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Resumen

Edge Computing es un modelo de computación emergente basado en
acercar el procesamiento a los dispositivos de captura de datos en

las infraestructuras Internet of things (IoT). Edge computing mejora,
entre otras cosas, los tiempos de respuesta, ahorra anchos de banda,
incrementa la seguridad de los servicios y oculta las caídas transitorias de
la red. Este paradigma actúa en contraposición a la ejecución de servicios
en entornos cloud y es muy útil cuando se desea desarrollar soluciones
de inteligencia artificial (AI) que aborden problemas en entornos de
desastres naturales, como pueden ser inundaciones, incendios u otros
eventos derivados del cambio climático. La cobertura de estos escenarios
puede resultar especialmente difícil debido a la escasez de infraestructuras
disponibles, lo que a menudo impide un análisis de los datos basado en la
nube en tiempo real. Por lo tanto, es fundamental habilitar técnicas de
IA que no dependan de sistemas de cómputo externos y que puedan ser
embebidas en dispositivos de móviles como vehículos aéreos no tripulados
(VANT), para que puedan captar y procesar información que permita
inferir posibles situaciones de emergencia y determinar así el curso de
acción más adecuado de manera autónoma.

Históricamente, se hacía frente a este tipo de problemas utilizando
los VANT como dispositivos de recogida de datos con el fin de, posterior-
mente, enviar esta información a la nube donde se dispone de servidores
capacitados para analizar esta ingente cantidad de información. Este
nuevo enfoque pretende realizar todo el procesamiento y la obtención de
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Resumen

resultados en el VANT o en un dispositivo local complementario. Esta
aproximación permite eliminar la dependencia de un centro de cómputo
remoto que añade complejidad a la infraestructura y que no es una opción
en escenarios específicos, donde las conexiones inalámbricas no cumplen
los requisitos de transferencia de datos o son entornos en los que la
información tiene que obtenerse en ese preciso momento, por requisitos
de seguridad o inmediatez.

Esta tesis doctoral está compuesta de tres propuestas principales. En
primer lugar se plantea un sistema de despegue de enjambres de VANTs
basado en el algoritmo de Kuhn Munkres que resuelve el problema de
asignación en tiempo polinómico. Nuestra evaluación estudia la compleji-
dad de despegue de grandes enjambres y analiza el coste computacional
y de calidad de nuestra propuesta. La segunda propuesta es la definición
de una secuencia de procesamiento de imágenes de catástrofes natura-
les tomadas desde drones basada en Deep learning (DL). El objetivo
es reducir el número de imágenes que deben procesar los servicios de
emergencias en la catástrofe natural para poder tomar acciones sobre el
terreno de una manera más rápida. Por último, se utiliza un conjunto de
datos de imágenes obtenidas con VANTs y relativas a diferentes inunda-
ciones, en concreto, de la DANA de 2019, cedidas por el Ayuntamiento
de San Javier, ejecutando un modelo DL de segmentación semántica que
determina automáticamente las regiones más afectadas por las lluvias
(zonas inundadas).

Entre los resultados obtenidos se destacan los siguientes: 1- la mejora
drástica del rendimiento del despegue vertical coordinado de una red de
VANTs. 2- La propuesta de un modelo no supervisado para la vigilancia
de zonas desconocidas representa un avance para la exploración autónoma
mediante VANTs. Esto permite una visión global de una zona concreta
sin realizar un estudio detallado de la misma. 3- Por último, un modelo
de segmentación semántica de las zonas inundadas, desplegado para el
procesamiento de imágenes en el VANTs, permite la obtención de datos
de inundaciones en tiempo real (respetando la privacidad) para una
reconstrucción virtual fidedigna del evento.

Esta tesis ofrece una propuesta para mejorar el despegue coordinado
de drones y dotar de capacidad de procesamiento de algoritmos de
deep learning a dispositivos edge, más concretamente UAVs autónomos.
Servicios como la detección de incendios, zonas inundadas y personas
en peligro, serán ejemplos de la utilidad que se puede obtener. Gracias
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a esta investigación, será posible desarrollar sistemas que permitan la
coordinación de grandes conjuntos de drones y el procesamiento de
imágenes sin necesidad de dispositivos adicionales. Esta flexibilidad hace
que nuestro enfoque sea una apuesta de futuro y proporciona una vía de
desarrollo para cualquiera que esté interesado en desplegar un sistema de
vigilancia y actuación basado en drones autónomos.
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Abstract

Edge Computing is an emerging computing model based on bringing
data processing and storage closer to the location needed to improve

response times and save bandwidth. This new paradigm acts as opposed
to running services in cloud environments and is very useful in developing
artificial intelligence (AI) solutions that address problems in natural
disaster environments, such as floods, fires, or other events of an adverse
nature. Coverage of these scenarios can be particularly challenging due
to the lack of available infrastructure, which often precludes real-time
cloud-based data analysis. Therefore, it is critical to enable AI techniques
that do not rely on external computing systems and can be embedded
in mobile devices such as unmanned aerial vehicles (UAVs) so that they
can capture and process information to understand their context and
determine the appropriate course of action independently.

Historically, this problem was addressed by using UAVs as data
collection devices to send this information to the cloud, where servers
can process it. This new approach aims to do all the processing and get
the results on the UAV or a complementary local device. This approach
eliminates the dependency on a remote computing center that adds
complexity to the infrastructure and is not an option in specific scenarios
where wireless connections do not meet the data transfer requirements. It
is also an option in environments where the information has to be obtained
at that precise moment due to security or immediacy requirements.

This study consists of three main proposals. First, we propose a
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UAV swarm takeoff system based on the Kuhn Munkres algorithm that
solves the assignment problem in polynomial time. Our evaluation
studies the takeoff complexity of large swarms and analyzes our proposal’s
computational and quality cost. The second proposal is the definition of a
Deep learning (DL) based image processing sequence for natural disaster
images taken from drones to reduce the number of images processed
by the first responders in the natural disaster. Finally, a dataset of
images obtained with UAVs and related to different floods is used to run
a semantic segmentation DL model that automatically determines the
regions most affected by the rains (flooded areas).

The results are 1- The drastic improvement of the performance of the
coordinated vertical take-off of a network of UAVs. 2- The proposal of an
unsupervised model for the surveillance of unknown areas represents a
breakthrough for autonomous exploration by UAVs. This allows a global
view of a specific area without performing a detailed study. 3- Finally,
a semantic segmentation model of flooded areas, deployed for image
processing in the UAV, allows obtaining real-time flood data (respecting
privacy) for a reliable virtual reconstruction of the event.

This thesis offers a proposal to improve the coordinated take-off of
drones, to provide edge devices with deep learning algorithms processing
capacity, more specifically autonomous UAVs, in order to develop services
for the surveillance of areas affected by natural disasters such as fire
detection, segmentation of flooded areas or detection of people in danger.
Thanks to this research, services can be developed that enable the co-
ordination of large arrays of drones and allow image processing without
needing additional devices. This flexibility makes our approach a bet for
the future and thus provides a development path for anyone interested in
deploying an autonomous drone-based surveillance and actuation system.
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Resum

Edge Computing és un model de computació emergent basat a acostar
el processament als dispositius de captura de dades en les infraes-

tructures Internet of things (IoT). Edge computing millora, entre altres
coses, els temps de resposta, estalvia amplades de banda, incrementa la
seguretat dels serveis i oculta les caigudes transitòries de la xarxa. Aquest
paradigma actua en contraposició a l’execució de serveis en entorns cloud
i és molt útil quan es desitja desenvolupar solucions d’intel·ligència ar-
tificial (AI) que aborden problemes en entorns de desastres naturals,
com poden ser inundacions, incendis o altres esdeveniments derivats del
canvi climàtic. La cobertura d’aquests escenaris pot resultar especialment
difícil a causa de l’escassetat d’infraestructures disponibles, la qual cosa
sovint impedeix una anàlisi de les dades basat en el núvol en temps real.
Per tant, és fonamental habilitar tècniques de IA que no depenguen de
sistemes de còmput externs i que puguen ser embegudes en dispositius de
mòbils com a vehicles aeris no tripulats (VANT), perquè puguen captar
i processar informació per a inferir possibles situacions d’emergència i
determinar així el curs d’acció més adequat de manera autònoma.

Històricament, es feia front a aquesta mena de problemes utilitzant
els VANT com a dispositius de recollida de dades amb la finalitat de,
posteriorment, enviar aquesta informació al núvol on es disposa de ser-
vidors capacitats per a analitzar aquesta ingent quantitat d’informació.
Aquest nou enfocament pretén realitzar tot el processament i l’obtenció
de resultats en el VANT o en un dispositiu local complementari. Aquesta
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aproximació permet eliminar la dependència d’un centre de còmput remot
que afig complexitat a la infraestructura i que no és una opció en escenaris
específics, on les connexions sense fils no compleixen els requisits de trans-
ferència de dades o són entorns en els quals la informació ha d’obtindre’s
en aqueix precís moment, per requisits de seguretat o immediatesa.

Aquesta tesi doctoral està composta de tres propostes principals. En
primer lloc es planteja un sistema d’enlairament d’eixams de VANTs
basat en l’algorisme de Kuhn Munkres que resol el problema d’assignació
en temps polinòmic. La nostra avaluació estudia la complexitat d’enlai-
rament de grans eixams i analitza el cost computacional i de qualitat de
la nostra proposta. La segona proposta és la definició d’una seqüència
de processament d’imatges de catàstrofes naturals preses des de drons
basada en Deep learning (DL).L’objectiu és reduir el nombre d’imatges
que han de processar els serveis d’emergències en la catàstrofe natural
per a poder prendre accions sobre el terreny d’una manera més ràpida.
Finalment, s’utilitza un conjunt de dades d’imatges obtingudes amb
VANTs i relatives a diferents inundacions, en concret, de la DANA de
2019, cedides per l’Ajuntament de San Javier, executant un model DL de
segmentació semàntica que determina automàticament les regions més
afectades per les pluges (zones inundades).

Entre els resultats obtinguts es destaquen els següents: 1- la millora
dràstica del rendiment de l’enlairament vertical coordinat d’una xarxa
de VANTs. 2- La proposta d’un model no supervisat per a la vigilància
de zones desconegudes representa un avanç per a l’exploració autònoma
mitjançant VANTs. Això permet una visió global d’una zona concreta
sense realitzar un estudi detallat d’aquesta. 3- Finalment, un model de
segmentació semàntica de les zones inundades, desplegat per al processa-
ment d’imatges en el VANTs, permet l’obtenció de dades d’inundacions
en temps real (respectant la privacitat) per a una reconstrucció virtual
fidedigna de l’esdeveniment.

Aquesta tesi ofereix una proposta per a millorar l’enlairament coordi-
nat de drons i dotar de capacitat de processament d’algorismes de deep
learning a dispositius edge, més concretament UAVs autònoms. Serveis
com la detecció d’incendis, zones inundades i persones en perill, seran
exemples de la utilitat que es pot obtindre. Gràcies a aquesta investiga-
ció, serà possible desenvolupar serveis que permeten la coordinació de
grans conjunts de drons i el processament d’imatges sense necessitat de
dispositius addicionals. Aquesta flexibilitat fa que el nostre enfocament
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siga una aposta de futur i proporciona una via de desenvolupament per
a qualsevol que estiga interessat a desplegar un sistema de vigilància i
actuació basat en drons autònoms.
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Chapter 1

Introduction

1.1 Motivation

Natural disasters have increased in frequency, complexity, scope, and
destructive capacity. During the past two decades, earthquakes, hurri-
canes, tsunamis, floods, volcanic eruptions, wildfires, and other disasters,
have caused millions of deaths, adversely affected the lives of at least
one billion people, and caused enormous economic losses. Generally, the
poorest and most underdeveloped countries suffer the most significant
losses in terms of human, social and economic lives, as their resources,
infrastructures, and disaster protection and prevention systems are poorly
developed. The 2020 “World Disasters Report” [1] of the International
Federation of Red Cross and Red Crescent Societies shows that the ma-
jority of disasters in the last ten years were caused by extreme weather
or climate events, such as floods, storms, and heat waves. The number of
such disasters has risen since the 1960s and has increased by almost 35%
since the 1990s. It continued to increase, although the total number of
catastrophes remained stable, accounting for 76% of catastrophes between
2001 and 2010 and 83% from 2011 to 2020. However, this figure could be
much lower than the actual number due to poor data collection in many
countries.
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1. Introduction

Using new and emerging technologies to develop new and efficient
approaches for monitoring natural disasters is an actual demand to reduce
the impact of natural disasters on society. In particular, technologies
developed at the intersection between Artificial Intelligence (AI) and the
Internet of Things (IoT) are offering great answers to these phenomena,
providing novel technology that provides real-time response [2]. Within
the umbrella of AI, Machine Learning (ML), and especially the usage
of one of its branches, deep learning has become an essential tool for
generating knowledge through predictive analysis of large amounts of
data. However, ML algorithms are complex algorithms that require
significant computational infrastructures to obtain results in a time frame
that allows actions to be taken in response to a given problem. These
algorithms have traditionally been executed in large data centers (cloud
computing), where performance prevails over energy efficiency. However,
this approach implies a continuous sending of raw information that can
lead to a series of security-privacy issues, transient connection failures,
bandwidth limitations, scalability, and high energy consumption. To avoid
these problems, another more decentralized approach has recently been
proposed, where some tasks are executed near (or on) the capture devices,
thus reducing the amount of information to be sent to the cloud. This
emerging paradigm is known as Edge Computing (EC) and is limited by
the computational resources available at these energy-constrained levels
of the network.

This PhD thesis designs, develops and evaluates a transversal tech-
nology capable of collecting and processing information in real time in
the context of natural disasters in order to help authorities to efficiently
manage disasters derived from these continouly increasing dissasters.
To this end, the thesis is based on different research lines within the
field of computer science such as artificial intelligence (AI), the Internet
of Things (IoT) and high-performance computing (HPC). Particularly,
Several artificial vision algorithms are proposed to be executed at the
edge, on low-power but high-efficient devices, embedded in unmanned
aerial vehicles (UAVs), a type of aircraft that does not operate with a
pilot on board and, depending on the type, is either remotely piloted by
a human or operated autonomously with on-board computers that are
small devices.

Historically, to face this type of problem that requires large amounts
of computation, UAVs were used as data collection devices to send this
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1.2. Objectives

information to the cloud, where HPC servers are available to deal with
this data deluge. This approach seeks to perform all the information
processing in the device or a supplementary local device. This allows
us to get rid of the dependence on a remote processing center that adds
complexity to the infrastructure and may not be an option in specific
scenarios where the wireless connections do not meet the requirements
of data transfer or are scenarios where the processing has to be done at
that precise moment for security or immediacy requirements.

However, having a single drone equipped with this technology is
insufficient to respond to the consequences of a natural disaster such as a
wildfire or flood. Therefore, this thesis proposes developing cooperative
strategies between drones or swarms of drones that efficiently coordinate
to cover the largest area in the shortest possible time. Particularly, this
thesis proposes the solution to particular challenges of coordination of a
drone swarm, surveillance of a previously unknown area, and real-time
mapping of a flooded area that will require the use of traditional artificial
intelligence algorithms to the latest implementations established to date
of computer vision and massive information processing, as well as a
computational study of the hardware that will be responsible for the final
deployment of the different proposed solutions.

1.2 Objectives

The three main objectives of this Phd thesis are the following:

1. To develop a hardware-software cross-cutting technology that ef-
ficiently analyzes large amounts of data and images in IoT envi-
ronments. To achieve this efficient analysis, artificial intelligence
algorithms combined with mechanisms that will provide IoT envi-
ronments with high-performance computing capabilities typical of
large data centers will be used.

2. To optimize the synchronized take-off time of a swarm of drones with
a new take-off scheme that improves the current time to determine
positions in the air based on an evaluation that studies the take-off
complexity of large swarms and analyzes the computational and
quality trade-off of our proposal.
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3. To design a UAV-based solution that will allow real-time monitoring
of natural disasters through the use of AI techniques to automate
the process of image and video interpretation that will reduce or
avoid possible losses, provide the necessary attention to the victims,
or speed up decision making during this type of events.

1.3 Structure

This thesis is structured into seven Chapters. The first chapter introduced
the PhD challenges and main objectives. Then, the second chapter
provides the contextualization in which the thesis has been developed by
presenting the most relevant standards and technologies on which the
work has been based on.

Chapters 3, 4, and 5 include the papers associated with this thesis.
The main topics included in this section are The Kuhn-Munkres algorithm
for the efficient vertical takeoff of UAV swarms, AI-enabled autonomous
drones for fast climate change crisis assessment, Flood Detection Using
Real-Time Image Segmentation from Unmanned Aerial Vehicles on Edge-
Computing Platform.

Following the publications representing this study, Chapter 6 provides
a brief overview of all the research conducted in the thesis, reviewing and
discussing the entire set of results obtained.

Finally, Chapter 7 concludes the thesis also summarizing the research
contributions and discussing future works.
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Chapter 2

Background

This thesis involves different fields within computer science, including
Artifical Intelligence, edge computing and UAV technology development.
In this chapter, the main technologies and related works are introduced
to let the reader better understand the proposals here presented.

2.1 Internet of Things and drone-based edge
computing infrastructures

The concept of the Internet of Things (IoT) is based on connecting any
electronic device to the network to collect information from a particular
context and make decisions based on the analysis of this information[3].
IoT is a network of networks that includes devices interconnected through
the Internet and people, processes, and data, to transform structured and
unstructured information into richer user experiences, tangible business
values, and autonomous behaviors based on real-time analytics. Two key
factors underpinning the IoT revolution are (1) data, which can carry
hidden patterns, correlations, as well as other valuable information, and
(2) real-time analytics, as knowledge is often time-context sensitive and
only valuable for a specific time frame [4]. Therefore, timely analysis of
data coming from IoT infrastructures is crucial for usefully transforming
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this deluge of data into knowledge that can add value to the particular
application domain. With the evolution of IoT, the requirements of these
systems increased, and it was sought that small interconnected devices
could perform more complex tasks, usually associated with a high need
for computation and that these devices are limited by both consumption
and hardware limitations.

An IoT device is any machine that historically has been designed to
automate a particular task offline and that, over the years, has benefited
from the technological development of both compactness and network
communications in order to interconnect with other devices or increase
their capabilities of use by the end user [5]. These devices are found both
by home users, such as washing machines, lighting systems, and intelligent
air conditioning, and by industrial users to increase security in quality
control systems or security. The device that has evolved substantially in
the last decade has been drones, or UAVs [6]. This thesis focuses on using
these devices as mobile IoT devices that can perform a multitude of tasks
autonomously if equipped with the necessary hardware and software.
A UAV can be a very complete and versatile mobile IoT information-
gathering device since, if a camera is installed, it can perform surveillance
tasks from different heights in areas that are difficult to access or where
a panoramic view of the area from the sky is required being able to send
information in real-time to the interested parties, [7].

Some of the proposals suggest the use of drones for rescue tasks and
searching for survivors; early work in the area [8] studies the use of a
single drone for this task. Years later, in the work [9], drones have been
used to analyze the effects of a landslide in Tibet, comparing the terrain
profile before and after the catastrophe. More recently, [10] has proposed
a technique for combining aerial imagery quickly and efficiently applicable
specifically to natural disasters, which has direct applicability in the case
of using a swarm of drones to obtain such imagery.

This PhD proposal proposes drones as computing unitis that are
able to run heavy workloads such as machine learning and deep learning
algorithms that, in a typical scenario, would run on a dedicated cloud
server. The IoT device, in this case, the drone, would be responsible for
collecting the necessary data and sending the information in the form
of images or tabular data to the server, in which the inference tasks
would be performed to obtain the desired result, and this would send the
information to the interested parties. The proposal discards the use of
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this server and seeks to provide the UAV with the ability to obtain the
results autonomously in a local environment without relying on external
agents beyond the devices interconnected at the edge. This action of
delegating the server work to the data collection system without sending
any information is called edge computing [11].

An edge system refers to an environment that meets the following
criteria: dense Geographical Distribution, Mobility Support, Location
Awareness, and Proximity [12]. Edge computing brings low latency, high
mobility, and location awareness to delay-sensitive applications. There
has been a considerable amount of research in the area of edge computing,
which is conducted and reviewed in terms of the latest developments,
such as mobile edge computing, Cloudlet, and fog computing, resulting in
bringing researchers a better understanding of current solutions and future
applications [13]. Usually, systems that require a large computational
capacity or hardware accelerators have been executed in servers in charge
of processing large amounts of information or, in the last few years, in
the cloud. Where hardware is available as a service and network, memory
and computes, limitations are blurred compared to the capabilities of a
local device to perform the designated task.

Edge computing extends the service and capabilities of cloud comput-
ing towards the end user and is featured by fast processing and application
fast response time. Today’s evolving Internet-enabled applications such
as surveillance, virtual reality, and real-time traffic monitoring demand
fast computing processing and fast response time [14]. Edge computing
drives computational data, applications, and services away from remote
servers to the edge of a network. Content providers and application
developers can deploy EC systems by offering users services closer to
their needs. Some of their features are high bandwidth, ultra-low latency,
and real-time access to network information that multiple applications
can utilize. Some examples of edge system implementations can be seen
in [15] where a deploying approach of computing resources placed nearby
the devices in the factory was introduced. The approach suggested helped
to provide real-time information about the installations. The research
also looked at deploying an intelligent computing system composed of
data centers, gateways, and Edge devices in a logistics center. The study
further provided an integer programming model that would minimize the
total installed cost of Fog-enabled devices.

Currently, we are witnessing the data revolution and thus Machine
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Learning algorithm are gaining acceptance in developing novel application.
Thus, edge computing and AI intersection is a must to provide novel and
real-time intelligence services. However, the computational requirements
of this type of algorithm are very high, limiting their application to
problems where time requirements are very restricted. Many ML models
are trained offline, using High-Performance Computing (HPC) involving
the use of hundreds or even thousands of multi-core processors, together
with hardware accelerators such as Graphics Processing Units (GPUs) or
Field-Programmable Gate Arrays (FPGAs) as programmable computing
platforms to accelerate some phase of the computation of these algorithms.
One of the challenges faced in this thesis is the adaptation of these models
to edge computing and goes one step further trying to use UAV hardware-
accelerated sensor IoT devices to perform complex computer vision (CV)
and drone swarm takeoff coordination tasks.

2.2 Efficient information processing techniques
using swarms of drones

Unmanned aerial vehicles (UAVs) of the multirotor type, commonly
known as drones, have recently experienced unprecedented growth. How-
ever, if complex tasks such as assessing the effects of a natural disaster
and searching for survivors are to be carried out in a short time, the de-
ployment of swarms of UAVs has become an interesting option, improving
the current efficiency of individual UAV systems. Using a group of UAVs
offers many advxtantages, such as extending the coverage of a mission
and improving the performance of an operation through cooperation
between the different UAVs [16].

Designing a swarm of UAVs involves a series of tasks such as defining
the number of devices that will make up the swarm and the formation in
which it will operate, defining the assignment of the UAVs on the ground
to the swarm positions when flying, getting them off the ground safely
and efficiently, moving the swarm in a coordinated way avoiding collisions,
and finally, landing the formation safely in a designated area for that
purpose. Every UAV should be assigned to positions in the swarm so as
to minimize their flight time by preventing UAVs close to a ground edge
from assuming positions on the opposite edge in the formation; also, the
takeoff sequence should be such that it is sufficiently fast, while ensuring
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that UAVs do not collide with each other during the process.
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Figure 2.1: Diagram of airborne position allocation for vertical takeoff of
UAV swarms.

To provide a graphical outline of the complexity of the swarm takeoff
problem, Figure 2.1 shows a hypothetical scenario in which multiple
UAVs arranged on the ground are to be launched in such a way that they
end up forming an aerial formation for the start of the mission, following
targets depicted above them. The UAVs are to be assigned positions
in the swarm so that they are ready to complete a mission, in order to
optimize their flight time, trying to prevent UAVs close to one edge on
the ground from assuming positions on the opposite edge in the formation
due to performance reasons, and also to minimize collision risks.

For the optimal allocation that ensures the minimum total distance
traveled by the UAVs to their target position in the formation, a brute-
force method can be used. This algorithm analyses the entire universe
of possible solutions by calculating all possible assignment combinations
between the ground positions and the airborne formation, having a cost
that grows as O(n! · n2). The main disadvantage of this approach is that
searching for all possible solutions results in an exponential growth of
computational complexity. The computation times become prohibitive
even for a low number of UAVs (<20).
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A second proposed solution includes a heuristic to allocate the UAVs
rapidly on their swarm position [17], resulting in an efficient and safe
takeoff. This work provides a solution similar to the results obtained
by the brute force algorithm but with a significantly reduced time delay
overhead. Its main point is determining a central position on the ground
concerning the deployed UAVs. Then, that central position is used to
calculate the distance to all positions of the desired flight formation,
sorted in descending order. Using this list, the closest UAV is assigned to
each of these positions. In terms of computational cost, it has a cost that
grows with O(n2). It is relevant to note that the solutions provided by
this heuristic might not be optimal, as will be demonstrated in section
3, where a proposal will be shown that tries to improve this position
allocation algorithm based on the kunh munkres algorithm.

After the technical proposal of the solution, an experimental imple-
mentation will be carried out on ardusim software [18] 1, which is a
real-time flight simulator aimed at the development of flight coordination
protocols for multicopters, performing planned missions or making a
swarm. It is also capable of simultaneously simulating up to multiple
UAVs. The number of UAVs which can be simulated is mainly restricted
by the PC being used. For this reason, it is crucial to optimize the take-off
algorithm, as it dramatically limits the number of devices to be used.
ArduSim also simulates an Ad-hoc wireless network for communications
between UAVs. ArduSim generates the route followed by each UAV
in OMNeT++ and NS2 format to provide mobility traces, perform a
simulation, or even run ArduSim on a real multi-copter.

2.3 Image semantic segmentation based on
convolutional neural networks

Semantic segmentation is the task of differentiating parts of images that
are part of the same target class. Semantic segmentation remains a
classification task. Most algorithms work with a fixed set of classes;
some even work only with binary classes, such as front and background.
There is a set of image segmentation algorithms based on a traditional
approach and therefore do not apply neural networks and make intensive

1https://github.com/GRCDEV/ArduSim

10



2.3. Image semantic segmentation based on convolutional neural
networks

use of domain knowledge. Although new image processing techniques
are replacing them, they are still used in the computer vision community.
Some of these algorithms are Watershed Segmentation [1], which is
defined as a region-based segmentation approach, Markov Random Fields
(MRF) [19] that are are undirected probabilistic graphical models, or
random forest (RF) [20] trained for quantitatively evaluate a range of
potential image segmentation scale alternatives in order to identify the
segmentation scale(s) that best predict land cover classes of interest.

Convolutional neural networks (CNN) architectures have evolved
rapidly and, in recent years, have achieved results that were previously
only considered possible through human execution/intervention. Depend-
ing on the task to be performed and the corresponding constraints, a
wide variety of architectures are adapted to the problem domain.

1 32

6 28

16 10

1 12
0

1 84

10

SOFT

Figure 2.2: LeNet deep learning model architecture diagram.

LeNet [21] is one of the pioneering architectures in using neural
networks in computer vision. It was developed between 1989 and 1998 to
solve the task of handwritten digit recognition. His proposal is based on
the fact that gradient-based learning algorithms can be used to synthesize
a complex decision surface that can classify high-dimensional patterns,

11



2. Background

such as handwritten characters, with minimal image preprocessing.
LeNet is composed of the basic units of these neural networks: convo-

lutional, the pooling layer, and the fully connected layer. It is also known
as leNet-5 because of its nature, as shown in figure 2.2. The network has a
total of 60,000 parameters structured as follows: it has a first convolution
layer followed by a pooling layer, then repeats this structure once again
and links to a fully connected layer followed by the final fully connected
layer that connects to the 10-class classification output.
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Figure 2.3: AlexNet deep learning model architecture diagram.

AlexNet [22] was developed to classify the 1.2 million high-resolution
images from the ImageNet ILSVRC-2010 competition into 1000 different
classes. Imagenet was one of the triggers of the revolution of CNNs as
it provided the developers with a sufficiently large and well-structured
dataset to be used as a benchmark for the development of new computer
vision models. Thanks to AlexNet, the developers won first place in
the competition and laid the foundations for deep neural networks that
took advantage of the GPU’s matrix computing capabilities since the
main feature of this model is the inclusion of more processing layers
involving a larger number of trainable parameters that depend on a large
computational capacity to be trained.

AlexNet consists of eight layers shown in Figure 2.3. The first five
were convolutional layers, some of them followed by max-pooling layers,
and the last three were fully connected layers. Instead of using a tang
or sigmoid activation function, it uses the ReLU unsaturated activation
function, which provides better training performance. Alexnet represented
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a significant increase in the model size compared to LeNet, with Alexnet
having 60 million parameters.
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Figure 2.4: VGG16 deep learning model architecture diagram.

VGGNet [23] was developed in 2014 to increase the depth of the
CNNs to increase the model’s performance under the premise that as
the number of layers in the CNN increases, so does the model’s ability
to fit more complex functions. Therefore, a higher number of layers
promises better performance. Two sizes were proposed, 16 and 19 layers.
Figure 2.4 shows the design of the 16-layer architecture, better known as
VGG16. At the time of its publication, it achieved a 92.7% accuracy in
the Imagenet test dataset represented a new leap in the development of
deep networks.

Having 16 layers, VGG16 is quite an extensive network with 138
million parameters. Even by modern industry standards, it is a vast
network. However, the VGGNet16 infrastructure’s simplicity makes the
network more attractive. The structure consists of a few convolution
layers followed by a pooling layer that reduces the height and width.
There are about 64 filters available which can be duplicated up to about
128 and then up to 256. In the last layers, one can use 512 filters. Due to
this structure, the number of filters used is doubled in each step or each
stack of the convolution layer. This is one of the main principles used to
design the network architecture. Consequently, one of the disadvantages
of the VGG16 network is that it is a massive network, which means that
more time is needed to train its parameters. Training a single net on a
system equipped with four NVIDIATitan Black GPUs took 2–3 weeks,
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depending on the architecture.
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Figure 2.5: Unet deep learning model architecture diagram.

With the evolution of CNN architectures oriented to image classifica-
tion and object detection and the development of hardware accelerators
to accommodate these increasingly larger models, the options opened up
for a new type of network that would not only classify images as a whole.
However, they would classify each pixel of the image, thus allowing a
much more precise detection of the target class, since in this case, it would
not obtain a bounding box that positions an object, but it could obtain
the complete silhouette of the object, this task is commonly referred
to as dense prediction. In 2015 a method for semantic segmentation of
biomedical images was proposed. This model was called Unet [24] and
was surprising for its results and simplicity.

As mentioned at the beginning of this section, the network output in
a semantic segmentation task is not just a class label or bounding box
parameters. Indeed, the output is a complete high-resolution image in
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which all pixels are classified. By using a typical convolutional network
with clustering layers and dense layers, the information "WHERE" will
be lost, and only the information "WHAT" will be retained, which is
not what is desired. In the case of segmentation, Both "WHAT" and
"WHERE" information is needed. Thus, it is necessary to upsample the
image after having stored all the information in the latent space in the
center part of the model as shown in Figure 6.1, i.e., to convert a low-
resolution image into a high-resolution image to retrieve the "WHERE"
information. For this task, historically, many techniques have been
developed to increase the size of an image. Some are bilinear interpolation,
cubic interpolation, and nearest neighbor interpolation. However, in most
state-of-the-art networks, transposed convolution is the preferred option
for sampling an image, the latter being the main contribution of Unet.
The main proposal of this network, which sets it apart from the rest,
is Transposed convolution is a technique for upsampling an image with
trainable parameters. At a high level, transposed convolution is exactly
the opposite process of a normal convolution, i.e., the input volume is a
low-resolution image, and the output volume is a high-resolution image
with the particularity that It does not use a predefined interpolation
method; it has learnable parameters.

2.4 Image clustering by using deep learning
techniques at the edge

Thanks to the deep learning approach, some works successfully combine
feature learning and clustering into a single unified framework that can
directly cluster the original images with even higher performance.
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x Encoder z Decoder x̂

Figure 2.6: High-level view of the Autoencoder schema.

Clustering is a type of unsupervised machine learning method, which
means that it is a method in which information is extracted from input
data sets without labeling the responses. In general, it is used as a
process to find meaningful structure, underlying explanatory processes,
generative features, and groupings inherent in a set of examples. Properly
implemented clustering allows for intrinsic grouping among the unlabeled
data present. Intuitively, clustering is the task of partitioning the pop-
ulation or data points into a subset of groups such that data points in
the same groups are more similar to other data points in the same group
and less similar to data points in other groups. Essentially, this is a
set of objects based on similarities and dissimilarities. Some well-known
clustering algorithms are:

• K-means [25] clustering algorithm is the simplest unsupervised
learning algorithm that solves the clustering problem. The K-
means algorithm partitions n observations into k clusters where
each observation belongs to the cluster with the closest mean that
serves as the cluster prototype.

• Hierarchical clustering [26] is an algorithm that builds a hierarchy
of clusters. This algorithm starts with all data points assigned to a
cluster of their own. Then, two closer clusters are merged into the
same cluster. In the end, this algorithm terminates when only a
single cluster remains.

• Density-based spatial clustering of noisy applications (DBSCAN)
[27] is a data clustering algorithm proposed by It is a non-parametric
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density-based clustering algorithm: given a set of points in some
space, it groups points that are close together (points with many
close neighbors), marking as outliers points that are alone in regions
of low density (whose nearest neighbors are too far away).

Before the clustering stage, a technique is often used to reduce the
dimensionality of the data to be processed and thus perform a virtual
grouping of the data in a smaller information space. One of the most used
approaches to resolve the problem of dimension reduction is the principal
component method (PCA). However, it can only be applied to rectilinear
data. If large objects are considered, the probability that they are well
separated is small; nevertheless, if they constitute a mixture of things be-
longing to normal distributions with different parameters. Alternatively,
there is the option of developing a convolutional autoencoder (CAE)2.6,
which has been developed that can be end-to-end trained to learn fea-
tures from unlabeled images. The unsigned CAE is superior to stacked
autoencoders by incorporating the spatial relationships between pixels in
the pictures. It is shown that the convolutional layer, the convolutional
transpose layer, and the fully connected layer are sufficient to structure
an effective CAE. The main key factor of the CAE is the aggressive
restriction of the dimension of the embedded layer. If the embedded
layer is large enough, the network may be able to copy its input to the
output, leading to learning useless features. The intuitive way to avoid
identity mapping is to control the dimension of latent representations.
Learning such sub-complete representations forces the autoencoder to
capture the most salient features of the data. Thus, the dimension of the
embedded space is forced to equal the number of clusters in the data set.
In this way, the network can be trained comprehensively even without
regularizations such as Dropout or Batch Normalization.

2.5 Summary

An existing problem in vertical take-off has been shown. The issue of
vertical take-off of drone aerial vehicles, which so far requires a previous
calculation of the assignment of each UAV to its destination and which
significantly limits the number of devices that can be integrated into
the aerial vehicle and the changes that can be made on the ground,
since due to the structure of the algorithm used, the calculation of the
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assignment would take a long time and would require a data center or a
team that would be computing for hours or days, and the requirement
for the solution to be able to run in the desired environment which serves
as the basis for the proposal in the Kunh Munkres chapter.

This section has gone through the historical inclusion of autonomous
UAVs as IoT devices that can perform surveillance tasks and how they
can become edge computing devices if they integrate graphics acceleration
hardware that allows the execution of deep learning models of adequate
size and structure to obtain the correct results but also process the images
in the device itself.

We have shown the evolution of computer vision techniques and how
the feedback between hardware advances in graphics acceleration and
research in convolutional neural networks have resulted in a remarkable
growth of the capabilities of these image processing models, which will
allow in the following chapters to show its application with a self-contained
framework in the edge of swarms of drones to perform surveillance tasks in
flooded areas that will enable semantic segmentation tasks and obtaining
the most relevant images by using clustering techniques.
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Chapter 3

The Kuhn-Munkres algorithm
for efficient vertical takeoff of
UAV swarms

Hernández, D., Cecilia, J. M., Calafate, C. T., Cano, J. C., Man-
zoni, P. (2021, April). The Kuhn-Munkres algorithm for efficient
vertical takeoff of AV swarms. In 2021 IEEE 93rd Vehicular
Technology Conference (VTC2021-Spring) (pp. 1-5). IEEE. doi:
10.1109/VTC2021-Spring51267.2021.9448873

3.1 Abstract

The field of Unmanned Aerial Vehicles (UAVs) is gaining momentum
thanks to the amazing capabilities of these flying devices. In particular,
small aircrafts using vertical takeoff and landing (VTOL) are among
the preferred solutions in the civilian sector thanks to their low cost,
simplicity of operation, and the ability to carry powerful sensing devices.
When combined to create a swarm, the potential of such UAVs is fur-
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ther extended by allowing to perform more complex missions efficiently.
However, as the number of UAVs involved becomes higher, many issues
arise that can result into mission failures. In this paper, we specifically
address the swarm takeoff problem from an optimization perspective. We
propose a new takeoff scheme based on the Munkres algorithm that solves
the assignment problem in polynomial time. Our evaluation studies the
taking off complexity of large swarms and analyze the computational and
quality trade-off of our proposal. Experiments show that the Munkres
algorithm offers optimal solution with a low computation overhead.

3.2 Introduction

Unmanned Aerial Vehicles (UAVs) are autonomous unmanned aircrafts
that are widely used for different applications and tasks. They have
gradually shifted from more established areas such as aerial photography
and video, to new areas such as precision agriculture, border surveillance,
package delivery, thermal inspections, and air cabs to name few. [1]. The
use of UAV swarms increase their potential capabilities in many cases.
UAV smarms flying autonomously in cooperation can create or improve
networks (e.g. solving infrastructure problems), monitor weather, transfer
information or traffic, etc.

Generally speaking, the number of drones in a swarm is an important
factor in determining its application capabilities. More drones in a
swarm means that the swarm has a greater potential to increase the
tracking area, offering fault tolerance and different imaging perspectives.
However, having more drones in a swarm means more variables to control,
which translates into a higher computational complexity. This could
affect the swarm’s behavior as well as critical decisions such as those
related to preventing drones from crashing into each other. Actually,
the management of UAV swarms, and specifically those of the Vertical
Take-Off and Landing (VTOL) type, to accomplish joint tasks is also
being addressed by different research groups worldwide [2, 3, 4]. For
instance, Intel used 500 drones to create the first UAV-based Light Show
with such a massive number of UAVs1 in 2016. EHANG2 deployed 1180

1https://www.tokyo-motorshow.com/en/press_release/20191018.html
2https://www.ehang.com/ehangaav
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drones to create a similar show in China3 in December 2017. This number
of drones was even increased to 1374 drones in April 20184. In July 2018,
Intel designed a coordinated swarm with up to 2018 drones to break
the Guinness World Record of the largest number of unmanned aerial
vehicles simultaneously flying5.

All these experiments were centrally managed and very strict deploy-
ment conditions were applied to ensure their success. The management
of this number of drones as a whole requires algorithms for autonomous
decision making by the swarm. As the number of drones increases, the
computational overhead also increases, which limits the success of these
procedures beyond 100 drones in a swarm. This computational problem
is even worse in real case scenarios where the swarm can include any
number of UAVs, under any conditions, and for any swarm layout. Only
few works address the specific issue of achieving a safe takeoff for a large
number of UAVs participating in a swarm. In [5], authors only consider
three simple takeoff schemes for a swarm: manual, sequential and simul-
taneous. However, when the swarm is large, and when the formation in
the air remains unrelated to positions on the ground, these techniques
can take too much execution time (manual, sequential), or be prone to
cause collisions between UAVs (simultaneous), especially when UAVs are
packed together on the ground. In our previous work [6], we proposed an
heuristic to provide a near-optimal assignments of UAV positions in the
swarm formation selected optimally. In this paper, we go a step further
by addressing this problem from the perspective of a assignment problem.
We rely on the Munkres algorithm (also known as the Hungarian algo-
rithm) which offers optimal solutions to the take-off problem. We analyze
the problem in different real-life scenarios, i.e. using different formations
on the ground and in the air and scaling the number of drones in the
swarm. Finally, the results of this algorithm are compared with other
takeoff algorithms, analyzing the different advantages and disadvantages
of each approach and demonstrate the validity of our proposal.

The remainder of this paper is organized as follows: in section 3.3 we
provide a more detailed overview of the problem, and describe the ideal
solution for the swarm position assignment. Section 3.4 approach the

3https://www.popsci.com/china-drone-swarms/
4http://www.ehang.com/news/365.html
5https://newsroom.intel.com/news/intel-breaks-guinness-world-records-title-

drone-light-shows-celebration-50th-anniversary/
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vertical takeoff problem of Drones from the point of view of an assignment
problem and proposes its resolution using the Kuhn-Munkres algorithm.
Then, in section 3.5.2, we assess the performance of the solution using
different formations and compare it with existing algorithms for this
purpose. Finally, section 7 concludes the paper, and discusses future
works.

3.3 Problem overview

Creating a swarm of UAVs is a challenging task that involves defining
the swarm size and layout, defining the assignment of ground UAVs to
positions on the swarm when flying, making UAVs takeoff in a safe and yet
effective manner while introducing small delays, moving the swarm in a
coordinated manner and avoiding collisions while executing a coordinated
mission, and finally landing the UAVs safely and in a small area.
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Figure 3.1: Overall problem description.

To have a better insight into the complexity of the swarm takeoff
problem, Figure 3.1 shows a scenario where several UAVs on the ground
participate in a swarm following the layout depicted above them. In
general, to have the UAV swarm ready for completing a mission, UAVs
should be assigned positions on the swarm so as to minimize their flight
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time, e.g. avoiding that UAVs near one edge on the ground assume
positions on the opposite edge in the formation, and also to minimize
collision risks.

With regard to the requirement of the optimal allocation that guar-
antees the minimal overall distance travelled by UAVs to their position,
a brute-force algorithm can be used. This algorithm analyses the whole
solution space by computing all possible combinations of assignment
between ground positions and air formation, having a cost that grows
as O(n! · n2). The main drawback of this technique is that searching
through all the possible solutions makes calculation complexity to have
an exponential growth. In fact, as shown later in section 3.5.2, calculation
times become prohibitive even for a low number of UAVs (<20).

Other proposed solution includes a heuristic [6] to quickly assign
UAVs to their position in the swarm, achieving an efficient and safe
takeoff. This proposal encompasses a heuristic for making an efficient
UAV-to-swarm position assignment that offers a solution that comes near
to that obtained by the brute-force algorithm, but with a significantly
lower time overhead. Basically, it consists in determining a location on
the ground which is central with regard to the UAVs deployed, as shown
in the Figure 3.2. Then, such central position is used to compute the
distance towards all the positions in the desired flight formation, which
are then sorted in descending order. Using this list, the UAV closer to
each of these positions is then assigned to it. In terms of computational
cost, it has a cost that grows with O(n2). It is important to note the
solutions provided by this heuristic could not be the optimal as it will
shown in Section 3.5
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Figure 3.2: Heuristic formation graph
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3.4 The Kuhn-Munkres takeoff algorithm

3.4.1 The assignment problem

The assignment problem is one of the fundamental combinatorial opti-
mization problems. Many real world problems can be categorized as an
assignment problem, such as the UAV takeoff problem. This problem
consists in finding a maximum weighted matching in a weighted bipartite
graph. In this problem, the main goal is to minimize the distance. Given
an n x n matrix W = (wij), a permutation φ of the integers 1, 2, ..., n
must be found to minimize Equation 3.1.

n∑
i=1

wiφ(i) (3.1)

1

2

3

4

5

6

7

8

U V

Figure 3.3: Bipartite graph.

The UAVs takeoff problem can be seen as an assignation problem in
a complete weighted bipartite graph (see Figure 3.3). The vertices are
divided into two subgroups, such that every edge of the graph joins a
vertex in one set to a vertex in the other set. Hence, there is a (finite)
minimal number of vertices with the property that every edge of the
graph ends in one of these vertices. Based on the bipartite graph, it is
possible to calculate the weight matrix using an algorithm to minimize
the Equation 3.1. Within the umbrella of linear programming, different
algorithms have been proposed to solve the assignment problem. The
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auction algorithm [7] and the Kuhn-Munkres algorithm [8] are the most
widely used in this field. We have focused on the the latter since it offers
better performance.

3.4.2 The Kuhn-Munkres Algorithm

This method, also known as the Hungarian method as it was largely based
on the earlier works of two Hungarian mathematicians in 1916 [9] and
1931, was developed and published later on, in 1955, by Kuhn [8]. The
striking advantage of Kuhn’s algorithm is that it is strongly polynomial
O(n3) [10], and for this reason, and because of the simplicity of its
implementation, it has been used in several combinatorial optimization
procedures in areas such as UAV task assignment [11], network flows,
matroids, and matching theory[12].

Algorithm 1 distanceMatrixCalc(numUAVs, groundLocations, flight-
Formation, errorMatrix)
Require: groundLocations of size numUAV s ∧

flightFormation of size numUAV s ∧
errorMatrix of size numUAV s ∗ numUAV s

1: for i ∈ {0, . . . ,numUAVs} do
2: for j ∈ {0, . . . ,numUAVs} do
3: errorMatrix [i][j]← d(groundLocations[i],

f lightFormation[j])2

4: end for
5: end for=0

To adapt the takeoff problem to the Munkres algorithm, the distance
matrix will be calculated using Algorithm 1, where d function is the
Euclidean distance. Then, all the steps shown in Algorithm 2 are followed.
The result is a vector with the minimum possible allocation between the
drones on the ground and the desired aerial formation.
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Figure 3.4: Distance matrix between all the nodes

3.5 Evaluation

3.5.1 Scenarios

Three different swarm formations have been used during the study. Each
one starts from a set of ground source coordinates and a set of target
coordinates, where a ground position will be assigned to a target position
using the different proposed algorithms, always starting from a swarm of
UAVs located on the ground in the form of random points in a square of
side 400 meters, with a minimum separation of 7.5 meters between UAVs
for the sake of security during takeoff. The air formation is defined for
an altitude of 50 meters above ground. Both on the ground and in the
air, the center point of each formation is located on position (x,y)=(0,0).
Figure 3.5 shows the three swarm formations used in this experiment,
whose characteristics are the following:

• Circular formation: Given the number of UAVs, a circumference
is drawn with the smallest possible radius so that each drone is
placed on its edge, and at least a 10-meter euclidean distance is
established between the two drones closest to it.

• Lineal formation: Starting from the center, a UAV is added by
varying the distance 10 meters from its closest drone, adding in case
the drone is positioned to the right of the formation, or reducing in
case it is placed on the left.

• Matrix formation: To achieve the matrix shape independently
of the number of drones in the formation, each drone is added
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Algorithm 2 KunhnMunkres(numUAVs, groundLocations, flightForma-
tion)
Require: groundLocations.size = numUAVs ∧

flightFormation.size = numUAVs

Step 1 → Set a matrix of size numUAVs ∗ numUAVs and fill it out

using distanceMatrixCalc()

Step 2 → Subtract row minima: Subtract the smallest entry in

each row from each entry in that row in the distance matrix.

Step 3 → Subtract column minima: Subtract the smallest entry

in each column from each entry in that column in the distance matrix.

Step 4 → Cover all zeros with the minimum number of lines:

Using the smallest number of lines possible, draw lines over rows and

columns in order to cover all zeros in the matrix.

Step 5 → If the minimum number of covering lines is n, an optimal

assignment of zeros is possible and the process is finished.

If the minimum number of covering lines is less than n, an optimal

assignment of zeros is not yet possible. In that case, proceed to Step

6

Step 6 → Determine the smallest entry not covered by any line.

Subtract this entry from each uncovered row, and then add it to each

covered column. Then return to Step 4. =0

alternately between the quadrants of two perpendicular axes and,
when the square is formed, 10 meters are added in each axis; the
process continues until all the coordinates are assigned.

In the experiments, and for each formation, different scenarios are
designed varying the number of drones from 2 to 1000. In the following
sections, we show the results of execution time (depending on the algo-
rithm, the formation, and the number of drones that integrate it), and
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Figure 3.5: UAVs formations for the experiment.

the total distance traveled after making the assignment.

3.5.2 Performance evaluation

In this section, we compare our proposal with the execution time of the
three algorithms mentioned in this document, showing the performance
scalability when the formation and number of UAVs are varied. The
experiments evaluates the execution time needed to find the solution
with the total number of drones in a scale from 2 to 1000 UAVs. It is
important to note that the ideal algorithm, which has been limited to
executions with 2 and 10 since retrieving the solution becomes unfeasible
with respect to the time overhead using standard computational resources.
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The execution has been carried out in a Quad-Core Intel Core i7 CPU
using a single core.

Figure 3.6 shows that the algorithm that consumes less execution time
is the one that uses the heuristic approximation, followed by Munkres
that, although its execution time is two orders of magnitude higher,
remains a reasonable execution time given the amount of drones using in
the experiment. In the executions of Mukres, a significant variability can
be observed between the execution time needed to find the solution using
the different formations for a same number of drones. This situation is
not noticeable in the other two. This is due to the nature of the algorithm
itself since, depending on the type of formation, the optimal solution will
converge in a variable number of steps.
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Figure 3.6: Computation time of each algorithm based on the number of
UAVs.

3.5.3 Quality analysis

This section analyzes the quality of the solutions provided by the al-
gorithms. The total distance travelled by UAVs for each of the three
formations is measured, which actually depends on the actual number of
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UAVs. The decision on the algorithm to be used in each formation will
be made taking into account the heuristic and Munkres algorithms. The
brute-force algorithm will not be used, since the result obtained is always
the same as that obtained with Munkres, which as can be seen in figure
3.6 is much faster. Figure 3.7 shows the sum of the squared distance of
each drone towards its assigned position, for each of the formations, and
when varying the number of drones.

Starting from the circular formation, it can be observed that, when the
number of drones grows, a difference starts to exist in favor of the Munkres
algorithm. This difference, although appreciable, does not present a
disruptive deviation and, therefore, the use of one or the other could
be conditioned to other variables, such as the available computational
capacity, or the minimization of the total space to be covered. For a
formation of linear characteristics, the best option would be the use of
the heuristic algorithm since the total distance traveled, although greater,
is mostly imperceptible; in section 3.5.2 it can be appreciated how the
Munkres algorithm provides a better performance at execution time.

3.5.4 Discussion

After experimentation, the brute-force algorithm is discarded in favor
of the Kuhn-Munkres algorithm since, although both obtain the short-
est possible total distance, the latter on drastically improves the total
execution time.

The matrix formation allows us to see a greater difference between
both algorithms under study. Notice that this aerial formation is where
we have the highest contrast between the aerial formation area and the
ground area, and thus the disadvantages of making a calculation based
on the average of all positions on the ground can be better appreciated;
in these cases, a calculation taking into account the unitary positions of
each drone with respect to the final formation is more beneficial.

The actual choice between the heuristic technique and Kuhn-Munkres
will depend on the chosen air formation, and we will have a clear trade-off
between computational overhead and the total distance traveled. Results
show that, for a linear formation, the best option would be to use the
heuristic approach; however, for a matrix formation, the most consistent
decision is the Kuhn-Munkres algorithm.
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Figure 3.7: Distance matrix between all the nodes.

In the calculation of the quality of the algorithm, the total distance
covered by the members of the swarm has been taken into account.
However, our approach does not try to minimize the number of crossed
routes that may interfere with each other, and thus potentially increase
the total take-off time. Notice that those drones whose ground-to-air
assignment segments intersect at some point will force a prioritization
mechanism to be adopted in order to achieve collision avoidance.
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3.6 Conclusions and future work

In this document we have evaluated the performance and quality of
different algorithms for the problem of vertical takeoff of UAV swarms.
We present a new approach to the problem by applying graph theory,
and we propose using the Kuhn-Munkres algorithm to try to obtain the
best possible allocation in an assumable execution time.

As future work we will seek to optimize the takeoff time by taking
into account the potential crossing routes that may exist, and try to
reduce the assignment time required by the Kuhn-Munkres algorithm by
making a parallel implementation of it.
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Chapter 4

AI-enabled autonomous
drones for fast climate change
crisis assessment
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J. M. (2021). Al- enabled autonomous drones for fast climate
change crisis assessment. IEEE Internet of Things Journal. doi:
10.1109/JIOT.2021.3098379.

4.1 Abstract

Climate change is one of the greatest challenges for modern societies.
Its consequences, often associated with extreme events, have dramatic
results worldwide. New synergies between different disciplines including
Artificial Intelligence (AI), Internet of Things (IoT), and edge computing
can lead to radically new approaches for the real-time tracking of natural
disasters that are also designed to reduce the environmental footprint.
In this article, we propose an AI-based pipeline for processing natural
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disaster images taken from drones. The purpose of this pipeline is to
reduce the number of images to be processed by the first responders of
the natural disaster. It consists of three main stages, (1) a lightweight
auto-encoder based on deep learning, (2) a dimensionality reduction
using the t-SNE algorithm and (3) a fuzzy clustering procedure. This
pipeline is evaluated on several edge computing platforms with low-power
accelerators to assess the design of intelligent autonomous drones to
provide this service in real time. Our experimental evaluation focuses
on flooding, showing that the amount of information to be processed
is substantially reduced whereas edge computing platforms with low-
power GPUs are placed as a compelling alternative for processing these
heavy computational workloads, obtaining a performance loss of only
2.3x compared to its cloud counterpart version, running both the training
and inference steps.

4.2 Introduction

Climate has dramatic consequences all over the world, with effects having
noticeably negative results [1]. The consequences of floods are undoubt-
edly one of the most dramatic ones among the many natural disasters, as
they encompass loss of human life and loss of natural ecosystems. Floods
also cause economic losses. Indeed, the effects of natural disasters have
consequences where immediacy in decision-making is essential. Improv-
ing preparedness for an effective response to these events is essential
in situations where every minute counts. In this regard, technological
advances can help to achieve this efficiency in response times where
sustainability, efficiency, and ubiquity should be the main ingredients of
these developments [2].

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones,
are autonomous unmanned aircrafts that are widely used for different
applications and tasks. The use of drones has gradually evolved from
more recreational areas such as photography and video, to more technical
ones such as border surveillance, precision agriculture and infrastructure
inspections, just to name a few [3]. Drones are also playing an important
role in emergency and response protocols. They are currently widely
used in the response stage and are also used, albeit to a lesser extent, in
the other stages of a natural disaster, i.e., prevention, preparation and
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recovery [4].
Natural disaster management situations are very stressful, and the

use of technological tools such as drones could be helpful. However, using
drones requires qualified personnel that can monitor and process the
information generated by these tools. In particular, drones can generate
an enormous amount of video and images that need to be analysed
by experts in conditions where it is very easy to make mistakes. The
probability of errors can be reduced by using image processing techniques
for the detection of potential risks in a natural disaster, including Machine
Learning techniques (ML) and Deep Learning (DL), which can automate
the process of image interpretation and clustering in order to speed-
up decision making by managers, and to avoid possible human errors.
However, these AI-techniques, particularly their training, is a compute-
intensive process, and although there is an industry-wide trend towards
hardware specialization to improve performance and energy consumption
[5], traditionally these workloads have been executed in a cloud-fashion
approach. Nevertheless, the rescue of people, the identification of affected
areas, and the prevention of the secondary effects of a natural disaster are
all emergency tasks, and therefore the information should be processed
in real time, or at least, as quickly as possible.

An alternative that is emerging in the last decade is edge computing
[6]. In edge computing, data processing is performed, totally or partially,
on the devices that are at the edge of the network; i.e., at those devices
that are closest to mobile devices or sensors. This distributed way
of computing provides energy savings, scalability and responsive web
services for mobile computing, and offers a mechanism for data privacy
in the IoT context. In addition, it offers the possibility to mask transient
cloud outages. Edge computing devices should be designed in such a
way that energy efficiency is the main objective. To this end, leading
processor companies are developing energy-efficient solutions with low
power consumption and high performance. In particular, the Nvidia
Jetson family of embedded systems can be highlighted, which include
low-power graphics accelerators (GPUs) that deliver good performance
for massively parallel applications with power consumption between 7.5
and 10 watts [7].

In this paper, we propose an AI-based pipeline for the identification
of the drone-based images that are related to floods. We use a deep-
learning-based auto-enconder to highlight the main features of the images
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taken from the drones. Then, those features are reduced and clusterized
to help first responders of natural disasters in dealing with large datasets.
We also evaluate the AI-based pipeline in different low-power GPU-based
edge computing platforms to figure out if they would be a compelling
alternative to the main aim of developing an AI-based autonomous drone
for emergency situations. Hence, the major contributions of this paper
are:

1. A deep-learning based lightweight auto-encoder is proposed to
identify the main features of aerial flood images.

2. An AI-based pipeline to reduce the amount of information to be
supervised by first responders in natural disasters is designed.

3. An in-depth performance evaluation of different low-power GPU-
based edge computing devices is provided to assess the feasibility
of autonomous AI drones in natural disasters.

4. A particular case study that targets flooding scenarios is under
study.

The rest of the article is structured as follows. Section 4.3 provides
the required knowledge related to the main research areas of this work.
Section 4.4 introduces the general infrastructure of the AI-based pipeline
to deal with aerial images of natural disasters. Section 4.5 shows the
experimental setup before showing the performance and quality evaluation
of our approach in Section 4.6. Finally, Section 5.6 shows conclusions
and directions for future work.

4.3 Background and related work

This section provides the main background on the different topics related
to this paper: UAVs, DL for artificial vision, and edge computing.

4.3.1 UAVs in natural disasters

UAVs have recently experienced unprecedented growth, with countless
areas of application foreseen for the coming years [8]. Regarding works
proposing the use of drones for rescue and survivor search tasks, the first
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works in the area [9] studied the use of a single drone for this endeavour.
Years later drones have been used to analyse the effects of a landslide
in Tibet [10], comparing the profile of the terrain before and after the
catastrophe. More recently, Mehrdad et al. [11] proposed a technique
specifically applicable to natural disasters that is able to quickly and
efficiently combine aerial images, and which has direct applicability in
the case of using a swarm of drones to obtain such images. However,
if we are attempting to perform complex tasks in a short time, such as
assessing the effects of a natural disaster and searching for survivors, the
deployment of swarms of UAVs is a very interesting alternative. Drone
swarms can improve the efficiency of individual systems by offering many
advantages, including the possibility of extending mission coverage in a
short time, thanks to the cooperation between UAVs [12].

To date, very few tests have been conducted with outdoor multicopter
swarms, and even fewer have been conducted on large scale, the most
notable to date being the test conducted by China, which managed to
coordinate up to 1000 UAVs for the first time ever [13]. This lack of
works in the literature is due to the fact that using a swarm of drones
collaborating with each other to perform a cooperative task presents
significant communication, synchronisation and quality of service issues
[14].

4.3.2 Artificial vision in natural disasters

Natural disasters present characteristics where immediacy in decision-
making is fundamental. There are image processing techniques for the
detection of potential risks in a natural disaster, including ML techniques
such as Support Vector Machines (SVM), Bayesian non-parametric Mod-
els, Genetic Algorithms (GA), Random Forest (RF), Fuzzy Clustering
(FC) or K-nearest Neighbours (KNN), that are used for image classifi-
cation. In [15], authors proposed an extended motion diffusion-based
(EMD) to detect changes in airport ground. Its method was verified
from the Airport Ground Video Surveillance (AGVS) benchmark test by
obtaining positive results in situations such as fog and camouflage. In
[16], a genetic algorithm combined with a neural network was proposed
to classify images coming from a flood; this proposal was compared with
three FC methods, being that the proposed algorithm was able to obtain
better results. The authors of [17] proposed a hybrid framework composed
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of a Deep Learning algorithm, specifically a convolutional neural network
(CNN), and a feature extraction algorithm, to classify images of natural
disasters such as avalanches, cyclones, tornadoes and fires, among others.
The data used to test this framework was an artificial dataset created
by the authors. The proposed CNN is compared with RF, SVN, and
KNN techniques, obtaining the CNN the best result. The same happens
with the CNN proposed in [18]. In that study, the authors proposed
the use of a CNN for flood image classification using images obtained
from a UAV, producing such offline image classification. The authors
made a comparison with a SVM technique, obtaining better results with
the proposed CNN-based technique. In short, the techniques based on
Deep Learning are the ones that achieve the best performance in image
classification of natural disasters so far.

There are some works in the literature where Deep Learning techniques
are applied for image classification in general and, in particular, for
images of natural disasters. However, these techniques consume a lot
of computational resources, and image classification is performed offline.
However, the rescue of people, the identification of affected areas, and the
prevention of secondary effects of a natural disaster, are emergency tasks
requiring information to be processed in real time. Hence, our paper
explores the design of these techniques so that they can be executed in
low-power processors that can be introduced into the UAV swarm; this
allows performing real-time image processing from different perspectives
(thanks to the swarm and coordination of the UAVs) to make effective
and accurate decisions in real time.

4.3.3 Edge computing platforms

In the history of computing, the paradigms of centralised and decen-
tralised computing have alternated over time. In the early days, com-
puting was developed using centralised processing with batch and time-
sharing techniques. The development of personal computers in the 1980s
brought about a shift to a decentralised approach. This approach was
re-centralised at the beginning of the 21st century with cloud computing.
Cloud computing has now established itself as the most widely used ap-
proach, mainly driven by the rise of mobile devices and the IoT, for which
cloud computing offers high-performance computing and storage services
that are not available on these low-power, low-cost devices. However, the
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nearest cloud infrastructure running mobile and IoT application services
may be too far away from the source of data.

Satyanarayanan et al. [6] proposed a two-level architecture to pursue
interactive performance of mobile applications. A first level consisting of a
traditional cloud and a second level consisting of a network of cloudlets; i.e.
dispersed elements containing state information cached from the first level
[19]. In addition, Bonomi et al. also proposed a multi-tier architecture
that they called fog computing. In this case, the authors designed this
architecture motivated by the lack of scalability of IoT infrastructures
[20]. As in the case of edge computing, the proximity of cloudlets (or fog
nodes) to the nodes capturing data offers a number of benefits, in addition
to the scalability benefits initially sought by the authors. These benefits
include the availability of highly responsive cloud services, the reduction
of end-to-end latency, the increased bandwidth and low jitter to services
located at the edge, etc. In [21], authors studied computation offloading
in fifth generation networks and proposed a distributed learning method
to address the technical challenges arising from uncertainties and limited
resource sharing in an multi-access edge computing (MEC) system. They
provided a case study on resource orchestration to show the potential of
the proposal, outperforming benchmark resource orchestration algorithms.

Edge computing provides computing power in close proximity to sen-
sors or mobile devices. In fact, as mentioned above, there are compute-
intensive applications for which this technology is opening up new develop-
ment opportunities such as interactive mobile applications for augmented
reality. Undoubtedly, the design of cloudlets has to be highly energy
efficient, while providing the highest computational horsepower possible.
Actually, microprocessor industry is releasing systems on chip (SoCs) that
include low-power accelerators such as Graphics Processing Units (GPUs)
or Tensor Processing Units (TPUs). Among them, we may highlight the
Nvidia’s Jetson family [22], Intel’s Movidius [23] or the Google’s Coral
project [24]. Thanks to these accelerators, the energy efficiency of edge
devices can substantially increase.

Another important feature of edge/fog computing related to this work
is the reduction of the amount of data that needs to be transferred to
the cloud. This has great benefits such as reduction of network overhead,
energy savings, cost reduction in the cloud, reduction of storage space, etc.
For instance, Simeons et al. developed a video processing system, known
as GigaSight [25], where videos obtained from mobile devices are processed
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in the nearest cloudlet, sending only the results and some metadata to
the cloud, drastically reducing the application’s bandwidth and storage
needs. This feature is of particular interest for the UAV environment,
where autonomy is scarce. Furthermore, in the particular case of natural
disasters, the reduction of data delivery through edge processing provides
clarity in analysing the information for first responders.

4.4 AI-pipeline proposed for management of
natural disasters

Natural disasters require immediacy so that decisions can be taken as
quickly as possible to save lives. First-responders need tools that allow
them to quickly assess the magnitude of the natural disaster. As previ-
ously mentioned, drones are capable of exploring wide areas inaccessible
by first-responders, allowing a large number of images to be taken to
assess the impact of the disaster. However, manually processing this large
amount of information is very difficult for humans, even more in these
types of critical scenarios.

This section introduces the AI-pipeline proposed to deal with unclas-
sified drone-based images of natural disasters. The main objective of
this AI-pipeline is to reduce the number of drone-generated images to be
processed by the first-reponders. This is developed through an unsuper-
vised process which identifies the main features of the images through a
deep-learning based auto-encoder and reduces the dimensionality of these
features to eventually perform a clustering process to group those images
by similarity. This AI-pipeline outputs an image that represents each
cluster. This image can be evaluated by first-responders to determine
whether that group of images are of interest for decision making. Another
important feature of natural disasters is that they usually occur in remote
locations, where connectivity is limited. For this purpose, the last part of
this work evaluates the complete execution of the proposed AI-pipeline
on egde computing platforms, so that Internet connection will not be
required to obtain the benefits of this system.
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Figure 4.1: Deep learning based auto-enconder.

4.4.1 Deep learning based auto-encoder structure

An auto-encoder is a neural network architecture designed for feature
learning from unlabeled data. It has a distinctive shape consisting
of two layers; the first one is the encoder which is responsible for data
compression so that it becomes smaller in size than its input by decreasing
its dimensionality from the input layer to a central information layer.
The other is the decoder, which attempts to regenerate the input data
compressed by the first layer to regenerate the original input to the
encoder phase as faithfully as possible.

The data to be processed is formed by a set of images, therefore the
neural network that forms the auto-encoder is composed of convolutional
networks that behave better for this type of scenario. This type of auto-
encoder is known as convolutional auto-encoder (CAE). The structure of
the proposed auto-encoder for this work is described in Figure 4.1. For
its design, we have tried to prioritize simplicity and the reduction of the
total number of parameters as much as possible, since this network will be
trained and used for the clustering process entirely in the devices located
at the edge, and therefore the limitations of memory and computational
capacity have been taken into account.

One of the differences with traditional auto-encoders is that no fully-
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connected layers have been used within the autoencoder. Moreover,
average pooling operations are performed on the feature map extracted
from the filters of the central layer for the feature extraction process. The
blocks that compose the CAE are convolutional, as well as the pooling
layers for the encoding and compression phase, and deconvolutional and
unpooling blocks for the regeneration phase of the original input.

Convolutional blocks, called “conv” in Figure 4.1, are responsible for
filtering an input to create a feature map that summarizes the presence
of features detected in that input. In contrast, deconvolutional elements,
called “deconv” in Figure 4.1, apply a 2D transposed convolution operator
on an input image composed of several input planes. This operation
can be viewed as the gradient of Conv2d with respect to its input, also
known as fractional convolution. With this operation, we will decompress
the abstract representation generated by the convolutional layers into
something more visual.

Max Pooling, “pool” in Figure 4.1, is a sample-based discretization
process designed to filter out noisy activations by retaining only the robust
activations in the upper layers, but the spatial information is lost during
pooling. This reduces its dimensionality and allows assumptions to be
made about the features contained in the binned subregions. Unpooling,
“unpool” in Figure 4.1, is the opposite operation. It captures example-
specific structures by tracing the original locations with strong activations
back to image space. As a result, it reconstructs the detailed structure
that was done in the pooling phase. Pooling and unpooling layers do
not have tuning parameters, although they will have to share parameters
between them since indices generated by each of the pooling layers in the
encoding part have to be sent to their respective unpooling layer when
decoding in order to reconstruct the original dimensionality prior to the
pooling operation. This operation can be seen in layers poolxIndexes in
Figure 4.1.

4.4.2 t-SNE

The second main step of the proposed pipeline is a dimensionality re-
duction. The objetive of this step is two-fold, (1) for easy viewing of
information and (2) for reducing the computational complexity. We use
a t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm [26],
which is a non-linear technique that reduces the number of dimensions
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of the input data. More specifically, we use the t-SNE implementation
made available by the scikit-learn Python library [27]. The algorithm
searches for joint probabilities based on similarities between data points.
In our case, each data point is the average flatten pooling obtained from
the convolutional autoencoder. This input is a 240-feature vector, and
we apply t-SNE to obtain a two-dimensional one before performing the
clustering. The t-SNE algorithm attempts to minimise the so-called
Kullback-Leibler (KL) divergence between the input data and the joint
probabilities of the low-dimensional embedding. This divergence is a
way to measure the difference between two distributions. The t-SNE
procedure follows the following equations. First, Equation 4.1 shows the
calculation of the conditional probability of point xj to be next to point
xi.

pj|i =
exp

(
−∥xi − xj∥2/2σ2

)∑
k ̸=i exp(−∥xi − xk∥2/2σ2)

(4.1)

Then, the joint probability distribution is calculated based on the
conditional distributions (see Equation 4.2).

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yi − yl∥2)−1

(4.2)

Finally, the KL divergence is calculated for both distributions P
and Q in the probability space of x to optimize their distribution (see
Equation 4.3).

KL(P∥Q) =
∑
i

P (i) ln
P (i)

Q(i)
(4.3)

4.4.3 The clustering algorithm

Clustering algorithms are data analysis techniques that organise n-
dimensional data-points into groups or clusters. Each cluster is composed
of those points that are most similar to each other based on a metric
defined in the algorithm [28]. Several clustering algorithms have been
proposed in the literature as applied to different scientific applications [29,
30]. They are mainly divided into two main groups, i.e. hard and soft
clustering techniques. In hard clustering techniques, such as the well-
known k-means algorithm, a data-point can only belong to one group.
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However, in soft clustering techniques, a probability of belonging to each
group is assigned to each data point. Among the soft clustering tech-
niques, we may highlight the fuzzy c-means (FCM) algorithm [31] and
the fuzzy minimals (FM) algorithm [32]. Another important feature of
clustering algorithms is the number of clusters to be generated; k-means
and FCM require us to define the number of clusters to be developed. In
contrast, FM does not need this parameter to be set in advance without
the need for the clusters to be Compact Well-Separated (CWS). This
feature enables unsupervised clustering that does not condition the sets
of images to be obtained from each drone mission, and thus it is what
motivated us to introduce FM at the final stage of the pipeline proposed
in this article. In what follows, we briefly introduce the FM algorithm
and refer the reader to [32, 33] for insights.

STEP 0: Conv4 STEP
1: AVG
Pooling

STEP 2:
Flatten

STEP3: t-SNE

X

X

STEP4: FM

Figure 4.2: AI-pipeline for the latent space clustering extracted from the
autoencoder.

The FM algorithm is an iterative fixed-point algorithm whose main
purpose is to minimise an objective function given by Equations (4.4)
and (4.5). The FM algorithm has two main functions shown in Algorithm
3. The FM needs two input parameters: varepsilon1, which sets the
maximum allowable degree of error, and varepsilon2, which shows the
difference between the potential minima. Once these parameters are set,
the r factor is calculated for the input dataset before calculating the
prototypes.

J(v) =
∑
x∈X

µxv · d2xv, (4.4)

where
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µxv =
1

1 + r2 · d2xv
, (4.5)

Algorithm 3 Fuzzy Minimals Algorithm pseudocode.
1: LoadDataSet()

2: Choose input variables ε1 and ε2.
3: r=CalculateFactorR(dataset)
4: PrototypeCalculation(dataset, r) =0

The r-factor is a non-linear function for measuring the degree of
homogeneity and isotropy breakdown of a data set. This function is
shown in Equation (4.6). Factor r takes as a partition hypothesis that
clusters are created when isotropy and/or homogeneity is broken.√

|C−1|
nrF

∑
x∈X

1

1 + r2d2xm
= 1, (4.6)

where |C−1| is the determinant of the inverse of the covariance matrix,
m is the mean of the sample X, dxm is the Euclidean distance between
x and m, and n is the number of elements of the sample.

Algorithm 4 shows the calculation of prototypes developed by the
FM approach. This procedure is based on a scoring function that has,
as an argument, the previously calculated r factor. The membership
function is described in equation 4.5, which measures the probability of
an element x to belong to a particular cluster in which v is the prototype.
In fact, these prototypes are the output of the FM that represents the
most significant images of our pipeline.

4.4.4 AI-pipeline ensemble

Figure 4.2 shows the proposed AI-pipeline applicable after CAE training.
The pipeline begins with the raw images that go through the auto-encoder
shown in Figure 4.1. The trained auto-encoder is able to compress the
main features in the conv4 layer. This layer outputs a matrix with a
transformation of the input image that has been obtained by applying
a set of filters. At this point, the layers behind conv4 will be removed,
and this will be the new output layer of the network. Then, an iteration
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Algorithm 4 Baselines of the FM PrototypeCalculation. n is the size of
the input dataset. V is a vector with the prototypes found by FM. F is
the dimensionality (2 in our case).
1: Initialize V = { } ⊂F .
2: for i = 1; i < n; i++ do
3: v(0) = xi, t = 0, E(0) = 1

4: while E(t) ≥ ε1 do
5: t = t+ 1

6: µxv = 1
1+r2·d2xv

, using v(t−1)

7: v(t) =

∑
x∈X

(
µ
(t)
xv

)2
·x(

µ
(t)
xv

)2

8: E(t) =
∑F

α=1

(
vα(t) − vα(t−1)

)
9: end while

10: if
∑F

α (vα − wα) > ε2, ∀w ∈ V then
11: V ≡ V + {v}.
12: end if
13: end for=0

of the whole dataset will be performed to obtain all the filters extracted
from the network for each image.

Each image processed by the autoencoder is converted into a set of
matrix-represented filters.The Average (AVG) polling is applied on 2×2
blocks to each of these filters in order to create a down-sampled (pooled)
feature map as shown in step 2 at Figure 4.2. The AVG polling obtains
an one-dimensional vector for each filter by calculating the mean of each
block of each filter. This means that each 2×2 square of each filter is
sampled downwards to the mean value of the square. These 1-D vectors
will be concatenated to feed step 3 called Flatten in Figure 4.2, forming
a single vector where all relevant CAE information will be extracted.

Once a flatten vector for each of the images is obtained, the t-SNE
algorithm is applied so that all images will be embedded into a two-
dimensional array grouped by the similarity detected after applying t-SNE.
It is important to note that this matrix contains all the images without
creating any clusters; i.e. all images are considered as homogeneous points.
Then, this matrix is clustered based on image similarity. Since the optimal
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number of clusters to be obtained is not known, a fuzzy logic based
clustering will be applied using the FM algorithm, where the coordinates
of the most representative images of the dataset (i.e. the prototypes of the
cluster) will be obtained along with the percentage of belonging to each
of the image clusters generated. With this extracted information, every
image can be labeled for subsequent submission. Images representing the
prototypes will be sent for follow-up by the first responders.

4.4.5 Solution deployment and execution flow

Ground station

1. Standby state
Ground station

2. Images collection

conv1
pool1

conv2

pool2
conv3

pool3
conv4

dconv1

unpool1

dconv2

unpool2

dconv3
unpool3

pool3Indexes

pool2Indexes

pool1Indexes

STEP0: conv4 STEP1:
AVG

Pooling
STEP2:
Flatten STEP3: t-SNE

X

X

STEP:4 FM

3. Device processing

4. Send results

Figure 4.3: Natural disasters management overview.
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Having defined the problem and the proposed AI-pipeline, Figure 4.3
shows the execution flow that should be carried out in real natural disaster
management scenarios. Drones start from a standby position (step 1)
in order to prepare for take-off before they begin taking images of the
affected area. Once images have been taken in step 2, the proposed AI-
pipeline is executed (step 3). The first step of this pipeline would be the
training of the autoencoder, which is performed with the images captured
by the drone during the first flight. It is important to note that this
training is only performed once for each affected area, and the information
learned by the autoencoder can be reused to encode the images of the
following flights over the same affected area. Therefore, the training
stage, the most computationally expensive, would be executed once and
the inference stage would be executed as many times as surveillance
missions are performed by the drone. In other words, the training stage
will provide the neural network weights that will be used in the following
missions in the inference stage, running only the first part of the network
(i.e., Conv1-Conv4 in Figure 4.1). After the inference stage, the feature
vector will be generated and reduced using t-SNE and clustered using
FM. Finally, once the most significant images have been selected with
the execution of the AI-pipeline, they are sent in step 4.

Regarding the execution flow, all steps of the proposed AI-pipeline
could be executed at the edge. The pipeline is designed to have a low
memory footprint, as it will be shown in Section 4.5. Furthermore, the
pipeline only uses the images captured during the mission (step 2 in
Figure 4.3). Therefore, there is no need to perform a knowledge transfer
with the pre-trained network weights using other datasets.

4.5 Experimental setup

This section provides an overview of the dataset used to train and test the
AI-pipeline proposed in Section 4.4. Then, the main hardware features
and software details of our experimental environment are described.

4.5.1 Dataset

The AI-pipeline previously introduced requires a dataset to train the auto-
encoder. To the best of our knowledge there are few datasets that meet
our requirements; i.e. natural disaster and aerial images. Particularly, we
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use AIDER (Aerial Image Dataset for Emergency Response applications)
[34, 35] for the training and testing procedures, as will be shown in Section
4.6. This dataset contains images from five different categories. Four of
them are related to disaster events such as Fire/Smoke, Flood, Collapsed
Building/Rubble, and Traffic Accidents, and the latter is the control case;
i.e., there is not any sort of accident on it. Figure 4.4 shows all categories
contained in this dataset with random examples of them to illustrate its
content. It is important to note that AIDER is only composed of aerial
images that were obtained by several online sources such as Google or
Bing images, Youtube or news agencies websites. Particularly, authors
used the keywords ”Aerial View”, ”UAV” and/or ”Drone”, along with the
particular event they wanted to include in the dataset, such as "flood” or
"fire". Moreover, images also have different viewpoints, resolutions, and
illumination conditions. It is important to note that authors manually
inspected all images to make sure that they are related to the expected
disaster, and also that the event is centered at the image. The latter is to
guarantee that any geometric transformation during augmentation does
not remove the object of interest from the image. Finally, the dataset is
not well balanced to replicate real world scenarios; i.e., it contains more
images from the control class. In particular, the dataset is composed of
about 500 images for each disaster class, and over 4000 images for the
control class. In our case, the dataset is even more imbalanced as we have
removed the images from Fire/Smoke, Collapsed Building/Rubble, and
Traffic Accidents and will only use the control class and the flooding class.
As shown in Figure 4.4, we will use the set made up of the normal and
flood images as the framework on which we will perform the clustering
tasks. Before being processed by the clustering pipeline, all images have
been resized to a side size of 255 pixels, and all of them have been cropped
at the center.
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Table 4.1: Specification of the various GPU platforms used in our experi-
ments.

Pedra Jetson AGX Xavier Jetson TX2 Jetson Nano

CPU Intel Silver 4216 NVIDIA Carmel ARM v8.2 ARMv8 ARM Cortex-A57 MPcore

2xGPU (NVIDIA) GeForce RTX 2080 Ti Volta Pascal Maxwell

Memory [Gb] 12 DDR5 32 LPDDR4x 8 LPDDR4 4 LPDDR4

Size [mm] 73.4 x 8.7 x 44.8 105 x 105 50 x 87 70 x 45

Weight [g] 17,000 280 85 61

Energy consumption [W] 80-100 10-30 7.5 3-5

Collapsed

Fire

Flood

Accidents

Normal

Figure 4.4: Classes within the AIDER dataset.

4.5.2 Hardware and software environment

This section introduces the hardware and software environment used
to perform the experiments in Section 4.6 (see Table 5.1). We focused
on four different architectures: a High Performance Computing (HPC)
node called Pedra, and three low-power edge computing devices from the
NVIDIA Jetson family (i.e. Jetson nano, Jetson TX2, and Jetson AGX
Xavier). Although Pedra cannot be mounted directly on the UAVs (due
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to its weight, size, and energy consumption), it could be used via a cloud
solution when mobile Internet speed and coverage are sufficient. The
main purpose of this comparison is to determine whether the AI-pipeline
proposed in Section 4.4 adapted for GPUs decreases the calculation time,
if it can also be performed in the edge in a reasonable time frame and, if
so, which platform is the most suitable one. Table 5.1 introduces the the
main features of the hardware platforms targeted.

The software environment is based on gcc v7.4.0, CUDA v10.2 with
cuDNN and Python v3.6 with pytorch v1.8.0 built for edge devices,
torchvision v0.9.0 built for edge devices and scikit-learn v0.24.1.

On the other hand, notice that the training stage of the neural
network described above has been performed on all the devices described
in Table 5.1 in order to achieve a process that is able to run on the
edge from the beginning to the end. This approach differs from the
usual practice of first training on a high-performance cluster, and then
trying to apply techniques to adapt the trained model to low-performance
devices. In our case, we designed a model with a total size of 88275
trainable parameters (the lightness of the network is evident) that is
efficient enough for the target task. The main parameters of the training
procedure were 30 epochs, MSELoss loss criterion, and Adam Optimizer.
The batch size to feed each epoch has been adapted depending on the
memory limitations of each device that was running the training process
at that time.

It is worth mentioning that although this AI-pipeline is designed to
train a new auto-encoder for each available dataset, if the new images
are similar to those used in a previous dataset, e.g. same geographical
area or same day time, with similar weather, a previously trained encoder
could be reused to obtain the most relevant images for this new particular
scenario. Another option could be to perform new incremental training
epochs starting from a previously trained auto-encoder to which new
images are added, thus reducing the convergence time with respect to
performing a training process from the beginning.

4.6 Evaluation

This section shows the quality results obtained by training and validating
the aerial images dataset shown in Section 4.5.1. Moreover, the per-
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formance of several CPU-GPU based computing solutions is presented
to evaluate edge computing platforms as potential infrastructure for
processing AI-based workloads on drones.

4.6.1 Quality evaluation and memory footprint

As explained in Section 4.4.4, all images of the target dataset are fed into
the pipeline. First, the auto-encoder compresses the information into a
feature vector that is reduced to two dimensions for later visualisation.
Such a visualisation is shown in Figure 4.5. In Figure 4.5a the images
are represented as data points where the blue points are images related
to floods, and green points are the other images. Figure 4.5b shows
the clustering generated by t-SNE which creates an image cloud where,
for each coordinate extracted from the clustering phase, the original
image corresponding to the index of that position has been drawn. It is
important to note that, although the dataset is labelled so that the class
of each image is known in advance, our methodology does not use this
information at any point. This information is used only for evaluation
purposes, and to figure out which images are actually related to the
flooding class.

The cluster prototypes generated by the FM algorithm are shown in
Figure 4.6a where 48 different groups have been detected for the targeted
dataset. It is worth noting that the main objective of this work is to
synthesise the information sent by the drone in an unsupervised manner.
In this way, the drone would only send 48 out of the 5500 images captured
during the mission. These 48 images are the most representative ones in
the dataset. From these images, the natural disaster managers would be
able to identify which images are of real interest for their work, being
able to access all the images in that cluster if required. In particular,
Figure 4.6b shows the prototype images that are related to flooding
(highlighted in red).

Finally, it is worth mentioning that there are deep learning models
which can be used for feature extraction, and that are usually pretrained
on datasets such as MobileNetV2 [36], Inception V3 [37], ResNet50 [38]
or VGG16 [39]. The use of these pretrained models can be a good
alternative to an autoencoder in high-performance environments where
the highest possible accuracy is required. However, these models have
a high memory footprint, and they are very heavy for edge computing
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(a) Data points for flooding images (blue), and others (green)

(b) Images corresponding to data points.

Figure 4.5: Data points and images after running the t-SNE algorithm.
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(a) Data points of flooding images (blue), others (green), and
prototypes obtained by the FM algorithm (red).

(b) Images closer to the prototype found by FM.

Figure 4.6: Data points and images after running the FM algorithm.
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Figure 4.7: Memory footprint of similar models used for feature
extraction.

devices. Figure 4.7 shows a memory footprint comparison between these
models and our proposal, Edge CAE. It can be seen that our proposal is
38x lighter than the lightest proposal in the state of the art, and orders
of magnitude lighter than the rest. It makes sense, as these networks
have been designed for supercomputing environments, which makes them
not feasible in resource-constrained IoT environments.

A further consideration is that these models have been pre-trained on
classified images using a different sample than the type of images used
for the clustering phase. Therefore, this proposal intends to perform a
sandbox execution from start to end without relying on data other than
that collected by the drone in an actual mission.

4.6.2 Performance evaluation

This section evaluates the performance (i.e. execution time) of the AI-
pipeline previously presented in Section 4.4. We focused on four different
architectures (see Table 5.1): a High Performance Computing (HPC)
node called Pedra, and three low-power edge computing devices from the
NVIDIA Jetson family (i.e. Jetson nano, Jetson TX2, and Jetson AGX
Xavier). The main purpose of this comparison is to determine whether
the AI-pipeline proposed adapted for GPUs reduces the calculation time,
and whether it can be performed in the edge in a reasonable time frame

57



4. AI-enabled autonomous drones for fast climate change
crisis assessment

and, if so, which platform is the most suitable.
First of all, the training stage of the auto-enconder is evaluated in

Figure 4.8. It shows the execution time for CPU and GPU versions
in all targeted architectures. We ran 30 epochs, which is the actual
number of epochs needed for convergence. Several conclusions can be
drawn from these numbers. First of all, the use of GPUs increases the
performance in all platforms, including edge computing platforms. The
performance difference between CPU and GPU in the server version
is up to 16.5x speed-up factor by using a single GPU. This difference
increases by a factor of 2.33x when 2 GPUs are targeted on the same
server (i.e. Pedra). GPU performance numbers are also interesting on
the edge computing side. The use of low-power GPUs in edge devices
also increases application performance substantially. The Xavier GPU
delivers up to 12.7x speed-up factor compared to the sequential code,
executed on the Xavier ARM-based CPU. In the same way, the TX2
GPU delivers up to 10.11x speed-up factor compared to its sequential
counterpart version. The difference decreases when using the Jetson Nano
GPU, with a speed-up factor of up to 4.5x when using the GPU instead
of the CPU. In fact, this GPU is a very low-power, low-cost solution
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Figure 4.8: Execution time GPU/CPU for the auto-encoder’s training
stage.
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that cannot offer a performance as high as its counterparts, but its use is
definitely a good contribution in terms of efficiency.

Another relevant point is the performance difference between edge
and cloud approaches. The cloud infrastructure, Pedra, defeats edge
devices by a wide margin, as expected. Pedra, using two GPUs, achieves
a speed-up factor of up to 2.8x compared to AGX Xavier, 8.15x compared
to Jetson TX2, and 22.17x compared to Jetson Nano. It is important to
note that these figures refer to training, which is not well-suited to be
executed at the edge. For the inference stage, the performance differences
between the computing platforms are similar (see Figure 4.9), but the
overall execution time is much shorter.

Finally, the last two steps of the proposed AI-pipeline are shown in
Figure 4.10. Execution times of these two steps are very low compared
to the training and inference of the neural network. Therefore, these
processes have been executed on CPU as their computation is hidden by
the first step of the pipeline. In particular, the cross-platform differences
for this algorithm are similar to those discussed above, with the pedra
HPC server showing the best performance, followed by Xavier, TX2 and
Jetson Nano. While it is true that the differences between Pedra and
Xavier are 2.5x in speedup factor, and up to 7x between Pedra and TX2,
in general execution times in the edge are reduced, with both algorithms
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Figure 4.9: Inference comparison of GPU/CPU for the entire dataset.
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Figure 4.10: Execution time of the last two steps of the AI-pipeline.

taking less than a minute to run.
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4.7 Conclusions and future work

Autonomous UAVs could play a "key role" in addressing the consequences
of climate change. However, hardware and software developments are
needed for these drones to really be determinant actors in these tasks.
The intersection between AI and edge computing is undoubtedly the
answer today, allowing to transform autonomous drones into useful tools
under different emergency situations. This paper has proposed an AI-
based pipeline to be run on edge computing platforms in order to enable
efficient processing of drone images of natural disasters.

Our results reveal that the use of GPUs in edge computing platforms
increases performance by up to a 12.7x speed-up factor, providing com-
putational horsepower that enables the full execution of the proposed
AI-pipeline. The computational differences between edge and cloud plat-
forms are still large; in the range of 2.8x-22.17x speed-up factor, but
the development of efficient platforms for the execution of specific work-
loads, such as those within deep learning, shows a roadmap that enables
the development of applications for relevant autonomous and intelligent
systems such as the one proposed here.

We definitely believe that smart autonomous drone technology can
be a milestone in the fight against climate change. However, there is
still a lot of work to be done from different perspectives. In terms of
communication, extending the results of this article to a swarm of drones
can provide a greater coverage of the area to be inspected, which is much
needed in this type of natural catastrophes. The inclusion of highly
energy-efficient processors in such low autonomy devices is a must in
order to enable AI-based applications; tinyML is actually a good step
forward in this direction. More processing steps could be added in this
AI-pipeline which, after manual labeling or pseudolabeling of the clusters,
the information stored in the autoencoder will be reused to categorize
all the images and send the desired information in a more granular way.
Finally, real-case scenarios will be approached with first-reponders to
figure out new features and requirements.
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Chapter 5

Flood detection using
real-time image segmentation
from unmanned aerial vehicles
on Edge-Computing platform.

Hernández, D., Cecilia, J. M., Cano, J. C., Calafate, C. T. (2022).
Flood Detection Using Real-Time Image Segmentation from Un-
manned Aerial Vehicles on Edge- Computing Platform. Remote
Sensing, 14(1), 223. doi: 10.3390/rs14010223.

5.1 Abstract

With the proliferation of Unmanned Aerial Vehicles (UAVs) in different
contexts and application areas, efforts are being made to endow these
devices with enough intelligence so as to allow them to perform complex
tasks with full autonomy. In particular, covering scenarios such as disaster
areas may become particularly difficult due to infrastructure shortage in
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some areas, often impeding a cloud-based analysis of the data in near real
time. Enabling AI techniques at the edge is therefore fundamental so that
UAVs themselves can both capture and process information to gain an
understanding of their context, and determine the appropriate course of
action in an independent manner. Towards this goal, in this paper we take
determined steps towards UAV autonomy in a disaster scenario such as a
flood. In particular, we use a dataset of UAV images relative to different
floods taking place in Spain, and then use an AI-based approach that
relies on three widely used Deep Neural Networks (DNNs) for semantic
segmentation of images, to automatically determine the regions more
affected by rains (flooded areas). The targeted algorithms are optimized
for GPU-based edge computing platforms, so that the classification can be
done on the UAVs themselves, and only the algorithm output is uploaded
to the cloud for a real-time tracking of the flooded areas. This way, we
are able to reduce dependency on infrastructure, and to reduce network
resource consumption, making the overall process greener and more
robust to connection disruptions. Experimental results using different
types of hardware and different architectures show that it is feasible to
perform advanced real-time processing of UAV images using sophisticated
DNN-based solutions.

5.2 Introduction

Unmanned Aerial Vehicles (UAVs) are a type of aircraft that does not
operate with a pilot on board and which, depending on their type, are
either remotely piloted by a human, or operate autonomously with on-
board computers [0]. From their invention, UAVs have been used for
information gathering, surveillance, and agriculture in areas ranging
from military, civilian or entertainment use [1]. As their usefulness was
widely validated, these vehicles were made to face more complex tasks.
Particularly, they have been extensively used for survivor detection and
geolocalization in complex post-disaster environments [2].

Indeed, UAVs are particularly useful in the response phase of natural
disasters. However, they require to be equipped with monitoring sensors
such as ground sensors, light detection and ranging (LIDAR), cameras
[3, 4], and/or hyperspectral cameras, enabling a detailed analysis of
objects using unique information at different wavelengths (e.g. dryness of
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leaves/soil, or health of trees) [5]. However, in such scenarios, immediacy
in decision-making is crucial, which requires real-time processing of images
to rapidly detect heat sources or flooding areas.

Area mapping

Map reconstruction of the area

Figure 5.1: Overall view of our proposal.

Edge computing offers computational capabilities close to (or at)
the source of data, i.e. sensors or mobile devices [6], opening up a new
range of interactive and scalable applications [7]. We are witnessing a
rapid evolution of specialized hardware (e.g., GPU, TPU) during the last
decade, which enables more complex image processing workloads at the
edge. Nevertheless, gathering real-time data from off-grid devices remains
a challenge due to the network, energy and cost constraints. To optimize
AI for the edge, compression methods for Neural Networks (NNs) have
been proposed [8], together with distillation methods to learn a less
complex network using an existing one [9]. Recent proposals experiment
with the inclusion of accelerators in UAV devices. An example is [10],
where a DNN-based real-time vehicle monitoring system is proposed to
estimate the speed of vehicles using a UAV and the Xavier NX jetson
device, being one of the first proposals for a monitoring system in drone
platforms under real-world constraints.

Despite these advances, the real-time constraints and the addition of
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AI workloads at the edge still pose a challenging problem due to the cost of
these workloads [11]. Within the umbrella of natural disasters, there are
Deep Learning (DL)-based image processing techniques for the detection
of risks in such scenarios. For instance, Nijhawan et al., developed a
Convolutional Neural Network (CNN) plus a feature extraction algorithm
to classify images of natural disasters such as cyclones, avalanches, fires
and tornadoes [12], using synthetic data developed by the authors. In the
same way, gebrehiwot et al. proposed the use of a CNN for flood image
classification using images obtained from a UAV where the classification
was performed offline [13]. Another job listed is [14], where a genetic
algorithm combined with a neural network was proposed to classify
images from a flood; this approach was compared with three DL methods,
being that the proposed algorithm was able to achieve better results. In
all these works, techniques based on Deep Learning are the ones that
achieve the best performance in image classification of natural disasters,
but they consume a lot of computational resources, and therefore image
classification is always performed offline in the cloud. In our previous work
[15], we started to figure out what happens if we developed AI-pipelines
at the edge for processing natural disaster images taken from drones.
We showed that edge computing platforms with low-power GPUs were a
compelling alternative for processing fuzzy clustering workloads, obtaining
a performance loss of only 2.3x compared to its cloud counterpart version,
running both the training and inference steps.

In this paper, we conducted a comprehensive evaluation of different
Deep Learning modes for image segmentation on low-power GPU-based
edge computing platforms. In particular, we focus on the identification of
flooded areas after a natural disaster to find out whether these platforms
can provide enough computing power to build autonomous drones that, in
real time, assist emergency teams in assessing flooded areas for immediate
decision making on the ground. This work is focused focusing on finding
and obtaining all flooded areas from a series of images captured from a
drone, in order to reconstruct the emergency situation on a map. Figure
5.1 shows an overview of the structure of the proposed solution. Major
contributions of this paper are the following:

1. Different state of the art DNN-based Deep Learning models for
image segmentation are analyzed for flooding detection in terms of

70



5.3. Materials and Methods

performance, accuracy and memory footprint. Particularly, PSPNet,
DeepLabV3 and U-Net are under study.

2. Several encoders are also analyzed as they are the main bottle-
neck for the memory footprint, the disk weight and the execution
time of the inference process. Particularly, we analyze ResNet152,
EfficientNet and MobileNet are under study.

3. The Cartesian product of these neural networks models and encoders
are trained to identify flooded areas from aerial images; i.e., 9
models in total. A semi-supervised training procedure with a
pseudo-labelling strategy is designed to increase the accuracy in up
to 4%.

4. An in-depth performance evaluation of different low-power GPU-
based edge computing devices is provided to assess the feasibility
of autonomous AI drones in detecting flooding areas.

5. An evaluation in terms of memory, performance and quality is
provided to analyse which of the models and enconders for flood
image segmentation is best suited to be run on drones to provide
real-time feedback to decision-makers.

Section 5.3 introduces the general infrastructure the main Deep Learn-
ing models targeted and methods used to deal with aerial images of
flooded areas. Section 5.4 shows the experimental setup before showing
the performance and quality evaluation of our approach. A discussion
of the results is then provided in Section 5.5. Finally, Section 5.6 shows
conclusions and directions for future work.

5.3 Materials and Methods

This section introduces different neural network models that are widely
used in detecting flooded areas. These models will be trained in order to
obtain the segmentation mask of each image from the drone. The data
used and the training procedures carried out are also summarized prior
to the evaluation on the drone to be performed in the following section.
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Figure 5.2: Simple deep convolutional autoencoder where you can see
the two main parts of a network dedicated to image segmentation.

5.3.1 Hardware environment

The UAV device that supports the segmentation hardware consists of the
following components:

• DJI F550 frame

• Pixhawk flight controller

• Processing unit

• Marshall Electronics CV503-WP Mini Full HD Camera.

• battery Tattu 9000 mAh 22.2 V 25 C 6S1P Lipo.

• 3DR GPS receiver

• Sunnysky X2212 motors - 980kv.

• APM 433 MHz telemetry.

• Taranis X9D controller + X8R receiver
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Table 5.1: Hardware details of the hardware used in our experiments.
Pedra Jetson AGX Xavier Jetson TX2 Jetson Nano

CPU Intel Silver 4216 NVIDIA Carmel ARM v8.2 ARMv8 ARM Cortex-A57 MPcore
2xGPU (NVIDIA) GeForce RTX 2080 Ti Volta Pascal Maxwell
Memory [Gb] 375 DDR4 32 LPDDR4x 8 LPDDR4 4 LPDDR4
Size [mm] 73.4 x 8.7 x 44.8 105 x 105 50 x 87 70 x 45
Weight [g] 17,000 280 85 61
Energy consumption [W] 80-100 10-30 7.5 3-5

Table 5.1) shows the hardware platforms used to perform the experi-
ments below. Particularly, we use a High Performance Computing (HPC)
computer, called Pedra, as a baseline for our experiments. Then, three
GPU-based edge computing devices from the NVIDIA Jetson family (i.e.
Jetson nano, Jetson TX2, and Jetson AGX Xavier) are also targeted.
Moreover, the software environment is based on gcc v7.4.0, CUDA v10.2
with cuDNN and Python v3.6 with pytorch v1.8.0 built for edge devices,
torchvision v0.9.0 built for edge devices and scikit-learn v0.24.1.

5.3.2 Dataset

FloodNet[16] is a set of images captured in the aftermath of Hurricane
Harvey witch made a landfall near Texas and Louisiana on August, 2017,
as a Category 4 hurricane. In it, special emphasis is placed on areas that
have been flooded. In particular, it contains UAV images captured during
the response phase by emergency personnel. The authors of the dataset
obtained the images using small DJI Mavic Pro quadcopters. The images
were captured at a height of 60 meters with a spatial resolution of 1.5 cm.
Currently, it is the only dataset created with images of floods captured
from a drone after a catastrophic event, and at an optimal level of detail
to train a neural network that must be operational within a UAV.

Floodnet images are labeled at the pixel level, which makes them
useful for the semantic segmentation task. FloodNet attempts to do fine
labeling that encompasses situations such as detecting flooded roads and
buildings, and distinguishing between natural water and flooded water.
Although the dataset approach is broader than image segmentation, in
this particular case we will focus on it, as the training dataset consists of
51 labeled images of flooded areas and 347 labeled images of non-flooded
areas and 1047 unlabeled images on which pseudolabeling tasks are to
be performed labeled images includes the following instances: Building
flooded (3248 instances), Building Non flooded (3427 instances), Road
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flooded (495 instances), Road Non Flooded (2155 instances), Water (1374
instances), Tree (19682 instances), Vehicle (4535 instances), Pool (1141
instances), and Grass (19682 instances).

5.3.3 Semantic segmentation for flooding detection

Takeoff area

1. Standby state

Landing area

2. Images collection

conv1
pool1
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pool2
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pool3
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3. Online Inference

4. Send Mask

5. Task completed

Figure 5.3: Overview of our image collection and processing solution.

In this study the experimentation is focused on obtaining the data
from the drone for sending. For this task, image segmentation has been
considered the technology best suited to the requirements of detecting
flooded areas. Semantic segmentation is the technique of classifying parts
of an image that belong to the same object class. It is a form of pixel-level
prediction where pixels in an image are classified according to a category.
An example of this type of network can be seen in Figure 5.2, which
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shows a simple deep convolutional autoencoder where you can see the
two main parts of a network dedicated to image segmentation, on the left
the one that tries to capture the visual patterns of the image and on the
right the one that tries to reconstruct a representation of the detected
classes. Notice that image classification merely has to identify what is
present in the image, whereas semantic segmentation identifies not only
what is present in the image, but also where to find it by signalling all
pixels that belong to each characteristic identified. Indeed, since the
emergence of Deep Neural Network (DNN), segmentation has made a
tremendous progress. We refer the reader to [17, 18, 19] to see a full
review of Deep Learning techniques for image semantic segmentation.
Among these techniques, we may highlight the following:

• PSPNet[20] is a model that uses a pyramid parsing module to
exploit the global context information through region-based context
aggregation. The combined local and global cues make the final
prediction more reliable. Given an input image, PSPNet uses a
pre-trained CNN with the dilated network strategy to extract the
feature map. The final size of the feature map is the same as
that of the input image. On top of the map, it uses the pyramid
clustering module to gather context information. Using 4-level
pyramid, the clustering kernels cover the whole, half and small
portions of the image. They are merged as the global priority and
then concatenate the prior with the original feature map in the
final part of the decoder. Next, a convolution layer generates the
final prediction map.

• DeepLabV3[21] is a semantic segmentation architecture that
builds on DeepLabv2 [22] with the following modifications: in
order to deal with the problem of multi-scale object segmentation,
modules have been designed that use cascaded or parallel Atrous
convolution to capture the multiscale context by adopting multiple
Atrous rates. Another modification over the previous version is
that the Atrous Spatial Pyramid Pooling module [23] is extended
with image-level features that encode the global context, further
increasing performance. The last change is that DenseCRF [24]
post-processing has been dropped.
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• U-Net[25] uses an encoder-decoder architecture based on a con-
traction route to capture the context, and a symmetric expansion
route to achieve accurate location. It was originally designed for
segmenting medical images, and it achieves robust results with a
more uniform training set. In recent years, studies have shown that
U-Net is also suitable for remote sensing images [26], and has great
potential for improvement.

All the segmentation models mentioned make use of a backbone that
is capable of extracting the fine-grained patterns of the image in the form
of an encoder of the information. A large part of the trainable parameters
of the network come from these blocks, and depending on the type of
network chosen for this purpose, the memory footprint, the disk weight
and the execution time of the inference process will be different. For
this study, three backbones of different characteristics have been chosen
in order to find the best option between inference time and accuracy
obtained. These are described below:

• ResNet152 or Residual Networks are a variant of convolutional
neural network that was first introduced by Kaiming et al[27].
Their main feature is that it learns the representation functions of
the residuals instead of learning the signal representation directly.
ResNet introduces the hop connection (or direct access connection)
to adjust the input from the previous layer to the next one without
any modification of the input thus allowing a deeper network that
is easy to optimize and can gain in accuracy by greatly increasing
the depth. In this work, the 152-layer version has been chosen to
perform the encoder task because it has obtained better accuracy
while maintaining better complexity than other networks such as
Visual Geometry Group (VGG), as the authors explained in their
work.

• EfficientNet[28] is a type of DNN whose main feature is that
it scales uniformly all dimensions of depth, width and resolution
with a set of preset scaling coefficients. It is based on the intuitive
concept that the larger the size of the input image the greater
the number of layers and the greater the number of channels the
network will need to capture the patterns in the image, this concept
has been studied in works such as [29].
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• MobileNet[30] is a convolutional neural network that has been
specifically designed to be executed in embedded devices that re-
quire solving computer vision tasks. Its architecture is formed by
depthwise separable convolutions with the objective of obtaining
the lightest possible network and that allows a low latency when
executed in devices that have few resources and that do not usually
have a graphic accelerator. The complete MobilNetV2 model, which
has been used in this work, is formed by the initial convolutional
layer of 32 filters and is followed by 19 residual bottleneck layers.
The complete model consists of 2 million parameters.

These encoders (i.e., ResNet152, EfficientNet, MobileNet) are trained
to embed the information patterns from the aerial images into an input
that can be processed by the network in charge of performing the semantic
segmentation (i.e., PSPNet, DeepLabV3, U-Net). However, there are
certain scenarios, such as the one we are dealing with in this study, where
the training dataset for the encoders is very small, i.e. there are a small
number of labelled images and therefore it is difficult to achieve sufficient
accuracy to generate an accurate mask of the captured image to serve as
input for the image segmentation procedure. Several works proposed the
use of transfer learning techniques [31] to take advantage of the knowledge
acquired when solving one problem and apply it to a different but related
problem. In transfer learning, neural networks are initialized with weights
from a neural network that is already trained (a.k.a, pretrained) using a
large, structured and labelled dataset. This procedure has shown better
performance than those trained from scratch on a small dataset [32].

In this work, we use the ImageNet database for the pre-training
of the encoders. ImageNet [33] is a large visual database designed for
visual object recognition. It consists of over 14 million images that have
been hand annotated to indicate which objects appear in them and, in
at least one million of these images, bounding boxes are also provided.
ImageNet has more than 20,000 categories, each consisting of several
hundred images. Imagenet has proven to be optimal for transfer learning
exercises as shown in [34], where an empirical investigation is provided
that studies the importance of the number of images, and the balance
between the images of each class and the number of classes.
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5.3.4 Image Preprocessing

1. Resize: Rescale an image so that the maximum side is equal to
maxsize param, maintaining the aspect ratio of the initial image.

2. ShiftScaleRotate: Randomly apply affine transforms: translate,
scale and rotate the input.

3. RGBShift: Randomly shift values for each channel of the input
RGB image. In [RGBinproceedings] authors show that images
with different wavelengths and RGB channels determine which kind
of images with different color spectrum provide better information
to generate a better accuracy of our DNN model.

4. RandomBrightnessContrast: Randomly change brightness and
contrast of the input image to reduce a model’s sensitivity to color.

5. Normalize: Normalization is achieved through formula:

img =
(img −mean×maxPixelV alue)

(std×maxPixelV alue)

This transformation sequence is applied to each of the images after
being captured, and before performing the process of obtaining the mask
through the neural network. It is an operation that will be performed on
each of the edge devices.

5.3.5 Inference precision

This section shows the accuracy of the combination models/encoders
on the test data set. First, an evaluation of all of these combination is
provided by training with the dataset described in section 5.3.2. Then,
it is analysed how the accuracy of the models improves with the semi-
supervised training proposed in section 5.3.6.

The mean Intersection-Over-Union (MIoU) metric has been used to
measure accuracy. This metric is based on the Jaccard index, which is
defined as the ratio of intersection and union area between the predicted
segmentation map and the ground truth defined. It was developed by
Paul Jaccard, and it is also known as the Jaccard similarity coefficient;
specifically, it is a statistic used for gauging the similarity and diversity
of sample sets defined as:
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J(A,B) =
|A ∩B|
|A ∪B|

where B shows the predicted segmentation maps, and A represents
ground truth.

Based on it, we can calculate Intersection Over Union (IoU), which is
a number from 0 to 1 that specifies the amount of overlapping between
the predicted and ground truth:

IoU = J(A,B) =
tp∑n

i=1 fn+
∑n

i=1 fp− fn

MIoU is defined as the average value of IoU over all label classes. It
is generally used to report the performance of segmentation models. It
usually ranges between 0 and 1 given as:

MIoU =
1

k + 1

k∑
i=0

tp∑k
j=0 fn+

∑k
j=0 fp− fn

where k represents total classes, tp is number of true positives, fp
and fn are false positive and false negatives.

5.3.6 Semi-supervised training procedure

As shown in section 5.3.2, the number of labeled instances is very small,
consisting of only 398 images. With regard to the number of test images,
47, this value is considered low; therefore, to achieve a correct performance
of the network, it is necessary to apply semi-supervised learning tech-
niques on the 1047 training images that have not been previously labeled,
therefore creating a dataset of 1445 images. Semi-supervised learning is a
training method that mixes a small amount of labeled data with a large
amount of unlabeled data in the training phase. Semi-supervised learning
stands between unsupervised learning (with no labeled training data)
and supervised learning (with only labeled training data). Unlabeled
data is only useful if it provides information for label prediction that is
either not present in the labeled data, or cannot be obtained from the
labeled data alone. The procedure consists of the following steps:

1. Train the model using training labeled data.
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2. Infer labels for an unlabeld data.

3. Add confident predicted test observations to our training data.

4. Train the model for a few extra epochs using also the new labeled
data.

5.3.7 Solution deployment

Once the problem has been defined, and the image segmentation proposal
enabling a subsequent reconstruction on the server has been proposed as
a solution, we now proceed to describe the execution flow that would be
carried out in a real natural disaster management scenario. Figure 5.3
shows the life cycle of an image collection and processing mission at the
edge. The UAVs start from a standby position (step 1) to prepare for
takeoff before starting to gather images from the affected area. While
the images are being collected (step 2), the Deep Learning models (step
3) are running to perform a real-time inference of each of the images
from the UAV device, resulting in image processing at the edge. In step
4 images are sent to the server. Steps 2-4 are repeated until all the area
to be mapped has been imaged, and all the masks are generated. It is
noteworthy that, in step 4, only masks are sent to the cloud, which means
using only 4 bits per pixel, instead of the 24 bits per pixel that would be
sent in case of using a standard bitmap having 24 bits. Notice that 4 bits
per pixel are adopted because they conform the minimum value required
to represent the 10 classes that the system is able to detect, and therefore
each pixel of the image can be represented merely by a value between 0
and 9.. This significantly reduces the overall bandwidth requirements by
a factor of 8, as shown in Section 5.4.3.1.

5.4 Results

This section starts by summarizing main hardware features of the hard-
ware environment targeted for assessing the Deep Learning models for
image segmentation previously presented. Then, it provides an overview
of the dataset used to train and test those models before a performance
assessment in terms of quality, execution time and memory footprint is
provided.
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Figure 5.4: Segmentation mapping of each of the classes on the original
photo.

(a) Blue mask over flooded buildings (b) Red mask over flooded roads

Figure 5.5: Segmentation mapping of each of the classes on the original
photo.

This section evaluates the performance (i.e. execution time) and
precision of the Deep Learning architectures previously presented in
Section 5.3.
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Figure 5.6: Image preprocessing execution time.

5.4.1 Image Preprocessing results

Figure 5.6 shows the difference in execution time between the different
devices. This execution time is added to the mask acquisition time to
define the frame rate that can be sent to the server. The HPC server will
also be included in each of the time figures in order to have a reference
of the inference time that would be required with a non-edge device.
The figure shows that the execution times range from 0.35 seconds on
the server hosted in the data center, to 2.49 seconds on the Jeson Nano
device; i.e. a performance loss of up to 7.11X on the edge platform.
The difference between these two devices is notorious, and for image
processing during the mission, where many images have to be captured
within a short time span, the compartmentalization of this step with
the neural network processing will have to be taken into account, being
able to execute the processing of the current image on the CPU, while
obtaining of the mask of the previous image through the neural network
using the GPU.

5.4.2 Inference precision results

This section shows the MIoU obtained for each model with each of the
chosen encoders. Figure 5.4 shows the mask generated for each of the
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10 classes of the dataset on one of the images of the dataset. For the
requirements of this work only the classes that refer to floods are necessary.
Two of these masks are shown in figure 5.5: flooded buildings and flooded
roads. Nevertheless, in the training of the network, the IoU of each of
the classes has been taken into account.

PSPNet DeepLabv3 U-Net
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EfficientNet
Mobilenet

Figure 5.7: Accuracy (MIoU) of three neural networks and encoders
used, having been trained with the baseline dataset.

Figure 5.7 shows the model efficiency based on the MIoU achieved
for each combination of neural network model and encoder. For PSPNet
training, a constant learning rate of 0.001 for 15 epochs was set; for
DeepLabV3, the learning rate was of 0.01 for 10 epochs, while for U-Net
it was trained for 15 epochs with a learning rate of 0.001. For the batch
size during training, a value of 4 has been set for all models when using
the RestNet152 encoder, a batch size of 7 for EfficientNet encoders, and
8 for MobileNet encoders. It can be seen that the RestNet152 encoder
achieves the best result, with the PSPNet Network having the most
significant difference, which increases by more than 5% with respect to
EfficientNet. In the DeepLabv3 network, the difference between RestNet
and EfficientNet is of 2%, which is not so significant. The MobileNet
encoder shows the worst results of all, with a difference of up to 13%
compared to the best case.

Figure 5.8 shows the accuracy of the trained models when they are
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Figure 5.8: Accuracy (MIoU) of three neural networks and encoders
used, having been trained with the pseudolabeling technique described

in Section 5.3.6.

trained using the pseudolabeling technique described in Section 5.3.6. For
this process, the same parameters of learning rate, number of epochs and
batch size have been used than in the previous results shown in Figure
5.7. Figure 5.8 shows a slight increase in the MIoU of all models: 2% for
PSPNet with the ResNet152 encoder, 3% for DeepLabv3; for EfficientNet,
the biggest difference is found in the U-Net network with an increase of
4%. The MobileNet encoder obtains almost identical values with U-Net,
with a great improvement when it comes to PSPNet. It can be seen that
the network that has benefited the most from this type of training is
PSPNet. This has to be taken into account when choosing which model
to use for the deployment of the solution, since it is possible to add
previously unlabeled data to generate soft-labels with them, and thus
adapt the model to changes that may occur in the area to be mapped.

It is not possible to consider the supremacy of a model over the rest
for all the use cases in which image segmentation can be applied, since
with another dataset or another task the result may be that DeepLabv3 or
U-Net behave better than PSPNet, for this reason it would be necessary
to redo the experimentation and a reparametrization of the leraning
rate, optimizer and other factors that may affect the performance of the
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Figure 5.9: Size (in MB) of the output of every model, with every
encoder.

network.

5.4.3 Model comparative

This section shows a comparison of the three models chosen with their
corresponding encoders in terms of size, performance and inference time
for each of the edge computing devices to be embedded in a UAV. The
size of a model is represented by the number of trainable parameters of
the model. After the training process, these models are usually serialized
in a certain standard format to be distributed to different applications,
and for different devices. The size of the exported model on disk will be
smaller than the size it will occupy in memory and, therefore, these two
variables must be taken into account in the study of the space footprint of
a model. The size of each encoder used must also be taken into account,
and a choice then made based on the size and accuracy of the encoder.

Figure 5.9 shows a comparison of the disk size (in MB) of each
serialized model, and for each of the encoders used in the training phase
(i.e., ResNet152, EfficientNet and MobileNet). It can be seen that,
regardless of the network used, ResNet152 has a much higher weight than
the rest, being the difference between DeepLabV3 and PSPNet negligible,
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Figure 5.10: Memory footprint (in MB) for every model, and with every
encoder.

of 235MB for DeepLabV3, and of 226MB for PSPNet. For EfficientNet,
both Deeplab3 and PSPNet occupy a space of 50MB. UNet has a slightly
lower value of 46MB. The MobileNet encoder, together with PSPNet,
has the smallest footprint of all combinations, with a value of 9.1MB,
followed by equal values of 17MB for the two other networks.

Figure 5.10 shows a comparison (in MB) of the footprint of each
model when deserialized in memory. As in figure 5.9, the values of each
of the encoders with each of the models are shown. The increase in space
required with respect to the serialized model is evident, tripling in all
models. These results will have to be taken into account when deploying
each of the models on edge devices, especially in the TX2 and Jetson
Nano platforms where the GPU memory capacity is very limited.

The inference time, together with the image pre-processing time, is
one of the values to be taken into account when deploying the trained
model for the inference process. Undoubtedly, a compromise has to be
found between the accuracy of the models and the time it will take to
obtain the result; i.e. the mask of the image captured by the drone. An
very elongate inference time to generate the mask would prevent the
real-time processing we are looking for to help first-reponders. Therefore,
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the ideal scenario would be to process the image and send its mask before
the next image is captured. For this reason, a performance evaluation for
each model+enconder targeted on each edge computing platform that can
be embedded in a UAV has been carried out. CPU and GPU processing
times have been measured to study in which cases it is necessary to install
the latter, and in which cases a single CPU would be enough, thus saving
both weight and energy, which would reduce both the weight and the
power consumption of the UAV. The HPC server will also be included in
each of the time figures in order to have a reference of the inference time
that would be required with a non-edge device.
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Figure 5.11: PSPNet architecture inference time comparative with all
encoders.

Figure 5.11 shows three bar charts, all corresponding to the PSPNet
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network with each of the given encoders. For each of the bar charts, the
execution time on GPU and CPU is shown. The ResNet encoder could
only be executed on the Xavier and TX2 devices, the latter doubling the
Xavier platform in both GPU and CPU time. The Jetson Nano device
could not finish the inference process, and therefore some simplifications
would have to be done on it in order to run it. PSPNet, together with
EfficientNet, could not be run on the Jetson Nano platform neither, and
both the AGX Xavier and TX2 show similar inference times. PSPNet-
MobileNet could be executed on the Jetson Nano device, this being the
only encoder out of the three with which we have experimented that
could be hosted without problems, although the execution time is several
orders of magnitude higher than that of TX2 and Xavier which, as with
EfficientNet, have very similar times, to the detriment of TX2.

Figure 5.12 follows the same structure as Figure 5.11 but showing
the UNET execution times with all encoders. This network is the one
that shows the most limitations in terms of execution, where only the
MobileNet encoder has been able to be executed in all the devices, and
where the execution times are higher than in the other two models. In
the first graph, with ResNet, the execution in the Jetson Nano platform
has not been possible, and in TX2 only when using the GPU, and with a
time overhead close to the second. In the EfficientNet encoder, it has only
been possible to perform the execution in the Xavier platform, with a
remarkable CPU time of 14 seconds per image. MobileNet was executed
on all devices using GPU, while on the Jetson Nano device it could not
be executed on CPU.

Figure 5.13 follows the same structure as in Figure 5.11 but showing
the DeeplabV3 execution times with all encoders. The big difference is
that this model could not be run on the Jetson Nano device with any
encoder. In ResNet152 it can be seen how, in the TX2 platform, the CPU
the time is very high with respect to Xavier, achieving a GPU time of less
than 1 second. In EfficientNet, the execution times are significantly higher
than in ResNet152, and it has not been possible to perform the execution
of the TX2 platform in CPU due to lack of memory. Using MobileNet,
the fastest execution times are achieved within the TX2 device, but not
for Xavier.
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Figure 5.12: Unet architecture inference time comparative with all
encoders.

5.4.3.1 Data compression

Following the image classification procedure described before, the next
step consists of sending an alert to the control station located in the cloud
with the frame, and the meta-information that details the coordinates
marked as positive for the emergency team to evaluate them. We show a
comparison between sending the raw information and the mask resulting
from the network processing. Notice that by just sending the mask we
are able to save bandwidth.

Figure 5.14 shows the information compression achieved by sending
the mask to the server from the UAV. If the complete image was used,
the values represented over three channels would be sent with values
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Figure 5.13: DeeplabV3 architecture inference time comparative with all
encoders.

ranging from 0-255. However, to store the segmentation information
found according to the target classes, only one channel and one value for
each of the classes is needed. In this case, the dataset has a maximum of
10 classes, and so only 4 bits would be needed for each pixel represented,
in contrast to the 8 bits per pixel required when sending the original
image.

This compression represents a saving in the bandwidth to be trans-
mitted, which would affect both the consumption and the speed of
sending information to the server. In particular, the original image sized
4000×3000, which occupies 5.488MB, would in turn generate a mask of
910KB, which would represent a saving of 83.42% of the information
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to be transmitted. This would not be enough if we were looking for a
detailed representation of the information. Nevertheless, in this work
we are merely aiming at sending of enough information to be able to
reconstruct the scene on which the tracking operation is being performed,
this being the information collected by the semantic classification of the
entities of the captured image.
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Figure 5.14: Compression comparison between an RGB image and its
segmentation mask.

5.5 Discussion

In the experimentation carried out in the previous section, we have
extracted the data to be taken into account when implementing an area
monitoring system using semantic segmentation perform from a resource-
constrained device such as a drone. In this section, and based on the
results obtained, we discuss the most solid proposal to be deployed.

This study has used an input-ready dataset, so far the best suited
to the task at hand, using semi-supervised learning techniques, which is
an obvious disadvantage compared to a rich dataset with each instance
correctly labeled in all photos; this reveals that more work needs to be
done on collecting and labeling flooding datasets deriving from UAVs. A
positive observation regarding the results obtained using such a small
dataset is that, using semi-supervised learning techniques, it would be
possible to deploy the solution in areas where the geography and archi-
tecture are different from the training dataset, and a process of image
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collection and labeling is required. By obtaining a small sample, and
with a training process of less than 10 epochs, a functional model to run
on the UAV would be available.

In terms of accuracy based on the Floodnet validation dataset, we can
estimate that the PSPNet network, together with a Resnet152 encoder
pre-trained on ImageNet, and further trained in a semi-supervised way
using soft labels, has been the combination that will allow a more accurate
server reconstruction of the mapped area, achieving 56% of MIoU. This
is a valid result to solve the problem of obtaining a mask of flooded
areas on roads, buildings and places near river or sea beds, as it would
allow differentiating natural water masses from those that have flooded
areas, and where water is not expected. Figures 5.4 and 5.5 show an
example of the pixel-level segmentation of each of the classes detected.
This information is the main component in the server reconstruction of
the monitored area. The main issue of using this proposal is its memory
size limitation, since it is the second largest model in terms of memory
footprint, and hence cannot run on a Jetson Nano device, which is the
most suitable device to be installed on a UAV due to its weight and
dimensions. Another advantage of selecting these parameters is their
speed, as they would be among the fastest of all those studied; if we
wanted to use them, we would obtain a speed of less than half a second
on a TX2 device using the GPU. On the opposite side, UNet has been
the most problematic model in terms of execution and adaptation to the
different edge devices, and some of its parameterizations, for example
using Efficientnet, do not allow its execution neither in TX2 nor in Nano,
the two lightest devices, and therefore more susceptible to be assembled
in a UAV.

If the weight and power limitations are sufficient to install a Xavier
device, PSP-Resnet152 would be the best option. Otherwise, and if we
were looking for the most efficient solution in these two parameters, we
would have to use a Jetson Nano, and our software combination would
be limited to the PSPNet-MobileNet and Unet-MobileNet models (GPU
restricted), with an MIoU of 45.9 and 39.4, respectively, and a GPU
execution time of 2 seconds and 8 seconds CPU in PSPNet, against 4
seconds in Unet GPU. Therefore, PSP-MobileNet would be the best
choice for the Jetson Nano platform. In case a weight margin could be
obtained in the processor, and the weight of the UAV is no excessive, it
would be convenient to install a TX2 device, since for 24 grams and a
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little more power consumption, the best combination would be achieved,
which would mean an improvement of 13% in accuracy, and a reduction of
execution time of 1.7 seconds if the GPU is used, and of 6 seconds if CPU
power is used instead. Therefore, a good configuration taking offering an
adequate tradeoff between accuracy, execution time, weight and power of
the drone could be the TX2 platform as an inference hardware device
where a PSPNet network would be deployed with a ResNet152 encoder
pre-trained with ImageNet.

The frame sending interval (process that starts when a new image is
obtained, and that ends with the sending of the mask obtained to the
server, without taking into account the network speed and latency of the
same), and that could be achieved with the best solution, would be of 1.5
seconds of image preprocessing time, plus 0.29 seconds of GPU inference,
so it would be 2 seconds using GPU (0.5 Hz) and 3.3 seconds in case of
using only the CPU (0.3 Hz). In addition, as shown in the compression
section, the bandwidth of sending the information from the drone will be
significantly reduced when generating the mask on the edge, and that
can save network resources and lower battery consumption.

5.6 Conclusions

UAVs have the potential to play a "key role" at mitigating the con-
sequences of climate change. However, both hardware and software
solutions are needed to make these devices truly crucial players in these
tasks. AI and edge computing are undoubtedly a winning combination
by enabling to transform autonomous drones into useful tools in vari-
ous emergency situations. In this work, an AI-based pipeline has been
proposed for execution on edge computing platforms to enable efficient
processing of natural disaster images captured by UAVs.

Our results reveal that the use of neural networks designed for real-
time image segmentation from drones can be a viable solution as long
as the drone is equipped with an edge computing device endowed with
GPUs. The benefit of merely sending the result mask instead of the
raw image, which is made possible by performing image processing at
the same location where the image is captured, reduces the required
network traffic by several orders of magnitude. It is worth mentioning
that the computational load differences between edge and cloud platforms
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remain large, with speedup factors in the range of 2.8x-22.17x. Yet, the
development of efficient platforms for the execution of specific workloads,
such as Deep Learning, shows a roadmap that enables the development
of applications for relevant autonomous and intelligent systems, such as
the one proposed here.

We are certain that autonomous UAV technology can be an important
factor in the fight against climate change. This study has shown how
with a small dataset correctly labeled and the right model, a real-time
segmentation system can be embedded in a UAV, bringing the main
computational work closer to the device in charge of processing the
information to make an offline inference and send the digested data.
However, there is still a lot of work to be done from several points of
view. In terms of communication, extending the results of this article
to a swarm of drones can provide a greater coverage of the area to be
surveyed, something very necessary in this type of natural catastrophes.
Additionally, it becomes necessary to increase the performance of IA
models by providing new datasets, as well as studying in more depth the
representation part of the semantic segmentation result obtained by the
network on a map of the area where images have been captured, so as to
provide greater insights.
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Chapter 6

Discussion

6.1 General overview of contributions

Chapters 3, 4, and 5 cover the leading publications in this thesis showing
main research results obtained on the different problems encountered
when trying to implement a system for the surveillance of flooded areas
based on drone swarm. In general, they all focus on the same primary
issue: the need to run computationally heavy workloads, such as machine
learning and deep learning algorithms on low-power devices that were
not initially designed for this purpose. The main algorithm proposed in
this thesis included: (i) algorithms working with tabular information to
coordinate the drone’s take-off and cluster the information using fuzzy
logic, or (ii) execution and adaptation of deep learning algorithms to
provide the UAV with image processing capabilities. Each of those
algorithms plays a particular role that includes the following:

• Vertical takeoff of drone swarms through the Kunh Munkres algo-
rithm.

• Unsupervised AI processing pipeline for unknown zone scanning.

• Acceleration of CNN-based computer vision algorithms at the edge.
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• Benefits obtained from processing in the UAV rather than in the
cloud.

6.2 Vertical takeoff of drone swarms through the
Kunh Munkres algorithm
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Figure 6.1: Matrix formation Path assignation graph.

In this proposal, the use of the Kunh Munkres or Hungarian algorithm
has been explored since, although it is not a method that reports a result
that requires automatic learning, thanks to it, a perfect assignment in
terms of the total distance of all the devices located on the ground with
the target positions in the air after takeoff has been achieved. The use of
this solution has its limitations and implementation issues to consider.
One such consideration is that the number of UAVs could escalate to
the order of thousands of drones, and the calculation time of the perfect
allocation based purely on the Munkres algorithm may require more time
than desired, especially if it is to be implemented in real-time flight tools.
This scenario is reflected in the experimentation carried out as it can
be concluded that, while handling the coordinated take-off of a small
number of devices, the difficulties that arise as more drones are added do
not evolve in a linear fashion, i.e., both the total distance traveled and
the computation time to perform an optimal allocation, and therefore,
dealing with future drone swarms will require solutions that try to reduce
these differences.
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6.2. Vertical takeoff of drone swarms through the Kunh Munkres
algorithm

After the good results obtained in the implementation of the Kunh
Munkres algorithm for position allocation in drone take-off, the imple-
mentation of this algorithm in GPUs was tested in both: low-power and
high performance computing devices. Figure 6.3 shows a substantial
improvement in large formations of more than thousands drones, and
only this number of devices would justify the addition of a GPU to reduce
the time of position allocation. Therefore, establishing modifications to
the method for these situations could be interesting, including approaches
such as the optimization of the distance matrix using genetic algorithms,
an alternative already mentioned in section 3, or a probabilistic approach
in case there are obstacles or possible restricted routes within the drone
ground layout and the aerial target formation.
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Figure 6.2: Potential collisions between all the nodes of the formation.

As future work this thesis will optimize the takeoff time taking into
account the possible crossing routes that may exist, penalizing the as-
signment algorithms when these occur and try to reduce the assignment
time required by the Kuhn-Munkres algorithm by providing a parallel
implementation of it. It will also address the challenges of implementing
this algorithm by taking into account additional conditions that occur
in real environments, such as the coordination of drones, respecting syn-
chronization problems between them, or taking into account obstacles
that may arise both at the planning time, and during the execution.
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6.3. Unsupervised AI processing pipeline for unknown zone scanning
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6.3 Unsupervised AI processing pipeline for
unknown zone scanning

One of the main proposals of this thesis has been to develop an unsu-
pervised surveillance system using UAV devices under the premise that
the whole system should operate autonomously without relying on any
external hardware for the processing of the images captured from the
camera. In order to reduce the number of images to be processed by the
first responders in the natural disaster. The proposal is made up of three
stages:

1. A lightweight auto-encoder based on deep learning.

2. Dimensionality reduction using the t-SNE algorithm.

3. A fuzzy clustering procedure.

Each section is a stand-alone element of the final model with particular
functionality. The autoencoder seeks to store the most characteristic
information of all the images in a reduced dimensionality space that
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abstractly stores the most characteristic elements of the dataset. The
dimensionality reduction using t-SNE seeks to simplify the execution time
of the following section. It is, in this case, the primary facilitator of the
pipeline execution at the edge since the fuzzy clustering algorithm, which
will finally return the cluster leaders that represent the images that could
summarize the entire dataset, would have a much longer processing time
than expected. If run on a server with higher acceleration capabilities
and for a longer time, t-SNE would not be necessary.

T-SNE can compress relevant information without the need for an
autoencoder. This method is more than established in the industry [28]
to group images by their similarity in a visual way and for feature visual-
ization because, by design, t-SNE creates a probability distribution that
captures these mutual distance relationships among points in the initial
high-dimensional space. Next, the algorithm creates a low-dimensional
space with similar relationships across points. It obtains figures similar
to the ones shown in 4.5. The main difference between the two methods
of compressing information by similarity to facilitate its processing is
that an autoencoder tries to minimize the reconstruction error, while
t-SNE tries to find a lower dimensional space and, at the same time, tries
to preserve the neighborhood distances. As a result of this attribute,
t-SNE is usually preferred for graphics and visualizations. Furthermore,
autoencoder, as a relatively recent technique, is starting to be used to
abstractly store image datasets, which would allow us to modify it using a
variant of it called variational autoencoder [29] or, in this case, extract it
for tabular processing of the information it contains and a post clustering.

One more issue that can be presented is to find the motivation which
led to implementing the fuzzy minimals (FM) algorithm in prevalence
over other methods, and the reason was the lack of prior knowledge of
the number of clusters to be searched since this is an essential feature of
clustering algorithms is the number of clusters to be generated; k-means
and FCM require that the number of clusters to be developed is defined.
In contrast, FM does not require this parameter to be set beforehand,
with no need for the clusters to be well separated. This feature allows
for unsupervised clustering that does not condition the sets of images
obtained from each drone mission. Each of the drone missions, therefore,
is what motivated us to introduce FM in the final stage of the pipeline
proposed in chapter 4.
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6.4. Acceleration of CNN-based computer vision algorithms at the edge.

6.4 Acceleration of CNN-based computer vision
algorithms at the edge.

Chapters 4 and 5 shows execution times achieved using different types of
convolutional neural networks focused on compressing information in the
form of Autoencoder or obtaining the segmentation mask of an image
using convolutional networks based on that purpose. It has been seen
the great difference between the execution of these algorithms on CPU or
using different GPUs that are available on the devices. It is important to
note that the use of GPUs is justified in all use cases. The main problem
found in this case is the power consumption associated with using the
extra hardware that allows us to obtain the results in a shorter time
but equipped in a UAV, where the battery is reduced results in a lower
potential flight time of the drone.

Initially, it was decided to use these techniques to make more efficient
the execution of the model on edge, but it was discarded because the
implementation of these techniques always resulted in a loss in the
accuracy of the model, and this would be acceptable if it has a higher
performance (i.e., MIoU), but because the results obtained by measuring
the surface of the flooded area are close to acceptable values and a loss
of accuracy would not be acceptable for this model, therefore it was
decided to run the model in raw and without any extra adaptation. This
is subject to obtaining more data to increase overall performance since,
for this study, only 57 images were available, and several attempts were
required to use transfer learning from pre-trained models on Imagenet
before performing the training.

In the 4 section, it can be seen how the inference time when processing
the whole dataset was, in the best case, three times higher using CPU than
GPU being this difference more noticeable in devices with higher GPU. In
these situations, it is shown how the use of GPU to accelerate the model
is interesting. All data obtained are considered based on the PyTorch
and Sklearn-based implementation of the different image preprocessing
and DL algorithms, and alternative implementations such as quantization
of the model to reduce the neural network model weights from floating
point to integer will result in smaller models and faster execution speed.
Concerning the execution of deep learning algorithms at the edge, the
model could have been further optimized by using field-programmable
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gate array (FPGA) devices, which are a matrix of programmable logic
blocks and a hierarchy of reconfigurable interconnects that allow the
blocks to be connected. The logic blocks can be programmed to perform
complex combinational functions or act as simple logic gates such as
AND and XOR. In most FPGAs, the logic blocks can also include pieces
of memory, which can be simple flip-flops or more complete memory
modules.

6.5 Benefits obtained from processing in the
UAV rather than in the cloud

The deep learning algorithm proposed in section 4 does not require any
dataset on which it has been previously trained, and an understanding
of the area traversed is achieved in an unsupervised way that allows
us to navigate through the space embedded in the central layer of the
model to be then able to execute the rest of the pipeline. This training
is designed to be performed the first time you pass through an area, and
you do not have any information, and its training, which will last several
minutes, will be performed on the ground. Afterward, the model will be
stored in the device and will allow for evaluating changes in the area in
future surveillance missions. In other words, in the first case, it would
allow us to obtain the most relevant images of the dataset obtained in
a few minutes, but then online and in real-time, it would allow us to
identify changes in the same area concerning previous executions of the
surveillance mission.

In the case of semantic segmentation, collateral beneficial results
are obtained for the system that was originally intended only to send
an abstraction of the image obtained to help the system user to locate
flooded areas since, as shown in the article, the bandwidth of sending the
drone information will be significantly reduced by generating the mask
at the edge, and that can save network resources and decrease battery
consumption as well as protect the privacy of those affected by the area
being monitored since the information is not sent in detail and could
send only the location of the pixels referring to a flooded area and not a
photograph that would include people, vehicles, buildings in detail and
other existing entities in urban areas.
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6.6 Summary

This thesis describes a series of works that aim to enable the efficient
analysis of large amounts of data and images in IoT environments for
the monitoring of areas affected by natural disasters. In addition, a
performance study of the different solutions is carried out, showing a
comparison of their execution in high-performance systems or embedded
in a UAV.

The coordinated vertical take-off performance of a vehicular network
of UAVs was drastically improved by introducing a solution based on
the Kun Munkres algorithm, which is able to improve on previously
used methods, achieving a compromise between computational time and
minimisation of position allocation error. Furthermore, it is worth noting
that the deployment capabilities of drone swarms are fully exploited,
eliminating the limitation of the number of drones in surveillance missions.

The proposal of an unsupervised model for surveillance of areas
for which no data is previously available represents a breakthrough for
autonomous exploration using drones and makes it possible to obtain an
overall view of a specific area without conducting a detailed study of the
area.

The semantic segmentation model of flooded areas deployed for image
processing in the device will allow collecting flood data in real time while
respecting privacy and will allow performing virtual fidelity reconstruc-
tions of the event being monitored.

Finally, the research conducted and the proposed models create the
perfect tests to check the performance of the new tools, allowing accessible
evaluations for future research. Thus, the path for future development
remains solid and open.
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Chapter 7

Conclusions

7.1 Concluding remarks

The previous chapters have addressed techniques and systems to facilitate
the surveillance and monitoring of areas affected by natural disasters using
UAVs and computer vision techniques. This research different disciplines
within computer science, such as image processing by developing ML/DL
algorithms for image segmentation and clustering and edge computing by
implementing these computationally heavy workloads in hardware with
the limited computational capacity.

Given that natural disasters such as floods affect large areas and make
it difficult to monitor them by first responders, a reliable autonomous
drone-based surveillance solution can be very useful for those scenarios,
allowing authorities to have a global view of the event in both; known
areas and of an unknown areas; i.e. areas which no data is previously
available. Some proposals have addressed some of these issues separately,
but none of them present a comprehensive approach that addresses all
aspects of this problem and makes a proposal from model conception to
deployment in the autonomous device.

This thesis has addressed the development of artificial intelligence
solutions at the edge, taking into account the terms of system accuracy,
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performance, and reliability, to present a better overall solution that
improves existing techniques and provides an alternative for future en-
vironmental crisis monitoring systems. A new proposal for the vertical
take-off planning of drone swarms scaling from a dozen existing drones
to thousands of drones with the minimum possible margin of error is
developed. In addition, a system is proposed to obtain the most relevant
images for surveillance of a previously unknown area and to facilitate
surveillance in future missions. Finally, it is proposed a way to obtain
flooded areas using one or several UAV devices with a fully autonomous
system that does not require cloud processing of the images obtained.

7.2 Publications

Within the framework of this thesis, several papers have been published.
They describe the proposed solutions to the different problems that have
been exposed during the research phase.

Journals

• [30] Hernández, D., Cecilia, J. M., Cano, J. C., Calafate, C. T.
(2022). Flood Detection Using Real-Time Image Segmentation from
Unmanned Aerial Vehicles on Edge- Computing Platform. Remote
Sensing, 14(1), 223. doi: 10.3390/rs14010223. JCR: 1er cuartil.
Impact Factor: 4.848

• [31] Hernández, D., Cano, J. C., Silla, F., Calafate, C. T., Cecilia,
J. M. (2021). Al- enabled autonomous drones for fast climate
change crisis assessment. IEEE Internet of Things Journal. doi:
10.1109/JIOT.2021.3098379. JCR: 1er decil. Impact Factor: 9.936

International Conferences

• [32] Hernández, D., Cecilia, J. M., Calafate, C. T., Cano, J. C.,
Manzoni, P. (2021, April). The Kuhn-Munkres algorithm for effi-
cient vertical takeoff of AV swarms. In 2021 IEEE 93rd Vehicular
Technology Conference (VTC2021-Spring) (pp. 1-5). IEEE. doi:
10.1109/VTC2021-Spring51267.2021.9448873. Core A
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7.2. Publications

Publications related with this thesis
Moreover, some collaboration have been carried out with other mem-

bers of our research group where the PhD candidate has contributed by
developing deep learning algorithms or ML solutions.

• [33] Nakamura, K., Hernández, D., Cecilia, J. M., Manzoni, P.,
Zennaro, M., Cano, J. C., Calafate, C. T. (2021). LADEA: A
Software Infrastructure for Audio Delivery and Analytics. Mobile
Networks and Applications, 26(5), 2048-2054.

• [34] Hernández, D., Arcas-Túnez, F., Muñoz, A., Cecilia, J. M.
(2018, August). Bauspace: a scalable infrastructure for soft sensors
development. In Proceedings of the 47th International Conference
on Parallel Processing Companion (pp. 1-4).

• A real-time UAV surveillance system for natural, HiPEAC Confer-
ence Budapest 2022, HiPEAC Student Challenge: IoT for Everyone!,
award-winning disaster management

• Assignment And Take-off Approaches For Large-scale Autonomous
UAV Swarms. Publication pending

Projects involved
Finally, the research here presented has been developed in the context

of GLOBALoT project; a private-public research project that is defining
the next generation of IoT systems to deal with climate change issues.
The projects that this PhD candidate has been involved are the following:

• Planificación y gestión de recursos hídricos a partir de análisis
de datos de IoT (WATERoT). Funded by Spanish Government,
Ministerio de Economía y Competitividad (Retos-Colaboración)
from October 2018 until March 2022. Role: Principal Coordina-
tor. Budget: 251.140€ (for the UCAM subproject). Number of
Researches: 9. Total Budget: 1.121.131,83 €.

• Desarrollo de Infraestructuras IoT de Altas Prestaciones contra el
Cambio Climático basadas en Inteligencia Artifical (GLOBALoT).
Funded by Ministerio de Ciencia e Innovación (RTC2019-007159-5),
from January 2020 until December 2023. Role: Researcher. Budget:
208,217.5€. Number of Researches: 8.
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7.3 Future work

In the coming years, the use of autonomous drone swarms for surveillance
and data collection is expected to grow. Among the applications where
drones may be involved include fire surveillance, earthquake zones, and
all kinds of situations that require an early response from the competent
authority. This will lead to an increase in the number of devices used
and the tasks to which they are assigned, which will pose new technical
challenges.

With this thesis, the basis is laid to support these upcoming changes
while providing some proposals to improve the coordinated take-off and
provide intelligence to these devices. Services such as fire detection,
flooded areas, and people in danger will be examples of the usefulness
that can be obtained. Using our research, it will be possible to develop
services that enable the coordination of large drone arrays and allow
image processing to be performed without the need for extra devices.
This flexibility makes our approach a future-proof bet, and provides
a development path for anyone interested in deploying a drone-based
surveillance system. As part of future work will seek to optimize the
takeoff time taking into account the possible crossing routes that may
exist, and we will try to reduce the allocation time required by the
Kuhn-Munkres algorithm by performing a parallel implementation of the
algorithm.

Regarding the development of an autonomous drone model for rapid
assessment of climate crises, there is still much work to be done from
different perspectives. In terms of communication, it is intended to
extend the results of this article from a single device to the use of a
swarm of drones that can provide more excellent coverage of the area
to be surveyed, something essential when an area affected by natural
disasters is pervasive. Including energy-efficient processors in such low-
autonomy devices is necessary to enable AI-based applications; tinyML is
a good step in this direction. More processing steps could be added in this
AI pipeline that, after labeling the clusters, would reuse the information
stored in the autoencoder to categorize all images and send the desired
information more condense. Finally, it would be desirable to experiment
with users interested in the solution in real-case scenarios to learn about
new real needs.

To conclude, the work of Flood Detection Using Real-Time Image
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7.3. Future work

Segmentation has demonstrated how, with a small set of correctly labeled
data and the right model, a real-time segmentation system can be embed-
ded in a UAV, bringing the main computational work closer to the device
in charge of processing the information to make an offline inference and
send the digested data. However, main results of this work towards a
tool with a visual interface that displays the information and data of the
flooded area on a map in real-time is what further work could be extended.
In addition, it is necessary to increase the performance of the AI models
by providing new datasets, as well as to deepen the representation of the
semantic segmentation result obtained by the network on a map of the
area where the images have been captured, to provide more knowledge.
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Acrónimos

0

5G 5rd Generation of Wireless Mobile Telecommuni-
cations Technology

A

AI Artificial Intelligence
AGVS Airport Ground Video Surveillance
AVG Average
AIDER Aerial Image Dataset for Emergency Response

applications
ARM Advanced RISC Machines

C

CNN Convolutional Neural Network
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CAE Convolutional Autoencoder
CV Computer Vision
CWS Compact Well-Separated
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
CUDNN NVIDIA CUDA® Deep Neural Network library

D

DBSCAN Density-based Spatial Clustering of Noisy Appli-
cations

DNN Deep Neural Network
DL Deep Learning

E

EC Edge Computing
EMD Extended Motion Diffusion-based

F

FPGA Field-Programmable Gate Array
FC Fuzzy Clustering
FCM Fuzzy C-means

G

GPU Graphics Processing Unit
GA Genetic Algorithm
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GPS Global Positioning System

H

HPC High-performance computing

I

IoT Internet of Things
LSVRC ImageNet Large Scale Visual Recognition Chal-

lenge
IoU Intersection Over Union

K

KNN K-nearest Neighbours
KL Kullback-Leibler

L

LIDAR Light Detection and Ranging

M

ML Machine Learning
MEC Multi-access Edge Computing
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MIoU Intersection-Over-Union

N

NN Neural Network

P

PhD Doctor of Philosophy
PCA Principal Component Analysis

R

RF Random Forest

S

SVM Support Vector Machines
SoC System On Chip

T

t-SNE t-distributed stochastic neighbor embedding
TPU Tensor Processing Unit

118



U

UAV Unmanned Aerial Vehicle

V

VTOL Vertical Takeoff and Landing
VGG Vertical Visual Geometry Group
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