch 

here i � = p. 

The function encourages the encoder to give closely aligned 

epresentations to entries from the same class, resulting in a more 

obust clustering of the representation space. By using many pos- 

tive pairs and many negative pairs, we are able to better model 

oth intra- and inter-class variability. Optimal temperature can 
5 
utperform cross-entropy experiments. Low values improve repre- 

entation learning since they strongly weight on harder negative 

airs, which have been shown to increase classification accuracy 

58] . 

.2. Inductive transfer learning for quality embryo prediction 

One of the main challenges of deep learning solutions is the 

imited availability of large labeled datasets. The inductive trans- 

er learning (ITL) paradigm allows the transference of knowledge 

rom a larger source dataset to improve the predictive performance 

f a smaller target dataset. In addition, it helps to solve a task of 

igher difficulty by providing information from a related dataset. 

n this work, the source and target tasks are the estimation of em- 

ryo viability and embryo quality, respectively. Making use of the 

nductive transfer method, we aimed to better separate high- and 

ow-quality embryo classes. 

Given a source domain D S and a learning task T S , a target do-

ain D T and a learning task T T , ITL aims to help improve the 

earning of the target predictive function f T (·) in D T using the 

nowledge in D S and T S , where T S � = T T [51] . A task is defined as

 = { y, P (Y | X ) } ; therefore, the condition T S � = T T implies that either

he label spaces between the domains are different, i.e., y S � = y T , or

he conditional probability distribution between domains is differ- 

nt, i.e., P (Y S | X S ) � = P (Y T | X T ) . 
The approach used is parameter-transfer [51] . The intuitive idea 

ehind this is the assumption that the models for related tasks 

hare some parameters or prior distributions of the hyperparam- 

ters. Thus, by discovering the shared parameters, knowledge is 

ransferred across tasks. In this case, we used the model trained 

ith the SCL method as the source knowledge (see green Fig. 1 ). 

. Ablation experiments 

.1. Supervised contrastive learning settings 

In this section, we report the validation performance of the 

ontrastive learning-based approach for the different proposed sce- 

arios. The target task is the prediction of viability with embryo 

maging at day 4 post-insemination. 

According to the state-of-the-art of contrastive learning and 

mbryo evaluation, the well-known ResNet50 and VGG16 net- 

orks pre-trained with ImageNet were applied as backbone en- 

oder. To address an objective comparison of the proposed back- 

ones, we kept constant the projection heads and the tempera- 

ure. For the projection head, we used the MLP with one hidden 

ayer of 128 neurons non-linearly activated by the ReLU function. 

or the temperature, the value of 0.1 suggested by Khosla et al. 

59] as optimal, was used. In Table 2 , we contrast the validation 

esults achieved by the different encoders trained in a binary-class 

cenario (viable/non-viable classes). The comparison was handled 

hrough different figures of merit, such as accuracy, precision, sen- 

itivity, specificity, and F1-score. Notably, the base encoder network 

eporting the best performance, ResNet50, was selected for the fol- 

owing experiments. 
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Table 3 

Classification results reached during the validation step for the dif- 

ferent projection head modules. 

(1) MLP (2) K-means (3) RFP 

Accuracy 0.8277 0.8018 0.8485 

Precision 0.8349 0.7787 0.7609 

Sensitivity 0.8161 0.8444 0.8974 

Specificity 0.8393 0.7589 0.8167 

F1-Score 0.8254 0.8102 0.8235 

Fig. 3. Accuracy value for different values of the temperature parameter. 

i

i

n

a

t

s

u

w

l

t

t

t

e

w

e

c

v

d  

s

F

i  

A

5

d

t

a

w

a

t

w

t

t

t

a

r  

t

Fig. 4. Improvement representation with the unfrozen layers in ITL framework. 
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In this section, we also report the validation performance us- 

ng the projection head modules described in Section 4.1.1 . Specif- 

cally, we compare a MLP with one hidden layer of 128 neurons 

on-linearly activated by the ReLU function, a clustering layer, 

nd an RFP (see Table 3 ). All projection head modules mapped 

he representations to an embbeding vector in a 128-dimensional 

pace. Note that for all the settings, pre-trained ResNet50 was 

sed as backbone network and only the projection head module 

as changed. Regarding the specific parameter of the contrastive 

earning-based strategy, the temperature selected was 0.1. 

Finally, we studied the effect of the temperature on loss func- 

ion because of the important role it plays in the supervised con- 

rastive approach. The optimal value of this parameter depends on 

he task and the dataset. We found that lower temperatures ben- 

fited the learning of our representation spaces as they give more 

eight to harder negatives (see Fig. 3 ). 

Training details Training hyperparameters were obtained from 

mpirical evaluations with a wide range of setting and optimal 

onfiguration were presented. Early Stopping was applied to pre- 

ent overfitting. For the first stage, all the models were trained 

uring 200 epochs using a learning rate of 0.0 0 0 01 with a batch

ize of 16. Adam optimizer was used to minimize the SCL function. 

or the second stage, models were trained during 20 epochs us- 

ng a cosine decay rate initialized with a learning rate of 0.0 0 0 01.

dam was applied to minimize CEL function. 

.2. Inductive transfer learning configuration 

In this section, we report the validation performance of the in- 

uctive transfer learning approach for the different scenarios. The 

arget task is the binary classification of embryo quality with im- 

ges at day 4 post-insemination. We used the model trained earlier 

ith SCL as a base, thus transferring the knowledge from the vi- 

bility dataset to improve the results with the quality dataset. In 

his work, the viability task is considered simpler and, in addition, 

e had a larger database, which made it a good option as a source 

ask. 

To achieve the highest performance, we optimized empirically 

he layer from which the freezing strategy is applied. We compare 

he results following the unfreezing of model layers (see Fig. 4 ). 

Training details The optimal hyperparameters combination was 

chieved by training models during 20 epochs using a cosine decay 

ate initialized with a learning rate of 0.0 0 0 01. Adam was applied

o minimize CEL function. 
6 
. Results 

.1. Viability prediction 

In this section, we report the testing performance of the con- 

rastive learning-based approach in comparison to the conven- 

ional classification methods for embryo viability estimation. Note 

hat, as previously mentioned, although the objective is to predict 

iability at 90 hpi, results were also obtained for images at 115 hpi 

o validate and compare our approach concerning the state-of-the- 

rt. Predictions were performed using the architectures with the 

est performance during the validation stage, i.e., the ResNet50 ar- 

hitecture with MLP as a projection head and a temperature of 0.1. 

Table 4 presents the quantitative results achieved by the pro- 

osed learning strategy and the conventional cross-entropy loss 

pproach during the blind test, and Fig. 5 shows the receiver oper- 

ting characteristic (ROC) curves and area under curve (AUC) val- 

es. Additionally, to provide a more comprehensive interpretation, 

e illustrate a 2D map from the test predictions corresponding to 

he latent space (see Fig. 6 ) by means of t-distributed Stochastic 

eighbor Embedding (t-SNE) [60] . 

Gradient-weighted Class Activation Mapping (Grad-CAM) 

61] were computed to highlight the regions of interest in which 

he proposed method paid attention to predict the viability of the 

est samples. The reported activation maps allow a better under- 

tanding of the automatic extractor of features, i.e. the CNN, by 

emarking the most relevant information. This technique provides 

elpful information about patterns and shapes in the relevant em- 

ryonic structures and their association with the predicted class. 

ig. 7 shows some images with their corresponding Grad-CAMs for 

orrectly classified embryos and Fig. 8 for misclassified embryos. 

.2. Quality prediction 

We report the testing performance of the inductive transfer 

earning approach for quality embryo evaluation. Table 5 summa- 

izes the quantitative results and Fig. 10 shows ROC curves and 

UC values. In order to validate our method, we trained the same 

eep neural network but without knowledge transfer. In the same 

ay as the viability task, predictions were performed using the 

est architectures, i.e., by unfreezing all layers and retraining them. 

n addition, we also show 2D maps of the latent space generated 

y t-SNE to support our quantitative findings (see Fig. 9 ). 

. Discussion 

In this section, we refer to the main contributions detailed 

hroughout the paper and we review the obtained results. Con- 

erning the embryology research field, it is important to note that 

his work is the first that conducted day 4 embryo characterization 

hrough artificial intelligence methods, according to the literature. 

n addition, we perform two different tasks: viability and quality 

rediction. One task precedes the next, whereby once it has been 

etermined which embryos are viable, the quality of the embryos 
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Table 4 

Test results reached for viability prediction by the different learning strategies. 

Day 4 (90 hpi) Day 5 (115 hpi) 

Conventional categorical cross-entropy Proposed supervised contrastive Conventional categorical cross-entropy Proposed supervised contrastive 

Accuracy 0.7405 0.8103 0.8835 0.9330 

Precision 0.7768 0.8170 0.8045 0.9364 

Sensitivity 0.7250 0.8062 0.9725 0.9364 

Specificity 0.7585 0.8145 0.8130 0.9293 

F1-Score 0.7500 0.8115 0.8806 0.9364 

AUC 0.8200 0.8400 0.9400 0.9500 

Fig. 5. ROC Curve and AUC values for A, Day-4 viability proposed model; B, Day-5 viability proposed model; C, Day-4 viability conventional model; and D, Day-5 viability 

conventional model. 

Table 5 

Test results reached for quality prediction by the different learning strategies. 

Day 4 (90 hpi) Day 5 (115 hpi) 

Conventional from scratch Proposed inductive transfer Conventional from scratch Proposed inductive transfer 

Accuracy 0.6810 0.7500 0.7980 0.8001 

Precision 0.5345 0.7931 0.6739 0.7347 

Sensitivity 0.7561 0.7302 0.8611 0.9231 

Specificity 0.6400 0.7736 0.7619 0.7937 

F1-Score 0.6263 0.7603 0.7561 0.8182 

AUC 0.7200 0.7700 0.8200 0.8700 

7
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Fig. 6. Representation of the latent space from the prediction of the data set. Red dots correspond to non-viable embryos and green dots correspond to viable embryos. 

Fig. 7. Grad-CAMs. Heat maps extracted from the selected architecture corresponding to well-classified images. 

Fig. 8. Grad-CAMs. Heat maps obtained with the selected architecture on misclassified images. 

8 
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Fig. 9. Representation of the latent space from the prediction of the data set. Red dots correspond to low-quality embryos and green dots correspond to high-quality 

embryos. 

Fig. 10. ROC Curve and AUC values of quality models. A, Day-4 proposed model; B, Day-5 proposed model; C, Day-4 conventional model; and D, Day-5 conventional model. 

9
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s evaluated. A high-quality viable embryo is more likely to implant 

nd, ultimately, lead to a successful live birth. 

.1. About the ablation experiments 

By means of the ablation experiments, we determined the best 

onfiguration for each method used and for each task. In this way, 

ifferent models were constructed depending on the possibilities 

f our databases. 

On the one hand, one of the main novelties addressed in this 

aper is the proposed framework which used supervised con- 

rastive learning for embryo characterization. We contrasted dif- 

erent architectures for the proposed method to find the best ex- 

erimental setting for our problem. More specifically, we corrobo- 

ated that ResNet50 enables the extraction of a richer latent space 

f features improving the traditional VGG16 architecture. We ob- 

erved that the use of residual blocks provided better results. In 

ddition, we studied different projection heads and we observed 

hat a random Fourier feature projection reports better accuracy, 

ensitivity, and F1-score. MLP with one hidden layer obtained bet- 

er results for precision and specificity. Finally, we confirmed that 

he optimal value fer the temperature parameter was 0.1, which is 

onsistent with the value found by Khosla et al. [59] . 

On the other hand, we decided to use the fine-tuning tech- 

ique by inferring viability knowledge extracted from the super- 

ised contrastive model for quality prediction, considering the lim- 

ted amount of available samples for this task. Specifically, we ob- 

erved that the more trainable layers, the better the performance, 

ut with decreasing improvement at the end. 

.2. About the prediction results 

Firstly, as observed in the 2D projections in Fig. 6 , super- 

ised contrastive loss results in a richer feature space, with better- 

efined clusters bounders and more compactness of the samples 

elonging to a given class. These findings are supported by the 

uantitative results in Table 4 , which show that the models trained 

ith the novel loss function report higher performance. In addi- 

ion, the conventional loss function has a higher discrepancy be- 

ween the metrics obtained, evidencing imbalanced classifications. 

egarding the inductive transfer method proposed using the via- 

ility as source task to infer knowledge in the quality task, our 

ethod outperforms the conventional training of a deep CNN ac- 

ording to Table 5 and, as shown in Fig. 9 , results in a more com-

act latent space. 

During the embryo evaluation, the specialist analyzes the stage 

eached, viability, and quality of the embryo. These are studied 

n day 5 post-insemination when the blastocyst stage is reached. 

or this purpose, the morphology of the structures involved is 

ssessed, specifically the ICM and the TE. According to ASEBIR, 

 compact ICM with a size of 190 0–380 0 μm 

2 and a homoge-

eous, cohesive, multi-cellular TE correspond to high-quality em- 

ryos and, ultimately, higher implantation rates. To be more pre- 

ise, TE morphology is the main factor in giving an overall grade, 

hich is consistent with our findings of day 5 grad-CAMs. As 

hown in the right-side image of Fig. 7 , the resulting model for day

 pays more attention to central texture, probably due to the use 

f three focal frames that enable the central area covered with TE 

ells to be seen. In addition, day 4 grad-CAMs (left-side image of 

ig. 7 ) show higher importance to the texture of the morula or cell 

dges depending on viability or non-viability in agreement with 

revious understanding. Thus, the qualitative results reported keep 

onsistency with the clinical interpretation. Regarding the misclas- 

ified embryos ( Fig. 8 ), many of these contain fragments or are 

ot centered in the image, which appears to be a source of error. 

oreover, model seems to have difficulty differentiating the degree 
10 
f compaction when the edges of the cells are smoothed. Besides, 

lthough the day-5 image shown in the first column below was in- 

orrectly labeled as a non-viable embryo, our model classified it as 

iable, thus demonstrating its ability to overcome the subjectivity 

ssociated with embryo evaluation and labeling. 

In this paper, we contrast the proposed model with other 

mbryo evaluation methods recently published in Khosravi et al. 

30] , Thirumalaraju et al. [31] , Wang et al. [32] , Kragh et al. [33] ,

anakasabapathy et al. [35] , Thirumalaraju et al. [36] , Bormann 

t al. [37] , Rad et al. [38] . A direct comparison is challenging not

nly because of the diversity of the data sources but also be- 

ause of the variation of the acquisition process and annotation 

ethodologies among fertility clinics. Moreover, each study aimed 

o solve different tasks, with some determining whether the em- 

ryo reached the blastocyst stage; this is comparable to our viabil- 

ty task. Bormann et al. [37] and Thirumalaraju et al. [31] obtained 

n accuracy of 90.97% with images at 113 hpi, and Thirumalaraju 

t al. [36] and Manoj et al. [35] obtained an accuracy of approx- 

mately 71.42% and 71.87% with images at 70 hpi, respectively. In 

ddition, Wang et al. [32] , who performed a classification similar 

o our viability task, reached an accuracy rate of 91.74% with im- 

ges at 116 hpi. These values are in the range of those achieved 

n the present work, with ours being slightly higher (see Table 4 ). 

ther studies performed similar tasks to our quality assessment. 

ragh et al. [33] predicted the quality of the TE and ICM inde- 

endently. They obtained accuracy values of 58.6% and 61.1% for 

15 hpi images and an AUC value of 0.646, for which the proposed 

ethodology outperforms them (see Table 5 ). 

Through the accomplishment of this project, a new embryo se- 

ection tool based on artificial intelligence will be available to sup- 

ort the embryologist’s decision during IVF treatment. The result- 

ng algorithm will eliminate inter-observer variability with an ob- 

ective and reliable method of selecting the embryo most likely 

o be implanted, because of the relation with the viability and 

igh-quality classes. This differs substantially from the usual clin- 

cal practice since up to now embryologists have invested a large 

umber of hours in the analysis and evaluation of embryonic de- 

elopment. Additionally, accurate assessment on day 4 will save 

ulture time and increase clinic efficiency, allowing a decision to 

e made with a sufficient amount of time. Regarding the transla- 

ional capacity of the experimental project into the field of clini- 

al embryology, the implementation of the corresponding findings 

hould necessarily constitute a benefit for the human-assisted re- 

roduction area. 

Although the present study obtained a high predictive accuracy, 

t still has limitations. AI algorithms should be trained on an ex- 

ensive database, so future works with more data and a prospec- 

ive approach should be carried out. Moreover, this research was 

 single-center retrospective; therefore, our future direction is to 

xpand the sample size by collecting data from multiple IVF clin- 

cs to improve performance and allow the generalization of deep 

earning models. Additionally, the existing algorithm has been de- 

eloped only from images of one of the existing time-lapse incuba- 

ors, the EmbryoScope. Nevertheless, several time-lapse incubators 

re available in the market, with different image quality, definition, 

agnification, focal planes, or frequency of images; therefore, the 

lgorithm would be redesigned to be applied in multiple systems. 

inally, a crowdsourcing approach will improve generalization and 

ill let us include a separation between A and B quality grades. 

. Conclusion 

In this paper, we have proposed several artificial intelligence 

olutions, a supervised contrastive framework to perform viability 

rediction, and an inductive transfer framework for quality esti- 

ation. The proposed model introduces supervised contrastive loss 
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or embryo analysis and studies different projection head networks 

n pursuit of more accurate predictions. Furthermore, we transfer 

he viability-trained encoder to resolve the quality prediction task 

or which we have a shorter data set. This innovative approach 

dds substantial improvements to the final prediction. 

In summary, the results suggest that the proposed method is 

romising in general and specifically in the field of embryology. 

y removing the need for manual pre-processing of embryos, the 

ystem becomes fully automated and, consequently, ready for in- 

lusion in the clinic as a tool to assist embryologists. 
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ppendix A. Embryo detection and cropping modules 

In order to reduce computational complexity while optimiz- 

ng the CNN filters, we cropped out images centered on the em- 

ryo. Previously, we detected the existence of it in the well (see 

ig. A.11 ). 

For the cropping operation, we trained a CNN that returned 

ounding box values and selected a size of 280 pixels for 90 hpi 

nd 300 for 115 hpi due to blastocyst expansion. This process re- 

oved a considerable part of the image that did not contain rel- 
Fig. A1. Detection and cropping of time-lapse images. 

 

[

[

[

[

11 
vant information. Finally, the cropped image is resized to 224 ×
24 pixels. 
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