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 43 

Abstract: Electric motors use about 68% of total generated electricity. Fault diagnosis of 44 

electrical motors is an important task, because it allows saving a large amount of money and time. 45 

An analysis of acoustic signals is a promising tool to improve the accuracy of fault diagnosis. It is 46 

essential to analyze acoustic signals to assess the state of the motor. In this paper, three electric 47 

impact drills (EID) were analyzed using acoustic signals: healthy EID, EID with damaged rear 48 
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bearing, EID with damaged front bearing. Three angle grinders (AG) were analyzed: healthy AG, 49 

AG with 1 blocked air inlet, AG with 2 blocked air inlets. The authors proposed a method for feature 50 

extraction: SMOFS-NFC (Shortened Method of Frequencies Selection Nearest Frequency 51 

Components). Acoustic features vectors were classified by the nearest neighbor classifier and Naive 52 

Bayes classifier. The classification accuracy were in the range of 89.33−97.33% for three electric 53 

impact drills. The classification accuracy were in the range of 90.66−100% for three angle grinders. 54 

The presented method is very useful for diagnosis of bearings, ventilation faults and other 55 

mechanical faults of power tools. It can be also useful for diagnosis of similar power tools. 56 

 57 

Keywords: degradation, acoustic, fault diagnosis, bearings, power tool, ventilation 58 
 59 

1. Introduction 60 

 61 

Electric motors and power tools are often used in the industry. Reduction of maintenance costs 62 

and proper operation of motors are main goals of fault diagnosis. Financial income can be reduced in 63 

the event of production downtimes. Faulty bearings, gears and other mechanical and electrical faults 64 

can yield motor shutdowns and hence, interrupt the whole production line. In the industry, many 65 

electric motors operate 24 hours per day. This makes a continuous online fault diagnosis necessary. 66 

It can be achieved by using computers and proper sensors. 67 

Power tools are used in the industry. Application of power tools can be found in: construction 68 

of buildings, industry, home applications, grinding, cutting and drilling. For the mentioned reasons, 69 

the authors are motivated to develop new fault diagnostic methods based on acoustic signals. 70 

Motivation is also found in the following literature [1−27]. However, most of these works are 71 

referred to industrial motors and few works have been devoted to analysis of power tools. In 72 

comparison with other techniques, the analysis of acoustic signals is a promising non-invasive tool 73 

to improve the accuracy of fault diagnosis of power tools. Moreover, it is an inexpensive technique. 74 

It is very attractive for many applications.  75 

To apply the acoustic analysis, it is essential to extract acoustic signal to assess the state of the 76 

power tool. The acoustic analysis can be used for diagnosis of different types of motors and faults. In 77 

this research 3 EID (electric impact drills) and 3 AG (angle grinders) were analyzed. Each of the 78 

analyzed power tool has one state (6 analyzed power tools in total).  79 

The authors proposed a method of feature extraction − SMOFS-NFC (SMOFS Nearest 80 

Frequency Components). The article consists of: 1) Introduction, 2) Considered faults of power tools,  81 

3) Theoretical background, 4) proposed approach and experimental setup, 5) Results of acoustic 82 

fault diagnosis, 6) Discussion, 7) Conclusions and future work. 83 

 84 

2. Considered faults of power tools 85 

 86 

Faults of the power tools can be different. There are different mechanical and electrical faults. 87 

Mechanical faults, namely: damaged bearings, damaged shaft, broken rotor blades, broken gears, 88 

broken teeth, shifted brushes, uneven air gap, misalignment, ventilation faults. On the other hand, 89 

some examples of electrical faults of power tools are: broken rotor coils, shorted stator coils, shorted 90 

rotor coils, degraded rotor/stator coil insulation. Approximate failure rates of electric motors are as 91 
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follows: bearings faults ~ 40%, rotor faults ~ 10%, insulation faults ~40%,   others types of faults – 92 

10% [1]. 93 

Ball bearings are used by the motor of power tools. Normal operation of the motor causes 94 

abrasion of bearing parts. Operation of faulty bearing usually yields increases in the sound level. 95 

Moreover, acoustic signals of different state of the EID/AG have different frequency spectra. 96 

Acoustic signals of Verto 50G515 electric impact drills (500 W) were measured. The acoustic 97 

signals were measured and analyzed for the following cases: healthy EID (Fig. 1), EID with damaged 98 

rear bearing (Fig. 2), EID with damaged front bearing (Fig. 3). Rear bearing has a diameter of 0.2 m. 99 

Front bearing has a diameter of 0.3 m. 100 

 101 

 
Figure 1. Healthy EID 102 

 103 

 
Figure 2. EID with damaged rear bearing (indicated by yellow circle) 104 

 105 

 
 

Figure 3 EID with damaged front bearing (indicated by yellow circle) 106 
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 107 

Acoustic signals of Verto 51G053 angle grinders (500W) were also measured. The acoustic 108 

signals were measured and analyzed for the following cases: healthy angle grinder (Fig. 4), angle 109 

grinder with 2 blocked air inlets (Fig. 5), angle grinder with 1 blocked air inlet (Fig. 6).   110 

 
Figure 4. Healthy angle grinder 111 

 112 

 
Figure 5. Angle grinder with 2 blocked air inlets  113 

 114 

 
Figure 6. Angle grinder with 1 blocked air inlet 115 

 116 

3. Theoretical background 117 

Various types of diagnostic signals are used by fault diagnosis systems. Vibrations, acoustic 118 

signals, thermal signals and current signals are often used for fault diagnosis. Each of them has 119 

advantages and disadvantages. Fault diagnosis based on electrical signals were described in 120 

following papers [2−7]. They require the connection of an ammeter/sensor to measure the electrical 121 

signal. Wireless sensors can be also used. The analysis of electrical signals is an interesting research 122 
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topic. However, it is often limited to electrical faults such as: rotor and stator faults. Moreover, it can 123 

be only used in electric motors; it is not good for mechanical engines. It can localize the fault.  124 

Paper [2] presented a method to integrate vibration analysis and current analysis. Wavelet 125 

packet decomposition and support vector machines were used for the analysis [2]. Reference [3] 126 

described a novel approach for gear fault diagnosis of the three-phase motor using Park and 127 

Concordia transforms and Frenet-Serret equations. The obtained results were good for healthy and 128 

faulty conditions [3]. Inter-turn winding faults were analyzed in [4]. The authors of the paper 129 

analyzed two methods: Zero-sequence voltage component (ZSVC) and motor current signature 130 

analysis (MCSA). The ZSVC was more sensitive than the MCSA for inter-turn faults [4]. Reference 131 

[5] presented an approach using MCSA, Independent component analysis (ICA) and neural network 132 

for detection of broken bar of induction motors. The authors of the paper conducted analysis and 133 

obtained classification accuracy in the range 90−99% [5]. Reference [6] described mechanical fault 134 

detection of squirrel cage induction motors. It was based on the Fast Fourier Transform (FFT) of the 135 

stator current signal. The authors of the paper used the discrete wavelet transform. The MCSA-DWT 136 

technique was presented [6]. The authors of the paper presented fault diagnosis using stator current 137 

of three-phase induction motor [7]. They used frequency spectral subtraction using: wavelet packet 138 

decomposition, discrete wavelet transform, stationary wavelet transform [7]. 139 

Another well-known technique using vibration data analysis. Vibrations are good diagnostic 140 

signals for electric motors and mechanical engines [8−14]. In general terms, electrical and mechanical 141 

faults can be measured and analyzed using vibrations. Vibration analysis enables to detect a faulty 142 

state of the machine. Localization of the fault can be more difficult using vibration signals. There are 143 

also technical difficulties of the proper position of the sensor and noise contamination.  144 

In [8], the authors dealt with fault diagnosis of rolling bearings. The authors of the paper used 145 

graph spectrum coefficients in the highest order range. Next, they used the Hilbert envelope 146 

spectrum. The proposed method was noise tolerant and effective for rolling bearings [8]. 147 

On the other hand, [9] described fault diagnosis of vibration signals using parameterized 148 

time-frequency transform (PTFT) and Polynomial chirplet transform (PCT). Bearing faults were 149 

detected using maximum correlated kurtosis deconvolution-based envelope order spectrum. The 150 

proposed method was efficient for bearing fault diagnosis under varying speed conditions [9]. Fault 151 

diagnosis approach based on the multi-scale fuzzy measure entropy (MFME) was presented in [10]. 152 

Bearing fault diagnosis was carried out using MFME and support vector machine. The presented 153 

results showed that the proposed approach was efficient [10]. Multi-Input Single-Output model was 154 

presented for fault diagnosis of gearbox [11]. Vibration data acquired from a gearbox were analyzed. 155 

Conducted analysis showed that the proposed approach was good for extracting the meshing 156 

frequency component [11]. A fault diagnosis approach using Convolutional Neural Networks and 157 

Extreme Learning Machine was proposed in [12]; the authors of the paper used Continuous Wavelet 158 

Transform for preprocessing of vibration signal, while a Convolutional Neural Networks extracted 159 

features. The proposed method was effective for vibration analysis of gearbox and bearing. The 160 

proposed approach can recognize different types of faults [12]. In [13], a convolutional neural 161 

network method was used for vibration signals of gear faults. Training and test vibration signals 162 

were measured for different faults. The different faults were recognized properly [13]. Vibration 163 

signal of rolling bearing using empirical mode decomposition was analyzed in [14]. The authors 164 

used crest factor, kurtosis, skewness, for fault diagnosis. The empirical mode decomposition was 165 

good for analysis of roller bearings [14]. 166 

Thermal analysis has been also used for fault diagnosis [15−18]. Thermal (infrared) images are 167 

good diagnostic signals for electrical faults (electrical insulation faults, rotor, stator faults) and for 168 

specific mechanical faults (for example bearings faults). However thermal imaging is often 169 
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expensive. Processing of thermal images is slower than processing of acoustic, vibration or electric 170 

current signals. Infrared imaging is based on measuring the superficial temperatures of the object. 171 

Thermal imaging camera needs time to measure the change of temperature. Faulty and healthy 172 

motors need time to heat up.  173 

In [15], infrared thermal images and a convolutional neural network were used for fault 174 

diagnosis of a gearbox. The proposed approach was efficient for gear faults: cracks, breakages, tooth 175 

pitting [15]. In [16], thermal phenomena of the kinematic chain of the induction machine was 176 

analyzed using an infrared thermography technique; it was based on the analysis of the 177 

segmentation of thermal image. The proposed technique is useful for locating the damage and 178 

influence of the damage [16]. Reference [17] described thermal signature analysis of the brushed DC 179 

motor. The authors of the paper used thermocouples with the data logger. Thermocouples were 180 

mounted on different machine parts. Healthy DC motor and commutator fault DC motor were 181 

recognized using characteristic temperature profile of the DC motor [17]. A fault diagnosis method 182 

using thermal images of bearings was presented in [18]. The authors of the paper used 183 

bag-of-visual-word and convolutional neural network. The described method was used to analyze 184 

test images of bearings. The obtained results showed that it was efficient method of fault diagnosis 185 

[18]. Reference [19] described feature extraction of thermal images BCAoID. The BCAoID method 186 

was used for three electric impact drills. The recognition results of the performed analysis were in 187 

the range of 97.91–100%. 188 

Acoustic signal analysis is also interesting diagnostic technique [20−30]. It can be used to detect 189 

and localize faults of the machine. A microphone array is a suitable equipment for localization of 190 

faults using acoustic analysis. However, one-channel microphone is less expensive. Moreover, the 191 

processing of one-channel signal is faster for recognition. Acoustic analysis is proper for mechanical 192 

and electrical faults.  193 

In [20], it is shown that the sound and vibration levels of a diesel engine are different for 194 

different states of engine [20]. The FFT and statistical feature extraction methods were used in that 195 

work for the analysis of the liner scuffing fault. The results showed that the presented methods were 196 

adequate for the recognition of this fault. Moreover, the acoustic emission level of the analyzed 197 

machine was increased [20]. In [21], fault diagnosis of low-speed bearings was considered; the 198 

analysis was carried out using support vector machines and genetic algorithms. Three classes were 199 

used for the analysis. The methods of the analysis of acoustic signals were suitable for the detection 200 

of bearing faults. On the other hand, in [22] the authors proposed a wayside acoustic defective 201 

bearing detector system for bearing fault diagnosis. The obtained simulation and experimental 202 

results showed that the presented method using microphone array can be helpful for fault diagnosis 203 

[22]. Vibration and acoustic signals were used for fault diagnosis of bearing defects. Both signals 204 

were processed. Next signals were classified by the K-nearest neighbor. Vibration signals were 205 

useful for detection of inner race and outer race defects. Besides, acoustic signals were helpful for 206 

detection of ball defects [23]. Acoustic fault detection of rotating bearings was described in [24]. A 207 

single microphone was used for capture sound signal. Kernel linear discriminant analysis, K-nearest 208 

neighbor classifier, support vector machine and sparse discriminant analysis were used for 209 

processing the acoustic signals. Ball defects as well as inner and outer race faults were recognized 210 

properly [24]. An acoustic-based fault detection of the induction motor was presented in [25]. 211 

Bearing faults, single phasing, broken rotor bars were analyzed. Rational-dilation wavelet transform 212 

was used to extract feature vector. Acoustic signals of faults had better representation of faults using 213 

Q-factor filters [25]. In [26], a single stage spur gearbox was diagnosed using acoustic signals. The 214 

authors of the paper used continuous wavelet transform. The results of conducted analysis showed 215 

that acoustic signals are effective for fault diagnosis of the gearbox [26]. In [27], vibration and 216 
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acoustic signals were used for gear fault diagnosis; the analysis of signals was based on the general 217 

linear chirplet transform. The results proved that non-contact acoustic measurement and the 218 

proposed method of fault diagnosis is useful for gear condition monitoring [27]. A review of fault 219 

diagnosis of multi-sensors information fusion for rolling bearings was presented in [28]. In [29], the 220 

authors collected acoustic signals of roller bearings and deep graph convolutional network was used 221 

for processing of acoustic data. Acoustic data were transformed into graphs. Next, the deep graph 222 

convolution network used the training sets of graphs. Testing accuracy was in the range of 80-100%. 223 

The experimental results showed usefulness of the deep graph convolutional network for fault 224 

detection [29]. Finally, in [30], acoustic signals were also used for technical condition estimation of 225 

defects of on-load tap-changers. The authors of the paper showed usefulness of acoustic analysis. 226 

Technical diagnosis is very important from economic point of view. For instance, the 227 

collaborative alliance of national metrological organizations from member states of the European 228 

Union EURAMET in 2014 published the roadmap for thermometry [31], where it declared the 229 

problem of creating the sensors with selfvalidation as one of the key problems of metrology. Even 230 

new devices appear to fit the recommendations from the roadmap [32, 33]. The problem of diagnosis 231 

is not new in many areas [34-36]. However, it is always preferable to carry out noninvasive diagnosis 232 

in order not to change the existing devices and sensors. That is why a lot of attention is now paid to 233 

develop the noninvasive methods of diagnosis, especially when such procedure is possible during 234 

normal operation of devices and appliances. 235 

In summary, there are many methods of fault diagnosis of bearing, namely: vibration, acoustic, 236 

oil, temperature and ultrasonic analysis. Each type of signal has its own advantages and 237 

disadvantages. Acoustic analysis is low-cost, fast and non-invasive, but it is easy to be interfered by 238 

background noise. Vibration analysis has high recognition rate. It can detect several faults of the 239 

motor. It is difficult to localize fault. Vibration signal is not noisy. Analysis of thermal images can 240 

detect and localize fault, but it is not fast. The motor needs time to heat up. It is also expensive 241 

analysis. 242 

 243 

4. The proposed approach and experimental setup 244 

 245 

Measurements were carried out in a 4.5x4.5 m room. The walls of room consisted of bricks. 246 

Acoustic signals were generated by operation, rotations, friction of bearings, shaft, gear and other 247 

parts of the power tool. To measure the acoustic signals, the authors used a notebook and a 248 

microphone (tracer KTM 43948). The main characteristics of the microphone were: sensitivity 58 dB 249 

+/-3 dB, frequency response 30–16,000 Hz. Distance between microphone and the power tool was 250 

equal to 0.5 m. 251 

Acoustic signals were acquired and saved as .WAV digital files. The sampling rate of each 252 

.WAV file was equal to 44,100 Hz. The number of channels was equal to 1. To compare the .WAV 253 

files, the authors used 1-s samples. The length of sample was equal to 1 second (44,100 values). It was 254 

enough to recognize signal properly. To compare sound level of each sample, the authors used 255 

amplitude normalization in the range of -1 to 1. It was easier to compare samples measured for 256 

example from distance 0.5 m and 0.1 m. In order to avoid difficulties, the authors measured all 257 

acoustic signals from the same distance. After that, SMOFS-NFC method was applied to compute 258 

selected features. Next, the features were used for computation of feature vectors. The next step was 259 

the classification. The classification methods were: Nearest Neighbor, Naive Bayes classifier. The 260 

Nearest Neighbor was used for the computation of the distances between feature vectors (training 261 
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vector and test vector). The result of recognition was a name of recognized class for example 262 

'healthy_EID'. A flowchart of the proposed approach was shown in figure 7. 263 

 
Figure 7. Flowchart of the proposed approach 264 

 265 

Proposition of an experimental setup is shown in Figure 8. The experimental setup uses 266 

acoustic signal of power tools (electric impact drills and angle grinders), microphone and notebook 267 

(personal computer), software of processing acoustic data. 268 

 269 
 270 

 
Figure 8. Experimental setup 271 

4.1. SMOFS-NFC (SMOFS Nearest Frequency Components) 272 

 273 



 9 of 27 

The proposed approach of fault diagnosis is based on the SMOFS-NFC method. The 274 

SMOFS-NFC is a feature extraction method. It analyzes FFT spectrum of acoustic signal. It computes 275 

adjacent frequency components. Next it computes feature vectors. Steps of the SMOFS-NFC are 276 

following: 277 

1. Use FFT (Fast Fourier Transform) method to compute frequency spectrum of an acoustic signal. 278 

If we have 3 different electric drills, then it requires to compute 3 frequency spectra of acoustic 279 

signals. A vector of 16,384-elements is formed. Each element of the vector is a frequency 280 

component (1.345825 Hz,  22,050/16,384 ≈ 1.345825). Following 16,384-elements vectors are 281 

computed for 3 classes: healthy EID − h=[h1, h2, ..., h16384], EID with damaged rear bearing −  282 

r=[r1, r2, ..., r16384], EID with damaged front bearing − f=[f1, f2, ..., f16384]. 283 

2. Subtract one frequency spectrum from another: h - f, h - r, f - r. 284 

3. Compute: |h - f|, |h - r|, |f - r|. 285 

4. Automatically set a threshold TSMn of the SMOFS-NFC method. If frequency component is 286 

greater that a threshold TSMn (initially TSMn = (sum of all absolute values of frequency components / 287 

16,384) and TSMn is increasing), next select frequency component (1). 288 

 289 

        ||X1|-|Y1||>TSMn,         (1) 290 

 291 

where TSMn – threshold of the SMOFS-NFC method for n-th iteration, |X1|,|Y1| – frequency 292 

components of different signals with the same index for example |h1 - f1| or |h1000 - r1000| or 293 

|f16384 - r16384| and h=[ X1, ...., X16384], f=[ Y1, ...., Y16384], r=[r1, r2, ..., r16384]. 294 

5. Increase threshold TSMn. Threshold TSMn is computed by following equation (2): 295 

 296 

      
n

NF

NF

n NF

YX

TSM

n

n

∑
1=

11 |||-|||

= ,         (2) 297 

        18≤nNF ,          (3) 298 

 299 

where NFn − Number of frequency components after n-th iterations. At the start NFn is 300 

equal to 16,384. This number is decreased for each iteration. If NFn ≤ 18, then iterations are 301 

stopped (3). If NFn > 18, then SMOFS-NFC uses formula (2). The value of TSMn is increased. 302 

The SMOFS-NFC method finds 1-18 frequency components. The values of TSMn, NFn, 303 

number of iterations n depend on frequency spectra of acoustic signals. The maximum 304 

value of NFn (value of 18) is set experimentally. 305 

For example, 306 

initial threshold_h_f = ((h1-f1)+(h2-f2)+....+(h16384-f16384))/ 16384 = 0.00048897 (Fig. 13). 307 

initial threshold_h_r = ((h1-r1)+(h2-r2)+....+(h16384-r16384))/ 16384 = 0.00049407 (Fig. 14). 308 

initial threshold_f_r = ((f1-r1)+(f2-r2)+....+(f16384-r16384))/ 16384 =   0.00046504 (Fig. 15). 309 

If the value of frequency coefficient is below the threshold, frequency coefficient is 310 

removed. If the value of frequency coefficient is above the threshold, then frequency 311 

coefficient is used for further computation. The threshold is changeable. Each iteration 312 

means new higher threshold and less analyzed frequency components (please see Fig. 13 − 313 
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Fig. 15). If the remaining frequency components x, y, z have length ≤18 elements then we 314 

do not compute a new threshold, where x, y, z, − vector consisted of remaining frequency 315 

components after n-th iteration (for example, sixth iteration, 8 frequency components).  316 

final threshold_h_f=((h1-f1)+....+(hx-fx))/length(x)=0.0079 (Fig. 13), after sixth iteration,  317 

final threshold_h_r=((h1-r1)+....+(hy-ry))/length(y)=0.0100 (Fig. 14), after sixth iteration,  318 

final threshold_f_r = ((f1-r1)+....+(fz-rz))/length(z) = 0.0079 (Fig. 15), after sixth iteration, 319 

where length(x) ≤ 18, length(y) ≤ 18, length(z) ≤ 18. 320 

The value of final threshold is depended on type of analyzed acoustic signals. We set only 321 

the length of final feature vector for example 1−18 elements. The threshold is computed 322 

automatically. Next we set parameter PT. 323 

6. Set a parameter of threshold PT. It is defined as: PT=(minimum number of common frequency 324 

components)/(number of all differences in training set). The minimum number of common frequency 325 

components is set experimentally. The parameter PT determines accuracy of expected results. 326 

We can analyze following example. Nine acoustic signals are generated H1, H2, H3, F1, F2, F3, 327 

R1, R2, R3, where H1, H2, H3 − test samples of the first class of acoustic signals, F1, F2, F3 − test 328 

samples of the second class of acoustic signals, R1, R2, R3 − test samples of the third class of 329 

acoustic signals. The frequencies in bold fonts are preselected by SMOFS-NFC. Let's suppose 330 

that SMOFS-NFC finds following frequency components: 100 Hz, 200 Hz, 300 Hz for |H1-F1|, 331 

99 Hz, 220 Hz, 310 Hz, 620 Hz for |H1-R1|, 99 Hz, 110 Hz, 230 Hz, 309 Hz, 310 Hz, 620 Hz for 332 

|R1-F1|. 100 Hz, 250 Hz, 350 Hz for |H2-F2|, 101 Hz, 220 Hz, 311 Hz, 340 Hz for |H2-R2|, 160 333 

Hz, 260 Hz, 309 Hz for |R2-F2|. 101 Hz, 170 Hz, 270 Hz, 311 Hz for |H3-F3|, 100 Hz, 280 Hz, 334 

380 Hz for |H3-R3|, 190 Hz, 290 Hz, 310 Hz, 620 Hz for |R3-F3|. Frequency components 100 Hz 335 

and 310 Hz were found 3 times. We also find 99 Hz, 101 Hz, 311 Hz, 309 Hz. As we see there are 336 

no proper frequency component. 100 Hz is proper for |H-F| and |H-R|. However it is not 337 

proper for |R-F|. 310 Hz and 620 Hz are good for |R-F| and |H-R|. If we set PT=3/9=0.3333, 338 

then frequency components 100 Hz, 310 Hz and 620 Hz are selected. It forms a group of 339 

frequency components. If we set PT=4/9=0.4444, then SMOFS-NFC finds 0 frequency 340 

components.  341 

7. Find adjacent frequency components (100-1; 100+1; 310-1; 310+1) (100; 310). The range of 342 

adjacent frequency components should be selected experimentally. Let's consider the range of 343 

the 2 nearest frequency components: 99 Hz, 101 Hz, 309 Hz, 311 Hz. We need to set 344 

PT=2/9=0.2222. The SMOFS-NFC method finds frequency components: 99 Hz, 100 Hz, 101 Hz, 345 

309 Hz, 310 Hz, 311 Hz. However frequency component 620 Hz is not adjacent. If we use 4 346 

nearest frequency components, SMOFS-NFC will find: (100-2; 100-1; 100+1; 100+2; 310-2; 310-1; 347 

310+1; 310+2) (100; 310). 348 

8. Use found adjacent frequency components to form feature vector. 349 

 350 

The described SMOFS-NFC method is depicted in Fig. 9. 351 
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 352 
Figure 9. Steps of the SMOFS-NFC method 353 

 354 

Rotating rotor, bearings, gears and other parts of the analyzed power tool generate acoustic signals. 355 

The authors analyzed 12 training samples of each type of acoustic signal (total 72 training samples). 356 

Following differences of spectra |h - f|, |h - r|, |f - r| were computed and presented in figures 357 

10−12. Feature extraction using SMOFS-NFC were presented (Fig. 10−12). For difference of spectra 358 

(|h - f|) SMOFS-NFC found 15 frequency coefficients (Fig. 10). For difference of spectra (|h - r|) 359 

SMOFS-NFC found 14 frequency coefficients (Fig. 11). For difference of spectra (|f - r|) 360 

SMOFS-NFC found 14 frequency coefficients (Fig. 12). 361 

 362 
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Figure 10. Difference of spectra (|h - f|) − step 3 of the SMOFS-NFC 363 

 364 

 
Figure 11. Difference of spectra (|h - r|) − step 3 of the SMOFS-NFC 365 

 366 

 
Figure 12. Difference of spectra (|f - r|) − step 3 of the SMOFS-NFC 367 
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Figure 13. Feature extraction using SMOFS-NFC for difference (|h - f|) − step 5 of the SMOFS-NFC 368 

 369 

 
Figure 14. Feature extraction using SMOFS-NFC for difference (|h - r|) − step 5 of the SMOFS-NFC 370 

 371 

 
Figure 15. Feature extraction using SMOFS-NFC for difference (|f - r|) − step 5 of the SMOFS-NFC 372 
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 373 
Figures 10−15 show steps (2−5) of the SMOFS-NFC method. Next the method finds adjacent 374 
frequency components. Next the method uses found adjacent frequency components to form feature 375 
vector. It analyzes all training examples each other. The SMOFS-NFC method selected (for 376 
parameter PT=0.083=3/36) following adjacent frequency components of acoustic signal of the EID: 377 
133, 149, 355, 356 Hz for SMOFS-0NFC, 132, 133, 134, 135, 354, 355, 356, 357 Hz for SMOFS-2NFC, 378 
131, 132, 133, 134, 135, 136, 353, 354, 355, 356, 357, 358 Hz for SMOFS-4NFC. 379 
The SMOFS-NFC method selected (for parameter PT=0.083) following adjacent frequency 380 
components of acoustic signal of the AG: 428, 429, 430, 473, 474, 475, 476 Hz for SMOFS-0NFC, 427, 381 
428, 429, 430, 431, 472, 473, 474, 475, 476, 477 Hz for SMOFS-2NFC, 426, 427, 428, 429, 430, 431, 432, 382 
471, 472, 473, 474, 475, 476, 477, 478 Hz for SMOFS-4NFC. 383 
Computed features (adjacent frequency components) of the EID are presented in figures 16−21.  384 
Adjacent frequency components (8 features − SMOFS-2NFC) of acoustic signals of the healthy EID 385 
are presented (Fig. 16).  386 
 387 

 
Figure 16. Feature vector of the healthy EID (8 features) − step 7 of the SMOFS-NFC 388 

 389 
Adjacent frequency components (8 features − SMOFS-2NFC) of acoustic signals of the EID with 390 
damaged rear bearing are presented (Fig. 17). 391 
 392 

 
Figure 17. Feature vector of the EID with damaged rear bearing (8 features) − step 7 of the 393 

SMOFS-NFC 394 
 395 

Adjacent frequency components (8 features − SMOFS-2NFC) of acoustic signals of the EID with 396 
damaged front bearing are presented (Fig. 18). 397 

 398 
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Figure 18. Feature vector of the EID with damaged front bearing (8 features) − step 7 of the 399 

SMOFS-NFC 400 
 401 
Adjacent frequency components (12 features − SMOFS-4NFC) of acoustic signals of the healthy EID 402 
are presented (Fig. 19).  403 

 
Figure 19. Feature vector of the healthy EID (12 features) − step 7 of the SMOFS-NFC 404 

 405 
 406 
Adjacent frequency components (12 features − SMOFS-4NFC) of acoustic signals of the EID with 407 
damaged rear bearing are presented (Fig. 20).  408 
 409 

 
Figure 20. Feature vector of the EID with damaged rear bearing (12 features) − step 7 of the 410 

SMOFS-NFC 411 
 412 

Adjacent frequency components (12 features − SMOFS-4NFC) of acoustic signals of the EID with 413 
damaged front bearing are presented (Fig. 21).  414 

 415 
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Figure 21. Feature vector of the EID with damaged front bearing (12 features) − step 7 of the 416 

SMOFS-NFC 417 
 418 
Computed features (adjacent frequency components) of the angle grinder (AG) are presented in 419 
figures 22−27. Adjacent frequency components (11 features - SMOFS-2NFC) of acoustic signals of the 420 
healthy AG are presented (Fig. 22).  421 
 422 

 
Figure 22. Feature vector of the healthy AG (11 features) 423 

 424 
Adjacent frequency components (11 features - SMOFS-2NFC) of acoustic signals of the AG with 2 425 
blocked air inlets are presented (Fig. 23). 426 

 
Figure 23. Feature vector of the AG with 2 blocked air inlets (11 features) 427 

 428 
Adjacent frequency components (11 features - SMOFS-2NFC) of acoustic signals of the AG with 1 429 
blocked air inlet are presented (Fig. 24). 430 

 431 
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Figure 24. Feature vector of the AG with 1 blocked air inlet (11 features)  432 

 433 
Adjacent frequency components (15 features - SMOFS-4NFC) of acoustic signals of the healthy AG 434 
are presented (Fig. 25).  435 
 436 

 
Figure 25. Feature vector of the healthy AG (15 features) 437 

 438 
Adjacent frequency components (15 features − SMOFS-4NFC) of acoustic signals of the AG with 2 439 
blocked air inlets are presented (Fig. 26).  440 
 441 

 
Figure 26. Feature vector of the AG with 2 blocked air inlets (15 features) 442 

 443 
Adjacent frequency components (15 features - SMOFS-4NFC) of acoustic signals of the AG with 1 444 
blocked air inlet are presented (Fig. 27).  445 
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Figure 27. Feature vector of the AG with 1 blocked air inlet (15 features) 446 

 447 
The authors used SMOFS-0NFC, SMOFS-2NFC, SMOFS-4NFC methods to extract features (figures 448 
13−27). Acoustic features vectors were classified by the nearest neighbor classifier and Naive Bayes 449 
classifier. Other classification methods can be also considered.  450 
Neural networks [37, 38, 39], Neuro-fuzzy systems [40], Support Vector Machine (SVM) [21, 41], 451 
fuzzy logic can be also proper for recognition. The authors used the Nearest Neighbor classifier and 452 
Naive Bayes classifier. They are fast and efficient. They can classify multidimensional vectors. The 453 
NN classifier allows us to check errors in the classification step.  454 

4.2.The Nearest Neighbor classification method 455 

 456 
The NN (Nearest Neighbor) is used for classification of data. It is a supervised machine learning 457 

method. It is used for many applications such as: text recognition, speaker recognition, sound 458 
recognition, image recognition, recognition of heart diseases, recognition of air quality, pattern 459 
recognition, fault diagnosis [42, 43, 44, 45]. The NN classifier finds distances between a new test 460 
vector and all training vectors. Next based on computed distance it selects the label of the closest 461 
training vector. This label is a result of classification.  462 

Advantages of the NN classifier are: simplicity of implementation, we do not need to build a 463 
complex model, we do not need additional parameters and assumptions. It is versatile classifier. It 464 
can be used for many applications and problems. It has also some disadvantages. First we can have 465 
wrong nearest neighbor − noisy sample. If we use noisy sample, we will get wrong results. Next 466 
disadvantage is that the classifier gets slower if we have too many training samples. The authors 467 
used several similar training samples for each class. The acoustic signal was periodic, so the 468 
probability of noisy sample was decreased.  469 

The Nearest Neighbor classifier can be used for different distance functions (metrics) − 470 
Manhattan, Euclidean, Minkowski distance etc. The authors used Manhattan distance. This distance 471 
metric is often used for the NN classifier. The Manhattan distance is defined as follows (4): 472 
 473 

        ∑
1
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p
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ii baM
=

=BA           (4) 474 

 475 

where M(A, B) − is the Manhattan distance of vectors, A=[a1,..., aj] − is the test feature vector and 476 

B=[b1,..., bj] − is the training feature vector, p − number of frequency components (features), index 477 

i=1,..., p.  The authors computed Manhattan distances for all features. 478 

 479 

 480 

 481 
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4.3.Naive Bayes classifier 482 

 483 
Naive Bayes classifier is supervised machine learning method. It uses assumptions of naive 484 

independence between elements of the feature vectors. It is the probabilistic classification method. 485 
For test feature vector it computes a probability distribution of all analyzed classes. It finds 486 
application in text classification, real-time prediction, multi-class prediction, recommendation 487 
system, classification of incoming emails as spam or not spam, face recognition, fault diagnosis, 488 
classification of articles [46-48]. Naive Bayes classifier is defined as follows (5): 489 

 490 
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)|()(maxarg         (5) 491 

 492 
where the prior probability of class Nk is denoted as P(Nk); the likelihood of class Nk is denoted as 493 
p(xi|Nk); 1...n are elements of feature vectors; the assumption that x1,..., xn are conditionally 494 
independent; 1,....,K are number of classes. 495 

 496 
Advantages of Naive Bayes classifier are: small amount of training feature vectors are required for 497 
proper classification, easy to implement, it has high recognition rate for high-dimensional data 498 
points. More information about Naive Bayes classifier are available in following articles [46-48]. 499 

5. Results of acoustic fault diagnosis 500 

Results of acoustic fault diagnosis were carried out for three same electric impact drills and 501 

three same angle grinders. Each power tool consisted of commutator motor and other parts such 502 

brushes, shaft, gear, gearwheels. Power tools were brand new. The authors made special faults that 503 

may occur during normal operation. Acoustic measurements were carried out in a room of 5 m x 4 504 

m. Acoustic signals of healthy EID, EID with damaged rear bearing, EID with damaged front 505 

bearing, healthy angle grinder, angle grinder with 1 blocked air inlet, angle grinder with 2 blocked 506 

air inlets were measured and analyzed. Commutator motors of electric impact drills and angle 507 

grinders were powered by 230 V/50 Hz. Rated power of each motor was equal to 500 W. Weight of 508 

the EID was equal to 1.84 kg. Weight of the AG was equal to 1.64 kg. Rotor speed of the motor of the 509 

EID was equal to 3,000 rpm. Rotor speed of the motor of the AG was equal to 12,000 rpm. 510 

Considered motors operated without load.  511 

The authors analyzed 100 test samples of healthy EID, 100 test samples of EID with damaged 512 

rear bearing, 100 test samples of EID with damaged front bearing. The authors analyzed 50 test 513 

samples of healthy AG, 50 test samples of AG with 1 blocked air inlet, 50 test samples of AG with 2 514 

blocked. The authors analyzed 12 training samples of each type of acoustic signal (total 72 training 515 

samples).  516 

The proposed approach used cross-validation for classification. Formula (6) was used for 517 

computation of performance results: 518 

 519 

         100%  )( / )( EIDALLEIDEID SSEF −=         (6) 520 

 521 

where: SEID – number of properly recognized test samples of test set (for example properly 522 

recognized test samples of healthy EID), SALL-EID – number of all test samples of test set (all test 523 

samples of healthy EID), EFEID – efficiency of recognition for one class of the EID (for example EFEID1 – 524 

healthy EID).  525 

EFAG – efficiency of recognition for one class of the AG (formula (7)) is computed similar to EFEID. 526 

 527 
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         100%  )( / )( AGALLAGAG SSEF −=         (7) 528 

 529 

Formula (8) was used for computation of EFEID-3-CLASSES − efficiency of recognition for three classes of 530 

acoustic signal.  531 

 532 

        3/)( 3213 EIDEIDEIDCLASSESEID EFEFEFEF ++=−−
       (8) 533 

 534 

where EFEID1 − EFEID of the healthy EID, EFEID2 − EFEID of the EID with damaged rear bearing, EFEID3 − 535 

EFEID of the EID with damaged front bearing. EFAG-3-CLASSES(formula (9)) is computed similar to 536 

EFEID-3-CLASSES. 537 

 538 

        3/)( 3213 AGAGAGCLASSESAG EFEFEFEF ++=−−
       (9) 539 

 540 

Results of acoustic fault diagnosis of the EID using SMOFS-NFC (SMOFS-0NFC, SMOFS-2NFC, 541 

SMOFS-4NFC) and NN classifier were shown in Tables 1-3. 542 
 543 

Table 1. Results of acoustic fault diagnosis of the EID using SMOFS-0NFC and NN classifier (4 features) 544 

Type of acoustic signal EFEID [%] 

Healthy EID 72 

EID with damaged rear bearing 96 

EID with damaged front bearing 100 

 EFEID-3-CLASSES [%] 

EFEID-3-CLASSES [%] 89.33 

 545 

Table 2. Results of acoustic fault diagnosis of the EID using SMOFS-2NFC and NN classifier (8 features) 546 

Type of acoustic signal EFEID [%] 

Healthy EID 80 

EID with damaged rear bearing 100 

EID with damaged front bearing 100 

 EFEID-3-CLASSES [%] 

EFEID-3-CLASSES [%] 91.33 

 547 

 548 

 549 

Table 3. Results of acoustic fault diagnosis of the EID using SMOFS-4NFC and NN classifier (12 features) 550 

Type of acoustic signal EFEID [%] 

Healthy EID 80 

EID with damaged rear bearing 100 

EID with damaged front bearing 100 

 EFEID-3-CLASSES [%] 

EFEID-3-CLASSES [%] 91.33 

 551 

Results of acoustic fault diagnosis of the EID using SMOFS-NFC and Naive Bayes classifier were 552 

shown in Tables 4-6. 553 

 554 



 21 of 27 

Table 4. Results of acoustic fault diagnosis of the EID using SMOFS-0NFC and Naive Bayes classifier (4 555 

features) 556 

Type of acoustic signal EFEID [%] 

Healthy EID 96 

EID with damaged rear bearing 92 

EID with damaged front bearing 100 

 EFEID-3-CLASSES [%] 

EFEID-3-CLASSES [%] 96 

 557 

Table 5. Results of acoustic fault diagnosis of the EID using SMOFS-2NFC and Naive Bayes classifier (8 558 

features) 559 

Type of acoustic signal EFEID [%] 

Healthy EID 100 

EID with damaged rear bearing 92 

EID with damaged front bearing 100 

 EFEID-3-CLASSES [%] 

EFEID-3-CLASSES [%] 97.33 

 560 

Table 6. Results of acoustic fault diagnosis of the EID using SMOFS-4NFC and Naive Bayes classifier (12 561 

features) 562 

Type of acoustic signal EFEID [%] 

Healthy EID 100 

EID with damaged rear bearing 92 

EID with damaged front bearing 100 

 EFEID-3-CLASSES [%] 

EFEID-3-CLASSES [%] 97.33 

 563 

Recognition efficiency for 3 classes EFEID-3-CLASSES was in the range of 89.33-91.33% for NN classifier. 564 

EFEID-3-CLASSES was in the range of 96-97.33% for Naive Bayes classifier.  565 

 566 

The results of acoustic fault diagnosis of the AG using SMOFS-NFC and NN classifier were shown in 567 

Tables 7-9. 568 

 569 

Table 7. Results of acoustic fault diagnosis of the AG using SMOFS-0NFC and NN classifier (7 features) 570 

Type of acoustic signal EFAG [%] 

Healthy AG 72 

AG with 1 blocked air inlet 100 

AG with 2 blocked air inlets 100 

 EFAG-3-CLASSES [%] 

EFAG-3-CLASSES [%] 90.66 

Table 8. Results of acoustic fault diagnosis of the AG using SMOFS-2NFC and NN classifier (11 features) 571 

Type of acoustic signal EFAG [%] 

Healthy AG 80 

AG with 1 blocked air inlet 100 

AG with 2 blocked air inlets 100 

 EFAG-3-CLASSES [%] 

EFAG-3-CLASSES [%] 93.33 

 572 

Table 9. Results of acoustic fault diagnosis of the AG using SMOFS-4NFC and NN classifier (15 features) 573 

Type of acoustic signal EFAG [%] 

Healthy AG 80 
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AG with 1 blocked air inlet 100 

AG with 2 blocked air inlets 100 

 EFAG-3-CLASSES [%] 

EFAG-3-CLASSES [%] 93.33 

 574 

The results of acoustic fault diagnosis of the AG using SMOFS-NFC and Naive Bayes classifier were 575 

shown in Tables 10-12. 576 

 577 

Table 10. Results of acoustic fault diagnosis of the AG using SMOFS-0NFC and Naive Bayes classifier (7 578 

features) 579 

Type of acoustic signal EFAG [%] 

Healthy AG 100 

AG with 1 blocked air inlet 100 

AG with 2 blocked air inlets 100 

 EFAG-3-CLASSES [%] 

EFAG-3-CLASSES [%] 100 

 580 

Table 11. Results of acoustic fault diagnosis of the AG using SMOFS-2NFC and Naive Bayes classifier (11 581 

features) 582 

Type of acoustic signal EFAG [%] 

Healthy AG 100 

AG with 1 blocked air inlet 100 

AG with 2 blocked air inlets 100 

 EFAG-3-CLASSES [%] 

EFAG-3-CLASSES [%] 100 

 583 

Table 12. Results of acoustic fault diagnosis of the AG using SMOFS-4NFC and Naive Bayes classifier (15 584 

features) 585 

Type of acoustic signal EFAG [%] 

Healthy AG 100 

AG with 1 blocked air inlet 100 

AG with 2 blocked air inlets 100 

 EFAG-3-CLASSES [%] 

EFAG-3-CLASSES [%] 100 

 586 

Recognition efficiency for 3 classes EFAG-3-CLASSES was in the range of 90.66-93.33% for NN classifier. 587 

EFAG-3-CLASSES was equal to 100% for Naive Bayes classifier.  588 

We can notice that SMOFS-0NFC computes same components frequency as 589 

SMOFS-MULTIEXPANDED method [23]. The proposed methods SMOFS-2NFC and SMOFS-4NFC compute 590 

more frequency components. SMOFS-2NFC and SMOFS-4NFC have higher recognition efficiency for 3 591 

classes (EFAG-3-CLASSES) than SMOFS-MULTIEXPANDED [23].  592 

 593 

6. Discussion 594 

 595 

Fault diagnosis is an essential task for many industrial processes. It ensures the safety of 596 

electrical and mechanical systems. Moreover, it enables to decide whether a fault has occurred or 597 

not. If faults have occurred, then they can be detected by diagnostic information such as: acoustic 598 

signals, vibration, temperature, electric current, voltage signals etc. Electrical faults can be detected 599 

by all mentioned signals. However, some of mechanical faults (for example faulty shaft) are difficult 600 
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to detect using electrical or thermal signals. Acoustic signals are good for detection of both types of 601 

faults. However acoustic signals contain noise. The recognition results can be low if there are no 602 

training samples of specific fault in training set. The presented technique is based on training and 603 

test set. There is a need to capture similar acoustic signals from a similar motor. Appropriate 604 

microphone and appropriate distance from the microphone (tracer KTM 43948) to the motor are also 605 

required.  606 

Several types of faults can be diagnosed by acoustic based technique. The authors analyzed 607 

bearings faults and ventilation faults. Other mechanical (faulty gears, faulty shafts, damaged 608 

sprockets) and electrical faults (broken rotor coils, shorted coils) can be also diagnosed similarly. The 609 

acoustic based approach is not expensive compared to thermal analysis or vibration analysis. 610 

The SMOFS-NFC method has recognition results in the range of 89.33−100%. It is good method 611 

compared to other acoustic based fault diagnosis methods [20−30]. Adjacent frequency components 612 

are used in the analysis. Adjacent frequency components are slightly better than several frequency 613 

components (for example SMOFS-MULTIEXPANDED). The SMOFS-0NFC finds same frequency 614 

components as SMOFS-MULTIEXPANDED (Tab. 1, 4, 7, 10). SMOFS-2NFC and SMOFS-4NFC have 615 

higher recognition efficiency for 3 classes (EFAG-3-CLASSES) than SMOFS-MULTIEXPANDED [23]. 616 

Analyzed Verto 50G515 electric impact drills (500 W) and Verto 51G053 angle grinders (500W) 617 

have similar construction as other power tools. The proposed approach based on the SMOFS-NFC 618 

method can be also used for different power tools and types of faults. 619 

 620 

7. Conclusions and future work 621 

Predictive maintenance of power tools is essential process in the industry. It prevents 622 

downtimes and accidents. It also decreases maintenance costs. Many fault diagnosis techniques have 623 

been developed to protect electrical motors. In this study, the authors analyzed following acoustic 624 

signals: healthy EID, EID with damaged rear bearing, EID with damaged front bearing, healthy AG, 625 

AG with 1 blocked air inlet, AG with 2 blocked air inlets.  626 

The authors proposed the method of feature extraction SMOFS-NFC. The SMOFS-NFC 627 

(SMOFS-0NFC, SMOFS-2NFC, SMOFS-4NFC) was used to extract features of acoustic signals of 628 

power tools. Features were classified by the nearest neighbor classifier and Naive Bayes classifier. 629 

The authors analyzed 100 test samples of healthy EID, 100 test samples of EID with damaged rear 630 

bearing, 100 test samples of EID with damaged front bearing. The authors analyzed 50 test samples 631 

of healthy AG, 50 test samples of AG with 1 blocked air inlet, 50 test samples of AG with 2 blocked. 632 

The authors analyzed 12 training samples of each type of acoustic signal (total 72 training samples). 633 

The authors used supervised learning. Training and test sets were known for the authors. However 634 

computer knows only training set. Analysis showed that test set were analyzed properly by the 635 

computer. Moreover the proposed method was verified by thermal analysis. 636 

The proposed analysis is efficient and has high recognition rate. The classification accuracy was 637 

in the range of 89.33-97.33% for three electric impact drills. The classification accuracy was in the 638 

range of 90.66-100% for three angle grinders. 639 

The conducted analysis shows that: 640 

1) The acoustic based fault diagnosis technique is proposed for detection of bearings faults and 641 

ventilation faults of power tools. 642 

2) The acoustic based analysis is also useful for analysis of electrical and other mechanical faults 643 

of machines. 644 

3) The SMOFS-NFC works well for analysis of acoustic signal of power tools. 645 

4) The same microphone should be used to capture training and test set. 646 
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5) The same distance from the microphone to the motor should be used. 647 

6) There is a need to use similar motors and machines for the analysis. It is difficult to recognize 648 

sound samples properly if we have different types of the motors for training and testing (for 649 

example motor of the train and motor of the electric drill).  650 

The acoustic based analysis is useful for non-invasive fault diagnosis. This analysis is instant. 651 

The cost of equipment is about 350$. In the future the authors will develop the new acoustic based 652 

techniques. New feature extraction methods will be developed. It will be analyzed for noisy 653 

environment. In the future the authors will analyze microphone array and acoustic signals of 654 

electrical motors. Vibrations signals will be also analyzed. Different motors and types of faults will 655 

be also considered.  656 
 657 
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