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Abstract

English

Exogenous insulin infusions are vital for people with type 1 diabetes to partially
make up for the inability of the pancreas to secrete insulin. However, current
intensive therapies may restrict patients’ quality of life. People with this disease
have to constantly make decisions about insulin doses to bring glucose levels to a
safe range. If unsuccessful, they may suffer from chronic and acute complications
related to abnormally high and low glucose values. The automatic regulation
of glucose with artificial pancreas systems promised to reduce patients’ self-
control burdens while improving time in normoglycemia and decreasing variability.
However, these promises are fulfilled only partially. Although this technology
outperforms the glycemic outcomes achieved by conventional therapies, meal
intake and physical activity limit its daytime performance. Indeed, commercially
available systems only can handle them with the support of the patients. For meals,
patients must announce the carbohydrate content to the system. For exercise, they
must notify the activity or take preventive actions like changing glucose setpoint
or decreasing basal well ahead before exercise. These demands do not help reduce
the patient’s burden. They even can compromise the system performance when
the patient misestimates the carbohydrate content, omits the meal announcement,
or cannot plan the exercise event.

Hence, this thesis proposes new methods to eliminate the need for meal and
exercise announcements, thus reducing patient intervention in artificial pancreas
systems for a better quality of life. From a control perspective, meals and exercise
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can be regarded as disturbances; therefore, this thesis exploits methods from the
disturbance rejection and fault accommodation literature to achieve the thesis
goal. Specifically, the following three applications must be highlighted: 1) a
super-twisting-based residual generator has been developed to detect unannounced
meals as the first step to their compensations; 2) a sliding-mode disturbance
observer has been designed to estimate the glucose meal appearance, which is fed
into a bolusing algorithm to compensate the meals; 3) the internal model principle
is employed to mitigate the effects of meal intakes and exercise, supplementing
insulin infusions with carbohydrate recommendations.

As a result, the contributions of this thesis pave the way for the development of
announcement-free artificial pancreas systems, releasing patients from the burden
of diabetes management.

Castellano

Las infusiones exógenas de insulina son vitales para las personas con diabetes
tipo 1 para suplir parcialmente la incapacidad del páncreas de secretar insulina.
Sin embargo, las terapias intensivas actuales pueden restringir la calidad de vida
de los pacientes. Los pacientes con esta enfermedad tienen que tomar decisiones
constantemente sobre las dosis de insulina que lleva a la glucosa a niveles seguros.
Si no lo consiguen, pueden sufrir las complicaciones crónicas y agudas derivadas
de los niveles anormalmente altos o bajos de glucosa. La regulación automática de
glucosa con sistemas de páncreas artificial prometía reducir la carga del autocontrol
de la enfermedad al mismo tiempo que se mejoraba el tiempo en normoglucemia
y se reducía la variabilidad. Sin embargo, estas promesas sólo se han cumplido
parcialmente. Aunque esta tecnología mejora el control glucémico que logran las
terapias tradicionales, la ingesta de alimentos y la práctica de ejercicio limitan
la eficiencia de los sistemas de páncreas artificial durante el día. De hecho, los
sistemas comerciales sólo pueden hacerles frente con la ayuda de los pacientes. Para
compensar las ingestas, los pacientes deben anunciar el contenido de carbohidratos
al sistema. Para el ejercicio, deben anunciar el inicio de la actividad o tomar
medidas preventivas como modificar la referencia de glucosa o reducir la basal
con mucha antelación. Estas exigencias no sólo no ayudan a reducir la carga del
paciente, sino que pueden comprometer la eficiencia del sistema cuando el paciente
se equivoca al estimar los carbohidratos, omite el anuncio de la comida o no puede
planificar el ejercicio.

Así pues, esta tesis propone nuevos métodos para eliminar el anuncio de ingestas
y ejercicio lo que ayudaría a reducir la intervención del paciente en los sistemas
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de páncreas artificial, y, en consecuencia, mejorar la calidad de vida. Desde un
punto de vista de control, las ingestas y el ejercicio pueden considerarse perturba-
ciones. Esta tesis explota métodos de la literatura de rechazo de perturbaciones y
acomodación de fallos para lograr el objetivo de la tesis. En concreto, hay que
destacar tres aplicaciones: 1) se ha desarrollado un observador super-twisting para
detectar comidas no anunciadas como primer paso para su compensación; 2) se ha
diseñado un observador de modos deslizantes de primer orden para la estimación
de la ratio de aparición de glucosa, la cual ha sido integrada en un generador
de bolos para compensar las comidas; 3) se ha empleado el principio de diseño
por modelo interno para mitigar el efecto de las ingestas de alimentos y ejercicio,
añadiendo sugerencias de carbohidratos de rescate a la insulina.

Como resultado, las contribuciones de esta tesis allanan el camino para el desarrollo
de sistemas de páncreas artificial sin anuncios, que liberen al paciente de la carga
de la gestión de la diabetes.

Valencià

Les infusions exògenes d’insulina són vitals per a les persones amb diabetis tipus 1
per a suplir parcialment l’incapacitat del pàncrees de secretar insulina. No obstant,
les teràpies intensives actuals poden restringir la qualitat de vida dels pacients.
Les persones amb aquesta malaltia han de prendre decisions contínuament sobre la
dosi d’insulina que fa que la glucosa estiga en valors segurs. Si no ho aconsegueixen,
poden sofrir les complicacions cròniques i agudes derivades dels nivells anormalment
alts o baixos de glucosa. La regulació automàtica de glucosa amb sistemes de
pàncrees artificials prometia reduir la càrrega d’autocontrol de la malaltia al mateix
temps que es millorava el temps en normoglucèmia i es reduïa la variabilitat. No
obstant, aquestes promeses s’han complit només parcialment. Encara que aquesta
tecnologia millora el control de la glucosa, la ingesta d’aliments i la pràctica
d’exercici limiten l’eficiència dels sistemes de pàncrees artificials durant el dia. De
fet, els sistemes comercials només poden fer-les front amb la ajuda dels pacients.
Per a compensar les ingestes, el pacients han d’anunciar al sistema la quantitat
de carbohidrats. Per al exercici, han d’anunciar l’inici de l’activitat o prendre
mesures preventives com modificar la referència de glucosa o reduir la infusió basal
d’insulina. Aquestes exigències no només no ajuden a reduir la càrrega al pacient,
sinó que poden comprometre l’eficiència del sistema quan el pacient confon la
estimació dels carbohidrats, omet l’anunciament de la ingesta o no pot planificar
l’exercici.
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Així doncs, aquesta tesi proposa nous mètodes per a eliminar l’anunciament
d’ingestes i exercici permetent reduir així la intervenció del pacient, i, en conse-
qüència, millorar la qualitat de vida. Des del punt de vista de control, les ingestes
i el exercici poden considerar-se pertorbacions. Aquesta tesi explota mètodes de la
literatura de rebuig de pertorbacions i acomodament de fallades. En particular, es
destaquen tres aplicacions: 1) s’ha desenvolupat un observador super-twisting per
a detectar ingestes no anunciades com a primer pas per a la seua compensació; 2)
se ha dissenyat un observador de modes lliscants per a estimar el rati d’aparició
de glucosa de la ingesta, el qual s’ha integrat en un generador de bols d’insulina
per compensar les ingestes; 3) se ha empleat el principi de disseny per model
intern per a mitigar l’efecte de les ingestes i exercici, incorporant recomanacions
de carbohidrats a la insulina.

Com a resultat, les contribucions d’aquesta tesi obren el camí per a desenvolupar
sistemes de pàncrees artificial sense anunciaments, que alliberen al pacient de la
càrrega de la gestió de la diabetis.
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Chapter 1

Introduction

1.1 Scope and motivation

The following quote from a person with Type 1 diabetes mellitus (T1DM) illustrates
the motivation of this dissertation:

If you go out for a meal with friends that can be a big drama. It
just requires guesstimates, em, buffets are clearly a nightmare: that’s
just, yeah. It’s just pick a number [laughing], kinda correct later.
(Participant of APCam11 trial, Lawton et al. 2019)

“Drama,” “Nightmare,” ... few people would use these words when describing
their feelings towards going out for lunch or dinner. Unfortunately, the more than
eight million people living with T1DM worldwide have reasons to feel like that
(International Diabetes Federation 2021; Gregory et al. 2022): insulin replacement
is essential to avoid the life-threatening complications of the disease, but current
treatments demand a constant intervention and decision-making from the patient
side, which affects their psychosocial health. This dissertation proposes control
structures to alleviate the burdens related to the self-management of meals and
exercise in the Artificial Pancreas (AP) context, aiming at automating insulin
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Chapter 1. Introduction

delivery without patient intervention. Before detailing the dissertation’s objectives,
the context of T1DM and AP is presented in this section.

Cells need energy, in the form of Adenosine triphosphate (ATP), to sustain their
metabolic processes. Human cells can obtain ATP by breaking down glucose, free
fatty acids, and, to a lesser extent, amino acids from carbohydrates, fats, and
proteins in meals, respectively. However, brain cells primarily rely on glucose as
fuel, though ketones, a product of fatty acid oxidation, can be used as an alternative
energy source after a long starvation period. Hence, the need to homeostatically
regulate plasma glucose levels. In normal conditions, blood glucose levels remain
between 70 mg/dL and 170 mg/dL, with a daily average of 100 mg/dL (Alsahli
et al. 2017; Aronoff et al. 2004). This narrow range in plasma glucose is maintained
by intricate coordination of tissues and organs (brain, pancreas, liver, kidneys,
gut, muscle, adipose tissue, etc.) through hormones (insulin, glucagon, amylin,
incretins, somatostatin, grown hormone, cortisol, etc.) and neurotransmitters
(epinephrine, norepinephrine, etc.) that balances the glucose production and
utilization (Alsahli et al. 2017; Aronoff et al. 2004).

Insulin and glucagon are the most important factors for plasma glucose regulation
on a moment-to-moment basis. After meal ingestion (i.e., the postprandial period),
the pancreatic β cells respond to the rise of glucose by secreting insulin. This
hormone signals cells to use or store glucose, consequently reducing blood glucose
levels. Specifically, insulin triggers the following actions: 1) increases glucose
uptake in insulin-dependent tissues such as skeletal muscle and adipose tissue
through the translocation (movement) of glucose transporters; 2) suppresses
endogenous glucose production from the liver and kidneys, directly (activating or
deactivating enzymes) and indirectly (inhibiting glucagon production or reducing
fatty acids circulating levels); 3) promotes glucose storage in the form of glycogen;
and 4) fosters glucose utilization as the preferred source of energy rather than
fatty acids (Alsahli et al. 2017; Aronoff et al. 2004).

When plasma glucose level descends (i.e., post-absorptive period, exercise, etc.),
insulin levels reduce while glucagon concentration increases. Glucagon is secreted
by the pancreatic α cell. It acts on the liver, promoting the endogenous production
of glucose from glycogen (glycogenolysis) and noncarbohydrate components such
as pyruvate, glycerol, or lactate (gluconeogenesis) (Szablewski 2017).

The complex mechanism tightly regulating the plasma glucose in people without
diabetes fails in T1DM due to the autoimmune destruction of the pancreatic insulin-
producing β-cells triggered by a not well-known interplay of genetic, immunological,
environmental, and gut microbiome determinants (DiMeglio et al. 2018; Gómez-
Díaz 2019). The deficient secretion of this hormone in T1DM imbalances the tight
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equilibrium between glucose production, uptake, and intestinal absorption, leading
to an abnormal glucose increase known as hyperglycemia.

Persistent hyperglycemia can damage small blood vessels, eventually altering the
function of the eyes, kidneys, and nervous system (DiMeglio et al. 2018; Díaz-Flores
et al. 2019). Progression of these alterations can lead to other complications, such
as ulcers and infections, increasing the risk of foot or limb amputation (Harkless et
al. 2019). Hyperglycemia can also promote blood clots that block big vessels toward
the heart or brain, raising acute complications like cardiomyopathy, myocardial
infarction, or stroke (DiMeglio et al. 2018). These complications reduce the life
expectancy of individuals with T1DM compared to people without it (Lieber
et al. 2015; Livingstone et al. 2015). Furthermore, untreated hyperglycemia is
related to an accumulation of ketones in the bloodstream (diabetes ketoacidosis)
due to metabolizing fatty acids as a source of energy alternative to glucose. This
condition can cause nausea, abdominal pain, weakness, and, in severe cases, lead
to loss of consciousness, seizure, coma, or death (Orban et al. 2018).

Although promising treatments are under research (e.g., encapsulated β-cell
transplantation, cell therapy, glucose-responsive insulins, etc; Domingo-Lopez et al.
2022; Seetharaman et al. 2022), exogenous insulin replacement is still paramount to
circumvent hyperglycemia-related complications in people with T1DM. The most
extended insulin replacement treatments (e.g., multiple daily injections, continuous
insulin infusion, sensor-augmented pumps) infuse or inject insulin through the
subcutaneous tissue since this route is more accessible for domiciliary use than
other more physiological ones such as intraperitoneal or intravenous (Renard 2008).
The subcutaneous route also allows more insulin bioavailability than non-invasive
routes such as oral, intranasal, transdermal, or ocular (El Maalouf et al. 2022).

These subcutaneous insulin intensive regimes intend to mimic the pancreatic
insulin secretion to lower the blood glucose, following a basal-bolus pattern. On
the one hand, basal insulin covers the daily insulin demands for liver, adipose
tissue, and muscle during starvation (Faradji et al. 2019a). To imitate this pattern
subcutaneously, one or two shots of ultra-long or long-acting insulin are delivered in
the multiple daily injection therapy, or a continuous delivery of rapid or fast insulin
is infused for pump-based treatments. On the other hand, the bolus insulin reduces
the postprandial (after meals) glucose increase by promoting glucose uptake and
inhibiting endogenous production (Faradji et al. 2019a). The insulin boluses are
delivered as peaks of rapid-acting insulin at mealtime, ideally 15-20 min earlier
(Weinzimer et al. 2008). To calculate the insulin boluses, patients must estimate
the carbohydrate meal content (Reiterer et al. 2019), which is a challenging and
burdensome task.
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Numerous studies have shown that intensive insulin therapies decrease the glycated
hemoglobin (a measure of the average blood glucose in the last three months), which
retards the progression of microvascular complications, reduces their appearance,
and decreases the mortality risk (DCCT 1993; Virk et al. 2016; Orchard et al. 2015).
However, intensive insulin therapies are also related to hypoglycemia (DCCT 1993),
a condition of abnormally low plasma glucose level with a short-term impact, such
as palpitations, trembling, anxiety, hunger, or concentration difficulties, and, if
untreated, with potentially dangerous consequences like a seizure, cardiac arrest,
cerebral ischemia, coma, or death (Orban et al. 2018; Faradji et al. 2019b).

Therefore, people with T1DM under intensive therapies must frequently check
their glucose levels and modify the basal and bolus accordingly to steer the glucose
to a safe range (a value between 70 mg/dL and 180 mg/dL is usually accepted
as a coarse range; Battelino et al. 2019) or normoglycemia. Also, they need to
have carbohydrate supplements handy and decide when to use them to correct
glucose drops. But, despite being adherent to the therapy, external and internal
factors (meals, exercise, illnesses, stress, etc.) may frustrate their attempts to be
in normoglycemia. This substantial degree of self-management impacts patients’
emotional health and social life. For instance, fear of hypoglycemia is behind the
causes of mood changes, anxiety, or sleep disorders T1DM patients usually suffer,
leading to a deliberate suboptimal treatment of the disease (Faradji et al. 2019b).
In addition, this disease shapes the meal patient habits. Some patients prefer to
stick to a regular meal pattern to simplify the insulin bolus calculation (Lawton
et al. 2019). When these habits are perturbed (e.g., going out for lunch or dinner),
the patient can feel doubtful and stressed; especially adolescent even may decide
to skip the bolus to avoid revealing the disease (Bishop et al. 2009).

Fortunately, advances in technology in the last 50 years have helped patients to re-
duce their burden of the self-management: new calibration-free continuous glucose
monitors (CGM) are predetermined to replace the annoying blood finger-pricking
samples as a measure of glucose while providing a more detailed picture of the
daily glucose profile; insulin pumps have made the basal selection more flexible
compared to insulin shots, and sensor-augmented pumps have mitigated nocturnal
hypoglycemia (and the fear of it) suspending the pump if reduced blood glucose
is measured or predicted (Forlenza et al. 2020). In that technological quest for
enhancing patients’ life, the announcement of the U.S Food and Drug Administra-
tion (FDA) on the 28 September 2016 became a milestone: the Medtronic 670G
(Medtronic, Northridge, CA, United States), the first day-and-night closed-loop
system for glucose regulation, also known as AP, was approved for medical use.
Since then, six APs systems have been available in the market, and more than
20 institutions worldwide have been researching on this topic (León-Vargas et al.
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2022). Also, communities of people with T1DM, families, and care-providers have
played an active role in the development of AP systems; they have created and
promoted do-it-yourself (DIY) AP systems counting thousands of users worldwide
despite being unregulated and unapproved for medical use (Jennings et al. 2020;
Lum et al. 2021).

An AP system employs a control algorithm to calculate the insulin infusion
delivered by the insulin pump from glucose readings provided by the CGM. Com-
mercially available AP systems are based on Proportional-Integral-Derivative
controller (PID), Model Predictive Controller (MPC), or fuzzy-logic-based con-
trollers (Thomas et al. 2021). However, other techniques have been exploited
to implement controllers in AP systems, such as sliding mode techniques, linear
parameter varying systems, robust fixed point transformation approaches, or
machine learning algorithms (Tašić et al. 2022).

Recent meta-analyses of randomized controlled clinical trials have shown the
effectiveness of the AP systems: compared to open-loop intensive therapies, the
AP systems increased the percentage time in 70-180 mg/dL (normoglycemia) by
7.91-17.85 %, reduced the percent time above 180 mg/dL (hyperglycemia) and
below 70 mg/dL (hypoglycemia) by 0.67-8.89 % and 0.67-1.49 %, respectively, and
decreased the glucose variability (Jiao et al. 2022; Fang et al. 2022; Pease et al.
2020; Karageorgiou et al. 2019; Bekiari et al. 2018). Observational studies of
commercial AP systems in real-life experiences with follow-up periods exceeding
the five months (Jacobsen et al. 2022; Pintaudi et al. 2022; Breton et al. 2021;
Varimo et al. 2021; Da Silva et al. 2021) or with more than 800 individuals involved
(Silva et al. 2022; Breton et al. 2021; Da Silva et al. 2021) confirm the results
of the randomized controlled trials. With more time in normoglycemia and less
variability, these improved glycemic outcomes foresees a reduction of the risk of
acute complications with this technology (El Malahi et al. 2022; Yapanis et al.
2022). Regarding the psychosocial impact of AP systems, quantitative studies
with surveys produce promising but still incongruous results: Beato-Víbora et al.
(2021) show that the Minimed 780G improves the quality of life and sleep, but
no statistically significant differences were demonstrated for satisfaction, distress,
or fear of hypoglycemia. Conversely, Boscari et al. (2022) and Polonsky et al.
(2022) reported a statistically significant improvement in fear of hypoglycemia and
satisfaction, but not in the quality of life or sleep. Lastly, Jiao et al. (2022)’s meta-
analysis unveils no improvement in distress, satisfaction, or quality of life. These
inconsistencies may exist because the analyzed AP technologies were different or
because of common disconformities in CGM and pumps (e.g., technical glitches,
alarms, physical bulk, information overload, constant reminding of the disease,
body image, etc.) counterpoise the benefits (Farrington 2018).
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Although AP systems outperform the glycemic metrics of open-loop intensive
therapies, the most noticeable differences occurred overnight. For instance, Jiao
et al. (2022)’s meta-analysis reported that AP systems improved the time in
normoglycemia of open-loop treatments by 16.22 % within the nocturnal period,
while this difference decreased to 6.62 % within the diurnal period. Bekiari et al.
(2018)’s meta-analysis, with involved more heterogeneous clinical trials than Jiao
et al. (2022)’s, found that the improvement of time in range regarding open-loop
treatments was five points larger overnight than within a 24-h period (15.15 %
vs. 9.62 %); since the diurnal time in range contributes more to the overall time
in range than the resulted from the nocturnal period, the difference regarding
the diurnal period might be still more remarkable. AP systems outperform open-
loop therapies just moderately during the daytime because the largest glycemic
disruptors, i.e., meal intakes and exercise events, occur within this period. Indeed,
like open-loop therapies, current systems mostly delegate the compensation of
these disturbances to patients.

Most of the AP systems assessed in randomized controlled trials and all the
commercialized ones so far are hybrid systems (Phillip et al. 2022). This means that
users must estimate the carbohydrate meal content and provide it to the system to
calculate a prandial bolus (Weinzimer et al. 2008). Prandial boluses advance the
meal insulin coverage at mealtime; otherwise, the postprandial excursion may be
intolerably elevated (Weinzimer et al. 2008; Dovc et al. 2020) due to the delayed
insulin action, sensor lags, and the dysregulation of other hormones involved in the
glucose homeostasis (e.g., amylin and glucagon). Albeit worthwhile, carbohydrate
counting places a burden on subjects, and, if not provided timely and accurately,
can degrade the AP performance (Boughton et al. 2019; De Bock et al. 2017).

Another disturbance that limits the performance of AP systems is physical ac-
tivity. In T1DM patients, physical activity may lead to either hyperglycemia or
hypoglycemia depending on the type (aerobic, anaerobic, or interval), duration,
intensity, or circulating plasma insulin (Tagougui et al. 2019). Due to the short-
coming negative consequences of exercise-induced hypoglycemia, most patients
abandon a regular exercise practice renouncing its positive effects on glycated
hemoglobin control, body weight, blood lipid profile, and cardiorespiratory fitness
(Riddell et al. 2017; Tagougui et al. 2019). Current hybrid AP systems require the
patient to announce the activity for the system to reduce the insulin infusion or
increase the glucose targets (Thabit et al. 2021; Fuchs et al. 2020). Insulin absorp-
tion delays and stacking do not guarantee an immediate reduction of circulating
insulin levels. Therefore, exercise must be announced with anticipation of hours
to reduce, albeit not eliminate, the risk of hypoglycemia (Tagougui et al. 2019;
Zaharieva et al. 2020). This supposes another restriction on patients’ life and
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another discouraging factor to practicing exercise. Also, hyperglycemia may arise
if the patient skips the announced exercise. Furthermore, some physical activities
just cannot be planned (e.g., walking fast to reach a place on time).

Aware of the positive impact removing meals and exercise announcements would
have on patients, the research group framing this dissertation targets integrating
these features into the AP systems they have been developing for more than
ten years. While one open research line in the group (Moscardó et al. 2019a;
Moscardó et al. 2019b) is addressing this goal with a dual-hormone system (a
system that includes glucagon to increase the glucose levels), this dissertation
continues the works of Ramkissoon et al. (2019), Beneyto et al. (2018) that resort
to a single-hormone system augmented by carbohydrate recommendations to
handle unannounced exercise events. Although these works reduced the risk of
exercise-hypoglycemia, the latter with success in a clinical trial (Viñals et al. 2021),
they always considered announced meals. This dissertation intends to fill this gap.

1.2 Objectives

Therefore, the general goal of this dissertation is to design new methods to
reduce patient intervention by eliminating the need for meal intake and
exercise event announcements in AP systems. These methods should result in
independent modules that can be integrated, with minimal modifications, into a
wide range of hybrid AP systems; this would simplify its application into already
designed hybrid AP systems. In addition, once integrated these modules in the
AP, the overall system should perform similarly to the hybrid counterpart.

To address this general goal, three further specific objectives are pursued in this
dissertation:

1. To identify the challenges of glycemic control against meals and exercise
events with AP systems, especially when these events are not announced to
the system.

2. To detect or estimate the effect of meal intakes and exercise events on glucose
as a first step toward developing announcement-free AP systems.

3. To construct announcement-free AP systems integrating the estimation
methods developed in the previous sub-objective.
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1.3 Outline

This dissertation is structured as follows:

• Chapter 2 reviews the limitations of announcing meals and exercise. It also
studies the strategies that have been applied in the literature to remove these
announcements.

• Chapter 3 presents methods to estimate the effect of meals on glucose.
Specifically, the performance of a first-order sliding mode observer and a
Kalman filter will be compared with simulations. As a complement to this
chapter, Chapter 4 illustrates the reconstruction of the meal disturbance
with the sliding mode observer when the observer employs clinical data as
input. Similarly, this chapter shows that the exercise effect on glucose can
also be estimated from a clinical dataset with the observer.

• Chapter 5 designs an algorithm that detects when an unannounced meal
starts affecting glucose. The algorithm, consisting of a super-twisting observer
and a threshold-based decision logic, was assessed with simulation and clinical
data.

• Chapter 6 develops the first strategy proposed in this thesis to deal with
unannounced meals. The proposed module includes a bolusing algorithm
that computes insulin bolus based on the meal estimation and detection
information provided by the methods developed previously.

• Chapter 7 develops the second strategy proposed in this thesis to deal
with unannounced meals, which also can deal with unannounced exercise
events. The proposed module uses an internal model control approach with
a switching logic to counteract the postprandial glycemic excursion with
bolus-like insulin infusions or suggest carbohydrate intakes to avoid severe
hypoglycemias.

• Finally, Chapter 8 closes the dissertation by discussing the results, the
limitations, and future work.
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Chapter 2

Announcement-free artificial
pancreas systems: challenges

and state of the art

Commercially available AP systems rely on patient actions (i.e.,
announcements) to compensate for meal intakes and exercise events.
Releasing patients from the burden of meal and exercise announcements
is challenging because of the limitations of the insulin administration
route and glucose measurement, variability, and ineffectiveness of
glucoregulatory hormones other than insulin, among others. This
chapter describes the challenges of announcement-free AP to handle
meal and exercise events. The chapter also presents a classification of
the methods used in the literature to address these challenges.

2.1 Introduction

Up to six AP systems are commercially available (Domingo-Lopez et al. 2022;
Phillip et al. 2022; Rodríguez-Sarmiento et al. 2022): the Medtronic 670G
(Medtronic, Northridge, CA, USA), the Medtronic 780G (Medtronic, Northridge,
CA, USA), the t:slim X2 pump with Control-IQ (Tandem, San Diego, CA, USA),
the CamAPS FX (CamDiab, Cambridge, UK), the DBLG1 (Diabeloop, Grenoble,
France), and the Insulet Omnipod 5 (Insulet, Billerica, MA, USA). All these sys-
tems include the three principal elements of a closed-loop system (Figure 2.1): a
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sensor (the Continuous Glucose Monitor (CGM)), an actuator (the insulin pump),
and a controller (a PID or an MPC, extended in some cases with fuzzy logic
features). However, they are deemed “hybrid” since the patient is not only the
controlled plant but must be involved in the control logic (Phillip et al. 2022). Due
to the limitations of the subcutaneous route for insulin delivery and glucose mea-
surement, manual interventions become paramount when handling disturbances
with a significant impact on glucose, such as meals and physical activity.

Figure 2.1: Basic hybrid artificial pancreas overview.

On the one hand, the system requires the patient to announce the carbohy-
drate meal content, ideally 15–20 min in advance, to calculate a prandial insulin
bolus. This prandial insulin bolus effectively reduces the postprandial excur-
sion (Weinzimer et al. 2008). However, carbohydrate counting hampers diabetes
self-management, and patients would prefer simplifying it or discharging from
it (Fortin et al. 2017). In addition, an accurate estimation of carbohydrates is
challenging; patients tend to underestimate high-carbohydrate-content meals and
overestimate low-carbohydrate-content meals (Kawamura et al. 2015; Roversi
et al. 2020). Even though the meal carbohydrate content was accurately esti-
mated, other macronutrients (e.g., fat, fiber, and proteins) or alcohol influence the
glycemic postprandial response (Vetrani et al. 2022; García et al. 2021; Gingras
et al. 2018a); consequently, other bolus amounts and patterns may be required
(Bell et al. 2016; Keating et al. 2021). For instance, fat and proteins enlarge
the postprandial duration; hence, wave-like boluses are preferable over a single
prandial bolus (Bell et al. 2016). Faced with this complexity in estimating boluses,
some patients stick to strict eating behaviors, and may feel unconfident or anxious
when having lunch outside or eating more or less than anticipated (Lane et al.
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2021). Furthermore, delays in the administration of boluses and omissions are
frequent (Lane et al. 2021; Bishop et al. 2009). Indeed, patients prefer a mealtime
bolus to the most recommended pre-meal bolus infused 15-20 min before the meal
(Lane et al. 2021). Besides being a burdensome task, if the manual bolus is not
delivered timely and accurately, the performance of the AP may decline. These
systems usually tolerate carbohydrate underestimation better than open-loop
therapies (Cherñavvsky et al. 2016; Grosman et al. 2016); however, overestimation
and delays may cause hypoglycemia (Boughton et al. 2019; De Bock et al. 2017).

On the other hand, hybrid AP systems’ users have to announce exercise start
30–90 min ahead (Thabit et al. 2021; Zaharieva et al. 2020). This way, the system
can reduce the aggressiveness of the controller (e.g., increasing glucose target,
reducing basal insulin, etc.) to mitigate the risk of hypoglycemia. Nevertheless,
exercise announcement burdens patients since some physical activity is sponta-
neous, especially in children (Quirk et al. 2014). In addition, reducing controller
aggressiveness may lead to hyperglycemia if the exercise is skipped.

Given the drawbacks of meal and exercise announcements mentioned above, several
strategies have been developed in the literature to remove them. This chapter
reviews the most relevant methods and the challenges of applying them.

2.2 Challenges of diurnal control

Before addressing the strategies for announcement-free AP systems, this section
details the limitations of a system without announcement against meals and
exercise events.

2.2.1 Postprandial control

Figure 2.2 illustrates the challenges and limitations of meal control. The first
challenge is avoiding postprandial hyperglycemia (Gingras et al. 2018b). In a
non-diabetic person, the pancreas releases insulin before glucose from meals reaches
the bloodstream, stimulated by the sensory receptors in the oral cavity (Teff 2011).
This early release contributes to reducing the postprandial glucose excursion since
it prevents a rapid glucose increase and attenuates endogenous glucose production.
A meal-announcement-free system cannot count on this anticipatory insulin release;
the system needs to sense the glucose rise to start compensating for the meal
intake. Therefore, the controller cannot react until, first, the plasma glucose
begins to increase (on average, 10 min after the meal intake; American Diabetes
Association 2001; Gingras et al. 2018b), and, second, the CGM acknowledges this
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change in the interstitial fluid (a physiological lag between 5 and 10 min; Basu
et al. 2015).

Besides a delayed reaction against the meal intake, insulin’s slow pharmacokinet-
ics/pharmacodynamics limit the compensation for the meal rise. The rapid-acting
insulin analogs start lowering the glucose (i.e., onset action) 10–15 min after the
subcutaneous administration, with an action peak at 60–120 min (Gingras et al.
2018b; Sharma et al. 2019). Thus, insulin lowers the glucose concentration at a
slower rate than glucose appearing in the blood.

The subcutaneous route is also ineffective in inhibiting endogenous glucose pro-
duction (Edgerton et al. 2021). In a non-diabetic person, the insulin secreted
endogenously is absorbed into the hepatic portal vein; hence, the blood entering
the liver contains more insulin than in the rest of the body. This liver-to-arterial
insulin gradient is relevant to effectively reduce the hepatic glucose production
(Edgerton et al. 2021). Since the subcutaneously-administered insulin is absorbed
into the peripheral circulation, this higher concentration of insulin in the liver is
no longer possible; thus, the suppression of the hepatic glucose production occurs
later and with a lower magnitude than when insulin is secreted endogenously
(Edgerton et al. 2021; Thomas et al. 2021). To aggravate this hyperglycemic situa-
tion, the auto-immune destruction of the β-cells also reduces the production of
amylin (Infante et al. 2021). This hormone delays gastric emptying and suppresses
glucagon release (Ling et al. 2019). Therefore, the postprandial glucose excursion
in T1DM is more extensive and prolonged than in a non-diabetic person.

A meal-announcement-free AP system can mitigate hyperglycemia by increasing
the controller’s aggressiveness, for instance, delivering boluses or re-tuning the
controller after detecting the meal, as seen later in Section 2.3. However, an excess
of insulin can lead to late postprandial hypoglycemia; avoiding these hypoglycemia
events is the second challenge of postprandial control (Figure 2.2). Insulin cannot
be removed exogenously (negative control actions are not possible); thus, once the
insulin reaches the bloodstream, its glucose-lowering effect may remain active up to
5 h later (Sharma et al. 2019). Besides the non-negativeness of the control action,
the meal absorption has faster dynamics than the insulin action. As a result, any
attempt to compensate for hyperglycemia would result in an undershoot (Goodwin
et al. 2015). In addition, during the subcutaneous absorption, insulin can be
stacked in depots in the subcutaneous tissue (Fathi et al. 2018). Then, it can reach
the bloodstream when the meal has already been absorbed, and plasma glucose
has started to decrease. An excess of this “insulin-on-board” explains many of
hypoglycemic events occurring at the late postprandial (Fathi et al. 2018).
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The third challenge in postprandial control is coping with the variability. The
insulin absorption and action profiles vary considerably among people (Heinemann
2002). Furthermore, an individual’s insulin demands can change daily, even during
the day. For instance, a certain amount of carbohydrates for breakfast requires
more insulin than the same amount at lunch or dinner (Hinshaw et al. 2013). In
addition, the nutritional composition of meals influences the postprandial glucose
excursion. For example, a meal rich in proteins or fat would lead to a more
extended postprandial period than another meal with a lower content of these
macronutrients even though both have the same amount of carbohydrates (García
et al. 2021). Moreover, other factors such as emotional or physical stress, illness,
hormonal changes, and microbiome shape the postprandial glucose excursion
(Gingras et al. 2018a; Wilson et al. 2021). Thus, identical meals can result in
different glucose levels between days or individuals (Rasmussen 1993; Dingena
et al. 2020).

2.2.2 Post-exercise control

Regular practice of physical activity enhances cardiorespiratory fitness, muscular
strength, endothelial function, and blood lipid profile. It is also related to better
HbA1c levels and a lower risk for cardiovascular disease, stroke, or diabetes-
related complications such as retinopathy (Riddell et al. 2017; Codella et al. 2017).
However, physical activity has a complex impact on glucose; glucose may decrease
or increase depending on the intensity and duration, hampering the physical
activity management (Moser et al. 2020).

During exercise, contraction of skeletal muscle fibers promotes glucose uptake
without the mediation of insulin (Rose et al. 2005); thus, the first endocrine
response in individuals without T1DM is to reduce insulin secretion. An exercise-
announcement-free AP system cannot reduce the circulating insulin levels in
such a short time (Figure 2.3). The reasons are similar to the ones discussed in
Section 2.2.1. On the one hand, the CGM may not sense timely a plasma glucose
decrement because the change of temperature and blood flow following exercise
onset, added to the plasma-to-interstitial diffusion lag, compromise its accuracy
(Fabra et al. 2021). On the other hand, despite suspending the pump, insulin may
remain active due to the prolonged action time of insulin (Zaharieva et al. 2019)
and an accelerated insulin absorption rate from the subcutaneous depots induced
by the physical activity (Zaharieva et al. 2020).

This inability to timely suppress circulating insulin levels may lead to a high
concentration of insulin during physical activity that, in turn, enhances glucose
uptake while diminishing the endogenous glucose production (Codella et al. 2017).
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Figure 2.2: Summary of the limitations and challenges of postprandial control
without meal announcement. The limitations of the insulin action (slow absorption and
unidirectionality) with the dysregulation of other mechanisms involved in the homeostasis
and the variability challenge the controller with recurrent hyperglycemia and hypoglycemia
events.

This imbalance between glucose disposal and production results in a marked
glucose drop during mild-to-moderate aerobic physical activity (Zaharieva et al.
2019; Moser et al. 2020). Avoiding the concomitant hypoglycemia is the main
challenge for exercise-announcement-free AP systems. In a non-diabetic person,
glucagon, a pancreatic hormone that stimulates hepatic glucose production from
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glycogen, would be secreted to avoid hypoglycemia. Nevertheless, in T1DM,
the progress of the disease and subsequent hypoglycemia events may blunt, and
even suppress, the glucagon response to hypoglycemia (Tagougui et al. 2019).
Other mechanisms to promote endogenous production, such as the secretion of
epinephrine, are also attenuated (Codella et al. 2017). In addition, the risk of
hypoglycemia can be extended more than 10 h after the exercise ends due to the
increased insulin sensitivity and the still high glucose disposal rate to replenish
glycogen stores (Tagougui et al. 2019).

Conversely, vigorous physical activity may result in a glucose rise due to the effect
of catecholamines and cortisol that raises hepatic glucose production and attenuates
glucose disposal (Codella et al. 2017). Similarly, an exercise involving intense
and repetitive muscle contractions augments the lactate levels, promoting hepatic
glucose production (Codella et al. 2017). Therefore, unless insulin increases,
especially during the recovery, glucose production will excel glucose disposal,
increasing the risk of hyperglycemia.

Once the principal challenges of announcement-free systems are described, the
following sections review the most relevant research attempts to address them.

2.3 Strategies to remove meal announcements

A diverse set of techniques have been proposed to remove the need for carbohy-
drate counting. In general, they consist of ad hoc solutions involving multiple
control paradigms (PID control, MPC, sliding mode techniques, observer-based
disturbance rejection, etc.), evaluated in diverse conditions (from simulations to
randomized clinical trials), and even addressing different goals (announcing a
qualitative amount of carbohydrate, reporting only the time, or completely remov-
ing the announcement). Therefore, the comparison between them is challenging.
To organize the exposition, this section groups the techniques into three broad,
complementary strategies (Figure 2.4): 1) increasing the aggressiveness of the
insulin control action once a meal or hyperglycemia is acknowledged, 2) overcoming
the slow insulin absorption with new faster formulation or different administration
routes, and 3) complementing insulin with other hormones or medications.
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Figure 2.3: Summary of the limitations and challenges of post-exercise control
without announcement. The controller cannot reduce the plasma insulin circulating levels
readily. The subsequent high insulin concentration attenuates the effect of counterregulatory
mechanisms, while insulin-independent mechanisms exist to uptake glucose during exercise
resulting in a risk of hypoglycemia. The increased insulin sensitivity and the need to replenish
the glycogen stores may lead to post-exercise hypoglycemia. In contrast, the secretion of
catecholamines and cortisol induced by high-intensity exercise may lead to hyperglycemia.

2.3.1 Increasing the insulin control action aggressiveness during
meals

Accurate carbohydrate-matched prandial insulin boluses are unbeatable for reduc-
ing postprandial hyperglycemia (Goodwin et al. 2015). In a broad sense, prandial
boluses correspond to a high increase of insulin control action aggressiveness within
a short time. Some techniques dealing with unannounced meals try to imitate this

16



2.3 Strategies to remove meal announcements

Figure 2.4: Strategies to remove carbohydrate counting. Three strategies can be
identified to remove carbohydrate counting: increasing the aggressiveness of the insulin
control action, speeding the insulin absorption up, or using adjunctive therapies. Three
methods have been used to increase insulin aggressiveness: delivering boluses or switching to
a more aggressive tuning at detection or partial announcement time, exploiting historical data
to anticipate meals, or using alternative methods to detection. Insulin limitation methods
are usually required in these techniques. To enhance the absorption dynamics, subcutaneous
ultra-fast insulin or the intraperitoneal route has been utilized. Lastly, the adjunctive
therapies that have been evaluated were the pramlintide and medications such as GLP-1A
or SGLT-2I. Notation. MPC: Model Predictive Controller (MPC), GLP-1A: Glucagon-like
peptide-1 receptor agonist (GLP-1A), SGLT-2I: Sodium–glucose co-transporter-2 inhibitor
(SGLT-2I).
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logic wherein a meal occurrence event (announced by the patient or detected by an
algorithm) triggers a series of actions to increase the aggressiveness (insulin boluses,
controller retuning, etc.). Another group of techniques replaces the need for an
explicit meal event with a more continuous meal compensation using methods from
the control engineering toolkit such as observer-based disturbance rejection or
adaptive control. Lastly, other strategies learn food intake patterns from historical
data, allowing them to confirm or anticipate meal events. Examples of these
groups of techniques are reviewed in this subsection.

Partial announcement

A partial announcement, wherein the user provides the mealtime or a qualitative
amount of carbohydrate content (e.g., small, regular, large), is a mid-way approach
between carbohydrate announcement and no announcement. A representative
example of this strategy is implemented in the iLet® Bionic Pancreas (Beta
Bionics, Irvine, CA, USA). This investigational device, which admits glucagon
delivery, included a partial announcement after undesirably large postprandial
glucose excursions found in El-khatib et al. (2010) with a version of the system
that relied only on the feedback controller (a Generalized Predictive Controller
(GPC)) to compensate meals. In newer versions, the user only needs to announce
the mealtime. The system then delivers an insulin bolus calculated from the body
weight and previous infused insulin. In a more recent version of the algorithm
(El-Khatib et al. 2017), the system incorporated the option to define the type of
the meal (breakfast, lunch, or dinner) or grade its size (typical, more than typical,
less than typical, or a small bite). The system was assessed in several clinical trials
resulting in a satisfactory average %time in 70–180 mg/dL ranging from 65 % to
84.8 % (Russell et al. 2012; El-Khatib et al. 2014; Russell et al. 2014; El-Khatib
et al. 2017; Russell et al. 2020; Castellanos et al. 2021; Russell et al. 2022).

Ahmad Haidar’s group, from McGill University, adopted a similar approach to
El-Khatib et al. (2017) for its MPC-based AP system. In this system, the user had
to grade the meal carbohydrate content according to two levels (regular, large), in
a preliminary version (Gingras et al. 2016b), or to four levels (snack, regular, large,
or very large meal) in a more recent version (Gingras et al. 2016a). The system
delivers an insulin bolus according to a fuzzy logic algorithm with this information.
The related clinical trials show that both versions achieved comparable results to
a system with carbohydrate counting, although large meals were more challenging
for the two-level-grading-based algorithm.
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Commercial hybrid AP systems with corrective boluses features, such as the Min-
imed 780G, have also evaluated partial announcement approaches with satisfactory
results (Hirsh et al. 2022).

In the examples above, an insulin bolus was delivered when the user announced
the meals. However, other strategies are possible. For instance, Colmegna et al.
(2018) designed a switched Linear Quadratic Gaussian (LQG) that commutes to an
aggressive controller when the user indicates the meal onset and glucose is rising.
The system also includes an insulin over-delivery safety layer that attenuates the
output of the switched LQG if the insulin-on-board exceeds a limit. This limit is
piecewise and depends on a qualitative estimation of meal size (small, medium,
large). In a 36-h inpatient trial, the system outperformed the open-loop therapy for
the mean %time in 70–180 mg/dL (open-loop: 82.9 % vs. partial announcement:
88.6 %) and the mean %time above 180 mg/dL (open-loop: 33.3 % vs. partial
announcement: 19.5 %). Still, no statistically significant differences were found for
the %time below 70 mg/dL (Sánchez-Peña et al. 2018). In a 72-h outpatient trial,
the controller also increased the %time in 70–180 mg/dL achieved by an open-loop
therapy (50.9 % vs. 46.9 %), but the largest improvement occurred at nighttime
(Garelli et al. 2022).

Detection-based meal compensation

Partial announcements can still place some burden on patients. Also, these
approaches are sensitive to meal announcement skips. Research about meal
detection algorithms has been intense for the last 15 years to avoid these drawbacks.

The design of a meal detector usually involves two stages: 1) to determine signals
and features experiencing large deviations after meals and 2) to construct a
detection logic allowing to acknowledge the meal occurrence from those signals
and features. Most of the meal detector algorithms resort to CGM measurements
(Weimer et al. 2016; Zheng et al. 2019; Villeneuve et al. 2020) or signals derived
from it, such as

• glucose derivatives obtained by numerical approximations (Dassau et al.
2008; Harvey et al. 2014b; Samadi et al. 2017; Hajizadeh et al. 2019a) or
state observers, namely, Kalman Filter (KF) variants (Dassau et al. 2008;
Mahmoudi et al. 2019),

• deviations between the measured and estimated of glucose (Mahmoudi et al.
2017; Fathi et al. 2019; Staal et al. 2019; Xu et al. 2021; Alzate et al. 2022),
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• or estimations of the meal rate of glucose appearance calculated from several
methods like KF variants (Turksoy et al. 2016b; Xie et al. 2016; Ramkissoon
et al. 2018; Fushimi et al. 2019) or moving horizon estimators (Kölle et al.
2017; Mahmoudi et al. 2018).

Other features combine glucose measurements in a more involved way than those
mentioned above: Weimer et al. (2016) present two statistics that result from
the projection of the CGM reading in a physiological-invariant parameter space;
Ramkissoon et al. (2018) utilize the normalized cross-covariance between the
CGM reading and the forward difference of the meal disturbance estimation as
a feature; Samadi et al. (2017) use a qualitative description of the CGM signal;
Mahmoudi et al. (2019) consider the cumulative sum of the error between CGM
and the glucose estimated by a KF; Zheng et al. (2019) construct residuals from
the predictions of multiple models; and Askari et al. (2022) combine CGM-derived
features (product of derivatives, correlation between CGM and its derivatives,
frequency of dominant peaks) with estimations of plasma concentration and gut
absorption rate.

Besides CGM reading, other signals have been employed to detect meals, such as
abdominal sound, head movement, or wrist movement. However, the proposed
methods work as bolus reminders or, in general, medication reminders in other
diseases (Ghosh et al. 2021). To the best of the author’s knowledge, the only
device applied in meal-announcement-free AP systems, though in a feasibility
study, was the smartphone application Klue (Roy et al. 2022). This application
translates the hand movement, registered with a smartwatch, to carbohydrate
doses, which then are fed into a Medtronic 780G to calculate boluses (Roy et al.
2022).

Regarding the detection logic, a large variety of methods have been presented.
Most of the methods apply ad hoc thresholds to the features (Dassau et al. 2008;
Hyunjin et al. 2009; Bon et al. 2010; Wang et al. 2010; Harvey et al. 2014b; Turksoy
et al. 2015; Colmegna et al. 2016; Mahmoudi et al. 2018). In some techniques,
the threshold value roots in the statistics theory. For instance, Xie et al. (2017)
determine a meal when the innovation of a switched KF exceeds a threshold
determined by the chi-square test. Mahmoudi et al. (2017) calculate the threshold
on the innovative term of a KF-like based on the T 2 statistic, while Fathi et al.
(2019) and Palisaitis et al. (2021) use a generalized likelihood test. Other methods
use information from behavioral meal patterns to confirm a meal occurrence
(Cameron et al. 2012; Villeneuve et al. 2020). Lastly, classification algorithms have
also been used to discern the meal events, such as logistic regression (Garcia-Tirado
et al. 2021c; Garcia-Tirado et al. 2021b; Corbett et al. 2022), linear discriminant
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analysis (Kölle et al. 2017; Kölle et al. 2020), extended isolation forest (Zheng
et al. 2020), fuzzy logic (Samadi et al. 2017), or recursive neural networks (Askari
et al. 2022).

Following meal detection, many works adopt some bolusing strategy to compensate
for the meal. When the meal detector algorithm also estimates the meal content,
the AP system typically computes a standard bolus (based on the insulin-to-
carbohydrate ratio and the correction factor) but is attenuated to account for the
detection delays (Fathi et al. 2019; Mahmoudi et al. 2019). Palisaitis et al. (2021)
evaluated a Fathi et al. (2019)’s proposal in a 9-h feasibility trial with unannounced
lunch. The proposed meal-announcement-free system reduces the %time above
180 mg/dL (calculated up to 4 h after lunch) achieved by the feedback controller,
an MPC, without meal detection (58 % vs. 74.2 %). When the meal detector only
provides the occurrence of a meal, the AP system can assume a fixed amount of
carbohydrate to calculate the bolus (Harvey et al. 2014b; Majdpour et al. 2021).
Alternatively, meal detection may trigger a series of bolus delivery. For instance,
the Inreda AP (Inreda Diabetic BV, Goor, the Netherlands) infuses corrective
boluses when glucose exceeds 117 mg/dL and another bolus when it exceeds
234 mg/dL (Bon et al. 2010; Blauw et al. 2021). Similarly, the multivariable AP
of Ali Cinar’s group, from Illinois Institute of Technology, delivers a bolus every
time the estimated rate of glucose appearance exceeds a threshold, provided a
specific time has elapsed from the last bolus (Turksoy et al. 2017). Hyunjin et al.
(2009) devised a more elaborated logic, wherein a bolus is delivered depending
on the glucose and the two first derivatives. A different approach is adopted in
Garcia-Tirado et al. (2021a) to design a priming bolus strategy for the RocketAP
system. The bolus magnitude is proportional to the total daily insulin; the meal
occurrence probability, estimated by a logistic regression, modifies the degree of
proportionality such that the AP system delivers larger boluses for meals with a
higher chance.

Other actions triggered by detecting a meal (or hyperglycemia) can be found
in the literature besides delivering a bolus. Fushimi et al. (2019) replaces the
partial announcement required in Colmegna et al. (2018) to switch to a more
aggressive LQG controller. Since this controller includes a safety layer to limit
the insulin-on-board, the upper limit of the insulin-on-board is also modified to
allow a more aggressive behavior right after the detection though decreasing after
(Fushimi et al. 2020). The idea of switching to a more aggressive controller has
also been adopted by Bhattacharjee et al. (2019) in the context of internal model
control.

Lastly, Alzate et al. (2022) use the estimation of the meal-carbohydrate content
as an input to an impulsive zone MPC to handle unannounced meals.

21



Chapter 2. Announcement-free artificial pancreas systems: challenges and state of the art

Methods not requiring meal detection

Adapting the controller parameters can also enhance the postprandial control
without requiring an explicit meal detection event. For example, for the adaptive
MPC of Ali Cinar’s group, Hajizadeh et al. (2019a) relax the plasma insulin
constraint of the optimization problem according to the predicted glucose and the
trend of the CGM signal. Like the modification of the insulin-on-board in Fushimi
et al. (2020), this allows a more aggressive reaction against meals. As an alternative
for allowing more insulin during meals in the context of MPC controllers, Garcia-
Tirado et al. (2021c) detune the control weight of the cost function depending on
the insulin-on-board, the glucose, and its derivative. Similarly, Shi et al. (2019)
add a new term in the cost function penalizing the glucose derivative when glucose
levels are near hyperglycemia.

Adaptation can also be applied in PID-like controllers. Soylu et al. (2018) present
a method to adapt the proportional gain according to a fuzzy logic whose inputs
were the error and the glucose derivative. The adaptation rule favors aggressive
gains when glucose is increasing to hyperglycemic levels.

Fuzzy logic has also been used to design controllers rather than just modifying
a gain. The (DreaMed Diabetes, Petah Tikva, Israel) was one of the pioneer
systems using this technique. It includes a Mamdani-type fuzzy logic controller
that provides percentage change for the basal and bolus doses to bring the glucose
to a range target based on the past and future glucose values and trends. In
an 8-h feasibility trial with unannounced meals, the yielded a 73 % %time in
70–180 mg/dL. The algorithm was adquired by Medtronic (Northridge, CA,
USA) and was embedded into the Medtronic 780G (Rodríguez-Sarmiento et al.
2022). However, the later commercial artificial pancreas system still requires meal
announcements.

Meal compensation have also been tackled from the perspective of disturbance
rejection. Sanz et al. (2020) designed a system that handles unannounced meals
through an extended state observer and a switched tracking controller. Similary,
Cai et al. (2020) present a non-linear active disturbance rejection controller. The
system includes heuristic rules either in the controller or in the disturbance observer
to increase the aggressiveness of the insulin control action without leading to
hypoglycemia. Nath et al. (2020) design a robust observer through attractive
ellipsoid methods to estimate the states and a disturbance term used to construct
guaranteed-cost robust output feedback control. The disturbance can be estimated
with other approaches besides observers. For instance, MohammadRidha et al.
(2018) estimate a disturbance term by algebraic methods, in the so-called model-
free control.
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Meal anticipation from historical data

Food intake usually follows daily patterns (Askari et al. 2022). Some prediction-
based controllers, namely MPC, have exploited this property to enhance the
prediction quality against unannounced meals and consequently improve the con-
trol performance. Cameron et al. (2012) presented a multiple-model probabilistic
approach to address this purpose. In each iteration, multiple models predict,
independently, the state of insulin-glucose dynamics; each model assumes a differ-
ent meal start time. Then, the predictions of the local models are integrated by
weighting each prediction with the probability that the individual model explains
the current data. The forecast of local models includes future meals by consid-
ering meal intake behavior derived from a nutritional survey. The multi-model
probabilistic prediction approach has been integrated into an MPC. The controller
achieved an average %time in 70–180 mg/dL of 63–78 % in several clinical trials
with unannounced meals and mild or moderate exercise (Cameron et al. 2014;
Cameron et al. 2017; Forlenza et al. 2018).

Another technique featured with meal anticipation capabilities was presented in
Corbett et al. (2020) and extended later in Corbett et al. (2022). The core of the
system is a multistage MPC. In each iteration, the control action results from
an optimization problem involving multiple MPC concurrently executed; each
MPC is fed with a different daily disturbance signal profile. To calculate the
disturbance profiles, the daily disturbances were estimated retrospectively from
individual data using a KF and then clusterized. The consensus of MPC problems
in the optimization depends on the probability that the specific disturbance profile
represents the actual disturbance. In silico validations of the system with the full
version of the UVa/Padova simulator showed a %time in 70–180 mg/dL higher than
70 % (Corbett et al. 2022). However, compared with a single MPC that delivers
bolus after detecting meals, the multistage MPC led to slight inferior results
(Corbett et al. 2022). Therefore, Corbett et al. (2022) eventually incorporated
both, detection and anticipatory capabilities, into the controller.

Like Corbett et al. (2022), Paoletti et al. (2020) consider the estimated disturbance
in the optimization problem of an MPC. However, the authors applied a data-
driven envelope of disturbances rather than a disturbance profile. Specifically the
MPC selects the minimum insulin infusion at each time step, ensuring that the
largest disturbance within the prediction horizon (estimated by a moving horizon
estimator) belongs to the envelope.

Finally, Hajizadeh et al. (2019b) proposed a markedly different approach to
responding to meals with anticipation: a meal detector identifies, retrospectively,
the time windows where meals were ingested on previous days. Then, a glucose
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target of 80 mg/dL is set to each time window. Lastly, the glucose target for the
next day is configured by averaging the previously assigned glucose targets.

Insulin limitation

A meal-announcement-free system should reduce hyperglycemia, but not at the
expense of larger hypoglycemia. Late postprandial hypoglycemia namely occurs
because of an insulin over-delivery (see Section 2.2.1). Thus, most of the systems
presented hereinabove consider somehow the active insulin or insulin-on-board
to attenuate the control action. MPC-based systems usually adopt some of the
following mechanisms to avoid insulin over-delivery:

• adding estimations of the plasma insulin or insulin-on-board to the hard
constraints of the optimization problem (Hyunjin et al. 2009; Hajizadeh et al.
2019a),

• modifying the control action-related weight of the cost function based on some
heuristic depending on the insulin-on-board or plasma insulin (Hajizadeh
et al. 2019a; Shi et al. 2019),

• modifying the target-related weight of the cost function based on some
heuristic depending on the insulin-on-board or plasma insulin (Paoletti et al.
2020; Garcia-Tirado et al. 2021c; Shi et al. 2019),

• expanding the cost function (soft constraint) with a new term penalizing
estimated insulin concentration (El-khatib et al. 2010)

For systems not relying on receding horizon principles, Insulin Feedback (IFB) is
a straightforward approach to reducing the risk of insulin over-delivery (Steil et al.
2011; Palerm 2011). The method subtracts from the control action (calculated, for
instance, by a PID) an infusion proportional to the estimated plasma insulin (or
other insulin-related states). In the context of meal-announcement-free systems,
the IFB was implemented, for instance, in Huyett et al. (2015), Sanz et al. (2020),
and Dovc et al. (2020).

To avoid insulin over-delivery, some researchers opted for adding an upper bound
to the insulin-on-board and reducing the control action accordingly for the current
insulin-on-board to be below the upper bound. This purpose can be achieved
by directly saturating or suspending the insulin infusion rate if the calculated
insulin within a sampling period exceeds the insulin-on-board limit (Cai et al.
2020). Revert et al. (2013) propose an alternative approach based on sliding
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mode principles: the controller set-point is modified according to a switching logic
designed to attain an invariance set in the difference between the upper bound and
the estimated insulin-on-board. Thus, whenever the insulin-on-board exceeds the
upper bound, the switching logic starts commuting between 0 and a high set-point
value at a high rate, leading, after being filtered, to a new reference higher than
the nominal reference. Consequently, the control action decreases. Colmegna
et al. (2018) present a closely related methodology, wherein the switching logic
attenuates the control output through a discontinuous gain rather than increasing
the reference.

2.3.2 Accelerating insulin absorption

The 10–15 min onset action delay in subcutaneously-administered rapid-acting
insulin formulations greatly restricts the controller performance against unan-
nounced meals. Lee et al. (2013) and Colmegna et al. (2021b) show in silico that
insulins with faster absorption improve performance against unannounced meals
for PID and MPC control, respectively, without resorting to ad-hoc methodolo-
gies like in Section 2.3.1. Two alternatives enable more rapid insulin absorption:
ultra-fast-acting insulin formulation and the intraperitoneal route for insulin
administration.

Ultra-fast-acting formulations of insulin

Recent ultra-fast-acting formulations, such as the Fiasp® (Novo Nordisk, Bagsvaerd,
Denmark), with an onset time of 2–4 min (Lee et al. 2021), have been validated
in clinical trials. Unfortunately, the promising results shown in silico have not
been found in these clinical trials: Russell et al. (2020) found no significant im-
provement of the Fiasp®, compared to standard rapid-acting insulin, when used
in the insulin-only iLet system, even though qualitative carbohydrate counting
was required. Tsoukas et al. (2021b) evaluated an MPC system with Fiasp® in
a 12-day clinical trial. The system required the mealtime to calculate a meal
bolus based on a 25-g meal. Despite this partial announcement, it yields a %time
above 180 mg/dL of 32.7 %, higher than the guidelines recommend (Battelino
et al. 2019). Lastly, Dovc et al. (2020) assessed the system (Atlas et al. 2010), a
fully meal-announcement-free system, with Fiasp® in a 27-h trial; no benefit of
Fiasp® was found over a rapid-acting insulin formulation. These unsatisfactory
results arise because most evaluated systems were not specifically tuned for an
ultra-fast insulin formulation (Dovc et al. 2020). Albeit with proper tuning, these
new formulations’ long action duration (3–5 h from the injection; Lee et al. 2021)
would likely hinder the improvements.
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Intraperitoneal route

Another approach to circumvent the delays related to subcutaneous absorption is to
use alternative routes to administer insulin. Indeed, the initial developments of an
AP system in the 1970’s resorted to intravenous insulin administration and glucose
sensing. The almost immediate insulin action enabled tight glucose control using
simple Proportional-Derivative controller (PD) algorithms. However, those systems’
high invasiveness and size circumscribed them to research applications in hospital
settings (Renard et al. 2019). A more feasible alternative is the intraperitoneal
route. In this route, insulin is infused into the abdominal cavity; thus, it reaches
the portal vein before reaching the peripheral system (Chakrabarty et al. 2019).
This allows enhanced pharmacokinetics and pharmacodynamics characteristics
compared to the subcutaneous administration. For instance, intraperitoneal
insulin action peaks 15 min after injection, almost six times more rapid than
the subcutaneous route (Lal et al. 2019). Moreover, this route regulates hepatic
glucose production more effectively, given the larger circulating levels in the portal
vein.

During 2000-2002, the first closed-loop system with the intraperitoneal route,
Long-Term Sensor System® (MiniMed-Medtronic, Northridge, CA, USA), was
evaluated in a dozen of clinical trials up to 48 h in length. This system combines
a fully implantable pump with an implantable intravenous glucose sensor (Renard
et al. 2006). The initial trials run a PD without meal announcement. However, the
delays in the intravenous glucose reading caused recurrent hypoglycemia episodes.
These delays were attributed to the sensor composition (the glucose oxidase pad
was larger than the subcutaneous sensor pad to enable a duration greater than
a year) and signal processing (Renard et al. 2006; Steil et al. 2004). As a result,
pre-meal boluses eventually had to be adopted to reduce the hypoglycemia events
(Renard et al. 2006).

Conversely, the meal-announcement-free MPC presented in Jones et al. (2017)
outperformed its subcutaneous hybrid counterpart under a nominal scenario with
the Hovorka model as a virtual patient. Doyle’s group, from Harvard University,
also validated in silico its meal-announcement-free intraperitoneal zone MPC,
albeit in more exigent simulations than Jones et al. (2017), including the 100-adult
cohort of the UVa/Padova simulator. This zone MPC increases by more 15 % of
the time spent in normoglycemia regarding its subcutaneous counterpart (Lee et al.
2012); compared to the subcutaneous case with prandial boluses, the zone MPC
yields non-inferior results (Lee et al. 2014). The same zone MPC was assessed in a
24-h inpatient study with ten individuals with unannounced meals. The zone MPC
spent 20 % more time in 70–180 mg/dL than the subcutaneous administration
while reducing the time in hypoglycemia (Dassau et al. 2017).
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The same group developed a PID for intraperitoneal insulin delivery and glucose
reading; the PID was designed with a second-order transfer function following the
internal model control principle and only contains an IFB and an anti-windup as
safety mechanisms to avoid hypoglycemia. In a 27-h simulation with medium-sized
unannounced meals, this system achieved a %time in 80–140 mg/dL larger than
70 % without hypoglycemia events (Huyett et al. 2015). Chakrabarty et al. (2019)
upgraded Huyett et al. (2015)’s controller with an enhanced internal model and
new tuning; the achieved %time in 70–180 mg/dL exceeded, in an in silico study,
90 % using either a subcutaneous or intraperitoneal glucose sensor. The interest in
intraperitoneal systems goes beyond academia. Indeed, Chakrabarty et al. (2019)’s
proposal belongs to the project line of PhysioLogic Devices. This company plans
to develop a fully automatic and fully implantable AP system (the ThinPumpTM)
shortly (JDRF 2020). The EU-funded project FORGETDIABETES is also de-
veloping a system with similar features (FORGETDIABETES 2020). Hence,
the intraperitoneal route is appealing for developing meal-announcement-free AP
systems. However, its invasiveness – a surgical procedure is required to implant
the entire pump or, at least, the catheter in the abdominal cavity – and the risk
of catheter obstructions (He et al. 2021) still discourage its use.

2.3.3 Complementing insulin with other hormones or medication

Insulin plays a crucial role in glucose homeostasis. However, other hormones,
such as glucagon, amylin, or incretins, also intervene in this process. Thus,
integrating adjunctive hormones or medication in the AP system can potentially
improve postprandial response such that meal announcements would no longer
be required. The adjunctive therapies that have been evaluated with AP against
unannounced meals are the analogs of amylin and glucagon; medications usually
addressed for treating type 2 diabetes such as exenatide, liraglutide, dapagliflozin,
or empagliflozin, have also been tested.

Pramlintide

As indicated in Section 2.2.1, amylin action is also deficient in T1DM. This
hormone retards meal absorption from the gut by delaying gastric emptying and
diminishes glucagon release. To take advantage of these positive benefits of amylin
in glycemic control, several trials evaluated the use of an amylin analog, i.e.,
pramlintide, in closed-loop therapies.

The preliminary trials of Weinzimer et al. (2012), Renukuntla et al. (2014), and
Sherr et al. (2016) considered the effect of a fixed dose of pramlintide (30 or
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60 µg) injected manually at mealtime (or 15 min earlier) replacing a carbohydrate-
matched insulin bolus. The employed controller for the latter three trials was
the external Physiological Insulin Delivery (ePID) algorithm consisting of a PID
extended with an IFB. The addition of pramlintide reduced the %time above
180 mg/dL in 4–17 % of the ePID without pramlintide and the %time below
70 mg/dL in 1–4 %, but no statistically significant improvement was shown in all
the studies Renukuntla et al. (2014). Furthermore, the need for manual injection
of pramlintide does not suit well in a meal-announcement-free system.

Alternatively, Haidar’s group considered a second pump to deliver a continuous
infusion of pramlintide in a ratio of 10 µg of pramlintide per unit of Fiasp®,
wherein an MPC calculated the insulin infusion. This was an experimental setting
emulating an insulin-pramlintide co-formuation currently in development by a
pharmaceutical companies (Andersen et al. 2021). An initial trial of 24 h and
seven subjects evaluated the feasibility of replacing carbohydrate counting with a
mealtime announcement. At the time of the announcement the system delivers
a bolus corresponding to 25 g (Tsoukas et al. 2021a). The exploratory analysis
revealed that the system with pramlintide and partial announcement halved
the median time in hypoglycemia of the system without pramlintide and full
announcement. Both achieved similar %time in 70–180 mg/dL and %time above
180 mg/dL. These results were confirmed in a 12-day outpatient trial also reported
in Tsoukas et al. (2021a). This latter trial also showed (without a statistical
analysis) the superior performance of the pramlintide-extended system with a
partial announcement over a Fiasp-alone system with partial announcement in
terms of %time in 70–180 mg/dL (70 % vs. 60 %) and %time above 180 mg/dL
(28 % vs. 38 %), with only a slight increase of hypoglycemia (1.4 % vs. 0.5 %).

Given the potential benefits of pramlintide in alleviating carbohydrate counting
observed in the previous trials, Haidar’s group went a step away, substituting
the partial announcement with Fathi et al. (2019)’s meal detector. This meal
detector estimates the carbohydrate amount of meals; hence, at detection time,
the controller delivers an insulin bolus (and the pramlintide dose corresponding
to the ratio 10 µg:1 U) calculated with the estimated carbohydrates. After the
positive results of this configuration in a feasibility trial (Majdpour et al. 2021),
Tsoukas et al. (2021b) underwent a 24-h inpatient trial involving 24 individuals.
This configuration yielded a desirable %time in 70–180 mg/dL of 74.3 %, with
a zero median time spent in hypoglycemia. Nevertheless, statistical tests do
not show non-inferiority over the Fiasp-alone hybrid counterpart in terms of
percentage in normoglycemia. Since pramlintide is related to adverse effects
like nausea, vomiting, bloating, or heartburn, further experiments with longer
duration and a larger number of participants need to evaluate if pramlintide-based
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meal announcement-free systems counterpose these adverse effects by significantly
improving glycemic control.

Antihyperglycemic medications

Specific medications targeting hyperglycemia avoidance may be a suitable alter-
native for pramlintide, at least, until insulin-pramlintide co-formulations were
available. Unlike pramlintide, these medications are not continuously delivered,
but administered once or twice a day.

Glucagon-like peptide-1 receptor agonist (GLP-1A) is a group of medications
that, like pramlintide, delays gastric emptying and suppresses glucagon secretion
(Seetharaman et al. 2022). Renukuntla et al. (2014) considered a short-acting
GLP-1A, the exenatide, as adjunctive therapy for the ePID system in an 11-h
feasibility trial without carbohydrate-matched insulin boluses. The addition of
exenatide turns into a statistically significant reduction of %time above 180 mg/dL
regarding the insulin-only ePID without announcements (16 % vs. 30 %), without
increasing hypoglycemia episodes. However, some individuals experienced nausea
or vomiting.

Exenatide had to be administered subcutaneously at mealtime, detracting from
a meal-announcement-free system. To partially alleviate this drawback, Ilkowitz
et al. (2016) assessed the feasibility of a single daily subcutaneous injection of
liraglutide, a long-acting GLP-1A. Adjuvant liraglutide, administered at breakfast
time, yielded a statistically significant reduction of glucose excursion after breakfast
and lunch compared to the insulin-only system, without increasing hypoglycemia.
The reduction after dinner was less remarkable, showing a declining effect of this
medication throughout the day. In addition, some individuals experienced nausea,
vomiting, and headache as adverse effects of liraglutide.

Another family of antihyperglycemic agents is the Sodium–glucose co-transporter-
2 inhibitors (SGLT-2Is). These agents inhibit glucose reabsorption from the
kidneys, promoting its elimination through urine (Seetharaman et al. 2022).
Haidar’s group assessed whether a two-daily oral administration of empagliflozin,
a type of SGLT-2I, could remove meal announcements from their insulin-only
MPC algorithm (Haidar et al. 2021). The results showed that empagliflozin
could not replace the prandial insulin bolus totally. Still, it did allow a partial
announcement configuration wherein the user announces mealtime for the system
to deliver an insulin bolus corresponding to a carbohydrate intake of 25 g. This
latter configuration achieved comparable (not statistically significant) %time in
70–180 mg/dL, %time above 180 mg/dL, and %time below 70 mg/dL than the
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hybrid insulin-only counterpart. Another SGLT-2I is dapagliflozin. Biester et
al. (2021) show that adding 10 mg of this antihyperglycemic agent twice a day
outperforms (with statistical significance) the %time in 70–180 mg/dL and %time
above 180 mg/dL achieved by the system without increasing hypoglycemia.

Despite the positive results with adjunct SGLT-2Is, these agents increase the
ketone levels (Haidar et al. 2021) and may eventually lead to diabetic ketoacidosis
at excessive doses. No ketoacidosis cases were reported in the above studies, but
its limited duration (9–24 h) impeded foreseeing the long-term effects of SGLT-2Is.

Glucagon: its role in postprandial hypoglycemia mitigation

Glucagon increases blood glucose levels. Hence, it might allow a more aggressive
insulin reaction against meals, potentially counteracting any hypoglycemia induced
by an insulin over-delivery. Fushimi et al. (2022) showed that an extension of
Fushimi et al. (2019)’s LQG controller with glucagon removes hypoglycemic
events in a simulation study. However, clinical trials did not show clear benefits of
glucagon during the postprandial period (Peters et al. 2018; Infante et al. 2021). In
an exploratory trial with a tri-hormonal system (insulin, pramlintide, and glucagon)
against unannounced meals, Majdpour et al. (2021) reported that glucagon was
used sparsely. In a second iteration, insulin and pramlintide aggressiveness were
increased to exploit glucagon action more. Nonetheless, glucagon failed to avoid
hypoglycemia events and eventually was removed from the system (Majdpour et al.
2021). Other studies also found that glucagon did not wholly remove hypoglycemic
events after unannounced meals (Bon et al. 2010; El-khatib et al. 2010; Gingras
et al. 2016a). This difficulties of glucagon to avoid hypoglycemic episodes in the
postprandial period seem to be related to an inefficient stimulation of glucose
production when circulating insulin levels are elevated (Infante et al. 2021), as is
the case for postprandial periods.

In addition, several side effects arise after glucagon administration, such as nausea,
vomiting, and headache (Ranjan et al. 2021). Furthermore, dual insulin-glucagon
AP systems require more complex hardware (two pumps or double chamber pumps)
and, therefore, an increased cost.
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2.4 Strategies to remove exercise announcements

Physical activity may result in hyperglycemia or hypoglycemia depending on the
intensity, type, and duration (see Section 2.2.2). However, hypoglycemia can lead
to severe complications in a shorter time; fear of these complications is one of
the main reasons people with T1DM abandon an active lifestyle (Riddell et al.
2017; Tagougui et al. 2019). Thus, as in most of the articles in the literature,
this dissertation will only address hypoglycemia avoidance. Two complementary
strategies are identified to address this goal (Figure 2.5): 1) reducing the insulin
aggressiveness (e.g., pump suspension) and 2) supplementing insulin with the
infusion of glucagon or the suggestion of rescue carbohydrates.

2.4.1 Reducing the insulin aggressiveness during exercise

The immediate reaction to imminent hypoglycemia is to suspend the insulin
infusion. The most direct method is detecting or predicting a hypoglycemic event
or exercise and then reducing or stopping the basal infusion. Other techniques do
not use explicit exercise detection but rely on adaptive rules or integrate physical
activity information in the feedback controller. Lastly, anticipating regular exercise
patterns from historical data has been applied too. Some examples of these
methodologies are described herein.

Detection/prediction-based methods

A simple approach to reduce the aggressiveness of the controller is to shut the
basal infusion off when the glucose goes below a lower bound. This is the case,
for example, of one of the preliminary versions of the Inreda AP (Van Bon et al.
2012). Similarly, low-glucose-suspend method implemented in Herrero et al. (2017)
reduces the pump infusion a 50 % when the CGM reading is below 100 mg/dL
and suspends it if it is below 80 mg/dL. Instead of directly suspending the
pump infusion, systems counting with an insulin-on-board limitation can reduce
the insulin-on-board limitation whenever hypoglycemia is detected or predicted
(Garelli et al. 2022).

An estimated disturbance can also be used to detect the exercise. For instance,
Ramkissoon et al. (2019) utilizes an unscented KF to estimate the glucose dis-
appearance rate due to exercise. If this disturbance overpasses a certain lower
threshold, the insulin infusion is suspended and the upper bound of the insulin-on-
board reduced. These modifications expire when a risk of hyperglycemia or infusion
under-delivery is detected based on the glucose level and its first derivative.
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Figure 2.5: Strategies to remove exercise announcements. Two strategies can be
identified to remove carbohydrate counting: reducing the aggressiveness of the insulin control
action or using glucose-raising control actions. Three methods have been used to reduce
insulin aggressiveness: insulin reduction or suspension hypoglycemia detection or prediction
time, exploiting historical data to anticipate exercise or using alternative methods to detection.
The glucose-raising control actions are glucagon and carbohydrates. Both can be delivered as
rescues after detection or prediction or calculated from a specific controller. Notation. MPC:
Model Predictive Controller (MPC).
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Unlike in the meal detection problem, physiological signals different from glucose
have been extensively applied to detect an exercise period and even grade its
intensity or infer its type (Sevil et al. 2020; Cescon et al. 2021; Sawaryn et al.
2021). In Breton et al. (2014), the core controller changes to a less aggressive
mode when the heart rate exceeds 125 %. This heart-rate informed controller
reduces the glucose drop rate during exercise but without significantly reducing
hypoglycemia (Breton et al. 2014). Likewise, a recent version of the Inreda AP
reduces the insulin dose when the heart rate overpasses a certain threshold (Blauw
et al. 2016). Jacobs et al. (2015) also measured the heart rate, but combined with
accelerometry, to estimate the energy expenditure; whenever the estimated energy
expenditure exceed 4 kcal/min, insulin infusion is suspended for 30 min, and after
then, reduced a 50 % for 60 min.

Alternatives to detection/prediction-based exercise compensation

Detecting an exercise event is not strictly necessary to reduce the aggressiveness of
the insulin control action. Hughes et al. (2010) adopted a more continuous approach
wherein the insulin infusion was attenuated based on a predicted hypoglycemic
risk. This strategy significantly reduced the %time below 70 mg/dL achieved
by sensor-augmented therapy without increasing hyperglycemia in outpatient
studies with young children where exercise was practiced more frequently and
intensively than on regular days (Ly et al. 2016; Breton et al. 2017). Nonetheless,
carbohydrate rescues were required.

Furthermore, just as MPCs can adapt their parameters to make the insulin
response more aggressive (Section 2.3.1), they can also adapt them to reduce their
aggressiveness facing hypoglycemia. For instance, Shi et al. (2019) modify the
control weights of a zone MPC so that the deviations of the insulin infusion above
the basal are penalized more than the those below the basal when the predicted
glucose decreases. Hajizadeh et al. (2019b) change the target weight instead of the
control; the deviations from the glucose target are penalized more for increasing
hypoglycemia risk than hyperglycemia risk. Garcia-Tirado et al. (2019) follow a
similar logic but modify the predicted set-point rather than the associated weight.

Lastly, MPCs can integrate activity-related physiological signals (e.g., energy
expenditure, galvanic skin impedance, etc.) as inputs to the internal model to
enhance the prediction. In silico trials with data-driven models (Turksoy et al. 2013;
Hajizadeh et al. 2019a) or physiological models (Resalat et al. 2016) have shown
that the integration of theses additional inputs results in a quicker reduction of
insulin infusion, and, ultimately, a reduced %time below 70 mg/dL when compared
with the case where only insulin is used as input of the internal model.
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Exercise anticipation from historical data

For regular exercise, behavioral patterns can be learned from historical data
to anticipate exercise onset and prospectively reduce insulin infusion. Some
researchers that proposed methods to anticipate meals have an equivalent method
for exercise. Garcia-Tirado et al. (2019) is the counterpart of Corbett et al. (2020)
to anticipate the exercise periods based on multistage MPC: instead of a meal
disturbance, each MPC, running concurrently, is fed with a different disturbance
profile representing the glucose uptake caused by a moderate aerobic exercise.
The disturbance profiles result from the clusterization of daily disturbances,
each extracted by the convolution of the dynamics of the glucose uptake with
a rectangular signal representing the exercise duration. To mitigate the risk of
hypoglycemia induced by unexpected exercise, the system also can detect the
exercise with activity trackers. Garcia-Tirado et al. (2021a) evaluated the system
in a 48-h clinical trial. On the first day, the patient undertook an exercise session
in the similar schedule used to tune the controller, whereas, on the second day,
no exercise was practiced. Compared with a single MPC, the proposed system
significantly reduced the hypoglycemic events during the exercise day, with only a
slight increase in time in hyperglycemia during the sedentary day.

The data-driven robust MPC of Paoletti et al. (2020) also can deal with exercise.
To this end, the authors estimated, besides the meal disturbance, two states related
to exercise, i.e., the percentage of active muscular mass and the percentage of
maximum oxygen consumption. Then, the same procedure explained to anticipate
meals is applied: estimation of the disturbance envelope and calculation of the
minimum insulin infusion that guarantees that the disturbance is inside the
envelope.

Finally, the anticipatory modification of the glucose set-point presented in Ha-
jizadeh et al. (2019b) for meals can be combined with exercise information. The
idea is to retrospectively detect exercise periods of previous days with activ-
ity trackers. Then, the set-point is set to 160 mg/dL for each detected period.
Lastly, the mean of the daily, retrospectively-defined glucose set-points defines the
set-point for the next day.
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2.4.2 Counteracting insulin unidirectionality with glucose-raising
control actions

An insulin-alone AP may avoid physical activity-induced hypoglycemia without
announcements if exercise patterns can be learned and anticipated (Garcia-Tirado
et al. 2021a). However, when these patterns are less clear, e.g., unstructured
physical activity, the best that an insulin-alone AP can do is to shut the pump
off at exercise detection. Even in the unlikely case that no detection delay exists,
suspending the pump at this time may be insufficient to avoid the hypoglycemia
due to the long insulin offset time (Zaharieva et al. 2019). Moreover, the exercise
causes a long-term increase in insulin sensitivity and increased mobility of insulin
from subcutaneous depots to plasma; thus, hypoglycemia may occur hours after
the exercise end (Tagougui et al. 2019). To avoid hypoglycemia in these situations,
two glucose-rising control actions have been integrated into AP systems: glucagon
and carbohydrate suggestions.

Glucagon

Dual glucagon-insulin AP systems have integrated glucagon following two not
mutually exclusive policies (Jones 2019): 1) as rescue doses to recover from
hypoglycemia or prevent an imminent one, and 2) as more frequent doses delivered
with dedicated control algorithms.

On the one hand, glucagon rescues have been delivered when the glucose or the
predicted glucose falls below a certain threshold, as is the case, respectively, of
the Inreda AP (Van Bon et al. 2014) and the fading-memory PD-based system
developed by the Oregon Health and Science University (OHSU) (Wilson et al.
2020).

On the other hand, dedicated glucagon-insulin controllers usually combines two
independent loops, one for each controller output, which commute following certain
threshold-based rules. This is the case for the iLet system (an MPC for the insulin
and a PD for the glucagon; Russell et al. 2012), the BiAP of the Imperial College
(a PID-like for insulin and a PD for glucagon; Herrero et al. 2013), the Inreda AP
(two PDs; Van Bon et al. 2014), the DH-MPC of the OHSU (two MPCs; Resalat
et al. 2016 or Boiroux et al. 2018), or the fading-memory PD-based system of the
OHSU (two PD-like controllers; Jacobs et al. 2015). Since two independent loops
of control actions with different signs (decreasing or increasing glucose) may cause
oscillations, some of the latter systems incorporate ad hoc coordination mechanisms
based on heuristical rules (Jacobs et al. 2015) or feedback inhibitions (Herrero
et al. 2017). Moscardó et al. (2019b) presented a more systematic approach to
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coordinating insulin and glucagon. The system consists of two elements: a master
controller that calculates a virtual control action and a divisor that routes the
control effort to the insulin channel or the glucagon channel based on a certain
logic. This way, insulin and glucagon are inherently coordinated delivering the
control effort as computed by the main controller.

Unlike in the meal compensation case, more evidence exists that dual glucagon-
insulin AP systems outperform insulin-alone AP in clinical trials with hypoglycemic
exercise periods by reducing the time spent in hypoglycemia (Haidar 2019; Infante
et al. 2021; Zeng et al. 2022). Nevertheless, glucagon does not always mitigate
hypoglycemia. Although without a total agreement among researchers, it has been
observed that glucagon loses its effectiveness when glucose drops at a high rate,
when insulin concentration is elevated, or when glycogen depots are empty after
prolonged exercise or repetitive glucagon doses (Ranjan et al. 2021).

Carbohydrate supplementation

Fast-acting carbohydrate intake arises as a natural action to correct and, if applied
on time, prevent hypoglycemia induced by an unannounced exercise (Tagougui
et al. 2019; Patel et al. 2016). Unlike glucagon infusion, carbohydrates require
patient intervention. In guidelines for the open-loop therapy, the time and amount
of carbohydrate supplementations depend on elaborated rules involving the CGM
value and trend. To overcome this potential burden for patients, several AP
systems have included carbohydrate recommender modules that notify the user of
the amount of carbohydrates needed to ingest to prevent or avoid hypoglycemia.
Carbohydrate recommenders do not increase the hardware complexity of the
system yet rely on fluid patient responsiveness. A dual insulin-glucagon system
may be a better alternative when carbohydrate ingestion is not feasible (e.g.,
patients with frequent nocturnal hypoglycemia after exercise or during professional
sports competition). Also, carbohydrate supplementation may deem unappealing
for people aiming for weight loss by exercising.

Many carbohydrate recommenders included in AP are based on heuristical rules.
The Inreda AP system recommends an intake of 12 g or 18 g when the glucose
falls below 70 mg/dL or 54 mg/dL respectively (Blauw et al. 2016). Since during
exercise the glucose may abruptly drop, some recommenders incorporate glucose
predictions as in Harvey et al. (2012), which was later integrated in a zone-MPC
AP and validated in clinical trials (Harvey et al. 2014a; Huyett et al. 2017).
Turksoy et al. (2016a) add information on exercise-related physiological signals to
enhance the 30-min-ahead prediction further and suggest a rescue whose amount
depends on the measured glucose and the speed of the predicted glucose decrease.
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In Turksoy et al. (2018), the recommender module was incorporated into a GPC-
based AP system and validated in a clinical trial involving multiple types of
exercise.

Other researchers have proposed specific control loops to suggest the carbohydrate
amounts. Beneyto et al. (2018) extend an insulin loop based on a PD with an in-
dependent PD for carbohydrate rescues calculation. Mutual inhibitions coordinate
both loops. In addition, glucose predictions at 5 min, 10 min, 15 min, and 20 min
are fed to the carbohydrate controller to estimate future continuous actions. Fi-
nally, the recommender suggests 15 g doses according to a quantization logic
depending on the past and predicted continuous control actions. The system
was validated in a clinical trial, yielding satisfactory results against unannounced
exercise (Viñals et al. 2021).

Moscardó et al. (2019a) also rely on feedback laws to calculate a rescue suggestion.
Instead of an independent loop, Moscardó et al. (2019a) exploit the master-plus-
divisor architecture of Moscardó et al. (2019b) to coordinate rescue suggestions
with insulin and glucagon infusions. The continuous carbohydrate suggestion was
quantized in 15-g doses for patient adherence.

2.5 Conclusion

The sensor lags, the long time of insulin onset and offset, and the dysregulation of
other hormones involved in the glucose homeostasis limit the performance of AP
systems against meals and exercise events. Hybrid AP sytems partially counteract
these limitations with meal and exercise announcements but at the expense of a
heavy burden for patients.

Three broad, complementary strategies were identified to remove meal announce-
ments: 1) increasing the aggressiveness of the insulin control action while applying
some mechanism to avoid insulin over-delivery; 2) using ultra-fast insulin formula-
tions or the intraperitoneal route; or 3) complementing the insulin infusion with
pramlintide, glucagon, or adjunctive medications. The last two strategies yield
positive results in enhancing postprandial control against unannounced meals
(albeit with unclear conclusions for using Fiasp or glucagon). However, they have
associated drawbacks too. For instance, some cases still require patient intervention
(exenatide, empagliflozin). Also, other methods imply an increased technologi-
cal complexity (pramlintide pump) or are more invasive (intraperitoneal pump).
Lastly, some adjunctive therapies are related to gastric adverse effects (pramlintide,
liraglutide) or increased ketone levels (SGLT-2I). Thus, this dissertation will focus
on the first strategy. Among the techniques that have been identified in this
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strategy, the methods presented in this dissertation to remove meal announcement
will rely on meal detection (Chapter 5), bolus delivery (Chapter 6), disturbance
rejection (Chapter 3 and Chapter 7), or parameter adaptation (Chapter 6 and
Chapter 7).

Regarding unannounced exercise compensation, the long insulin offset and insulin
stacking hampers avoiding exercise-induced hypoglycemia with only insulin. Clini-
cal trials have shown that dual insulin-glucagon AP systems reduce hypoglycemia
in unannounced hypoglycemic exercise periods. However, the limitations of these
systems (unclear effectiveness of glucagon to alleviate hypoglycemia in certain
situations, glucagon side effects, and increased complexity) may question the cost-
effectiveness. Thus, in this dissertation, carbohydrate supplementation, besides
other strategies to reduce insulin aggressiveness (e.g., pump suspension, reduction
of insulin-on-board limit), will be used instead of glucagon to mitigate the risk of
exercise-induced hypoglycemia (Chapter 7).
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Chapter 3

Meal disturbance estimation

Estimating how meals impact glucose may be valuable to design
meal-announcement-free artificial pancreas systems. This chapter
shows that this estimation is possible with state and disturbance ob-
servers. Two observers – a first-order sliding mode observer and a
Kalman filter – are designed with two models of different complexity
(the Identifiable Virtual Patient model and the Hovorka model). The
influence on the estimation accuracy of the observer structure and the
model complexity is assessed by simulations.
Authored publications related to this chapter:

- Sala-Mira, I.; Díez, J.-L.; Ricarte, B., et al. (2019). “Sliding-mode disturbance
observers for an artificial pancreas without meal announcement”. In: Journal
of Process Control (JCR 2019: Q2) 78, pp. 68–77. issn: 09591524. doi:
10.1016/j.jprocont.2019.03.008.

- Sala-Mira *, I.; Siket *, M.; Eigner, G., et al. (2020). “Kalman filter and
sliding mode observer in artificial pancreas: an in-silico comparison”. In: 21th
IFAC World Congress. IFAC-PapersOnLine. Vol. 53. 2. Berlin (Germany):
Elsevier Ltd, pp. 16227–16232. doi: 10.1016/j.ifacol.2020.12.617.

- Sala-Mira *, I.; Siket *, M.; Kovacs, L., et al. (2021). “Effect of Model,
Observer and their Interaction on State and Disturbance Estimation in Artificial
Pancreas: an In-Silico Study”. In: IEEE Access (JCR 2021: Q2), pp. 1–15.
issn: 2169-3536. doi: 10.1109/ACCESS.2021.3120880.

* denotes equal contribution.

39

https://doi.org/10.1016/j.jprocont.2019.03.008
https://doi.org/10.1016/j.ifacol.2020.12.617
https://doi.org/10.1109/ACCESS.2021.3120880


Chapter 3. Meal disturbance estimation

3.1 Introduction

Carbohydrates in a meal are digested and absorbed to the bloodstream (Dalla Man
et al. 2006). This glucose flux (also known as meal rate of glucose appearance) can
be regarded as a disturbance in the context of the AP. Its real-time monitoring is
appealing to handle unannounced meals either for detecting them or compensating
them. However, no direct measurements of the rate of glucose appearance are
possible.

In the gold standard estimation, glucose infusions or meals are enriched with
multiple isotope tracers. The rate of glucose appearance (and other glucose fluxes)
is reconstructed through dilution measurements (Basu et al. 2003). This technique
is valuable for modeling (Dalla Man et al. 2006), but its complexity, cost, and
degree of invasiveness make it unfeasible for real-time control.

State and disturbance observers are a suitable real-time alternative. Although
its accuracy is lower than the gold standard method, they have been successfully
applied for either meal detection (Kölle et al. 2017; Ramkissoon et al. 2018; Chen
et al. 2019) or compensation of unannounced meals (Kovacs et al. 2019; Ullah et al.
2020; Sanz et al. 2020). The Kalman Filter (KF) is the prevalent observer option
in the artificial pancreas literature; however, tuning the covariance matrix is not
straightforward. Sliding mode observers feature robustness properties (insensitivity
to matched disturbances) and have a simpler structure, thereby being an appealing
alternative. The first goal of this chapter is to determine how relevant is the
observer structure in the accuracy of the estimation of the meal rate of glucose
appearance. To this end, a Kalman Filter (KF) that can estimate disturbances
by augmenting the state is compared with a First Order Sliding Mode Observer
(FOSMO).

The second goal is to study the influence of the glucose-insulin model used to
construct the observer. The estimation of the meal disturbance may be coupled
with other sources of uncertainty caused by model deficiencies. For example, other
glucose fluxes, such as endogenous glucose production, would be indistinguishable
from the meal disturbance. Therefore, complex models accurately describing
these glucose fluxes are expected to improve the estimation of meal disturbance.
In contrast, identifying complex models is challenging because of the increased
number of parameters and their correlations. As a result, an inaccurate model
individualization might hide the benefits of a better representation of the glucose
flux, degrading the estimation of the meal disturbance. To analyze these factors,
the two observers were designed with the Hovorka model (Hovorka et al. 2004)
and the Identifiable Virtual Patient (IVP) model (Kanderian et al. 2009), two
examples of medium-complexity and low-complexity models, respectively.
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3.2 Disturbance estimation

This section describes the necessary background to estimate disturbances with
the KF and the FOSMO. Table 3.1 includes the parameters and variables used in
the definition of the observers.

Table 3.1: Description of the variables defining the observers

Variable Description

General
Ij Identity matrix of dimension j

0i×j Matrix of zeros with dimension i× j

nx Number of states
ny Number of outputs
nd Number of disturbances
x(t) , x[k] State variable in continuous and discrete representation

(∈ Rnx)
u(t) , u[k] Control (known) input variable in continuous and

discrete representation (∈ Rnu)
d(t) , d[k] Disturbance (unkown) input variable in continuous and

discrete representation (∈ Rnd)
y(t) , y[k] Output variable in continuous and discrete

representation (∈ Rny )
A(t), A[k] State matrix in continuous and discrete representation

(∈ Rnx×nx)
B(t), B[k] Input matrix in continuous and discrete representation

related to the known input (∈ Rnx×nu)
D(t), D[k] Input matrix in continuous and discrete representation

related to the unknown input or disturbance (∈ Rnx×nd)
C(t), C[k] Output matrix in continuous and discrete representation

(∈ Rny×nx)

Kalman filter
nx Size of the augmented state, nx := nx + nd

x[k] Augmented system state, x[k] := col (x[k], d[k]) (∈ Rnx)
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Table 3.1: (continued)

Variable Description

w[k] White zero-mean uncorrelated process noise (∈ Rnx)
v[k] White zero-mean uncorrelated output noise (∈ Rny )
Q[k] Covariance of w[k] (∈ Rnx×nx)
R[k] Covariance of v[k] (∈ Rny×ny )
x̂[k] Mean of augmented system state estimated by the KF,

x̂[k] = E [x[k]|y[1], · · · , y[k]] (∈ Rnx)
P [k] Covariance matrix of the estimation error estimated by

the KF, P [k] = E
[︁
(x[k] − x̂[k])(x[k] − x̂[k])T

]︁
(∈ Rnx×nx)

x̂
−[k] , P [k]− Approximation of x[k] and P [k] without the knowledge

of the measurement
K[k] KF matrix gain (∈ Rnx×ny )

Sliding mode observer
ϕ(x, u, t) System non-linear term (∈ Rnx)
Lϕ Lipschitz constant of ϕ(x, u, t) regarding x(t)
ρ(y(t), u(t), t) Bound of the disturbance d(t)
q̄ Rank of D

x̄(t) =
[︄
x1(t)
x2(t)

]︄
Transformed state after the first coordinate change:
x1(t) ∈ Rnx−ny and x2(t) ∈ Rny[︄

A11 A12

A21 A22

]︄
Transformed A matrix after the first coordinate change:
A11 ∈ R(nx−ny)×(nx−ny), A12 ∈ R(nx−ny)×(ny),
A21 ∈ R(ny)×(nx−ny), A22 ∈ R(ny)×(ny)[︄

ϕ1(x, u, t)
ϕ2(x, u, t)

]︄
Transformed ϕ(x̄, u, t) term after the first coordinate
change: ϕ1(x, u, t) ∈ R(nx−ny) and ϕ2(x̄, u, t) ∈ Rny[︄

0(nx−ny)×ny

C2

]︄
Transformed C matrix after the first coordinate change:
C2 ∈ Rny×ny

D2 =
[︄
0(nx−q̄)×nd

D22

]︄
Transformed D matrix after the first coordinate change:
D22 ∈ Rq̄×nd

42



3.2 Disturbance estimation

Table 3.1: (continued)

Variable Description

T Transformation matrix for the second coordinate change,
see (3.15)

L =
[︂
L0 0(nx−ny)×nd

]︂
Matrix to stabilize the linear part of the error dynamics
with L0 ∈ R(nx−ny)×(ny−nd)

z̄(t) =
[︄
z1(t)
z2(t)

]︄
Transformed state after the second coordinate change:
z1(t) ∈ Rnx−ny and z2(t) ∈ Rny

z̄(t) =
[︄
ẑ1(t)
ẑ2(t)

]︄
State estimated by the FOSMO: ẑ1(t) ∈ Rnx−ny and
ẑ2(t) ∈ Rny

d̂(t) Disturbance estimated by the FOSMO
K Gain of the linear correction term, see (3.17) (∈ Rny )
ν(t) Discontinuous feedback error term (∈ Rny )
νeq(t) Equivalent output error injection term (∈ Rny )
k(t) Function building the term ν(t) (∈ R)

The notation a[k] is the short form to represent a discrete variable a[Tsk] where Ts is the
sampling time and k = {0, 1, 2, ...} the discrete iteration.

3.2.1 Kalman filter

Consider the following perturbed continuous-time system given by

⎧⎪⎨⎪⎩
ẋ(t) = A(t)x(t) +B(t)u(t)+

+D(t)d(t) ,

y(t) = C(t)x(t)
(3.1)

where x(t) ∈ Rnx , y(t) ∈ Rny , u(t) ∈ Rnu , d(t) ∈ Rnd are, respectively, the system
states, the measured output, the deterministic known input and the deterministic
unknown input (or disturbance) at time t. A widespread method to estimate the
disturbance d(t) with Kalman-like observers consists to augment the state with
the equation
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ḋ(t) = 0, (3.2)

which assumes that the disturbance is constant or slowly-varying within the
sampling time. Note that, although real disturbances will unlikely be constant,
this is a widespread assumption in the disturbance estimation literature (Li et al.
2012). Taking x[k] := col (x[k], d[k]), the resulted augmented system is given by
(Friedland 1969; Linder et al. 1997):

{︄
ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t)

(3.3)

where the overline symbol, e.g., x, denotes a vector or a matrix that corresponds
to the augmented system. The extended system matrices are the following:

A(t) =
[︃
A(t) D(t)

0nd×nx
Ind×nd

]︃
B(t) =

[︃
B(t)

0nd×nx

]︃
C(t) =

[︁
C(t) 0ny×nd

]︁ (3.4)

Since the standard KF presupposes a stochastic discrete system, the augmented
system (3.3) has to be converted to:

{︄
x[k] = A[k − 1]x[k − 1] +B[k − 1]u[k − 1] + w[k − 1]
y[k] = C[k − 1]x[k] + v[k]

(3.5)

resulting from the discretization of the system and the addition of the stochastic
inputs w[k] (process noise) and v[k] (output noise). The stochastic inputs are
considered white noises, zero-mean, uncorrelated (among them and among x[k]),
and with known covariance matrices Q[k] and R[k], respectively (Simon 2006,
Chapter 5). The argument [k] in the variables refers to the sample iteration
t = kTs, where k is a positive integer (discrete iteration) and Ts is the sampling
time.

A standard KF can be designed for the augmented dynamical system (3.5) pro-
vided the pair

(︁
A[k], C[k]

)︁
is observable. The KF estimates the mean of x[k] in

(3.5), x̂[k] = E [x[k]|y[1], · · · , y[k]], and the covariance matrix of the estimation
error, P [k] = E

[︁
(x[k] − x̂[k])(x[k] − x̂[k])T

]︁
. The estimation process involves the

following two stages (Simon 2006, Chapter 5):
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1. Mean and covariance propagation before the output measurement. Consider
that x̂[k−1] and P [k−1] are available (e.g., the filter is initialized in x̂[0] and
P [0], and k = 1). The discrete-time model (3.5) is used to approximate the
mean and the covariance matrix without the knowledge of the measurement
y[k] as follows:

x̂
−[k] = E[x[k]|y[1], · · · , y[k − 1]] =

= A[k]x̂[k − 1] +B[k]u[k − 1]

P
−[k] = E

[︂
(x[k] − x̂

−[k])(x[k] − x̂
−[k])T

]︂
=

= A[k]P [k − 1]AT [k] +Q,

(3.6)

(3.7)

where x̂−[k] is the a priori estimation of the mean and P−[k], the covariance
matrix of the estimation error (x[k]− x̂−[k]). To deduce the above expression,
two properties of w[k] are considered: w[k] is uncorrelated with (x[k]− x̂

−[k])
(i.e., E

[︂
(x[k] − x̂

−[k])w[k]T
]︂

= E
[︂
w[k](x[k] − x̂

−[k])T
]︂

= 0) and it is zero-
mean (i.e., E[w[k]] = 0).

2. Mean and covariance correction for an unbiased estimation of the mean
minimizing the total variance of the estimation error. The a priori estimation
of the mean, x̂−[k], can be recursively corrected with the actual measurement
y[k] as follows:

x̂[k] = x̂
−[k] +K[k]

(︂
y[k] − C[k]x̂−[k]

)︂
(3.8)

where K[k] is the KF’s gain and x̂[k] is the a posteriori estimated of x[k] (after
the measurement). Expression (3.8) is an unbiased estimator regardless K[k]
since the expected value of the error ex[k] := x[k] − x̂[k] is zero for all k (i.e.,
E[ex[k]] = 0) if E[ex[k − 1]] = 0 and v[k] has a zero mean (i.e., E[v[k]] = 0).
The unbiasedness property means that, on average, x̂[k] coincides with x[k]
(Simon 2006, Chapter 3). The matrix gain K[k] is selected such that the total
variance – the sum of the variances of the estimation errors – is minimized.
This is equivalent to minimize the trace of the estimated error covariance
P [k] = E[ex[k]ex[k]T ] (Simon 2006, Chapter 3). Since the noise v[k] is
independent of ex[k − 1], the covariance matrix P [k] is simplified to:

P [k] = (I −K[k]C[k])P−[k](I −K[k]C[k])T +K[k]R[k]K[k]T (3.9)
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Lastly, the K[k] minimizing the trace of P [k] is given by:

K[k] = P
−[k]CT [k]

(︁
C[k]P−[k]CT [k] +R

)︁−1 (3.10)

The expected value of the errors x[k]−x̂−[k] and x[k]−x̂[k] are exponentially stable
provided ∥A[k]∥ and ∥C[k]∥ are bounded, the pair (A[k], C[k]) is uniformly com-
pletely observable and (A[k], Q[k] 1

2 ) is uniformly completely controllable (Moore
et al. 1980; Zhang et al. 2021). Hence, the augmented state can be estimated
recursively by applying the above two stages.

Remark that augmenting the state to estimate the disturbance is not exclusive
for KFs (e.g., Lin et al. (1995), Fan et al. (2010), and Kim et al. (2017)). For
example, this method has been applied for Luenberger-like observers in the so-
called Generalized Extended State observers (Kurtz et al. 1998; Li et al. 2012;
Kotta et al. 2020). Moreover, if the exogenous system generating the disturbance
is known (i.e., the internal model of the disturbance), it can replace the equation
d[k] = d[k − 1] + w[k − 1] when extending the state (Sanz et al. 2018).

3.2.2 Sliding mode observer

Sliding mode observers include a discontinuous output error injection ensuring the
asymptotically convergence of the state error to zero despite matched disturbances
(disturbance whose distribution matrix is in the range of the distribution matrix
of the discontinuous injection; Sira-Ramírez et al. 1994). These observers can also
reconstruct disturbances with only the information of their bound. This feature is
exploited in this chapter to estimate the rate of glucose appearance. In particular,
this chapter uses the First Order Sliding Mode Observer (FOSMO) proposed by
Yan et al. (2007), which extends the design of Edwards et al. (1994) for non-linear
systems. The theoretical framework supporting how this observer can be used for
state and disturbance estimation is shown below.

The observer applies for the semi-linear system given by (Yan et al. 2007; Shtessel
et al. 2014, Section 3.5):

{︄
ẋ(t) = Ax(t) + ϕ(x, u, t) +Dd(y, u, t)
y(t) = Cx(t)

(3.11)

where y(t) ∈ Rny is the measurable output, x(t) ∈ Rnx is the system state, and
u(t) ∈ Rnu is the known input. The function ϕ(x, u, t) ∈ Rnx represents the
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nonlinear term, Lipschitzian with respect to x(t) with the Lipschitz constant Lϕ.
The disturbance (or other unknown inputs, such as parameter uncertainty) is
d(t) ∈ Rnd , which is assumed to be bounded by the known term ρ(y(t), u(t), t).
A, C, and D are constant matrices of proper dimensions, with D and C both full
rank.

Two nonsingular state transformations are applied to (3.11) to design the observer.
Under the assumption

rank (CD) = rank (D) = q̃ (3.12)

a coordinate change exists such that the system (3.11) becomes (Yan et al. 2007,
Lemma 1; Shtessel et al. 2014, Section 3.5):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1(t) = A11x1(t) +A12x2(t) + ϕ1(x̄, u, t)
ẋ2(t) = A21x1(t) +A22x2(t)+

+ ϕ2(x̄, u, t) +D2d(t)
y(t) = C2x2(t)

(3.13)

where x̄(t) := col (x1(t), x2(t)) ∈ Rnx represents the transformed states where
x2(t) are the last ny elements of x̄(t), A11 ∈ R(nx−ny)×(nx−ny), C2 ∈ Rny×ny is
nonsingular and

D2 =
[︃
0(ny−q̃)×nd

D22

]︃
(3.14)

with D22 ∈ Rq̃×nd is of full rank. This special form for D2 simplifies the observer
design, circumventing the solution of the constrained Lyapunov equation proposed
by Walcott et al. (1988). The term ϕ̄(x̄, u, t) := col (ϕ1(x̄, u, t), ϕ2(x̄, u, t)) repre-
sents the transformed nonlinearities where ϕ2(x̄, u, t) are the last ny components
of ϕ̄(x̄, u, t).

In the second coordinate change, the following transformation is applied to (3.13),

T :=
[︃

Inx−ny L
0ny×(nx−ny) Iny

]︃
, L :=

[︁
L0 0(nx−ny)×nd

]︁
(3.15)

leading to
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ż1(t) = (A11 + LA21) z1(t) + (A12 + LA22 (A11 + LA21)L) z2(t)+
+
[︁
Inx−ny

L
]︁
ϕ(T−1z, u, t)

ż2(t) = A21z1(t) + (A22 −A21L) z2(t)+
+ ϕ2(T−1z, u, t) +D2d(t)

y(t) = C2z2(t)

(3.16)

where z := col (z1, z2) are the transformed states and I is the identity matrix.
The matrix L has the structure of (3.15), with L0 ∈ R(nx−ny)×(ny−nd), to verify
LD2 = 0, otherwise the transformation to obtain (3.13) will be meaningless.

The observer for the system (3.16) reads as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ż̂1(t) = (A11 + LA21) ẑ1(t) + (A12 + LA22 (A11 + LA21)L)C−1
2 y(t)+

+
[︁
Inx−ny L

]︁
ϕ(T−1ẑ, u, t)

ż̂2(t) = A21ẑ1(t) + (A22 −A21L) ẑ2(t)+
+ ϕ2(T−1ẑ, u, t) −Key(t) + ν(t)

ŷ(t) = C2ẑ2(t)

(3.17)

where K is the gain of the linear error correction (ey(t) := y(t) − ŷ(t)) term to be
designed. The term ν(t), defined as

ν(t) :=
{︄
k(t)C−1

2
ey(t)

∥ey(t)∥ , if ey(t) ̸= 0
0, otherwise

, (3.18)

is the discontinuous feedback error term allowing the state error (e1 := z1 −
ẑ1) to reach the sliding surface S := {(e1(t), ey(t))|ey(t) = 0} and remain there
afterwards provided the scalar function k(t) is chosen sufficiently larger than
ρ(y(t), u(t), t).

The dynamics of the observer errors reads as:

ė1(t) = (A11 + LA21) e1(t)+
+
[︁
Inx−ny L

]︁ (︁
ϕ(T−1z, u, t) − ϕ(T−1ẑ, u, t)

)︁
ėy(t) = C2A21e1(t) +

(︁
(A22 −A21L)C−1

2 + C2K
)︁
ey(t)+

+ C2D2d(t) − C2ν(t) + C2
(︁
ϕ2(T−1z, u, t) − ϕ2(T−1ẑ, u, t)

)︁
(3.19)

(3.20)
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3.2 Disturbance estimation

For the observer to estimate the disturbance, the error e1(t) and ey(t) must
converge to the origin, asymptotically and in finite time, respectively. On the one
hand, the error dynamics ė1(t) is asymptotically stable if the following condition –
calculated using V = e1(t)TPe1(t) as Lyapunov candidate – holds (Shtessel et al.
2014, Proposition 3.2):

Ā
T
P̄

T + 1
ϵ
P̄ P̄

T + ϵL2
ϕInx−ny + αP < 0 (3.21)

for P = PT > 0, P̄ :=
[︁
Inx−ny L

]︁
, Ā := col(A11, A21) and the positive constants

ϵ and α.

Condition (3.21) requires designing L0 in (3.15) to stabilize A11 +LA21 (the linear
part of the error dynamics e1(t) in sliding mode). Hence, the pair (A11, A21) must
be at least detectable, or equivalently, the invariant zeros of (A,D,C) in (3.11)
must be stable (Shtessel et al. 2014, Lemma 3.2).

On the other hand, the output error ey(t) is driven to the origin in finite time if
the following conditions are verified (Shtessel et al. 2014, Proposition 3.3):

(︁
C2 (A22 −A21L) + C−1

2 K
)︁T + C2 (A22 −A21L) + C−1

2 K ≤ 0
k(t) ≥ (∥C2A21∥ + ∥C2∥Lϕ)w(t) + ∥C2D2∥ρ(y, u, t) + η

(3.22)
(3.23)

where ∥·∥ denotes the Euclidean norm, the term η is a positive constant related
to the convergence time, and w(t) is an upper bound of ∥e1(t)∥ given by the
solution of ẇ(t) = 1

2αw(t) provided ∥e1(0)∥ ≤ ∥w(0)∥. Expressions (3.22) and
(3.23) determine K and k(·) to guarantee the reachability condition, that is,
V̇̄ < −2ηV̄ 1/2 with V̄ = eT

y ey a Lyapunov function.

If condition (3.23) holds, during the sliding mode regime ey(t) = ėy(t) = 0, hence
the output error dynamics become

0 = −νeq(t) +D2d(t) +
(︁
ϕ(T−1z, u) − ϕ(T−1ẑ, u)

)︁
+ C2A21e1(t) (3.24)

where νeq(t) is the so-called equivalent output error injection term (Edwards
et al. 2000). This term can be interpreted as the average effect of the high-
frequency correction in (3.18) that maintains the error trajectories in the surface
S (Edwards et al. 2000; Yan et al. 2007). Because of (3.21), the terms C2A21e1(t)
and (ϕ(T−1z, u) − ϕ(T−1ẑ, u)) will vanish. As a result,
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νeq ≈ D2d(t) (3.25)

The actual value of νeq(t) is unknown since it depends on the disturbance. However,
an estimation of νeq(t), ν̂eq(t), is possible by either filtering ν (Edwards et al. 2006;
Zak et al. 2017) or approximating (3.18) with sigmoid functions (Edwards et al.
2000; Veluvolu et al. 2009).

Once ν̂eq(t) is computed, the estimated disturbance d̂(t) can be reconstructed
from

d̂(t) = (DT
2 D2)−1D2ν̂eq(t) (3.26)

Note that, unlike the KF, the FOSMO does not require the assumption of constant
disturbance.

3.3 Models

Models are required to design the observers in Section 3.2. This chapter also studies
the effect of the model structural complexity on the accuracy of the disturbance
estimation. Thus, the observers were designed with two glucose-insulin models
of different complexity: the Identifiable Virtual Patient (IVP) model (Kanderian
et al. 2009) and the Hovorka model (Hovorka et al. 2004). A description of these
models is provided in this section. In addition, the parameters and variables of the
Identifiable Virtual Patient (IVP) model and the Hovorka model are summarized
in Table 3.2 and Table 3.3, respectively.

The performance of the observers will be assessed in silico because, as indicated in
the introduction of this chapter, measuring the meal rate of glucose appearance is
challenging. Therefore, this section also presents the identification of the models
with the simulator used for the in silico evaluation: the UVa/Padova simulator
(Dalla Man et al. 2014). This simulator received the approval for the Food and
Drug Administration to be a substitute for pre-clinical trial with animals. In
this dissertation, a modified version of this simulator was utilized. This modified
version is built upon the academic version with 30 virtual patients (10 adults, 10
adolescents, and 10 children). The academic version did not consider variability
or exercise. Hence, to simulate under more challenging conditions, the research
group this thesis belongs to has extended the simulator with multiples sources
of variability (e.g., circadian variability, insulin absorption, and meal absorption)
and exercise.
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3.3.1 The Identifiable Virtual Patient Model

The IVP model is a trade-off between the Bergman model (Bergman et al. 1985)
and the Hovorka model in terms of complexity: it expands the Bergman model
by modeling the subcutaneous insulin administration. However, it describes with
minor detail than Hovorka et al. (2004) the non-insulin-dependent glucose fluxes
or the hepatic glucose production. In addition, the IVP model is less spread in
the literature compared to the Hovorka model, yet its applications are numerous:
observer design (Boiroux et al. 2017; Sala et al. 2018), controller design (Enright
2021), meal detection (Mahmoudi et al. 2019; Zheng et al. 2020), simulator for in
silico studies (Meneghetti et al. 2021) or for training people with diabetes (Stocker
et al. 2006), among others.

The equations of the IVP model read as:

İSC(t) = − 1
τ1

· ISC(t) + 1
τ1CI

· u(t)

İP (t) = − 1
τ2

· IP (t) + 1
τ2

· ISC(t)

İEF F (t) = −p2 · IEF F (t) + p2 · SI · IP (t)
Ġ(t) = −(GEZI + IEF F (t)) ·G(t)+

+ EPG+RA(t)

(3.27)

(3.28)

(3.29)

(3.30)

The expressions (3.27) and (3.28) model the absorption of the insulin infusion
u(t) (µU/min) with two compartments (modeling element assuming homogenous
mass or concentration of a drug): one for the subcutaneous concentration ISC(t)
(µU/L), and other for the plasma insulin concentration IP (t) (µU/L), respectively.
The parameters τ1 and τ2 define the absorption time (min), and CI is the in-
sulin clearance (mL/min). Equation (3.29) describes the insulin effect on glucose
disposal, IEF F (t)(1/min), where p2 is the kinetic rate for insulin action (1/min)
and SI is the insulin sensitivity (mL/(µU min)). Lastly, equation (3.30) models
the fluctuations in plasma glucose concentration G(t) (mg/dL) due to IEF F (t),
non-insulin dependent uptake represented with the glucose effectiveness at zero
insulin (GEZI in 1/min), the hepatic glucose production (EGP in mg/(dL min))
and, finally, the meal rate of glucose appearance (RA(t) in mg/(dL min)), the dis-
turbance to be estimated in this chapter. The parameters and variables describing
the IVP model are listed in Table 3.2.
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Table 3.2: Variables and parameters of the Identifiable Virtual Patient model

Symbols Description Units
Variables
u(t) Subcutaneous insulin infusion µU/min
ISC(t) Insulin concentration in the subcutaneous

compartment
µU L

IP (t) Insulin concentration in the plasma compartment µU L
IEF F (t) Insulin effect on glucose min
G(t) Plasma glucose mg/dL
RA(t) Meal rate of glucose appearance mg/(dL min)
Parameters
τ1 , τ2 Absorption time constants related to the insulin

movement between the delivery site and the plasma
min

CI Insulin clearance gain mL/min
p2 Kinetic rate for insulin action 1/min
SI Insulin sensitivity mL/(µU min)
EGP Hepatic glucose production mg/(dL min)
GEZI Glucose effectiveness at zero insulin 1/min

3.3.2 The Hovorka model

The Hovorka model is a medium complexity model. It employs more compartments
to describe the subcutaneous absorption, plasma glucose concentration, and insulin
effect than the IVP model. Also, the degree of nonlinearity is more considerable,
including, for example, two piecewise algebraic relations to model the non-insulin-
dependent glucose and the renal glucose clearance. However, other simulation-
oriented models, such as the model integrated into the UVa/Padova simulator
(Dalla Man et al. 2014), provide more detailed descriptions of endogenous glucose
production and meal absorption or include a glucagon subsystem model.

The Hovorka model is widely used in the literature: Wilinska et al. (2010) construct
a simulator with this model to compare closed-loop control algorithms. In addition,
some of the subsystems of the model are used to form new models, for example,
to describe glucagon pharmacokinetics (Wendt et al. 2016; Furió-Novejarque et al.
2022) or exercise (Resalat et al. 2016). Indeed, Kanderian et al. (2009) describes
the RA(t) in (3.30) with the bicompartimental model of Hovorka et al. (2004).
The Hovorka model is also utilized to design state observers (Orozco-Lopez et al.
2018; Kölle et al. 2017), especially for Kalman-like filters (Ramkissoon et al. 2019;
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Hajizadeh et al. 2018; Kovacs et al. 2019). The most explicit example of the
relevant role of this model is that two of the five commercially available hybrid
artificial pancreas systems implement this model: the CamAPS FX (CamDiab
Ltd, Cambridge, UK; Hovorka et al. 2010) and the DBLG1 (Diabeloop, Grenoble,
France; Hanaire et al. 2020).

The dynamic equations are the following (Hovorka et al. 2004):

Ṡ1(t) = u(t) − S1(t)
τS

,

Ṡ2(t) = S1(t)
τS

− S2(t)
τS

İ(t) = S2(t)
τSVI

− keI(t),

ẋ1(t) = −ka1x1(t) + kb1I(t),
ẋ2(t) = −ka2x2(t) + kb2I(t),
ẋ3(t) = −ka3x3(t) + kb3I(t),
Q̇1(t) = −F01c(t) − FR(t) − x1(t)Q1(t) + k12Q2(t)

+ EGP0(1 − x3(t)) +RA(t),
Q̇2(t) = Q1(t)x1(t) − (k12 + x2(t))Q2(t),

(3.31)

(3.32)

(3.33)

(3.34)
(3.35)
(3.36)

(3.37)

(3.38)

The equations (3.31) and (3.32) model the absorption of the insulin infusion u(t)
(mU/(kg min)) through two compartments. S1(t)(mU/kg) and S2(t)(mU/kg) are
the amounts of insulin, and τS is (min) the insulin absorption time constant. The
plasma insulin concentration I(t) (mU/L) is described by (3.33), where ke(1/min)
is the insulin clearance and VI is the distribution volume (L/kg). The expressions
(3.34), (3.35), (3.36) model the insulin effect on glucose distribution (x1(t) in
1/min), glucose disposal (x2(t) in 1/min) and glucose production in the liver (x3(t)
(1)), where ka1,2,3(1/min), kb1,2(L/(mU min2)) and kb3(L/(mU min)) define the in-
dividual insulin sensitivities Si1 = kb1/ka1, Si2 = kb2/ka2, and Si3 = kb3/ka3. The
expressions (3.37) and (3.38) represent the glucose kinetics where Q1(t)(mmol/kg)
and Q2(t)(mmol/kg) are the glucose masses in the accessible (measurable) and
non-accessible compartment. Besides the insulin actions, the glucose masses are
affected by the exchange between compartments, defined by the transfer rate k12
(1/min), the RA to be estimated (mmol/kg), the endogenous glucose production
EGP0 (mmol/(kg min)) affected by the insulin, and the following two algebraic
expressions:
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F01c(t) =
{︄
F01, if G(t) ≥ 4.5 mmol/L
F01G(t)/4.5, otherwise

,

FR(t) =
{︄
FR0VG(G(t) − 9), if G(t) ≥ 9 mmol/L
0, otherwise

,

G(t) = Q1(t)
VG

,

(3.39)

(3.40)

(3.41)

where F01c (mmol/(kg min)) is the glucose consumption of the central nervous
system, while F01 represents the consumption at ambient glucose concentration,
FR(mmol/(kg min)) is the renal excretion of glucose in the kidneys. The output
of the model is the blood glucose concentration G(t) (mmol/L), where VG(L/kg)
is the glucose distribution volume (Hovorka et al. 2004).

The parameters and variables defining the Hovorka model are described in Ta-
ble 3.3.

Table 3.3: Variables and parameters of the Hovorka model

Symbols Description Units
Variables
u(t) Subcutaneous insulin infusion mU/(min kg)
S1(t) Insulin amount in the first subcutaneous

compartment
µU kg

S2(t) Insulin amount in the second subcutaneous
compartment

µU kg

I(t) Insulin concentration in the plasma insulin
compartment

mU L

x1(t) Insulin effect on glucose distribution 1/min
x2(t) Insulin effect on glucose disposal 1/min
x3(t) Insulin effect on hepatic glucose production 1/min
Q1(t) Glucose amount in the accessible compartment mmol/kg
Q2(t) Glucose amount in non-accessible compartment mmol/kg
G(t) Plasma glucose concentration mmol/L
RA(t) Meal rate of glucose appearance mmol/(kg min)
F01c(t) Glucose consumption of the central nervous system mmol/(kg min)
FR(t) Renal glucose clearance mmol/(kg min)
Parameters
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Table 3.3: (continued)

Symbols Description Units

τS Absorption time constants related to the insulin
movement between insulin compartments

min

ke Insulin clearance rate 1/min
VI Distribution volume L/kg
kaj Deactivation rate constants (j = {1, 2, 3}) 1/min
kbj Activation rate constants (j = {1, 2}) L/(mU min2)
kb3 Activation rate constant L/(mU min)
k12 Transfer rate of the glucose exchanged between the

accessible and non-accessible compartment
1/min

EGP0 Endogenous glucose production extrapolated to zero
insulin concentration

mmol/(kg min)

F01 Glucose consumption of the central nervous system
at ambient glucose concentration

mmol/(kg min)

FR0 Renal glucose clearance rate 1/min
VG Glucose distribution volume L/kg

The model can be reparametrized in terms of the insulin sensitivities (Hovorka et al. 2002):
Si1 = kb1

ka1
, Si2 = kb2

ka2
, and Si3 = kb3

ka3

3.3.3 Models identification

The simulation study included in this chapter was performed with UVa/Padova
simulator; thus, the Hovorka and IVP model parameters must be identified for
the virtual cohort of this simulator.

Two parameter sets were determined to analyze the influence of personalizing
models: a population-based parameter set (or average model) and an individualized
parameter set. The population value parameter set was identified from the average
virtual adult in the simulator. The individualized parameter sets were obtained
by identifying two of the most sensitive parameters for each of the ten virtual
adults in the simulator. The remaining parameters of the personalized model
were fixed to their corresponding values in the population-based parameter set.
The identification method followed the guidelines of Garcia-Tirado et al. (2018):
study the structural identifiability, rank the parameters according to their global
sensitivity, and identify the parameters.
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Analysis of the structural identifiability

The structural identifiability of a parameter determines if the available inputs
and outputs of the system suffice to find a solution for the parameter under ideal
conditions, namely, absence of noise, use of continuous-time data, and structural
match between the process and the model (Walter et al. 1982; Chis et al. 2011). If
a unique solution exists, then the parameter is structurally globally identifiable; if a
finite number of different solutions exist, then the parameter is structurally locally
identifiable; and, if infinite solutions are available, the parameter is structurally
unidentifiable (Chis et al. 2011).

The concept of structural identifiability can also be extended to the full model
(Walter et al. 1982): the model is structurally globally identifiable if, and only if, all
its parameters are structurally globally identifiable, and the model is structurally
locally identifiable if at least one of its parameters is structurally locally identifiable.

The structural identifiability analysis was performed with the software GenSSI
2.0 (Ligon et al. 2018). This software implements the Generating Series Approach
(Walter et al. 1982) combined with the identifiability tableaus (Balsa-Canto et al.
2010) to carry out the analysis; the combination of these methods is a trade-off
between computational cost, complexity, and information provided regarding other
methods in the literature (Chis et al. 2011).

The Generating Series Approach considers the following non-linear system affine
in the inputs:

{︄
ẋ(t) = f(x(t), θ) + g(x(t), θ)u
y(t) = h(x(t), θ)

(3.42)

where θ ∈ Rnθ is the set of unknown parameters, y(t) ∈ Rny is the measurable
output, u(t) ∈ Rnu is the input, and x(t) ∈ Rnx is the system state with x0(θ)
its initial condition (x(t = 0)). The terms f(x(t), θ), g(x(t), θ) and h(x(t), θ) are
vector fields defined anywhere (Walter et al. 1982). Note that both the Hovorka and
IVP models can be expressed as (3.42). The Generating Series Approach method
computes the successive Lie derivatives of h(x(t), θ) along the fields f(x(t), θ)
and g(x(t), θ) – e.g., Lfh(x(t), θ), Lgh(x(t), θ), LfLfh(x(t), θ), LgLgh(x(t), θ),
LfLgh(x(t), θ), etc. — where the Lie derivative is defined as:

Lfh(x(t), θ) =
nx∑︂
i=1

fi(x(t), θ)∂h(x(t), θ)
∂xi

(3.43)
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with fi the i-th component of vector f(·).

Then, the successive Lie derivatives, evaluated at t = 0, are compared with the
same successive Lie derivatives for a hypothetical system with known parameters
(θ∗), resulting in the following non-linear system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h(x(t), θ)|t=0 = h(x(t), θ∗)|t=0

Lfh(x(t), θ)|t=0 = Lfh(x(t), θ∗)|t=0

Lgh(x(t), θ)|t=0 = Lgh(x(t), θ∗)|t=0

LfLfh(x(t), θ)|t=0 = LfLfh(x(t), θ∗)|t=0

...

(3.44)

where the right hand of each equation is assumed to be a known scalar since
depends only on θ∗.

The compatibility of the system of equations (3.44) determines the structural
identifiability of the system (Balsa-Canto et al. 2010; Chis et al. 2011). If the
rank of the Jacobian of the successive Lie derivatives equals the number of
parameters, then the system is at least locally identifiable. Since the minimum
order of the required Lie derivative is unknown beforehand and depends on the
knowledge of the initial condition, the rank condition is only sufficient. Of note,
the described rank condition is very similar to the rank condition used to check the
observability of non-linear systems, evincing the relationship between observability
and identifiability (Villaverde et al. 2016).

The rank condition only determines the local identifiability of the model. To
give insight into the global identifiability and the identifiability properties of each
parameter, the non-linear system of equations must be solved. The identifiability
tableau is a visual tool to reduce the complexity involved in the solution of this
system of equations (Balsa-Canto et al. 2010). The tableau represents in a table
the non-zero elements of the Jacobian of the Lie derivatives (rows) with respect to
the considered parameters (columns), simplifying the detection of unidentifiable
parameters (empty columns) and the selection of the most straightforward relations
between parameters (rows with the lowest number of non-zero elements; Balsa-
Canto et al. 2010).

Regarding the identifiability study of the Hovorka and IVP model, the considered
measurements were the glucose and the plasma insulin, and the known input, the
insulin infusion. The meal disturbance was deemed available to this analysis; hence
parameters related to the carbohydrate absorption model were excluded from
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the study. Note that the plasma insulin and meal disturbance are not available
in a domiciliary setting, but they are considered in this analysis to compare the
models under ideal conditions. In addition, the value of the body weight BW in
the Hovorka model is known; thus, it was not considered in the analysis. The
parameters included in the identifiability analysis were:

θ0
IV P = {τ1, τ2, CI , p2, SI , GEZI, EGP}

θ0
HOV = {F01, k12, EGP0, τS , Vi, ke, ka1, Si1, ka2, Si2, ka3, Si3, VG}

The initial condition of the states, calculated using parameters from the literature
(Kanderian et al. 2009; Hovorka et al. 2004), are given by

x0IV P
:= col (ISC(0), IP (0), IEF F (0), G(0)) = col (17.42, 15, 0.01, 119.59)

x0HOV
:= col (S1(0), S2(0), x1(0), x2(0), x3(0), Q2(0), Q1(0)) =
= col (1.066, 0.42, 5.4166, 0.0277, 0.0044, 0.2817, 4.933, 4.933)

and are expressed in the appropriate units described in Section 3.3.1 and Sec-
tion 3.3.2 or Table 3.2 and Table 3.3.

Taking the above considerations, the GenSSI 2.0 determines that the parameters
in θ0

IV P are structurally globally identifiable; hence the model is also structurally
globally identifiable. Figure 3.1 (left panel) represents the reduced-order iden-
tifiability tableau. All the columns contain at least a non-zero element (black
rectangles), confirming that all the parameters are identifiable. Note, however,
that the structural identifiability analysis is sensitive to the initial conditions. For
example, if IP (0) = ISC(0), then τ1 and τ2 were only locally identifiable (same
column in the identifiability tableau). The right panel of Figure 3.1 illustrates this
feature since, unlike the IP (0) ̸= ISC(0) (left panel), the parameter τ2 cannot be
solved directly from a unique coefficient of the generating series. The analysis of
the identifiability also depends on which inputs are considered known. If the meal
disturbance is excluded (and IP (0) ̸= ISC(0)), then GenSSI 2.0 showed that only
the subset {τ1, τ2, CI} was structurally globally identifiable while the remaining
parameters were only locally identifiable.

The more significant number of parameters in the Hovorka model makes the
structural identifiability analysis more challenging. The rows of the identifiability
tableau (Figure 3.2) involved, in general, many parameters; hence solving this
complex non-linear system was computationally expensive. Indeed, the execution
had to be halted after 12 h in an Intel(R) Core(TM) i7-7700 CPU with two cores
of 3.60 GHz and 12 GB of RAM running on Matlab 2021b. As a result, the
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Figure 3.1: Reduced-order identifiability tableau for IVP model. The black
rectangles represent a non-zero element in the Jacobian of the Lie derivatives, i.e., the
corresponding parameter in the columns appears in the Lie derivative associated with the
corresponding coefficient in the row. The analysis considered the meal disturbance, the
plasma insulin, the insulin infusion, and the glucose as known variables. Two cases are
studied: (left) the subcutaneous and plasma insulin have different initial conditions (right)
the subcutaneous and plasma insulin have equal initial conditions.

software only computed the rank but it could not solve the complete system of
equations, a step needed to assess the global identifiability. The software only
showed that VG is globally identifiable (the only parameter directly related to a
coefficient in Figure 3.2 without depending on other parameters). The remaining
parameters are structurally locally identifiable since the rank of the Jacobian of
the Lie derivatives coincides with the number of parameters in θ0

HOV (no empty
columns in Figure 3.2). Therefore, the Hovorka model is only structurally locally
identifiable.

Global sensitivity and parameters ranking

For local structural identifiable or unidentifiable systems, the structural global
identifiability property can be recovered by fixing parameters to values in the
literature (Balsa-Canto et al. 2010). It seems logical to fix those parameters
influencing the outputs the least. Studying the influence of the parameters is
precisely the goal of the sensitivity analysis.

The most widely used approach for sensitivity analysis is to numerically compute
the derivative of the output regarding the parameters at a specific location of the
parameter space, i.e., θ̂, and a given discrete-time ts, that is (Garcia-Tirado et al.
2018; Balsa-Canto et al. 2010):
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Figure 3.2: Reduced-order identifiability tableau for Hovorka model. The black
rectangles represent a non-zero element in the Jacobian of the Lie derivatives, i.e., the
corresponding parameter in the columns appears in the Lie derivative associated with the
corresponding coefficient in the row. The analysis considered the meal disturbance, the
plasma insulin, the insulin infusion, and the glucose as known variables.

So
p(ts) = ∂yo

∂θp

⃓⃓⃓⃓
θ=θ̂,yo=yo(t,θ̂)

(3.45)

for p = {1, · · · , nθ} and o = {1, · · · , ny}. To avoid differences of magnitude in the
parameters impacting the analysis, the sensitivities in (3.45) were normalized with
the actual parameter value θp̂ and the actual output yjo(ts) at the corresponding
discrete time, as follows:

so
p(ts) = θ̂p

yj(ts)S
o
p(ts) (3.46)

The sensitivities in (3.46) already characterizes the influence of the parameters on
the outputs; thus, they can be used, for example, to rank the parameters (Brun
et al. 2001). However, the resulting ranking is only valid in the neighborhood of θ̂
(local sensitivity analysis). To expand the validity to the feasible space of θ, the
analysis must be repeated for different θ̂. Balsa-Canto et al. (2010) suggested using
the Latin hypercube (Iman et al. 1981) to sample θ̂ because it generally requires
fewer samples than Monte Carlo sampling to explore the overall parameter space.

Besides θ̂, the value of the model inputs may also impact the sensitivities in (3.46)
and, consequently, the parameter ranking. Balsa-Canto et al. (2010) suggested
repeating the sensitivity analysis with different input profiles or experiments to
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reduce the influence of the model inputs on the ranking. Therefore, the global
parameter ranking must consider the relative sensitivities at nts discrete times,
for nps samples of the parameters θ̂, and for ne experiments. Balsa-Canto et al.
(2010), which expanded the initial proposal of Brun et al. (2001), summarized this
information in the mean square sensitivity measure (δmsqr

p ) defined as follows:

δmsqr
p = 1

nenpsntsny

⌜⃓⃓⎷ nps∑︂
ps=1

ne∑︂
e=1

ny∑︂
o=1

nts∑︂
ts=1

(se,o,ps
p (te,o,ps

s ))2 (3.47)

where se,o,ps
p (te,o,ps

s ) corresponds to the relative parametric sensitivity of the
observable yo under the experiment e and the parameter sampling ps at the
discrete-time te,o,ps

s .

The above methodology (calculation of sensitivities, normalization, parameter
sampling, and ranking metric) is applied to rank the parameters of the Hovorka
and IVP models through the AMIGO2 Matlab toolbox (Balsa-Canto et al.
2016). The glucose was the only considered measurable (ny = 1), whereas the
insulin infusion and the meal disturbance were the inputs. Seven input profiles
(ne = 7) were considered in the analysis as in Garcia-Tirado et al. (2018); they
were generated from 1-day simulations (nts = 288 5-min samples) of three meals
with the modified version of the UVa/Padova simulator. The analysis included the
same parameters considered in the structural identifiability. The bounds of the
parameters required for the Latin hypercube sampling were calculated from values
provided in the literature (Kanderian et al. 2009, Table 1; Hovorka et al. 2002,
Table 1); they are shown in Table 3.4 and Table 3.5. The number of samples in the
Latin hypercube was 100 000 (nps = 100 000). Combination of parameters within
previous bounds may lead to unfeasible glucose trajectories; thus, all samples
resulting in a glucose value lower than 32 mg/dL and greater than 450 mg/dL were
discarded when calculating δmsqr.
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Table 3.4: Nominal parameters and bounds of the IVP model used in the global
sensitivity analysis and identification

Parameter Nominal value Lower bound Upper bound
τ1 (min) 7.05 · 101 0 2.103 · 102

CI (mL/min) 1.267 · 103 0 3.894 · 103

τ2 (min) 4.44 · 101 0 1.448 · 102

p2 (min) 1.145 · 10−2 0 3.418 · 10−2

SI (mL/(µU min)) 5.503 · 10−4 0 2.483 · 10−3

GEZI (1/min) 2.346 · 10−3 0 1.340 · 10−2

EGP (mg/(dL min)) 1.152 0 5.046

Table 3.5: Nominal parameters and bounds of the Hovorka model used in the
global sensitivity analysis and identification

Parameter Nominal Lower bound Upper bound
F01 (mmol/(kg min)) 9.7 · 10−3 9.7 · 10−4 1.843 · 10−2

FR0 (1/min) 3 · 10−3 3 · 10−4 3 · 10−2

k12 (1/min) 6.6 · 10−2 6.6 · 10−3 1.254 · 10−1

EGP0 (mmol/(kg min)) 1.61 · 10−2 1.61 · 10−3 3.059 · 10−2

τS (min) 5.5 · 101 5.5 1.045 · 102

VI (L/kg) 1.2 · 10−1 1.2 · 10−2 2.28 · 10−1

ke (1/min) 1.38 · 10−1 1.38 · 10−2 2.622 · 10−1

ka1 (1/min) 6 · 10−3 6 · 10−4 1.14 · 10−2

ka2 (1/min) 6 · 10−2 6 · 10−3 1.14 · 10−1

ka3 (1/min) 3 · 10−2 3 · 10−3 5.7 · 10−2

Si1 (L/(mU min)) 5.12 · 10−3 0 5.326 · 10−2

Si2 (L/(mU min)) 8.2 · 10−4 0 1.258 · 10−2

Si3 (L/mU) 5.202 · 10−2 0 5.113 · 10−1

VG (L/kg) 1.6 · 10−1 1.6 · 10−2 3.04 · 10−1

The result of the global ranking is shown in Figure 3.3. Garcia-Tirado et al. (2018)
classify the first parameters accumulating more than 80 % of δmsqr (green bars
in Figure 3.3) as sensitive parameters, the last parameters with less than 1 %
(red bars) as insensitive parameters, and the remaining parameters (blue bars) as
mildly sensitive.
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Figure 3.3: Global ranking of parameters in decreasing order of mean square
sensitivity measure (δmsqr). Green bars refer to the first parameters gathering more than
the 80 % (sensitive parameters), red bars correspond to the last parameters summing less than
1 % (insensitive parameters), and blue bars are related to the mildly sensitive parameters.

Identification

The union of sensitive and mildly sensitive subsets, that is,

θ1
IV P = {τ1, CI , p2, SI , GEZI, EGP}

θ1
HOV = {F01, k12, τS , VI , ke, ka1, Si1, Si2, VG}

results in a suitable parameter selection for average model identifications since it
contains the parameters most impacting the glucose (Garcia-Tirado et al. 2018).
The insensitive parameters were fixed to the nominal values in Table 3.4 and
Table 3.5. Recall that analysis of the structural identifiability for subset θ0

HOV

resulted in locally structurally identifiability. Since θ1
HOV is a subset of θ0

HOV ,
more chances exist that the subset θ1

HOV was globally structurally identifiable.
Therefore, the structural identifiability analysis was repeated for the above subsets,
θ1

HOV , concluding globally structurally identifiability. Since the θ0
IV P already was

globally structurally identifiable, the subset θ1
IV P also is.

Regarding the parameters for the personalized models, the subsets {SI , CI} (IVP
model) and {Vi, Si1} (Hovorka model) were selected because they are the most
sensitive gains of the corresponding models.

The identification consisted of two optimizations. First, the parameters related to
the insulin subsystem were identified by minimizing the Normalized Root Mean-
Squared Error (NRMSE) of the plasma insulin, taking the insulin infusion as an
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input. Then, the parameters of the insulin effect and glucose-related states were
identified by minimizing the NRMSE of the glucose measurement, taking the meal
disturbance, i.e., the meal rate of glucose appeareance, and the plasma insulin as
inputs. The NRMSE is defined by:

NRMSE =

⎛⎝
√︄∑︁N

i=1
(︁
xi

model − xi
UV a

)︁2

N

⎞⎠
·
(︄

1
xi,max

UV a − xi,min
UV a

)︄ , (3.48)

where xi
UV a represents the actual measurement at sample i, whereas the su-

perscripts max and min refer to the maximum and minimum values of these
measurements, respectively. xi

model denotes the glucose or plasma insulin obtained
by the IVP or Hovorka models. This two-step optimization procedure allows
more accurate identification of the insulin pharmacokinetics compared to a single
optimization considering insulin and glucose as measurable signals (Kanderian
et al. 2009). The inputs for the optimization problems – glucose, plasma insulin,
insulin infusion, and meal rate of glucose appearance – were simulated with the
UVa/Padova simulator under a 1-day scenario with three meals using the average
adult to identify the average model and the corresponding virtual adult in the
cohort to identify the personalized models. Of note, the full knowledge of these
inputs is impractical for real applications, but they were used in this study to
ensure accurate identification of the parameters and, consequently, reduce the
influence of the identification error over the effect of the model structure on the
observer performance. In addition, the meal rate of glucose appearance has been
chosen as an input to avoid identifying the parameters of a meal model.

The optimization problems were solved with the genetic algorithm of the Matlab
Global Optimization Toolbox (MathWorks 2022). The algorithm was configured
with its default settings. The bounds of the parameters required for the opti-
mization algorithm coincide with those of the sensitivity analysis (Table 3.4 and
Table 3.5).

Table 3.6 and Table 3.7 include the identified parameters for the IVP and the
Hovorka models, respectively. A new 3-meal scenario was simulated for the average
subject and the ten adults in the simulator cohort to assess the identification
accuracy. The simulation with the average adult reveals that both average models
fit moderately well the glucose and the plasma insulin: the Hovorka model
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Figure 3.4: Results of the Normalized Root Mean-Squared Error (NRMSE) for
the average and personalized models within the ten virtual adults.

outperforms the NRMSE compared to the IVP model (6.32 % vs. 9.87 %), but its
accuracy is lower in the plasma insulin fit (6.38 % vs. 3.69 %).

However, the fit of the average models worsens when these models are used to
predict the behavior of the ten virtual adults in the simulator (Figure 3.4). The
most remarkable degradation observed in the Hovorka model may be because of
an over-parametrization of the insulin effect. The Hovorka model considers a third
compartment to model the insulin effect – the insulin effect on glucose transport
x1 –, absent in the simulator used to generate the virtual data (Dalla Man et al.
2014). Indeed, this compartment is related to Si1, a sensitive parameter that was
chosen to be individualized. This over-parametrization might lead to overfitting
problems and, consequently, more sensitivity against inter-patient variability.

Model individualization reduces the variability of the glucose fit. It also dilutes
the differences between both models for the glucose prediction: the difference in
means, estimated by a paired t-test, is only −0.0036 (−0.0504, 0.0432) % (mean
(95%-interval confidence)), a negligible discrepancy that neither proved to be
statistically significant.

The individualization also outperforms the average models in the plasma insulin
fit, reducing the mean value and the variability.
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Table 3.6: Identified parameters of IVP model

Parameter Average patient Individual

SI (mL/(µU min)) 7.03 · 10−4

6.95 · 10−4

6.19 · 10−4

6.34 · 10−4

7.88 · 10−4

7.25 · 10−4

4.59 · 10−4

6.77 · 10−4

6.79 · 10−4

7.35 · 10−4

7.74 · 10−4

EGP (mg/(dL min)) 1.49 1.49

CI (mL/min) 1.11 · 103

1.16 · 103

1.13 · 103

1.28 · 103

1.02 · 103

9.31 · 102

1.15 · 103

1.09 · 103

1.09 · 103

9.06 · 103

1.18 · 103

GEZI (1/min) 3.03 · 10−8 3.03 · 10−8

τ1 (min) 52.71 52.71
p2 (1/min) 2.85 · 10−2 2.85 · 10−2

The values of the fixed parameters are in Table 3.4.
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Table 3.7: Identified parameters of the Hovorka model

Parameter Average patient Individual
τs (min) 43.00 43.00
ke (1/min) 1.36 · 10−1 -

Vi (L/kg) 1.18 · 10−1

1.09 · 10−1

1.04 · 10−1

1.36 · 10−1

1.16 · 10−1

1.05 · 10−1

1.19 · 10−1

1.74 · 10−1

8.41 · 10−2

1.00 · 10−1

1.09 · 10−1

VG (L/kg) 2.22 · 10−2 2.22 · 10−2

k12 (1/min) 9.11 · 10−2 9.11 · 10−2

Si1 (L/(mU min)) 2.13 · 10−3

2.20 · 10−3

1.65 · 10−3

1.84 · 10−3

3.02 · 10−3

2.62 · 10−3

9.45 · 10−4

1.90 · 10−3

2.52 · 10−3

2.42 · 10−3

2.35 · 10−3

Si2 (L/(mU min)) 1.02 · 10−3 1.02 · 10−3

ka1 (1/min) 2.35 · 10−3 2.35 · 10−3

F01 (mmol/(kg min)) 1.28 · 10−2 1.28 · 10−2

The values of the fixed parameters are in Table 3.5.
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Given the superiority of the personalized models, the observers described in
Section 3.2 were designed with these models.

3.4 Design and tuning of the observers

The observers described in Section 3.2 are applied to the models of Section 3.3 to
estimate the rate of glucose appearance. Details about their design, tuning, and
implementation are given in this section.

3.4.1 Kalman filters

As stated in Section 3.2.1, a simple approach to estimate a disturbance d[k]
with a KF is to extend the state with d[k] = d[k − 1] + wd[k], where wd[k] is
a white, median-zero noise. In the application considered in this chapter, i.e.,
the estimation of the meal rate of glucose appearance, this assumption of slowly
varying disturbance may be inappropriate, especially in the surroundings of the
meal onset. An alternative would be to augment the state with a model describing
meal absorption. Nevertheless, current meal models (see a review by Fathi et al.
(2018)) ignore the significant effects of macronutrients other than carbohydrates
on meal absorption dynamics. Furthermore, augmenting the state with a meal
model would increase the dimensions of the covariance matrices, making their
tuning more challenging. Therefore, in this chapter, the states have been extended
with d[k] = d[k − 1] + wd[k] to design the KFs.

Since the IVP and Hovorka models contain nonlinearities, the Kalman Filter
might be unsuitable for them. Although one could linearize the augmented model
(3.5) or apply more advanced Kalman filters (such as Extended Kalman Filter or
Unscented Kalman Filter; Szalay et al. 2014), in this chapter, the nonlinearities
are hidden in a Quasi Linear Parameter Varying (qLPV) representation, which
allows applying the classical KF described in Section 3.2.1 directly. LPV systems
have the form of a classical linear time invariant system but with time-dependent
matrices (Kovács 2017) as represented in:

{︄
ẋ(t) = A(p(t))x(t) +B(p(t))u(t)
y(t) = C(p(t))x(t)

(3.49)

where the parameter vector p(t) = [p1(t) . . . pR(t)] consists of the scheduling
parameters pi(t). p(t) ∈ ΩR ⊂ RR is an R-dimensional real vector within the set
Ω = [p1,min, p1,max]×[p2,min, p2,max]×. . .×[pR,min, pR,max]. When the scheduling
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parameters depend on states of the model, the system is referred as qLPV. Either
the IVP or the Hovorka model admit the qLPV representation; the corresponding
state matrices are given as follows:

• IVP model. Selecting p(t) = [p(t)] = [G(t)] as scheduling parameter leads
to the following qLPV representation:

A
(︁
p(t)

)︁
=

⎡⎢⎢⎢⎢⎢⎣
−GEZI + EGP

p(t) −p(t) 0 0 1
0 −p2 p2SI 0 0
0 0 − 1

τ2
1
τ2

0
0 0 0 − 1

τ1
0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

B =
[︂
0 0 0 1

τ1CI
0
]︂T
,

C =
[︁
1 0 0 0 0

]︁
,

(3.50)

(3.51)

(3.52)

where the 5th state variable is the d(t) := RA(t), with ṘA(t) = 0

• Hovorka model. Taking:

p(t) =
[︂

EGP0−F01c(t)−FR(t)
Q1(t) Q1(t) Q2(t)

]︂
the qLPV representation is as follows:

A
(︁
p(t)

)︁
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(t) k12 0 −p2(t) 0 −EGP0 0 0 1
0 −k12 0 p2(t) −p3(t) 0 0 0 0
0 0 −ke 0 0 0 0 1

τSVI
0

0 0 kb1 −ka1 0 0 0 0 0
0 0 kb2 0 −ka2 0 0 0 0
0 0 kb3 0 0 −ka3 0 0 0
0 0 0 0 0 0 − 1

τS
0 0

0 0 0 0 0 0 1
τS

− 1
τS

0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.53)

B =
[︁
0 0 0 0 0 0 1 0 0

]︁T
,

C =
[︂

1
VG

0 0 0 0 0 0 0 0
]︂
,

(3.54)

(3.55)
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where the 9th state variable corresponds to the RA(t). Note that the selected
scheduling parameters p(t) depends on the unmeasurable state Q2(t); hence
the estimations given by the KF would be used instead.

To implement the KFs, the system (3.49) must be discretized. The explicit Euler
discretization of the (3.49) is given by:

A
[︁
p[k]

]︁
= I + TsA

(︁
p(kTs)

)︁
,

B
[︁
p[k]

]︁
= TsB

(︁
p(kTs)

)︁
,

C
[︁
p[k]

]︁
= C

(︁
p(kTs)

)︁
,

(3.56)
(3.57)
(3.58)

where the parentheses indicate the continuous LPV representations of state-space
matrices, while the brackets are the discretized ones of the corresponding model.

The matrices (3.56)–(3.58) form the augmented system described in (3.5); thus,
the KF can be applied to estimate the states and the meal disturbance.

Observability of the augmented systems

Recall from Section 3.2.1 that the pair
(︁
A
[︁
p[k]

]︁
, C
[︁
p[k]

]︁)︁
observability is required

for the observers convergence (Zhang et al. 2021). Given the time-varying character-
istics of the A matrices, the standard observability rank condition from linear time
invariant systems must hold for every iteration, i.e., the pair

(︁
A
[︁
p[k]

]︁
, C
[︁
p[k]

]︁)︁
is

observable if the condition

rank (Ok) = nx , (3.59)

with

Ok =

⎡⎢⎢⎢⎢⎢⎣
C
[︁
p[k]

]︁
C
[︁
p[k + 1]

]︁
·A
[︁
p[k]

C
[︁
p[k + 2]

]︁
·A
[︁
p[k + 1] ·A

[︁
p[k]

...
C
[︁
p[k + nx−1]

]︁
·A
[︁
p[k + nx−2] · · ·A

[︁
p[k + 1]A

[︁
p[k]

⎤⎥⎥⎥⎥⎥⎦ (3.60)

holds for every k ≥ 0 (Witczak et al. 2017). Hence, the two KFs – one for the IVP
model and the other for the Hovorka model – were simulated with the UVa/Padova
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simulator. For each discrete iteration, the (3.59) was evaluated. In all the
iterations, the observability condition hold. Therefore, the pair

(︁
A
[︁
p[k]

]︁
, C
[︁
p[k]

]︁)︁
was observable for the two augmented models.

Optimization-based tuning 1

The two parameters to tune in the KFs are the variance of the CGM reading noise,
R, and the covariance matrix of the process noise, Q. The parameter R can be
directly computed from the glucose measurement. In this chapter, this parameter
is set to R = 20 (mg/dL)2 corresponding to the approximated variance observed
within the steady-state of a simulation of the average subject in the academic
version of the UVa/Padova simulator (Dalla Man et al. 2014).

Unlike R, Q cannot be directly related to a measurable feature. Therefore, this
parameter is usually tuned by trial and error (e.g., Kovacs et al. 2019). To lessen
the human factor and homogenize the tuning method among the two KFs –a
KF designed for the IVP model and another designed for the Hovorka –, an
optimization-based tuning has been employed instead. As in similar works in the
field using Kalman-like filters (e.g., Patek et al. 2007; Toffanin et al. 2013; Pereda
et al. 2016; Xu et al. 2021; Acharya et al. 2022), the Q covariance matrix was
considered diagonal. Although selecting a diagonal Q implies that the process
noises are independent, it helps simplify the optimization tuning in two aspects:
1) reducing the number of parameters (with respect to a Q matrix where all its
elements are non-zero) and 2) avoiding explicitly checking if the eigenvalues are
positive to ensure the positiveness of Q (it suffices to ensure that the elements are
positive if Q is diagonal). The non-zero elements of Q have been tuned using the
Matlab genetic algorithm (MathWorks 2022). The lower bounds of the diagonal
elements were set to zero. The upper bound of each diagonal element corresponds
to the lowest value that makes the filter converge to the Continuous Glucose
Monitor (CGM) reading when the remaining elements of the diagonal are zero.
The cost functions were specific for each model; they are given by:

1The content of this chapter resulted from a research stay at the Óbuda University (Budapest).
In the research stay, another PhD candidate, Máté Siket, participated in the work, being the tuning
of the KFs his main contribution. Therefore, in this section, I have only included a summary of the
tuning procedure and more information can be found in a joint article (Sala-Mira et al. 2021).
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JIV P = kosc(eG + eIEF F
+ eIp + eIsc + eRA

)

JHovorka = kosc

(︂9
5(eG + eIP

+ eRA
)

+ 3
5(eQ2 + ex1 + ex2+

+ ex3 + eS1 + eS2)
)︂

(3.61)

(3.62)

where e denotes the NRMSE between the estimated state and the simulated state.
The subscripts represent the corresponding states of the models. The weights
9
5 and 3

5 are set so that the error in G(t), IP (t), and RA(t) yields a similar cost
value in the Hovorka and the IVP model independently of their corresponding
system order. Moreover, the coefficient kosc reduces the overfitting by penalizing
the oscillations. It is defined as:

xosc =
n∑︂

i=3
| sgn(x[i] − x[i− 1]) − sgn(x[i− 1] − x[i− 2]) |,

kosc =
{︄

10, if xosc > threshold

1, otherwise

(3.63)

(3.64)

where x is the state vector of the applied models, n is the number of samples, and
the thresholds were dependent on the direction changes of the reference trajectory.

The simulated states in the above cost functions were simulated from IVP and
the Hovorka models with an increment of 30 % in the model parameters of the
observer. The tuning scenario was of 24 h with three meals: 45 g at 7 h, 70 g
at 14 h, and 60 g at 21 h. The insulin delivery corresponded to an insulin-bolus
(open-loop) therapy. No sensor noise was considered.

A summary of the KFs parameters is summarized in Table 3.8. Remark that the
glucose and the meal rate of glucose appearance are expressed in different units
between the models, which explains the magnitude discrepancies in the covariance
matrices.
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Table 3.8: Parameters of the Kalman Filters

Model Q R

IVP
diag

(︁
18.0 · 103, 2.9 · 10−6,

5.0, 50.0, 18.0 · 103)︁ 20 mg/dL

Hovorka

diag
(︁
581.4 · 10−3, 183.1 · 10−3,

12.5 · 10−6, 5.0 · 10−3,

0, 18.6 · 10−3, 996.7 · 10−6,

915.0 · 10−6, 10.0
)︁ 1.1 mmol/L

diag(·) denotes a diagonal matrix construction, e.g., diag(a, b) =
[︃

a 0
0 b

]︃
.

3.4.2 Sliding mode observers

For both models, the IVP model and the Hovorka model, the number of outputs
(ny = 1, the glucose) coincides with the number of disturbances (nd = 1, the
rate of glucose appearance); thus, the rank condition in (3.12) holds, and the
models admit the system given by (3.13). The transformation only reorders
the state variables hence preserving their physiological meaning. The resulting
transformation is shown below:

• IVP model. Taking x̄(t) := col (ISC(t), IP (t), IEF F (t), G(t)), d(t) := RA(t),
and y(t) := G(t) the equations of the IVP model can be expressed as (3.13)
with the following matrices:

A11 :=

⎡⎣−1/τ1 0 0
1/τ2 −1/τ2 0

0 p2SI −p2

⎤⎦ , A12 = AT
21 := 03×1

A22 := −GEZI

ϕ1(t) :=
[︄

u(t)
τ1CI

02×1

]︄
, ϕ2(t) := EGP −G(t)IEF F (t),

C2 = D2 = 1

(3.65)

• Hovorka model. For d(t) := RA(t), y(t) := G(t), and x(t) := col (S1(t),
S2(t), x1(t), x2(t), x3(t), Q2(t), Q1(t)), the equations of the Hovorka model
can be converted into (3.13) with:
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A11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
τs

0 0 0 0 0 0
1
τs

− 1
τs

0 0 0 0 0
0 1

τsVI
−ke 0 0 0 0

0 0 kb1 −ka1 0 0 0
0 0 kb2 0 −ka2 0 0
0 0 kb3 0 0 −ka3 0
0 0 0 0 0 0 −k12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A21 :=

[︁
01×5 −EGP0 k12

]︁
, A12 := 07×1 , A22 := 0

ϕ1(t) :=

⎡⎣ u(t)
05×1

x1(t)Q1(t) − x2(t)Q1(t)

⎤⎦ , C2 := 1/VG , D2 := 1

ϕ2(t) := −F c
01(t) − x1(t)Q1(t) − FR(t) + EGP0

(3.66)

Another consequence of ny = nd = 1 is that L0 in (3.15) is undefined, i.e., L0 ∈ ∅.
As a result, the matrix L is defined as L = 01×nx (nx = 4 for the IVP model and
nx = 8 for the Hovorka model), which results in an identity transformation matrix
T in (3.15). Since the eigenvalues of A11, which coincide with the invariant zeros
of (A,D,C), lie in the left half plane, A11 + LA21 is stable and the inequality
(3.21) holds. The drawback is that no degree of freedom exists to modify the
dynamics of the error in the sliding mode, i.e., e1(t), being exclusively imposed by
A11.

The design of the terms K and k(u(t), z(t), ẑ(t)) must ensure that ey(t) converges
to zero in finite time. About K, plugging L = 01×nx and the corresponding A21
and A22 of the models into the condition (3.22) results in the following criteria to
design K:

K ≤ GEZI for the IVP model
K ≤ 0 for the Hovorka model

(3.67)

Thus, K = 0 is a suitable value for this parameter.

Regarding k(t), the expression (3.23) would motivate an adaptive k(t) depending
on w(t), an upper bound for ∥e1∥, and ρ(y, u, t), an upper bound of the disturbance.
An adaptive k(t) is appealing because it would alleviate the problem of chattering –
oscillations in the observed states occurring after discretization because of a limited
sampling rate (see Section 3.4.2) – by reducing the amplitude of the oscillations
when the uncertainty size is small. Unfortunately, the adaptive k(t) inspired
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from (3.23) could not be implemented directly since no straightforward method to
set w(0) appears in Yan et al. (2007) or Shtessel et al. (2014). Although other
examples of gain adaptation appear in the literature (Li et al. 2010; Huangfu
et al. 2017; Nguyen et al. 2018), the chattering problem has been addressed in
Section 3.4.2 through a particular discretization method (Kikuuwe et al. 2019).
Therefore, k(t) has been set to a constant. This constant must be larger than
the highest rate of change of ey(t) caused by e1(t) and d(t) on the output. Since
theoretically deciding this maximum rate of change is not straightforward, k(t)
was tuned through exhaustive simulations using the same scenario used for the
KFs tuning. A summary of the FOSMO parameters is provided in Table 3.9.

Table 3.9: Parameters of the sliding mode observer

Model L K k(t)
IVP 01×4 0 18.7 mg/(dL min)
Hovorka 01×8 0.916 mmol/(kg min)

Chattering and discretization

The chattering is an undesirable behavior of sliding mode controllers and observers
occurring when the system trajectory does not attain the sliding manifold (the
surface S := {(e1(t), ey(t))|ey(t) = 0} in the case of the FOSMO), but oscillates
around its vicinity (Utkin et al. 2006). As a result, the controlled output or
the estimated states suffer from oscillations of finite frequency and amplitude,
degrading the performance of the control or observation, respectively. In control
applications, chattering occurs because the discontinuous control action excites
some fast unmodeled dynamics of the actual plant, or the switching frequency
of the control action is constraint by the finite sampling rate of the digital
system. For sliding mode observers, exciting fast dynamics is less likely unless
the model includes these dynamics; hence the chattering arises mainly because
of the numerical implementation. Explicit discretization methods destroy the
invariance property of the continuous sliding mode leading to chattering (Yu 2006;
Galias et al. 2007; Wang et al. 2011; Qu et al. 2014; Wang et al. 2015). Figure 3.5
illustrates the issue of chattering for the glucose and rate of glucose appearance
estimation in the IVP model (simulation and observer share model structure and
parameters) when the designed FOSMO is discretized using the Euler explicit
method, that is:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ÎSC [k] =
(︃

1 − Ts

τ1

)︃
ÎSC [k − 1] + Ts

τ1CI
u[k − 1]

ÎP [k] =
(︃

1 − Ts

τ2

)︃
ÎP [k − 1] + Ts

τ2
ÎSC [k − 1]

ÎEF F [k] = (1 − Tsp2)ÎEF F [k − 1] + Tsp2SI ÎP [k − 1]
Ĝ[k] = (1 − TsGEZI − TsÎEF F [k − 1])Ĝ[k] + TsEGP + Tsν[k − 1]

(3.68)

where Ts = 5 min. As shown in Figure 3.5, chattering affects the estimation of
the glucose and also degrades the estimation of the rate of glucose appearance,
obtained filtering ν[k] with a first order low pass filter of time constant equal to
10 min.

Figure 3.5: Example of chattering in the IVP model caused by the explicit
discretization of the sliding mode observer. Solid blue lines represent the estimated
glucose (top panel) and the estimated meal disturbance (bottom), while dashed lines are the
actual values of these signals. Chattering avoids accurately estimating the glucose or the
meal rate of glucose appearance. No mismatch between simulation and observer is considered.
The initial condition of the estimated glucose is set 10% lower than the initial condition of
the simulation.

A widespread method to reduce chattering is the boundary layer regularization
(Slotine et al. 1983). In this method, the discontinuous injection ν[k] is approxi-
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mated by a continuous function when the trajectories are in the vicinity of the
sliding surface. Although the boundary layer regularization lowers the chatter-
ing, the method only guarantees that the error (the estimation error in case of
observation) converges to a vicinity of the origin. To illustrate this behaviour, the
injection term ν[k] in (3.68) is approximated to

ν̃[k] := k
ey[k]

|ey[k]| + δ
(3.69)

with δ a positive constant. As illustrated in Figure 3.6, the chattering only is
removed for δ = 50. Although the errors in the estimated glucose are acceptable,
the estimation of the disturbance for this δ is delayed and inaccurate.

Figure 3.6: Explicit discretization with boundary layer regularization. Several
values of the regularization parameter δ were tested. The estimated glucose (solid lines top
panel) is acceptable for δ = 50, but the estimated disturbance (solid lines bottom panel) is
too delayed.

An alternative to explicit discretization with boundary layer regularization is
implicit discretization (Acary et al. 2012; Kikuuwe et al. 2019). In this method,
the discontinuous injection term defined in (3.18) is expressed as
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{︄
ν(t) = k(t)C−1ψ(t)
ψ(t) ∈ msign (y(t) − ŷ(t))

(3.70)

where

msign (a) =

⎧⎪⎨⎪⎩
1 if a > 0
−1 if a < 0
[−1, 1] if a = 0

(3.71)

is the multivalued signum function (Acary et al. 2012) for a ∈ R; for a ∈ Rn,
consider the function element-wise. The implicit discretization given by (3.70)
preserves the set-valueness of ψ(t). As a result, ν(t) is inherently continuous in the
vicinity of the sliding manifold, avoiding hence the chattering. To illustrate this
property, the implicit discretization proposed by Kikuuwe et al. (2019) is applied
to the FOSMO to estimate the glucose and the rate of glucose appearance of the
IVP model. The implicit discretization counterpart of (3.68) is given by:

ÎSC [k] − ÎSC [k − 1]
Ts

= u[k]
τ1CI

− ÎSC [k]
τ1

ÎP [k] − ÎP [k − 1]
Ts

= − ÎP [k]
τ2

+ ÎSC [k]
τ2

ÎEF F [k] − ÎEF F [k − 1]
Ts

= −p2 · ÎEF F [k]+

+ SIp2ÎP [k]
Ĝ[k] − Ĝ[k − 1]

Ts
= EGP + kψ[k]−

− (GEZI + ÎEF F [k])Ĝ[k]

(3.72)

(3.73)

(3.74)

(3.75)

with

ψ[k] ∈ msign (ey[k]) (3.76)

Although ey[k] appears on the right side of (3.76), the implicit discretization is
causal. To obtain an explicit form for (3.76), the following manipulations are
required:
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• Solving the system of equations (3.72)–(3.75) and considering

ŷ[k] = C−1
2 (y[k] − ey[k]),

with y[k] = G[k] and ŷ[k] = Ĝ[k], leads to the following expression of the
output error:

ey[k] = e∗[k] − β[k]ψ[k] (3.77)

with
e∗[k] = e∗

n[k]
e∗

d[k] (3.78)

e∗
d[k] = (CI GEZI p2 + SI p2 u[k]) Ts

4+

+
(︂
CI p2 + CI GEZI + CI ÎEF F [k − 1]+

CI GEZI p2 τ1 + CI GEZI p2 τ2+

+CI ÎP [k − 1]SI p2 τ2 + CI ÎSC [k − 1]SI p2 τ1
)︂
Ts

3+

+ (CI + CI GEZI τ1 + CI GEZI τ2+
+CI ÎEF F [k − 1] τ1 + CI ÎEF F [k − 1] τ2 + CI p2 τ1+
+CI p2 τ2 + CI GEZI p2 τ1 τ2+

+CI ÎP [k − 1]SI p2 τ1 τ2
)︂
Ts

2 + (CI τ1 + CI τ2+

+CI GEZI τ1 τ2 + CI ÎEF F [k − 1] τ1 τ2+
+CI p2 τ1 τ2) Ts + CI τ1 τ2

(3.79)
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e∗
n[k] = (CI GEZI G[k] p2 − CI EGP p2+

+G[k]SI p2 u[k]) Ts
4 + (CI GEZI G[k]−

−CI EGP + CI G[k] ÎEF F [k − 1] + CI G[k] p2−
−CI Ĝ[k − 1] p2 − CI EGP p2 τ1 − CI EGP p2 τ2+
+CI GEZI G[k] p2 τ1 + CI GEZI G[k] p2 τ2+
+CI G[k] ÎP [k − 1]SI p2 τ2+

+CI G[k] ÎSC [k − 1]SI p2 τ1
)︂
Ts

3 + (CI G[k]−

−CI Ĝ[k − 1] − CI EGP τ1 − CI EGP τ2+
+CI GEZI G[k] τ1 + CI GEZI G[k] τ2+
+CI G[k] ÎEF F [k − 1] τ1 + CI G[k] ÎEF F [k − 1] τ2+
+CI G[k] p2 τ1 + CI G[k] p2 τ2 − CI Ĝ[k − 1] p2 τ1−
−CI Ĝ[k − 1] p2 τ2 − CI EGP p2 τ1 τ2+
+CI GEZI G[k] p2 τ1 τ2+

+CI G[k] ÎP [k − 1]SI p2 τ1 τ2
)︂
Ts

2+

+
(︂
CI G[k] τ1 + CI G[k] τ2 − CI Ĝ[k − 1] τ1−

−CI Ĝ[k − 1] τ2 − CI EGP τ1 τ2+
+CI GEZI G[k] τ1 τ2 + CI G[k] ÎEF F [k − 1] τ1 τ2+

+CI G[k] p2 τ1 τ2 − CI Ĝ[k − 1] p2 τ1 τ2
)︂
Ts+

+ CI G[k] τ1 τ2 − CI Ĝ[k − 1] τ1 τ2

(3.80)

and

β[k] = kβn[k]
βd[k] (3.81)
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βd[k] = (CI GEZI p2 + SI p2 u[k]) Ts
4+

+
(︂
CI p2 + CI GEZI + CI ÎEF F [k − 1]+

+CI GEZI p2 τ1 + CI GEZI p2 τ2+

+CI ÎP [k − 1]SI p2 τ2 + CI ÎSC [k − 1]SI p2 τ1
)︂
Ts

3+

+ (CI + CI GEZI τ1 + CI GEZI τ2+
+CI ÎEF F [k − 1] τ1 + CI ÎEF F [k − 1] τ2 + CI p2 τ1+
+CI p2 τ2 + CI GEZI p2 τ1 τ2+

+CI ÎP [k − 1]SI p2 τ1 τ2
)︂
Ts

2 + (CI τ1 + CI τ2+

+CI GEZI τ1 τ2 + CI ÎEF F [k − 1] τ1 τ2+
+CI p2 τ1 τ2) Ts + CI τ1 τ2

(3.82)

βn[k] = CI p2 Ts
4 + (CI + p2 (CI τ1 + CI τ2)) Ts

3+
+ (CI τ1 + CI τ2 + CI p2 τ1 τ2) Ts

2 + CI τ1 τ2 Ts

(3.83)

• For a ∈ R, msign (a) is the subdifferential of |a|, which, in turn, is the
indicator function of the closed non empty convex set [−1, 1] ⊂ R. As a
result, the following property holds (Brogliato et al. 2021):

b ∈ δ|a| = msign (a) ↔ a ∈ N[−1, 1](b) (3.84)

where b ∈ R and N[−1, 1](b) is the normal cone onto [−1, 1] at point b.
Applying the above property to (3.76) and (3.77), it turns out that

e∗[k] − β[k]ψ[k] ∈ N[−1, 1](ψ[k]) (3.85)

• To solve the generalized equation (3.85), a second property of convex analysis
is required: for a and b ∈ R,

(b− a) ∈ −N[−1, 1](b) ↔ b = proj ([−1, 1]; a) (3.86)

where proj ([−1, 1]; a) is the orthogonal projection of a onto the set [−1, 1]
(Brogliato et al. 2021). Applying the above property to (3.85), the following
causal expression results to calculate ψ[k]:
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ψ[k] = proj
(︃

[−1, 1]; e
∗[k]
β[k]

)︃
(3.87)

Since the above projection is onto a scalar space, (3.87) can be expressed
in terms of a saturation function as follows (Brogliato et al. 2021; Kikuuwe
et al. 2019):

ψ[k] =

⎧⎪⎪⎨⎪⎪⎩
e∗[k]
β[k] , if e∗[k]

β[k] ∈ [−1, 1]
1, if e∗[k]

β[k] > 1
−1, if e∗[k]

β[k] < −1
(3.88)

from where it is clear that the set-valueness of msign (ey[k]) is preserved.
As a result, the chattering is avoided and, unlike explicit discretization, the
disturbance can be estimated without filters or continuous approximation as
follows:

d̂[k] ≈ ν[k] = kψ[k] (3.89)

Figure 3.7 illustrates the benefits of implicit discretization: it removes chattering
from the glucose estimation and the disturbance estimation is not delayed.

The same procedure to calculate ψ[k] applies to the Hovorka model. Since the
corresponding terms e∗[k] and β[k] are cumbersome, they are omitted here. Instead,
the Appendix A prompts the Matlab script used to calculate them.

3.5 Study of the effect of the model and observer structure on
the estimation accuracy

In this section, an in silico study is performed to analyze the impact on the
estimated meal disturbance accuracy of the following factors:

• “Model”: the structure of the model was considered by comparing the IVP
model with the Hovorka model.

• “Observer”: the observers were assessed by comparing the FOSMO and the
KF.
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Figure 3.7: Comparison of implicit discretization with explicit discretization and
boundary layer regularization (δ = 50). The implicit discretization prevents the glucose
estimation (top panel) from chattering. Also, the estimation of the disturbance (bottom
panel) does not feature the delays of the filtering or boundary layer approach.

Thus, four cases were simulated: the KF designed with the IVP model (KF-
FOSMO), the KF designed with the Hovorka model (KF-Hovorka), the FOSMO
designed with the IVP model (FOSMO-IVP), and the FOSMO designed with the
Hovorka model (FOSMO-Hovorka). Each of the four cases included a simulation
of ten virtual adults, repeated three times with different instances of variability.
All the simulations were carried out with the extended version of the academic
UVa/Padova simulator. The simulated scenario was a 1-day length and included
three meals (45 g at 7 h, 70 g at 14 h, and 60 g at 21 h). The scenario also considered
variability in the insulin absorption (uniform distribution of ±30%), circadian
insulin variability (of sinusoidal type with uniformly-distributed amplitude of
±30%), and CGM errors according to the default model in the simulator.

The accuracy of the estimated meal disturbance was assessed in terms of the
Root Mean-Squared Error (RMSE), the Median Absolute Error (MAE), and
the Maximum Absolute Error (MaxAE). Since the original units of the meal
disturbance among models disagree, the Hovorka unit was converted to the IVP
unit by the following change of units: 1 (mmol/kg min) = 180/Vg (mg/(dL min)).
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To avoid the influence of the transient from the initial condition on the metrics,
the first 30 min of the simulation were disregarded when computing the metrics.

A multifactorial ANOVA determined whether the factors “Model” and “Observer”
and their interaction explained the variability found in the performance metrics. All
the simulations shared the cohort of patients and the meals; hence the hypothesis
of independence was unmet (Iversen 2011). To circumvent this issue, the factor
“Subject” was considered as a covariate in the analysis. The significance level was
0.05.

The ANOVA conclusions were complemented with the Tukey honestly significant
difference test (Tukey 1949). This test provides an estimate of the difference in
means and the corresponding 95% confidence interval. This information does
not only help to identify which level (or combination of levels in the interaction)
causes the statistical significance, but it gives insight into the practical relevance
of the difference (i.e., its effect size; Hand 2012). Another measure of the effect
size employed in the analysis was the eta-squared (η2, see e.g., Fritz et al. 2012),
which informs about the proportion of variance related to each factor.

The statistical analysis was performed with R (R Core Team 2021).

3.5.1 Results

Figure 3.8 illustrates how noise and the model uncertainties degrade the estimation.
The estimated values even reached negative values, an unphysiological behavior in
the absence of exercise.

The statistical analysis is summarized in Figure 3.9, Figure 3.10, Table 3.10,
and Table 3.11. The model is a statistically significant factor in explaining the
variability of the RMSE (Table 3.10). Tukey’s test reveals (Table 3.11) that
observers designed with the Hovorka model reduce the RMSE of the observers
designed with the IVP in 0.062 (0.020, 0.105) mg/(dL min). This difference in the
RMSE might be because the observers designed with the IVP model overestimate
the postprandial peak, slowly reaching the steady-state (Figure 3.8). The model
is no longer a statistically significant factor regarding the other performance
metrics (MAE and MaxAE), (Table 3.10). However, the observers designed with
the Hovorka model still tend to improve those built upon the IVP model as
concluded from the asymmetry of Tukey’s confidence intervals (the lower limit
of the model-related confidence intervals in Table 3.11 is closer to zero than the
upper limit).
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3.5 Study of the effect of the model and observer structure on the estimation accuracy

Despite the statistical significance of the improvement in the RMSE, its practical
relevance is debatable. On the one hand, the magnitude of the improvement might
be unimportant from the application point of view. On the other hand, as the η2

shows (Table 3.10), the type of model explains less than 1% of the variability of
the metrics, a negligible contribution compared to the more than 85% explained
by the inter-patient variability (the “Subject” factor). Figure 3.10 evinces how the
RMSE varies more within the subjects (see, for instance, the differences between
subject 1 and subject 8) than within the models, illustrating the enormous impact
of the inter-patient variability.

The contribution of the observer structure is even lower than that of the model.
The size of the estimated difference in means among observers is one order
of magnitude lower than for the model (Table 3.11), and the η2 is less than
1 · 10−5 %. In addition, the confidence intervals of the Tukey test are roughly
symmetric, indicating that the variability caused by other factors hides any possible
improvement of using a specific observer algorithm. This result is coherent with
the ANOVA analysis concluding that the observer is not a statistically significant
factor for any performance metrics (Table 3.10).

Note that differences in performance are negligible between the observers, even
though the tuning of the KF is more cumbersome than tuning the FOSMO.

Figure 3.8: Comparison of the estimated meal disturbance. Thicker lines represented
the median, and the shaded areas correspond to the interquartile range.
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Chapter 3. Meal disturbance estimation

Figure 3.9: Performance metrics of the estimated meal rate of glucose appearance.
The left panel shows the Median Absolute Error (MAE), the middle panel the Median Absolute
Error (MAE), and the right panel the Root Mean-Squared Error (RMSE).

Table 3.10: Summary of ANOVA results of the meal disturbance estimation error

RMSE MAE MaxAE
η2 P η2 P η2 P

Model 0.70 0.01 * 0.40 0.06 0.30 0.11
Observer 0.00 0.81 0.00 0.81 0.00 0.66
Subject 89.90 0.00 * 88.00 0.00 * 87.70 0.00 *
Model:Observer 0.10 0.25 0.10 0.25 0.10 0.43
It summarizes three metrics: the root-mean-square error (RMSE), the mean absolute error

(MAE) and the maximum absolute error (MaxAE). Terms “η2” and “P” denote the eta
squared effect size measurement and the P-value of the ANOVA F-statistics, respectively.

The notation “Model:Observer” refers to the interaction of the factors “Model” and
“Observer”. The asterisk (*) indicates a statistically significant difference at 0.05 level.

3.6 Conclusion

Two observers were designed (Kalman filter and first-order sliding mode observer)
to estimate the meal rate of glucose appearance. Two models of different complexity
(IVP and Hovorka models) were also considered to build the observers. The
influence of the structure of the models and observers was analyzed in an in silico
comparison.
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3.6 Conclusion

Table 3.11: Summary of the Tukey test

Metric Contrast Diff CI

RMSE IVP-Hovorka 6.205 · 10−2 [ 1.96·10−2, 1.05·10−1] *
KF-FOSMO 5.19 · 10−3 [−3.73·10−2, 4.77·10−2]

MAE IVP-Hovorka 2.858 · 10−2 [−6.0·10−4 , 5.78·10−2]
KF-FOSMO −3.56 · 10−3 [−3.27·10−2, 2.56·10−2]

MaxAE IVP-Hovorka 1.221 · 10−1 [−2.79·10−2, 2.72·10−1]
KF-FOSMO 3.356 · 10−2 [−1.16·10−1, 1.84·10−1]

Tukey’s test for the Root Mean-Squared Error (RMSE), the Median Absolute Error (MAE),
and the Maximum Absolute Error (MaxAE). It estimates the difference in mean (Diff)

within the levels of the “Model” and “Observer” factors, including the corresponding
95%-confidence intervals (CI). The asterisk “*” indicates a statistically significant difference.

All the observers reconstructed the meal disturbance, but the uncertainty was
severely coupled to the estimation. In addition, the inter-patient variability was
the most noticeable factor impacting the estimation accuracy, diluting the influence
of the model structure and the observer algorithm. This evinces the importance
of model individualization over the observer algorithm. Individualizing a model is
challenging due to identifiability issues (e.g., the correlation between parameters
or inputs), especially in a domiciliary setting where the only available signals are
insulin and glucose. Therefore, the IVP will be preferred over the Hovorka model
in the following chapters because its individualization is more reachable given its
lower number of parameters.

Finally, the differences in performance between the two observer algorithms were
negligible. As a result, the next chapters will use the FOSMO since it has a
more straightforward tuning procedure, provided the discretization is correctly
addressed.
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Chapter 3. Meal disturbance estimation

Figure 3.10: Root Mean-Squared Error (RMSE) of the meal disturbance estima-
tion per subject.
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Chapter 4

Disturbance reconstruction
from clinical datasets

Real data suffers from many sources of variability (noise,
metabolic changes, etc.), affecting the estimation of the meal dis-
turbance. Indeed, any mismatch between the model embedded in the
observer and the real subject will be coupled to the disturbance signal.
This chapter illustrates how challenging is to estimate the meal dis-
turbance when the FOSMO designed with the IVP model in previous
chapter is fed with clinical data. In addition, the same observer is ap-
plied to a dataset of exercise periods to illustrate whether the observer
can reconstruct the expected changes in the glucose fluxes caused by
exercise.

4.1 Introduction

The observers evaluated in Chapter 3 managed to reconstruct the meal disturbance,
though distorted because of the variability in the simulator. Since this variability
is expected to be richer in real-life data, the consequent distortion will also be
more notable. The first goal of this chapter is to illustrate the estimated meal
disturbances when real data from a clinical study were fed to the observer (Rossetti
et al. 2012).

Besides meals, exercise alters the input and output glucose fluxes in the blood-
stream. Specifically, low-to-moderate aerobic exercise will likely reduce plasma
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Chapter 4. Disturbance reconstruction from clinical datasets

glucose, while intense anaerobic exercise may increase glucose levels due to cat-
echolamines and cortisol secretion (Codella et al. 2017; Tagougui et al. 2019).
Technically, glucose disturbances due to exercise can be dealt exactly in the same
way as meals, since they can also be represented as an additive disturbance in
the glucose derivative. The disturbance estimated by the observer will also be
coupled with the changes in the glucose fluxes caused by exercises. Therefore, the
second goal of the chapter is to illustrate whether the observer can reconstruct
these glucose fluxes using a clinical dataset (Quirós et al. 2018).

4.2 Clinical datasets description

This chapter uses two clinical datasets to analyze the estimated disturbance with
real data: Dataset A, which focuses on postprandial periods, and Dataset B,
which collects exercise periods.

4.2.1 Dataset A

The postprandial data used in this chapter is related to the iBolus in-hospital clin-
ical trial (Rossetti et al. 2012) under the scope of the SOLARE European project
(id: FP7-PEOPLE-2009-IEF, ref 252085) and the National project CLOSED-
LOOP4MEAL (ref: DPI2010-20764-C02-01). In particular, the data corresponds
to an outpatient study undertaken before the in-home trial to identify the models
of the 12 subjects involved in the study.

A total of 145 meals were registered in the outpatient trial. Meals were standardized,
of sizes 40 g, 60 g, or 100 g. Meal boluses may be delivered before, at mealtime,
or after the meal, depending on the glucose value and the meal carbohydrate
content (Laguna et al. 2010). Insulin was infused with a pump Paradigm Veo -
554 (Medtronic Minimed, Northridge, CA, USA). Plasma glucose was monitored
with two CGMs: the sensor integrated with the insulin pump and a Dexcom Seven
Plus (Dexcom, San Diego, CA, USA).

4.2.2 Dataset B

The data was collected in an exploratory clinical trial at the Clinic University
Hospital of Barcelona (Hospital Clínic Universitari, Barcelona, Spain) within the
SAFE-AP national project (id: DPI2013-46982-C2-1-R) (Quirós et al. 2018). The
clinical trial assessed the SAFE controller (Revert et al. 2013), without the insulin
feedback term, for six patients with type 1 diabetes under six exercise sessions
in about nine weeks per patient: three sessions of aerobic exercise (three series
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4.3 Preprocessing

of 15 min of static cycling at 60 % of individual maximum oxygen consumption
(VO2max) with 5 min between sets) and three sessions of anaerobic exercise (five
sets of eight repetitions of several weightlifting exercises at 60 % of VO2max
with 90 s of rest between sets). Each subject was provided with two glucose
sensors (Enlite-2, Medtronic Minimed, Northridge, CA, USA) and an insulin
pump (Paradigm Veo, Medtronic Minimed, Northridge, CA, USA).

Besides the subcutaneous insulin infusion, the patients received an infusion of
insulin or glucose intravenously, if required, to maintain comparable plasma glucose
concentration at the exercise session onset (Quirós et al. 2018). In addition, patients
ingested 23 g of carbohydrates before the exercise began and 15 g if hypoglycemia
occurred (Quirós et al. 2018).

4.3 Preprocessing

The signals reported in the trials (CGM sensors, subcutaneous insulin infusion,
and, if any, intravenous infusions) were synchronized at the 5-min sampling time
of the primary CGM. In addition, missing data in the two CGM sensors were
handled as follows. First, both CGM signals were merged, i.e., the missing values
in the principal CGM were filled with the secondary CGM (if available). In the
case that the resulting signal contained missing values, but the information loss
affected up to six successive samples, the signal was interpolated with splines.
For longer missed consecutive samples, the signal was cropped, and the slices not
including the mealtime in Dataset A or the exercise time in Dataset B were
discarded.

4.4 Application of the observer to real meal data

The FOSMO designed with the IVP model was selected for the analysis in
this chapter since it is the most straightforward option of the ones analyzed in
Section 3.5 while achieving acceptable results. The model parameters correspond
to the “Average patient column” of Table 3.6, and the FOSMO tuning coincides
with the described in Section 3.2.2.

48 out of 145 potential postprandial periods in Dataset A were discarded due
to the following reasons: 25 postprandial periods have no CGM data, 6 have no
insulin pump data, 5 have neither CGM nor pump data, and 12 have insufficient
CGM data (less than 4 h) after discarding “long gaps” of missing data in the
preprocessing stage. Therefore, 97 postprandial periods were eventually included
in the analysis: 42 meals of 40 g, 16 of 60 g, and 39 of 100 g.
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Chapter 4. Disturbance reconstruction from clinical datasets

Figure 4.1 shows the populational evolution of the glucose and estimated distur-
bances, grouped by meal size. Overall, the median estimated disturbances (thick
blue line) evolve similarly as in the simulations of Chapter 3: after mealtime (0 in
the axis x), the disturbance starts to increase, it peaks after 100 min, approximately,
and it eventually fades off. This expected profile of the meal disturbance can be
also observed in individual responses such as those represented in Figure 4.2.

Figure 4.1: Meal disturbance estimation from clinical data grouped by meal
size. Panels in the first row represent the glucose values, and panels in the second row, the
estimated disturbances. Thick lines show the median and the shaded areas, the interquartile
range. Each column summarizes the result of a given meal size. A total of 97 postprandial
periods were considered: 42 meals of 40 g, 16 of 60 g, and 39 of 100 g. The 0 on the x-axis
marks the meal announcement.

The differences in the estimated disturbance profiles between meal sizes are also
coherent. Note that the median glucose profile of 100-g meals is flatter than for the
other meal sizes in Figure 4.1. This is because the insulin bolus was administered
30 min before mealtime for these meals by protocol, while it was even delayed
for the other meal sizes (Laguna et al. 2010). Despite this artifact introduced
by the protocol, the median estimated disturbance of the meals with 100 g of
carbohydrates (third column of Figure 4.1) has a more considerable peak than
the median of the meals with 60 g or 40 g. A more representative example of this
behavior is shown in the right panels of Figure 4.2. Although the glucose decreases
after the meal as a result of the anticipated insulin bolus, the disturbance follows
an evident meal-like shape. In Figure 4.1 (and also Figure 4.2), the estimated meal
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Figure 4.2: Example of estimated meal disturbances with coherent profiles. Panels
in the first row represent glucose values (black: actual CGM, blue: estimated), panels in the
second row depict the estimated disturbance, and panels in the third row correspond to the
actual insulin infusion. Orange diamonds indicate the mealtime. Note that the estimated
disturbance follows the expected profile after a meal, even in the second column where glucose
does not increase after the meal.

rate of glucose appearance does not correspond to the derivative of glucose as one
would expect since RA(t) appears in the equation of the glucose derivative (3.30).
However, other terms affect the glucose derivative too. Since EGP is constant
and GEZI is negligible, the other relevant term dominating the glucose derivative
is the glucose disappearance due to insulin effect, i.e., IEF F (t) ·G(t). As observed
in Figure 4.3, the estimated glucose disappearance due to insulin has a similar
magnitude, though slightly larger, as the estimated meal disturbance. Therefore,
the observer estimated a meal-shaped disturbance to compensate for the effect of
insulin so that the estimated glucose remained flat.

Another example that supports that the estimated disturbance is coherent with an
expected meal rate of glucose appearance is that the area under the curve of the
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Chapter 4. Disturbance reconstruction from clinical datasets

Figure 4.3: Estimated glucose disappearance due to insulin corresponding to
100-g meals. Representation of the estimation of the term IEF F (t) · G(t) corresponding
to (3.30) for the meals of 100 g. The thick line shows the median and the shaded areas, the
interquartile range. Note that the estimated rate has a similar magnitude that the estimated
meal rate of glucose appearance in Figure 4.1

estimated disturbances also increases for meals with higher carbohydrate content
(Figure 4.4).

Although the estimated disturbance may seem acceptable in the median, the wide
interquartile range (shaded areas in Figure 4.1) indicates a high variability. Indeed,
in some individual cases, as shown in Figure 4.5, other disturbances besides meal
(i.e., model mismatch errors, abrupt changes in the sensor, etc.) are coupled to
the meal disturbance; consequently, the estimated disturbance no longer has a
meal-like shape. The observer also estimates a negative glucose flux in Figure 4.5
even before any meal disturbance occurred. This negative flux may be indicative
of a mismatch in the model used to design the observer.

4.5 Application of the observer to real exercise data

Dataset B was used for the analysis in this subsection. Out of 36 exercise
sessions available, six aerobic and four anaerobic sessions were discarded because
of sensors or insulin pump malfunctioning (Quirós et al. 2018). The clinical trial
was conceived to evaluate a closed-loop system rather than estimating the exercise
disturbance; thus, it has some particularities affecting the estimation. One of
them is the presence of glucose and insulin intravenous infusions. The intravenous
infusions are suitable for assessing the controller performance since they homogenize
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4.5 Application of the observer to real exercise data

Figure 4.4: Area under the curve of estimated disturbances regarding the meal
size. The horizontal black line inside the box represents the median and the yellow cross, the
mean. The lower and upper hinges correspond to the 25th and 75th percentiles. The upper
whisker extends from the hinge to the largest value no further than 1.5 times the interquartile
range. The lower whisker extends from the hinge to the smallest value at most 1.5 times the
interquartile range. Note that the area under the curve increases with the meal carbohydrate
content.

the initial conditions. However, for the disturbance observation application, if
the intravenous infusions are disregarded when designing the observer for the
disturbance reconstruction, they will impact the estimation. Figure 4.6 shows
an example: when the observer ignores the intravenous glucose infusion (i.e., it
is not taken as an input), the estimated disturbance (orange line in the second
panel) increases before the exercise starts (interval 550-650 min), a counterintuitive
behavior in a basal situation. This increasing disturbance is because the observer
cannot explain the rise observed in the glucose with only information from the
subcutaneous infusion. Therefore, the observer must add an input glucose flux
in the disturbance to replace the unknown (for the observer) intravenous glucose
infusion.

The observer must consider the intravenous infusions to mitigate the effect of the
intravenous infusions in the estimation. To this end, equations (3.73) and (3.75)
are modified as follows:

ÎP [k] − ÎP [k − 1]
Ts

= − ÎP [k]
τ2

+ ÎSC [k]
τ2

+ 1000 intrI [k]
60BW VI

(4.1)
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Figure 4.5: Example of the estimated meal disturbance where the variability
distorts the expected meal profile. The top panel represents glucose values (black: actual
CGM, blue: estimated), the middle panel depicts the estimated disturbance, and the bottom
panel corresponds to the actual insulin infusion. The orange diamond indicates mealtime.
Note that the estimated disturbance does not follow the expected profile after a meal due to
the variability.

Ĝ[k] − Ĝ[k − 1]
Ts

= EGP + kψ[k] − (GEZI + ÎEF F [k])Ĝ[k] + intrG[k]
BW VG

(4.2)

where intrI [k] and intrG[k] are the intravenous infusions of insulin (U/h) and
glucose (mg/min), respectively; BW (kg) is the individual body weight; and VI and
VG are, respectively, the distribution volume of insulin (L/kg) and glucose (dL/kg),
retrieved from the average adult in the academic version of the UVa/Padova
simulator.

As shown in Figure 4.6, the estimated disturbance flattens once the observer
considers the intravenous infusion (the green line in the second panel). However,
note that the estimated perturbation in the pre-exercise period (around the interval
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4.5 Application of the observer to real exercise data

550-650 min) offsets from zero, likely denoting the effect of model parameters
mismatch.

The exercise period of Figure 4.6 (the shaded areas in the first and second panels)
also illustrated this model mismatch. Note that the green line within the exercise
period does not experiment with any remarkable change regarding the disturbance
evolution before the exercise begins. This evolution of the disturbance within
physical activity is unrealistic given the high impact of exercise on glucose (upper
panel). This behavior is because the observer is missing an input: the pre-exercise
carbohydrate intake. When this meal intake is unknown to the observer, its
effect leads to an increasing disturbance in the estimation that confounds, even
counteracting, the decreasing disturbance caused by the exercise.

Since the pre-exercise carbohydrate intakes are available in the dataset, the
observer can consider them as an input to mitigate their effect on the estimated
perturbation. To this end, the carbohydrate absorption model in Hovorka et al.
(2004), i.e.,

d1[k] − d1[k − 1]
TS

= Aexcho
g · uexcho[k] − d1[k]

τexcho

d2[k] − d2[k − 1]
TS

= 1
τexcho

(d1[k] − d2[k])
, (4.3)

was incorporated to the observer by modifying (3.75) as follows:

Ĝ[k] − Ĝ[k − 1]
Ts

= EGP + kψ[k] − (GEZI + ÎEF F [k])Ĝ[k]+

+ intrG[k]
BW VG

+ d2[k]
Vgτexcho

(4.4)

where uexcho refers to the pre-exercise carbohydrate intake rate (mg/min) and d1
and d2 are the glucose masses (mg) in the two compartments of the absorption
model. Regarding the parameters, Aexcho

g is the carbohydrate bioavailability
(unitless), and τexcho is the time-to-maximum of carbohydrate absorption (min).

Once the pre-exercise carbohydrate intake has been considered in the observer as
a new input (with Aexcho

g = 1 and τexcho = 30 min), the estimated disturbance
(dotted line in Figure 4.6) decreases within the exercise period. This decreasing
trend in the disturbance is not exclusive to the aerobic exercise session in Figure 4.6.
Indeed, the median estimated disturbance of all the analyzed anaerobic sessions
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Figure 4.6: Need for considering intravenous infusions and the pre-exercise
carbohydrate (CHO) intake as observer inputs. The first, third, and fourth panels
show the preprocessed glucose signal, the intravenous glucose infusion, and the subcutaneous
insulin infusion, respectively. The second panel includes the disturbance estimation under
three cases: when the observer ignores the intravenous dose (orange line), when the observer
accounted for it (green line), and when the observer considers the 23-g intake besides the
intravenous infusion (dotted line). The blue diamond in the first panel denotes the 23-g
carbohydrate consumed before exercise. The transparent gray areas in the first and the
second panels represent the exercise period; this is an example of an aerobic session in the
dataset.
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4.5 Application of the observer to real exercise data

also lowers within the exercise period regarding the pre-exercise period value (see
the thick blue line in the second panel of Figure 4.7).

Figure 4.7: Exercise disturbance estimation from clinical data. The thick lines
represent the median of the aerobic (blue) or anaerobic (orange) sessions and the shaded
areas, the interquartile range. The 0 on the x-axis marks the exercise beginning.

Regarding the estimated disturbance of anaerobic exercise sessions, its median
increases (see the thick orange line in the second panel of Figure 4.7). However,
the estimated disturbance also decreases right after the exercise onset. This initial
drop is highly dependent on the carbohydrate absorption model parameters, as
illustrated in Figure 4.8 (top panel): the slower the carbohydrate absorption has
been modeled, the lower will decrease the estimated disturbance. In fact, the
initial drop is almost inexistent in the absence of a carbohydrate model. A similar
effect of the carbohydrate absorption model parameters appears in the aerobic
sessions: without the carbohydrate model, the estimated disturbance remains
unaffected regarding the basal period, but the quicker the absorption is modeled,
the sharper the disturbance drops within the exercise period.
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Figure 4.8: Effect of the carbohydrate absorption time of the model on the
estimated disturbance. The thick lines represent the median of the aerobic (bottom panel)
or anaerobic (top panel) sessions, and the shaded areas denote the interquartile range. The 0
on the x-axis marks the exercise beginning.

4.6 Conclusions

Real disturbances have been reconstructed retrospectively, feeding the observer
(the FOSMO designed with the IVP model) with the CGM and pump infusions
collected in clinical trials. Two datasets were used for this purpose: one for
meal disturbances and another for exercise disturbances. On the one hand, the
estimated meal disturbance follows the expected profile in the median. However,
the variability was high, and, in some individual estimations, the variability hid
the meal effect. On the other hand, the estimated exercise disturbances initially
had a similar profile regardless of the exercise type (aerobic or anaerobic). Only
after considering a carbohydrate rescue model and the intravenous infusions in
the observer did the estimated disturbances related to the aerobic exercise slightly
differ from those of the anaerobic sessions.

The examples of the estimated disturbances presented in this chapter evince that
many unknown or unmodeled effects are lumped in the estimated disturbance,
cofounding the estimation of the meal or exercise disturbance. Isolating the effect
of the meal or the exercise from this lumped disturbance is challenging. Thus,
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4.6 Conclusions

when designing a controller, disturbances must be treated holistically. In other
words, the controller should not expect an ideal disturbance triggered by a single
event (e.g., a meal or an exercise period); it should expect a disturbance signal
where many perturbations are lumped on it.
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Chapter 5

Super-twisting-based meal
detector

Postprandial control requires increasing the insulin dosing at meal-
time. To this end, hybrid artificial pancreas users must estimate the
meal carbohydrate content and provide it to the system. An alternative
to free users from this burdensome task is to detect the mealtime from
the glucose measurements. In this chapter, a meal detector algorithm is
designed. The proposed meal detector determines the meal occurrence
from the glucose derivative and the discrepancy between the glucose
reading and its estimation obtained from a super-twisting observer.
The algorithm is also assessed using simulated and clinical datasets.
Authored publications related to this chapter:

- Sala-Mira, I.; Díez, J.-L.; Ricarte, B., et al. (2019). “Sliding-mode disturbance
observers for an artificial pancreas without meal announcement”. In: Journal
of Process Control (JCR 2019: Q2) 78, pp. 68–77. issn: 09591524. doi:
10.1016/j.jprocont.2019.03.008.

- Faccioli *, S.; Sala-Mira *, I.; Diez, J.-L., et al. (2021). “Super-Twisting
Observer For Meal Detection Assessed In Realistic Scenarios using UVA/Padova
T1D Simulator”. In: Diabetes Technology & Therapeutics. 14th International
Conference on Advanced Technologies & Treatments for Diabetes. Vol. 23. S2.
Virtual, A–76. doi: 10.1089/dia.2021.2525.abstracts.

- Faccioli *, S.; Sala-Mira *, I.; Díez, J., et al. (2022). “Super–twisting-based
meal detector for type 1 diabetes management: Improvement and assessment in
a real-life scenario”. In: Computer Methods and Programs in Biomedicine (JCR
2021: Q1) 219, p. 106736. issn: 0169-2607. doi: 10.1016/j.cmpb.2022.106736.

* denotes equal contribution.

103

https://doi.org/10.1016/j.jprocont.2019.03.008
https://doi.org/10.1089/dia.2021.2525.abstracts
https://doi.org/10.1016/j.cmpb.2022.106736


Chapter 5. Super-twisting-based meal detector

5.1 Introduction

Hybrid AP systems adopt pre-meal insulin boluses from the open-loop therapy to
advance the required insulin, reducing glucose fluctuation within the postprandial
period. Nevertheless, to calculate these boluses, patients must estimate meal
carbohydrates, which is a demanding, prone-to-error task.

Meal detection is appealing to free diabetic patients from carbohydrate counting.
These algorithms can determine whether a meal occurred; with this information,
the controller can temporaly increase the insulin delivery, infusing some insulin
boluses (Fathi et al. 2019; Mahmoudi et al. 2019) or switching to a more aggressive
controller (Fushimi et al. 2019; Bhattacharjee et al. 2019).

The design of a meal detector usually requires two steps: 1) to calculate signals and
features that largely deviate when meals occur, and 2) to find rules determining
whether a meal has occurred. Regarding the features selection, although some
alternatives to the CGM signal exist (e.g., heart rate (Zheng et al. 2019), abdominal
sound (Kolle et al. 2019), head movement (Rahman et al. 2015), etc.), most features
usually root from CGM readings such as:

• CGM values (Dassau et al. 2008),

• approximations of the CGM derivative (Zheng et al. 2019)

• glucose predictions (Chen et al. 2019),

• innovation residuals (Fathi et al. 2019; Meneghetti et al. 2021),

• or meal rate of glucose appearance estimations (Ramkissoon et al. 2018)

Concerning the meal detector logic, the most extended method is to apply ad-hoc
thresholds to the features (Harvey et al. 2014b). Other techniques rely on interval
thresholds Meneghetti et al. 2021, hypothesis tests (Fathi et al. 2019; Mahmoudi
et al. 2019), or binary classifiers (Kölle et al. 2020; Zheng et al. 2020). Moreover,
other approaches have also addressed the estimation of the meal carbohydrate
content, such as Samadi et al. (2018), Fathi et al. (2019), and Chen et al. (2019).

In this chapter, a meal detector is designed to be integrated next in the meal-
announcement free system developed in Chapter 6. The meal detector uses the
glucose derivative and the glucose residuals generated by a super-twisting observer
as detection features. The detection logic is based on thresholds applied to these
signals. Finally, the meal detector is evaluated with simulated and clinical data.
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5.2 Super-twisting-based meal detector

The meal detection is addressed as a fault detection problem (Venkatasubramanian
et al. 2003): the CGM reading signal is compared to an estimation to form a
residual signal. The estimation must accurately follow the CGM reading in the
absence of the meal disturbance but largely deviate from it when the disturbance
appears (the fault). This sensitiveness to the disturbance will allow its detection
with simple decision rules based on thresholds. This section details the estimator
used to construct the residuals and the decision logic determining the detection
occurrence.

5.2.1 Residual generator

Sliding mode observers can be tuned to estimate a predefined disturbance level
signal accurately. If the actual disturbance is below this predefined level, the
error will be attained to the sliding surface converging to zero. However, the
estimation error will leave the sliding surface if the disturbance exceeds this level.
This behavior appeals to construct residuals being sensitive to the disturbances:
the residuals are close to zero when disturbances are low but deviate from zero
when the disturbances exceed some level defined beforehand (Hermans et al. 1996;
Hu et al. 2016). This section applies the super-twisting observer of Levant (1998)
and Davila et al. (2005) to generate the residuals. The super-twisting observer
is a second-order sliding mode observer that, like the first-order sliding mode
observers, features robustness properties against matched disturbances. Despite
FOSMO could have been used, we had to resource in Chapter 3 to an implicit
discretization to alleviate chattering. In this chapter, super-twisting observers are
investigated for such purpose. The advantage of the super-twisting observer is
that the discontinuity of the output error injection term is hidden in the derivative,
alleviating the chattering problem.

Levant (1998) proposed the super-twisting observer for the following dynamic
system:

ż1(t) = z2(t)
ż2(t) = f(z1(t), z2(t), u(t)) + ξ(t)

(5.1)

where z1(t) is the measurable state variable and z2(t) its derivative; f(z1(t), z2(t), u(t))
is a know term of the system, and ξ(t) is an unknown bounded disturbance.

The super-twisting observer is given by (Davila et al. 2005):
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ż̂1(t) = ẑ2(t) + k1 |z̃1(t)|0.5 sign (z̃1(t))
ż̂2(t) = f(z1(t), ẑ2(t)) + k2 sign (z̃1(t))

(5.2)

where ẑ1(t) and ẑ2(t) are the estimates of z1(t) and z2(t), respectively. z̃1 denotes
the estimation error (or residual), i.e., z̃1(t) = z1(t) − ẑ1(t). The parameters k1
and k2 are the gains to be designed.

The dynamics of the residuals are the following:

ż̃1(t) = z̃2(t) − k1 |z̃1(t)|0.5 sign (z̃1(t))
ż̃2(t) = F (t) − k2 sign (z̃1(t))

(5.3)

where F (t) is a disturbance term lumping the discrepancies between the nom-
inal model and the actual system, i.e., f(z1(t), z2(t)) − f(z1(t), ẑ2(t)), and the
disturbance ξ(t). F (t) is bounded as |F (t)| < L for a positive scalar L.

By appropriately selecting k1 and k2, the variables z̃1(t) and ż̃1(t) converge to
zero in finite time despite the disturbance F (t). The convergence of the algorithm
was proved with geometric methods (Levant 1998; Davila et al. 2005) and with
Lyapunov-based techniques (Moreno et al. 2008). The tuning proposed by Levant
(1998), i.e.,

k1 = 1.5L0.5 k2 = 1.1L (5.4)

is utilized in this chapter since it is considered a trade-off between fast convergence
and accuracy (Shtessel et al. 2014, Section 4.3.2).

Note that F (t) can be regarded as the fault in the context of a fault detection
problem (Hu et al. 2016). The parameter L controls the sensitivity of the detection:
if L is too high, the algorithm will disregard most of the faults; if L is too low,
any discrepancy on f(z1(t), z2(t)) or noise will be acknowledged as a fault.
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5.2 Super-twisting-based meal detector

Application to the meal detection problem

So far, it has been seen how the super-twisting observer can be applied as a
residual generator for a system affected by the fault/disturbance F (t). For the
super-twisting to be applied in the meal detection problem, the disturbance F (t)
should be related to the meal disturbance. To illustrate this relation, consider the
last two equations of the IVP model (see 3.3.1 for more details),

İEF F (t) = −p2 · IEF F (t) + p2 · SI · IP (t)
Ġ(t) = −(GEZI + IEF F (t)) ·G(t)+

+ EPG+RA(t)

(5.5)

(5.6)

and apply the following change of variables:

z1(t) := G(t)
z2(t) := −(GEZI + IEF F (t))G(t) + EPG ,

(5.7)

which results in the dynamic system defined as follows:

ż1(t) = z2(t) +RA(t)
ż2(t) = f(z1(t), z2(t), IP (t)) + p(z1(t), z2(t))RA(t)

(5.8)

with:

f(z1(t), z2(t), IP (t)) := p2(EGP − z2(t) −GEZIz1(t) − SIIP (t)z1(t))+

+ z2(t)2

z1(t) − EGP
z2(t)
z1(t)

p(z1(t), z2(t)) := z2(t) − EGP

z1(t)

(5.9)

The application of the observer (5.2) leads to the following residuals dynamic:

ż̃1(t) = z̃2(t) − k1 |z̃1(t)|0.5 sign (z̃1(t)) +RA(t)
ż̃2(t) = (f(z1(t), z2(t), IP (t)) − f(z1(t), z̃2(t), IP (t))) +

+ p(z1(t), z2(t))RA(t) − k2 sign (z̃1(t))
(5.10)
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where IP (t) can be calculated integrating the pharmacokinetic equations of the
IVP model (3.27)–(3.28). Note that expression (5.10) does not resemble the super-
twisting dynamics in (5.3) because RA(t) appears in the first equation. To remove
the RA(t) from the first equation of (5.10), consider a new auxiliary variable
defined as follows:

ϕ(t) := z̃2(t) +RA(t) (5.11)

After applying the above transformation, the residuals becomes

ż̃1(t) = ϕ(t) − k1 |z̃1(t)|0.5 sign (z̃1(t))

ϕ̇(t) =
(︂
f(z1(t), z2(t), IP (t)) − f(z1(t), z̃2(t), ÎP (t))

)︂
+ ,

+ p(z1(t), z2(t))RA(t) + ṘA(t) − k2 sign (z̃1(t))

(5.12)

which has the form of (5.3) for

F (t) = (f(z1(t), z2(t), u(t)) − f(z1(t), z̃2(t), u(t))) +
+ p(z1(t), z2(t))RA(t) + ṘA(t)

(5.13)

Since F (t) depends on the meal disturbance and its derivative, the residuals
generated by the super-twisting are suitable for meal detection. The super-twisting
can be designed to ensure that the residuals are close to zero in the absence of meal
disturbances (see the first 200 min in Figure 5.1) while deviating from zero when
meals are ingested (see Figure 5.1). Nevertheless, F (t) also includes unmodeled
dynamics; hence L must be selected large enough to avoid the observer losses the
convergence due to these factors unrelated to the meal disturbance.

Another consideration before applying the super-twisting to the meal detection
problem is its discretization. The super-twisting hides the discontinuities in the
derivative, which reduces the chattering effect compared to first-order sliding mode
observers, and allows the application of the explicit discretization. The Euler
explicit discretization of the observer is given by:

ẑ1[k] = Tsẑ2[k − 1] + Tsk1 |z̃1[k − 1]|0.5 sign (z̃1[k − 1]) + ẑ1[k − 1]
ẑ2[k] = Tsf(z1[k − 1], ẑ2[k − 1], u[k − 1])+

+ Tsk2 sign (z̃1[k − 1]) + ẑ2[k − 1]
(5.14)
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5.2 Super-twisting-based meal detector

Figure 5.1: Example of the residual signal generated by the super-twisting. The
simulation was performed with the modified version of the UVa/Padova simulator. The left
axis refers to the residuals. The circles indicate the presence of a meal with a carbohydrate
content given in the right axes.

where Ts is the sampling time, and k is the discrete iteration. However, despite the
chattering reduction, its magnitude is still too high when Ts = 5 min, the CGM
sampling time (see blue line in 5.2). Although implicit discretization methods will
be explored later (see Section 5.4.1), in a first implementation of the algorithm, it
was decided to resort to subsampling: the discretized super-twisting observer (5.14)
was executed N times within the measurement sampling period and the output of
the last evaluation within the period was taken as the glucose estimation considered
in the calculation of the residuals, i.e., z̃1 = z1(t) − ẑ1(t). Figure 5.2 compares
the effect of the subsampling. Evaluating the algorithm only five times within the
measurement sampling period (N = 5) considerably reduces the magnitude of the
chattering.

Figure 5.2: Use of subsampling to reduce the chattering in the super-twisting.
The simulation was performed with the modified version of the UVa/Padova simulator. N
defines the number of evaluations the super-twisting was executed within the 5 min of the
measurement sampling time. The left axis refers to the residuals. The circles indicate the
presence of a meal with a carbohydrate content given on the right axis.

109



Chapter 5. Super-twisting-based meal detector

5.2.2 Decision rules

Other disturbances besides meals (e.g., exercise) and uncertainties might also
impact the residuals since, as shown in Chapter 4, RA(t) will be an aggregation of
multiple disturbances on the glucose rate. Therefore, the algorithm also considers
the glucose derivative to identify disturbances increasing the glucose. The glucose
derivative is calculated with Euler’s approximation:

ˆ︃der[k] = z1[k] − z1[k − 1]
Ts

(5.15)

where Ts is the measurement sampling time, i.e., 5 min.

Figure 5.3 illustrates the detection process: the algorithm raises a detection flag
when the residual signal overpasses a certain threshold (z̃1(k) > thres) and glucose
increases at a specific rate (ˆ︃der(k) > thder).

In addition, if a new detection occurred before 90 min (TWoff ) from last detection,
no flag would be raised to avoid multiple detections triggered by the same meal.
Lastly, the algorithm inhibits any detection in the first 30 min (TWwarmup)
after the initialization to prevent false detections caused by the transient of the
super-twisting observer.

The parameters of the algorithm were tuned through exhaustive simulations under
an scenario of 14 days with 3 daily meals generated by the modified version of the
UVa/Padova simulator. The resulting parameters were the following:

L = 0.09 mg/(dL min2) thres = 1.75 mg/dL thder = 1.2 mg/(dL min)
N = 5 TWwarmup = 30 min TWoff = 90 min

Lastly, it was found that including the model information, i.e., the term f(z1[k −
1], ẑ2[k−1], u[k−1]), has an unimportant impact on the residual generation; hence,
it has eventually set to zero.
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5.3 In silico evaluation

Figure 5.3: Meal detection process. The algorithm raises a flag (bottom panel, blue
inverted triangles) when the residuals (upper panel) and the glucose derivative (middle panel)
exceed, respectively, the thresholds thres and thder. Any detection within the warm-up
window (T Wwarmup) or the shut-off window (T Woff ) is inhibited. Orange triangles in the
bottom panel denote actual mealtimes.

5.3 In silico evaluation

The meal detector algorithm described in the above sections was evaluated with two
versions of the UVa/Padova simulator: the modified academic version previously
used in this dissertation and a more recent version of the simulator (Vettoretti et al.
2018), which was made accessible to the group in the context of a collaboration with
University of Padova. This new version includes several features that allow more
realistic simulations compared to the modified version: it has a more numerous
adult cohort (100 virtual adults vs. 10 virtual adults); it extends the built-in
physiological model with new phenomena real subjects experiment in the daily
life, such as the “dawn effect”; it represents more realistically the variation of the
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intra-day insulin-sensitivity and the subjects’ therapy parameters; and, it upgrades
the CGM model with the Dexcom G5 CGM noise model.

A scenario of 14-days with three daily meals was configured for both simulators.
However, the new version of the simulator also included hypoglycemia treatments,
that is, fast-absorption carbohydrates to recover from hypoglycemia. In addition,
the new UVa/Padova simulates daily sensor calibrations, making the detection
more challenging.

The following metrics were considered to assess the performance of the meal
detector algorithm:

• Number of True Positives (TPs): A TP occurs when the algorithm
raises a detection flag within the first 120 min after a meal is consumed. This
detection window was also considered in Ramkissoon et al. (2018).

• Number of False Positives (FPs): A FP occurs when the algorithm
raises a detection flag, but no meal has been ingested in the last 120 min.
Also, the number of FPs per day (FP/day) is provided to simplify the
comparison with datasets with different numbers of meals.

• Number of False Negatives (FNs): A FN occurs when the algorithm
does not raise any detection flag after 120 min of the meal consumption.

• Recall: Percentage of meals that are identified correctly, that is (Dalianis
2018):

Recall = TP

TP + FN
· 100

• Precision: Percentage of detections corresponding to actual meals, that is
(Dalianis 2018):

Precision = TP

TP + FP
· 100

• F1-score: This metric merges in a single value the Recall and Precision,
assuming them as equally important. The definition of the F1-score is the
following (Dalianis 2018):

F1-score = 2 · Precision ·Recall
Precision+Recall
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• Detection time: The time (min) elapsing from the meal onset to the
detection in the case of the TPs.

• Carbohydrates related to FNs (CHFN): Meal carbohydrate content (g)
of those meals undetected by the algorithm.

The hypoglycemia treatments were considered as meal intakes when computing
the above metrics.

Table 5.1 summarizes the results of the validation. The results with the modified
version of the simulator (first column of Table 5.1) are close to other works in
the literature using a similar version of the simulator (but with different configu-
rations of the scenarios, such as variability generation, and different evaluation
criteria). For example, the proposed algorithm outperforms the 82 % mean recall
of (Hyunjin et al. 2009), but it achieved a sligthly lower recall than Ramkissoon
et al. (2018) (93 %) or Xie et al. (2017) (91 %). In addition, the proposed algorithm
outperforms the detection time achieved by Ramkissoon et al. (2018) (37(83) min,
mean (standard deviation)) and Xie et al. (2017) (45(83) min).

However, the algorithm performance declines under the scenario generated with
the newest version of the simulator: the number of FP/day is 20 times greater
than using the modified version, and the precision is reduced to 57[11] % (median,
[interquartile range]). Meneghetti et al. (2021) also illustrate that the new UVa/-
Padova simulator provides a more challenging scenario for meal detections. The
detection time of the algorithm they proposed almost doubles the achieved by the
super-twisting-based meal detector, although significantly enhancing the FP/day.

To understand why the newest version of the simulator led to more FPs, Figure 5.4
plots the signals involved in the detection (the residuals and the glucose derivative)
for both simulators. Observe that the more challenging variability of the new
simulator causes larger residuals and a noisier glucose derivative, hence being more
likely to exceed the corresponding threshold. Therefore, a new tuning is needed.

5.4 Algorithm refinements

A straightforward method to reduce the FPs in the new version of the UVa/Padova
simulator is increasing the thresholds of the derivative and the residuals (Figure 5.4).
However, the price to pay is an increase in the detection time. In this section,
three features are implemented that would allow reducing the number of FPs
without a remarkable increase of the detection time: 1) an implicit discretization
of the super-twisting to reduce the size of the residuals by increasing the L, ,
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Table 5.1: Performance of the super-twisting-based meal detector with datasets
generated in silico

Metrics Modified UVa/Padova New UVa/Padova
Original STMD Original Enhanced

Number of meals 42 [0] 50 [8] 50 [8]
TP 38 [5] 44 [8.5] 41 [13]
FN 4 [5] 6 [4] 9.5 [10]
FP 1 [1] 34 [9] 1 [1.5]
Recall (%) 90.5 [12] 88 [7] 82 [17]
Precision (%) 93.4 [6.5] 57 [11] 96 [5]
F1-score (%) 90.9 [8.1] 69 [9] 88 [10]
FP/day 0.1 [0] 2.4 [0.7] 0.1 [0.1]
CHFN (g) 48.3 [6.4] 59 [42] 37 [34]
Detection time (min) 30 [5] 30 [20] 35 [15]

The results of two simulators are included: the modified academic UVa/Padova simulator
(second column) and the newest version of the UVa/Padova simulator (third column), which

includes more subjects and sources of variability (see Section 5.3 for more details). The
second and third columns (Original) correspond to the results of the meal detector described
in Section 5.2, while the fourth column (Enhanced) includes the refinements of Section 5.4.

Metrics are expressed as median [interquartile range]. Notation: TP (true positive),
FN (false negative), FP (false positive), CHFN (meal size related to FN).
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5.4 Algorithm refinements

Figure 5.4: Comparison of the meal detector under the modified and the new
UVa/Padova simulator version. The glucose (upper panel), the residuals (middle panel),
and the glucose derivative (bottom panel) of the modified academic UVa/Padova simulator
(magenta lines) and the new full version (blue lines) are represented. Orange upwards triangles
denote actual mealtimes, while downwards triangles represent detection events under the
modified version of the simulator (magenta) and the newest version (blue).
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mitigating the increase of the chattering that this would provoke in an explicit
discretization implementation; 2) a KF to smooth the glucose derivative; and 3) an
alarm silencing logic to avoid calibration-related spurious detections, nonexistent
in the own version of the simulator.

5.4.1 Implicit discretization of the super-twisting

Large residuals, especially in the absence of meals (see, for example, the first
200 min of Figure 5.4, reveals a convergence issue of the super-twisting observer
caused because the uncertainty F (t) in (5.10) is larger than the predefined upper
bound L. Therefore, L must be increased to improve the convergence. However,
the explicit discretization of the observer limits the maximum L since the larger
the L, the larger the chattering will be (Brogliato et al. 2021).

Like for the FOSMO in Section 3.2.2, the implicit discretization of the super-
twisting can effectively reduce the chattering even for large L (Xiong et al. 2020;
Brogliato et al. 2020). The implicit discretized counterpart of (5.14) – considering,
for simplicity, f(z1(t), ẑ2(t)) = 0 – is the following:⎧⎪⎪⎨⎪⎪⎩

ẑ1[k] − ẑ1[k − 1] = Tsẑ2[k] + Tsk1 |z̃1[k]|0.5
ψ[k]

ẑ2[k] − ẑ2[k − 1] = Tsk2ψ[k]
ψ[k] ∈ msign (z̃1[k])

(5.16a)
(5.16b)
(5.16c)

where msign (·) is the multi-valued signum function defined in (3.71). Like in
Section 3.2.2, a causal expression for (5.16) can be obtained. First, plugging ẑ2[k]
of (5.16b) into (5.16a) results in

ẑ1[k] − g[k] =
(︂
T 2

s k2 + Tsk1 |z1[k] − ẑ1[k]|0.5
)︂
ψ[k] , (5.17)

with

g[k] := ẑ1[k − 1] + Tsẑ2[k − 1]

Then, expression (5.17) is solved for the three intervals msign (·) defines (Xiong
et al. 2020): z̃ = 0, z̃ > 0, and z̃ < 0.

• For z̃1[k] = 0, it is immediate that ẑ1[k] = z[k] and, hence, (5.17) becomes:
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z̃1[k] ∈ z1[k] − g[k] − T 2
s k2ψ[k] (5.18)

The above expression can be represented as (3.77), that is,

ey[k] = e∗[k] − β[k]ψ[k]

with e∗[k] = z1[k] − g[k] and β[k] = T 2
s k2. Consequently, applying the same

procedure in Section 3.4.2, the following solution for ϕ[k] is obtained:

ϕ[k] = proj
(︃

[−1, 1] ; z1[k] − g[k]
T 2

s k2

)︃
(5.19)

where proj (·) can be expressed in terms of a saturation function as defined
in (3.88).

• For z̃1[k] > 0, the definition of msign (·) implies that ψ[k] = 1, while (5.17)
becomes:

(︃
ẑ1[k] − g[k] − T 2

s k2
Tsk1

)︃
= |z̃1|0.5 (5.20)

Under the conditions z̃1[k] > 0, k1 > 0, k2 > 0, and Ts > 0, set by definition,
the following solution for ẑ1[k] exists from (5.20):

ẑ1[k] = g[k] + T 2
s k2+

+ T 2
s k

2
1

2

(︄√︄
1 + 4

T 2
s k

2
1

(z1[k] − g[k] − k2T 2
s ) − 1

)︄
(5.21)

• For z̃1[k] < 0, ψ[k] = −1, and, proceeding like for z̃1[k] > 0, ẑ1[k] is solved
as:

ẑ1[k] = g[k] − T 2
s k2−

− T 2
s k

2
1

2

(︄√︄
1 − 4

T 2
s k

2
1

(z1[k] − g[k] − k2T 2
s ) − 1

)︄
(5.22)

117



Chapter 5. Super-twisting-based meal detector

Therefore, the implicit Euler discretization reads as (Xiong et al. 2020; Brogliato
et al. 2020):

g[k] = ẑ1[k − 1] + Tsẑ2[k − 1]
g̃[k] = z1[k] − g[k]

ζ[k] = 4
T 2

s k
2
1

(︁
g̃[k] − k2T

2
s

)︁

ẑ1[k] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
g[k] + T 2

s k2 + T 2
s k

2
1

2

(︃√︂
1 + ζ[k] − 1

)︃
if g̃[k] > T 2

s k2

z1[k] if |g̃[k]| ≤ T 2
s k2

g[k] − T 2
s k2 − T 2

s k
2
1

2

(︃√︂
1 − ζ[k] − 1

)︃
if g̃[k] < −T 2

s k2

ψ[k] = proj
(︃

[−1, 1]; g̃[k]
T 2

s k2

)︃
ẑ2[k] = Tsk2λ[k] + ẑ2[k − 1]

(5.23a)
(5.23b)

(5.23c)

(5.23d)

(5.23e)

(5.23f)

Figure 5.5 and Figure 5.6 illustrate the two benefits of implicit discretization
regarding the explicit counterpart. On the one hand, the implicit discretization
reduces the chattering amplitude, even removing it, when a sampling time of 5 min
is used (Figure 5.5). On the other hand, the implicit discretization admits larger
values for L without increasing the chattering (see bottom panel of Figure 5.6).

Figure 5.5: Chattering reduction at a 5-min sampling time. The implicit discretiza-
tion reduces the chattering when no disturbances appear. Actual meal events are denoted
with the orange triangles.
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Figure 5.6: Comparison of discretization methods when increasing L. Three values
for L were applied: L = 0.001 (upper panel), L = 0.01 (middle panel), and L = 0.1 (bottom
panel). Actual meal events are denoted by the triangles.

5.4.2 Glucose derivative estimation with Kalman Filter

The noisy glucose derivative estimated by (5.15) was one of the reasons for the
performance degradation when the meal detector was tested with the new version
of the UVa/Padova simulator (see bottom panel of Figure 5.4). Here, a smoother
glucose derivative estimation is provided using a KF.

The KF was built upon the following discrete-time third-order glucose description:
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x[k + 1] =

⎡⎣1 1 0
0 1 1
0 0 1

⎤⎦
⏞ ⏟⏟ ⏞

A

⎡⎣cgm[k]
der[k]
f [k]

⎤⎦
⏞ ⏟⏟ ⏞

x[k]

+

⎡⎣0
0
1

⎤⎦
⏞⏟⏟⏞

C

w[k]

y[k] =
[︁
1 0 0

]︁⏞ ⏟⏟ ⏞
G

x[k] + v[k]

(5.24)

where cgm[k], der[k], and f [k] are, respectively, the glucose, its rate of change,
and the rate of change of the rate of change (Dassau et al. 2008). The scalar noise
signals, w[k] and v[k], are zero-mean with variance σ2

v and σ2
w, respectively. These

variances are selected as Bequette (2010): σ2
v = 4 and σ2

v = 0.01. It is assumed
that w[k] is uncorrelated from v[ℓ] for all k and ℓ.

The linear minimum variance estimate of the state vector can be obtained with
the following linear recursive equations (Simon 2006, Section 5.3):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K[k] = P−[k]GT [GP−[k]GT + σ2
v]−1

x̂[k] = (I3 −K[k]G)Ax̂[k − 1] +K[k]y[k]
P [k] = (I3 −K[k]G)(AP [k − 1]AT ) + Cσ2

wC
T

x̂−[k + 1] = Ax̂−[k] +K[k](y[k] −GAx̂−[k])
P−[k + 1] = A(P−[k] −K[k]G[k])AT + Cσ2

wC
T

(5.25)

where x̂−[k] and x̂[k] are the a priori and a posteriori mean estimation of x[k];
and P−[k] and P [k] are the corresponding covariance matrices. The above KF is
the one-step formulation counterpart of the KF presented in Section 3.2.1 (Simon
2006).
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5.4.3 Alarm silencing strategy

A CGM calibration could produce leaps in the CGM trace leading to spikes in the
residuals and the glucose derivative. Therefore, the detection is disable for 30 min
after calibration to avoid false detections.

5.4.4 Comparison with the initial proposal

The fourth column of Table 5.1 includes the results of the mean detector algorithm
enhanced with the features described in the above subsections (i.e., implicit
discretization of the super-twisting, KF for derivative estimation, and the alarm
silencing strategy after calibrations). The enhanced meal detector considerably
reduces the FP/day compared to the original version of the algorithm, with only an
unimportant raise in the meal detection time, which still outperforms Meneghetti
et al. (2021)’s proposal. However, the number of FNs increases from 6[4] to 9.5[10]
regarding the initial version of the meal detector. Despite this increase of FNs,
the carbohydrate content of the meals related to these FNs drops to 37[34] g.
Therefore, while being more numerous, the FNs would likely have a lower impact
on glucose; a feedback controller would handle these meals without requiring
any feedforward action triggered by the meal detection (such as the proposed
in Section 6). Indeed, 23 % of FNs will require no additional insulin injection
since they correspond to carbohydrates supplementation ingested to avoid severe
hypoglycemia.

5.5 Performance evaluation with clinical data

A retrospective evaluation with clinical data is presented in this section1 to
complement the above in silico comparisons.

1This work resulted from a collaboration with the Department of Information Engineering (DEI)
of the University of Padova (Italy). Another PhD candidate (at the time of the work development),
Simone Faccioli, participated in this evaluation and included it in his Phd dissertation. Therefore,
this section only presents an overview of the contribution. More details can be found in his PhD
dissertation and in the co-authored journal publication, Faccioli et al. (2022)
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5.5.1 Dataset description

Data was collected in a multicenter clinical trial (Anderson et al. 2016, Clin-
icalTrials.gov Identifier: NCT02137512), originally conceived to evaluate the
long-term feasibility of an AP system. The local IRB/ethical committee approved
all experimental procedures.

The data employed for the retrospective analysis2 correspond to a 14-day initial
phase where 30 subjects underwent a sensor-augmented pump therapy in free-
living conditions. Glucose data were measured every 5 min by a DexCom G4®

sensor (DexCom, Inc., San Diego, CA, USA). Insulin was delivered with a Roche
Accu-Check Spirit Combo® insulin pump (Roche Diabetes Care, Inc., Indianapolis,
IN, USA). In addition, the participants were committed to entering the system all
meals carbohydrate content to calculate the meal boluses. A total of 696 meals
were registered.

5.5.2 Preprocessing

All the signals were synchronized to the same 5-min sample time grid. Regarding
missing data in the CGM reading, on the one hand, entries with up to six
consecutive missing values – a 30-min interval of missing data – were filled with
the last available data. On the other hand, the meal detector algorithm was
deactivated for entries with more than six consecutive missing values, being
resumed when the CGM was recovered.

5.5.3 Parameters tuning

Data collected from free-living conditions are affected by a much larger incidence of
unknown disturbances and confounding factors than in silico data; thus, retuning
the parameters is necessary. The parameters thres and thder were selected to
maximize the populational F1-score, a trade-off criterion between recall and
precision. Although a subject-dependent tuning could also be considered by
maximizing the individual F1-score, a populational tuning was preferred since
some participants registered an insufficient number of meals (e.g., 11 out of 30
subjects have less than 20 registered meals for 14 days).

Regarding the parameter L, a new tuning is proposed to avoid using simulators
as in Section 5.3. L roughly determines the maximum amplitude of F [k] that

2The source of the data is the JDRF Artificial Pancreas Consortium coordinating center (JDR-
FAPPCC), but the analyses, content and conclusions presented herein are solely the responsibility of
the authors and have not been reviewed or approved by the JDRFAPPCC. The public CTR3 dataset
was financed by JDRF through the grants JDRF 22-2011-649 and JDRF 17-2013-509.
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the super-twisting observer can handle without compromising the convergence.
Since the observer should diverge after meal consumption for the meal detection
problem, an ideal tuning for L would be to set this parameter as the upper bound
of F [k] within a starvation period, such as nighttime. However, the actual value
of F [k] is unknown. Alternatively, like for the estimation of the meal disturbance
in Section 3.2.2, an estimation of F [k], i.e., F̂ [k], can be obtained by applying the
equivalent control principle (Shtessel et al. 2014, Section 7.1.2): to maintain the
sliding regime, the average value of k2 sign (z̃1), i.e., the equivalent injection term
k2 sign (z̃1)eq, in (5.10) must be equal to F [k]. Since the equivalent injection term
can be recovered by filtering the discontinuous term (Edwards et al. 2006), F̂ [k]
was calculated as follows:

F̂ [k] = Ts

τST

(︂
k2 sign(z̃1[k − 1]) − F̂ [k − 1]

)︂
+ F̂ [k − 1] (5.26)

where τST is a positive constant set to 5 min.

Therefore, a personalized L was defined by selecting the maximum F̂ [k] within
the first night of each participant. Note that an a priori selection of L, i.e., L0, is
required to calculate F̂ [k]. If L0 is too low, the estimation of the nocturnal F [k]
will be saturated; hence, L0 must be chosen large enough to avoid this saturation.
Selecting the super-twisting gains based on the estimated disturbance magnitude
is frequently used for designing adaptive-gain super-twisting observers (e.g., Obeid
et al. 2018).

5.5.4 Performance of the meal detector

The assessment metrics described in Section 5.3 were also applied to evaluate the
meal detector algorithm in this section. However, the 120-min detection window
used to consider a detection as a TP in Section 5.3 was extended to 180 min. This
longer detection window, also utilized by Villeneuve et al. (2020), is required for
a fair evaluation of the algorithm since several meals in the dataset remain flat,
even decreasing, within the first 1-2 h after the participant registered the meal, as
illustrated in Figure 5.7.

In addition, the dataset contains meals being registered very close to each other.
If two meals elapsed less than 30 min, only the second one was accounted for
computing the metrics. Lastly, hypoglycemia treatments were regarded as meals
as in Section 5.3.
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Figure 5.7: Postprandial response of slowly-absorbed meals. The 0 on the axis x
corresponds to the mealtime. The thin lines are the individual postprandial responses, while
the thicker blue line represents the median, and the shaded area is the interquartile range.

Table 5.2 compares the super-twisting-based meal detector with other algorithms
assessed under real-life conditions in the literature. This comparison is only
illustrative since it involved different datasets, preprocessing techniques, and
evaluation criteria. The 70[13] % recall achieved by the proposed method is in
line with most of the works found in the literature; only the PAIN (Weimer et al.
2016) and the LDA approaches (Koller 2016) outperform it. Conversely, the
FP/day of the proposed algorithm tends to be lower, although the differences
regarding “LDA CGM” and “Threshold Ra” are unimportant. Regarding the
detection time, a median of 45 min may seem unsuitable for control purposes.
Nevertheless, note that meals with a slow effect in increasing glucose distort this
metric (see Figure 5.7). For instance, Figure 5.8 illustrates a case where the
meal took more than 140 min to elevate glucose in 20 mg/dL. The algorithms in
Kölle et al. (2020) outperform the proposed meal detector. However, the authors
calculate the detection time as the difference between the detection and the time
the glucose rate of change was more than 1 mg/(dL min); this criterion can lead
to lower detection times than using the registered mealtime since it omits, for
example, slow absorption periods like those shown in Figure 5.7.

The proposed algorithm has 7[3] FPs. In the context of a meal-free announce-
ment AP system, an FP might trigger an unsuited insulin infusion leading to
hypoglycemia. Most FPs occur when the glucose is high, about 160 mg/dL, and
rising (see Figure 5.9). Indeed, 19 % of the FPs correspond to events where the
glucose increases more than 50 mg/dL within 3 h, starting above 70 mg/dL. Such
glucose profiles resemble unannounced meals; although not caused by meals, an
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Figure 5.8: Example of slowly-absorbed meal. The 0 on the axis x corresponds to the
mealtime.

extra insulin dosing triggered by the meal detection is not so risky, even, it would
likely benefit blood glucose control quality.

Figure 5.9: Boxplot of glucose (left) and glucose derivative (right) at False
Negative (FN) events and False Positive (FP) events.

FNs are also dangerous since if meals remain undetected, no extra insulin com-
plements the feedforward part of the controller, likely, leading to hyperglycemia.
Although the proposed meal detector has 6[4] FNs, most of them relate to a
postprandial period where the glucose concentration seldom increases, i.e., the
derivative is close to zero (see right panel of Figure 5.9). Also, the carbohydrate
content associated with FNs is 32[32] g, a low-to-medium meal size that could be
handled with the feedforward part of the controller (Tornese et al. 2022). In fact,
14.3 % of FNs are hypoglycemia treatments that should not require an additional
insulin dosing. Other sources of FNs are calibrations (9.7 % of FNs) and missing
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Table 5.2: Performances’ comparison between proposed meal detector and other
literature works under free-living conditions

Algorithm Recall (%) FP/day DT (min)
LDA Ra (in Kölle et al. 2020) 92.5 [2.0] 1.5 [0.4] 18.59 [1.84]
LDA CGM (in Kölle et al. 2020) 89.5 [4.0] 1.41 [0.42] 11.35 [2.05]
Threshold Ra (in Kölle et al. 2020) 74.5 [3.5] 1.47 [0.53] 30.94 [5.59]
GRID (in Kölle et al. 2020) 21.5 [7] 2.78 [0.41] 43.93 [4.7]
PAIN (in Kölle et al. 2020) 99 [11.26] 1.88 [0.72] -
Dassau (in Weimer et al. 2016) 73.9[20.5] 1.62 [1.27] -
Lee (in Weimer et al. 2016) 70.26 [20.07] 1.69 [1.21] -
Harvey (in Weimer et al. 2016) 79.90 [15.10] 1.64 [1.34] -
Enhanced STMD 70 [13] 1.4 [1.4] 45 [45]
Data are expressed as median [interquartile range]. Notation: DT (detection time), FP/day

(false positives per day). Evaluation datasets and metric criteria differ among the works;
hence, the results must be interpreted with caution.

data (19.9 % of FNs) since the algorithm resets after these events. These FNs could
be avoided if current CGM had been available for the study; the new generation of
CGMs, such as Dexcom G6 (Dexcom Inc., San Diego, CA, USA), is calibration-free
and includes algorithms to reduce missing data (Didyuk et al. 2020).

5.6 Conclusions

A meal detector algorithm was designed as a crucial step forward in developing
meal-announcement-free AP system (see Chapter 6). The algorithm implements
a super-twisting observer to generate residuals and a threshold-based logic to
determine the meal occurrence from the residuals and the glucose derivative.

The validation of the algorithm under the latest version of the UVa/Padova
simulator (Vettoretti et al. 2018), which models more challenging scenarios than the
academic modified version of the simulator, revealed limitations of the algorithm:
the residuals and the glucose derivative were noisier than in previous evaluations
with the modified version of the simulator, even in the absence of noise. These
limitations were overcome by replacing the dirty derivative with a Kalman filter
and discretizing the super-twisting observer with implicit methods.
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5.6 Conclusions

The enhanced algorithm was further evaluated with a clinical dataset collected
under free-living conditions, including 696 meals. The algorithm achieved com-
petitive results among other works in the literature: a recall of 70[13]% (median
[interquartile range]), a precision of 73[26]%, and 1.4[1.4] false positives per day.
Remark, however, that a head-to-head comparison is unfeasible given the dis-
crepancies between scenarios, data, and evaluation metrics, the different authors
utilized.

Although false detections still existed, they were associated with low hypoglycemia
and hyperglycemia risk situations. On the one hand, false positives mainly
corresponded to rising glucose events that would likely benefit from an insulin
injection triggered by the meal detector. On the other hand, false negatives
occurred after small meals (including hypoglycemia treatments) or were caused by
technological issues such as calibrations or missing samples.
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Chapter 6

Unannounced meal
compensation based on meal

detection

This chapter designs a module for a hybrid system to release
subjects from meal announcements. The module delivers a train of
insulin boluses triggered by the meal detector of Chapter 5 and an esti-
mation of the absorbed carbohydrates calculated through the disturbance
estimator of Chapter 3. The module is implemented in a controller
designed for a hybrid operation (i.e., with meal announcements). The
controller is compared in silico with three cases of the hybrid controller:
when the patient forgets bolusing, when the patient provides the exact
carbohydrate meal content, and when the patient misestimates it.
Authored publications related to this chapter:

- Sala-Mira, I.; Ricarte, B.; Romero-Vivo, S., et al. (2018). “Unannounced Meal
Control through Sliding Mode Techniques in an Artificial Pancreas”. In: 18th
Annual Diabetes Tecnology Meeting. Vol. 50. 1, p. 78831.

- Sala-Mira, I.; Díez, J.-L.; Ricarte, B., et al. (2019). “Sliding-mode disturbance
observers for an artificial pancreas without meal announcement”. In: Journal
of Process Control (JCR 2019: Q2) 78, pp. 68–77. issn: 09591524. doi:
10.1016/j.jprocont.2019.03.008.
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Chapter 6. Unannounced meal compensation based on meal detection

6.1 Introduction

This chapter addresses one of the dissertation’s principal goals: designing an
unannounced meal strategy to replace carbohydrate counting in hybrid AP systems.

Hybrid AP systems require carbohydrate counting to provide a pre-meal bolus, a
feedforward action complementing the feedback control action to enhance the post-
prandial response (Weinzimer et al. 2008). Otherwise, the risk of hyperglycemia
and late hypoglycemia would increase because the absorption delay, measurement
lag, and insulin unidirectionality constrain the effectiveness of feedback control
(Gingras et al. 2018b). However, patients usually struggle with carbohydrate
counting; indeed, misestimation errors (Kawamura et al. 2015; Roversi et al. 2022),
announcement omissions (Bishop et al. 2009), or delays (Boughton et al. 2019)
are common and may compromise glucose control. Thus, releasing patients from
this task is desirable.

Several techniques have been developed to replace carbohydrate counting. Some
targets announcement simplification, requiring only the mealtime (Tsoukas et al.
2021a; Haidar et al. 2021) or a qualitative approximation of the carbohydrates
(Gingras et al. 2016b). Others completely removed the meal announcement;
most meal-announcement-free systems rely on meal detection (or, at least, some
detection of persistent hyperglycemia, like in Colmegna et al. 2021a; Garcia-Tirado
et al. 2021b; Majdpour et al. 2021) to trigger a set of feedforward actions playing
the role of pre-meal boluses, that is, increasing the aggressiveness of the insulin
delivery to reduce postprandial hyperglycemia. The three most frequent actions
triggered at detection time are the following: 1) delivering a single insulin bolus
(Mahmoudi et al. 2019; Samadi et al. 2017; Xie et al. 2017; Harvey et al. 2014b); 2)
delivering a train of insulin boluses calculated through estimations of the glucose
derivative or rate of glucose appearance (Garcia-Tirado et al. 2021b; Turksoy et al.
2015; Hyunjin et al. 2009); and 3) modifying the controller structure or tuning
(Hajizadeh et al. 2020; Fushimi et al. 2019).

The module developed in this chapter employs the two latter actions mentioned
above. On the one hand, a meal detector triggers a train of insulin boluses
being delivered according to an estimation of the rate of glucose appearance (see
Section 6.3). On the other hand, a parameter of the controller is modified to
reduce the risk of late hypoglycemia.

The proposed module is added to the SAFE-AP, a controller designed by our
group for a hybrid operation (see Appendix B). The resulting meal-announcement-
free system (bolusing algorithm with the SAFE-AP) is validated in silico and
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compared with the hybrid SAFE-AP in three cases: absence of pre-meal boluses,
ideal pre-meal boluses, and misestimated pre-meal boluses.

6.2 Control architecture overview

The proposed module comprises the following three elements (see gray blocks in
Figure 6.1):

• A meal detector triggering the bolusing algorithm. The meal detector de-
veloped in Chapter 5 is implemented here, but any other could have been
employed too.

• A meal rate of glucose appearance observer to estimate the meal distur-
bance required, in turn, to approximate the absorbed carbohydrates (see
Section 6.3). The FOSMO observer with the IVP model presented in Chap-
ter 3 is used since it is the most straightforward combination in that chapter
while achieving a similar performance than more complex options.

• A bolusing algorithm that calculates a train of boluses with the information
of the meal detector and meal disturbance estimation. The details of this
algorithm are provided in the subsequent sections.

The IVP model parameters were populational values except for insulin sensitivity.
The identification of the parameters is similar to the one described in Section 3.31.
First, an average model was identified from a 2-day simulated dataset with three
daily meals with the two-step approach of Section 3.3. Then, a new optimization
problem was solved to individualize the insulin sensitivity, fixing the remaining
parameters to the average model ones. The resulting parameters are included in
Table 6.1

For the in silico validation of the proposed module, the module is integrated into
the SAFE-AP (the main controller Figure 6.1). The details of the SAFE-AP are
described in Appendix B. The SAFE-AP implements a PD controller extended by
an IFB and a SMRC mechanism to upper-bound the insulin-on-board (Figure 6.2).
To constrain the insulin-on-board, the SMRC increases the glucose reference, Gr(t),
through the discontinuous signal ω(t) defined by:

1This identification was proposed in (Sala-Mira et al. 2019), which was earlier than the material
presented in Chapter 3. In that article, we looked for models identified only in gain as proposed by
Van Heusden et al. (2012). For that reason, only the insulin sensitivity was identified
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Figure 6.1: Proposed meal-announcement-free system. Gray-filled blocks indicate the
elements of the proposed module: a meal rate of glucose appearance observer, a meal detector,
and a bolusing algorithm. The bolus generator delivers boluses (uins(t)) to compensate for
meals. Also, an internal parameter of the controller (W +) is modified during the bolusing
logic.

ω(t) =
{︄
W+ if σSM (t) > 0
0 otherwise

where W+ is a large enough positive scalar with a nominal value set to 350 mg/dL,
tuned in Sala-Mira et al. (2017) by extensive simulations. The condition σSM > 0
– σSM is given by (B.5) in Appendix B – indicates that the insulin-on-board has
exceeded (or has a trend to do it shortly) its upper-limit. The modified setpoint
Gr(t) +ω(t), once filtered by a first order filter, becomes the new setpoint (Grf (t))
for the PD. Thus, whenever the insulin-on-board exceeds its upper-limit, the
reference will increase by up to W+, leading to an immediate pump shut-off
preventing from insulin overdose, and, consequently, mitigating severe late post-
prandial hypoglycemia. Note that, to mitigate hypoglycemia against unannounced
meals, the proposed module has to increase the W+ value to counteract the meal
detection delay (see Section 6.4).
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Table 6.1: Identified parameters of IVP model

Parameter Average patient Individual

SI (mL/(µU min)) 6.92 · 10−4

2.52 · 10−4

4.18 · 10−4

4.42 · 10−4

7.03 · 10−4

7.36 · 10−4

7.65 · 10−4

8.34 · 10−4

8.86 · 10−4

9.12 · 10−4

9.75 · 10−4

EGP (mg/(dL min)) 1.49 -
CI (mL/min) 1.11 · 103 -
GEZI (1/min) 3.03 · 10−8 -
τ1 (min) 82.82 -
τ2 (min) 21.43 -
p2 (1/min) 1.55 · 10−2 -

6.3 Bolusing algorithm

The bolus generator targets compensating unannounced meals. For each detected
meal, the following train of boluses is delivered:

uins(t) =
NB∑︂
j=1

Bjδ(t− tj) (6.1)

where t1 is the detection time, Bj and tj are the jth-bolus size (U/min) and time,
and δ(·) represents the Dirac delta. The total number of boluses delivered after
detecting a meal, NB, is unknown in advance. It depends on the logic described
in Figure 6.3 determining Bj and tj .

At detection time (t1), a conservative bolus is delivered. Its size is calculated as
follows:

B1 = α

ICR
+ min

(︃
0, G(t1) −Gr(t1)

CF

)︃
(6.2)
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Figure 6.2: Description of the main controller. The main controller consists of
a proportional-derivative controller (PD), an insulin feedback (IFB), and a sliding mode
reference conditioning (SMRC). G(t), Gr(t), and Grf (t) denote the glucose reading, the
glucose setpoint and the filtered setpoint; γ and ∆ÎP (t) are, respectively, the IFB gain and
the estimated insulin plasma deviation regarding basal conditions. ω(t), ˆ︁IOB(t), and IOB(t)
correspond to the discontinuous signal, the estimated insulin-on-board, and the upper limit
of the insulin-on-board. The total insulin provided by the main controller, umc, considers the
PD-IFB output, the basal infusion (ubasal(t)), and, only if meals are announced, the pre-meal
boluses (ubolus(t)).

where G(t1) and Gr(t1) are the glucose value and the glucose set point at the
detection time t1, respectively. The parameters ICR (g/U) and CF (mg/(dL U))
denote, respectively, the insulin-to-carbohydrate ratio and the correction factor of
the standard open-loop therapy (Reiterer et al. 2019). The parameter α refers
to the equivalent meal bolus (Reiterer et al. 2019). In the standard open-loop
therapy, α would equate to the estimated meal size. However, in this application,
the meal size and time are unknown. In addition, the meal detector can raise a
flag when no actual meal occurs (i.e., an FP). Therefore, α must be small enough
to prevent hypoglycemia within an FP. The parameter α was selected as 8 g after
exhaustive simulations. Other works in the literature, such as (Fathi et al. 2019),
also have opted for conservative boluses to prevent FP-related hypoglycemias.
The second term in (6.2) corresponds to the correction term of the standard
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Figure 6.3: Bolus generator logic.
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therapy but is upper bounded to zero. Corrections for G(t1) > Gr(t1) were not
considered to avoid insulin over-delivery when an FP occurred with an elevated
glucose concentration. The coefficients kd and β (set to 50 min−1) were selected
heuristically through simulations.

If the stop conditions (they will be described next) are not met, the module starts
delivering a series of boluses. Their size follows a PD-like algorithm added to a
constant α-g equivalent meal bolus:

Bj = α

ICR
+ kp(tj)(G(tj) −Gr(tj)) + kdĠ(tj) (6.3)

with

kp(t) = exp( t−t2
β )

CF , kd =
{︄
TDI/100 if Ġ(t) ≥ 0
TDI/85 if Ġ(t) < 0

(6.4)

where t2 is the time the second bolus was delivered (in min), and TDI is the total
daily insulin (U/d). The gains kp(t) and kd were time-dependent to reduce the
bolus size. On the one hand, the kp(t) follows an exponential attenuation, where
β is the time constant (1/min), to reduce the risk of hypoglycemia for meals with
long absorption periods. On the other hand, the kd favors glucose reductions more
than glucose increases to avoid delivering a large bolus for a decreasing glucose
trend.

The bolus generator module delivers a new bolus when the meal size of the last
bolus has been absorbed. The meal size corresponding to a bolus is calculated as
follows:

CHOj−1 = Bj−1 · ICR (6.5)

where Bj−1 is the last infused bolus. The absorbed carbohydrates are approximated
through the area under the curve of the estimated meal disturbance, expressed in
mass units: R̂A · VG (mg/min). The area under the curve was calculated with the
trapezoidal rule.

Before delivering a new bolus, some conditions are evaluated to determine if the
bolus is required. These conditions prevent bolusing for two situations:
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• When most of the meal content has been absorbed. A meal was considered to
be absorbed if one of the following conditions is met:

– The glucose value lowers from hyperglycemia (G ≥ 180 mg/dL) to
normoglycemia (G < 180 mg/dL).

– The estimated meal disturbance reaches a small value. This value could
be zero for a perfect estimation of the meal disturbance. However,
as observed in Chapter 3, the meal disturbance estimation is coupled
with noise and uncertainty. A threshold of 0.6 mg/(dL min) is set after
simulations.

– The elapsed time from the detection time is longer than 150 min.

The above conditions reduce the risk of delivering a bolus in the late post-
prandial phase when a bolus will likely cause hypoglycemia.

• When an FP has occurred. Although the algorithm cannot known if the
detection is a TP or an FP, it is expected that the first bolus reduces
the glucose more after an FP than after a TP. Consequently, the glucose
concentration would recover its value at detection time earlier for an FP
than for a TP (see Figure 6.4). Following this reasoning, the algorithm was
deactivated when the slope of the line joining the glucose at detection time
(t1) and the actual time, that is,

slope = G(t) −G(t1)
t− t1

goes below a threshold close to zero, set to 0.3 mg/(dL min). This condition
reduces the risk of delivering a second bolus after an FP.

6.4 Complementary feedforward action

In any hybrid controller provided with an insulin-on-board limitation mechanism,
the meal bolus will immediately reduce the feedback control action at mealtime.
Conversely, in the proposed meal-announcement-free system, the insulin-on-board
limitation mechanism will be activated only after meal detection, when the train
of boluses is delivered. Since the feedback controller has to cope with the meal
disturbance until the meal is detected, the feedback control action will be larger
in the meal-announcement-free system than in the hybrid system at the time
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Figure 6.4: Recovery time from detection after a false positive and a true positive.
The time for the glucose to return to the value at detection time (downward triangle) is
shorter for false positives than for true positives. The upward triangle corresponds to the
actual meal, and dotted line arrows represent the slope.

the insulin-on-board mechanism is activated. Thus, the bolus combined with a
larger feedback control action, may lead to hypoglycemia despite the limitation
of the insulin-on-board. To overcome this problem, the proposed system, besides
delivering a train of boluses, modifies an internal parameter of the insulin-on-board
mechanism to make more exigent in the limitation of the insulin-on-board given
by the feedback controller.

In the particular case of the SAFE-AP, the proposed module modifies the parameter
W+. In the announced meal case, the pre-meal bolus makes the insulin-on-board
exceed the constraint IOB; hence the SMRC activates, increasing Gr(t) by up
to W+ = 350 mg/dL. The result is that the control action of the main controller
zeroes (umc(t) = 0) just after the pre-meal bolus (see red line in Figure 6.5).
However, in the unannounced meal case, the SMRC requires more time to set
umc(t) = 0 (see blue line in the middle panel of Figure 6.5). Two reasons explain
why the time to shut the continuous infusion off is longer than the announced
case. On the one hand, the SMRC activates later than in the announced meal case
because no pre-meal bolus is delivered. On the other hand, the main controller must
face the postprandial glucose increase without any help of pre-meal boluses until
the meal detector triggers the bolusing algorithm. As a result, the value of umc(t)
when the SMRC augments the reference Gr(t) is greater for the unannounced case
than the announced case. In the announced case, increasing the reference by up
to W+ = 350 mg/dL led to a shortly pump shut-off. However, this value might be
insufficient for the unannounced case. For this reason, apart from the bolusing
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algorithm, the proposed module increases W+ (a 65 % to its nominal value was
observed to be a compromise after extensive simulations) when the conditions for
delivering a second bolus are met. This greater W+ shortens the time until umc(t)
becomes zero, reducing the risk of hypoglycemia (see green line in Figure 6.5).
W+ recovers its nominal value when the stop conditions of the bolusing algorithm
are held.

Figure 6.5: Need of a complementary feedforward action. In the announced meal
case (red lines), the SMRC shuts the control action off (left, middle panel) right after the
pre-meal bolus (right, central panel), only increasing glucose by W +. In the unannounced
case (blue lines), the control action takes longer to be zero with the same W +. Increasing
W + a 65 % (green lines) enhances the performance.
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6.5 In silico comparison

The proposed meal-announcement-free system based on meal detection (henceforth
denoted as MD) is compared with the main controller without meal compensation
(NoComp), the main controller with ideal meal boluses (IB), and the main controller
with miscalculated boluses (MB). The meal boluses of the hybrid controllers (IB
and MB) were calculated as follows (Reiterer et al. 2019):

ubolus(t) = dmeal

ICR
· δ(t− tmeal) (6.6)

where dmeal and tmeal are the announced meal dose (in g) and time (in min),
respectively. The announced meal doses match the actual meal doses for the IB. In
MB, meal announcements are subject to carbohydrate counting errors, as modeled
in Kawamura et al. (2015)’s.

A 30-day scenario was configured with the modified version of the UVa/Padova
simulator. It includes three daily meals with random variation in meal times
(nominal daily values: 7 h, 14 h, and 21 h; standard deviation: ±10 min) and meal
dose (nominal daily values: 45 g, 80 g, and 60 g; coefficient of variance: ±20 %).
The meal absorption rate, carbohydrate bioavailability, and the subcutaneous
insulin absorption rate changed at each meal following a uniform distribution
of ±30 %, ±10 %, and ±30 %, respectively. In addition, the insulin sensitivity
followed a circadian variation of 24 h with random amplitude (uniform distribution
of ±30 %) and random phase. The simulations were performed for the ten virtual
adults of the simulator, repeating the simulation three times per virtual subject
with different instances of variability.

Standard metrics were evaluated, such as mean glucose, percent time in range,
hypoglycemia or hyperglycemia (Battelino et al. 2019), and number of level 1
(CGM < 70 mg/dL) and level 2 (CGM < 54 mg/dL) hypoglycemia events. In
addition, the effect of incorrect meal detections is assessed by the amount of
carbohydrates leading to CGM > 250 mg/dL, the number of FP leading to
CGM < 70 mg/dL or the number of FN leading to CGM > 180 mg/dL. All
metrics were expressed as mean (SD) and median [25th percentile, 75th percentile].
The statistical significance level was 0.05. The difference significance between
controllers was analyzed with the paired t-test or the Wilcoxon signed-rank test,
depending on the normality.
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6.5.1 Results

Table 6.2 summarizes the results of the in silico comparison. The proposed system
beats the main controller without meal compensation (NoComp) since it reduces
(with statistical significance) the mean and all levels of hyperglycemia without any
statistically significant difference in hypoglycemia. In contrast, the hybrid systems
(IB and MB) outperform the %time above 180 mg/dL and the %time above
250 mg/dL with statistical significance. This result was expected since delivering
a bolus to compensate for a meal is the optimal therapy (Goodwin et al. 2015).
The longer time in hyperglycemia achieved by the MD occurred because, besides
the detection delay, the bolusing algorithm was tuned conservatively to avoid
FP-related hypoglycemia events. Figure 6.6 illustrates this conservativeness: the
postprandial glucose response achieved by the MD overlaps the NoComp response
until the second bolus of the MD was delivered. Apart from the conservative
tuning, FNs can lead to hyperglycemia. However, the existing FNs in this analysis
are related to small-to-medium meals (46.3 ± 4.4 g) easily handled by the main
controller without requiring an extra insulin infusion. Indeed, out of 6.6 ± 3.8 FNs,
only 1.4 ± 1.2 FNs are associated with hyperglycemia. Although the time in
hyperglycemia achieved by the MD is larger than the hybrid counterpart, it is
below the 25 % recommended in the literature (Battelino et al. 2019).

The %time below 70 mg/dL and %time below 54 mg/dL are close to zero for all
the controllers. The proposed system leads to a slight increase of level 1 and level
2 hypoglycemia events but without resulting in statistical significance. FP-related
hypoglycemia events are sparse: only 0.033 ± 0.183 FPs lead to hypoglycemia;
among them, only two level 2 hypoglycemia events were reported, both in subject
7 (49.14 mg/dL in the second instance and 45.32 mg/dL in the third). The low
number of FPs causing hypoglycemia is because of the conservative tuning of the
first bolus and the suitable selection of the stop conditions. For example, the slope
stopping condition prevents a second bolus from being delivered in 75 % of FPs.

The hybrid systems achieve a statistically significant longer %time in 70–180 mg/dL;
however, the median difference regarding (the more realistic) MB is less than
4 mg/dL. Finally, although IB outperforms (with statistical significance) the MD
controller in terms of the mean glucose, no statistically significant difference was
found between MB and MD.
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Table 6.2: Performance metrics of meal compensation

NoComp MB IB MD

Mean CGM
(mg/dL)

169.1 ± 22.41 * 144.3 ± 11.01 139.0 ± 9.074 * 146.7 ± 12.20
160.1 [157.6, 193.2] 141.5 [138.6, 154.3] 137.0 [133.9, 146.5] 143.4 [139.8, 148.1]

CGM time (%)

>250 mg/dL 11.00 ± 8.906 * 2.262 ± 3.200 * 0.857 ± 1.936 * 2.730 ± 2.452
8.328 [4.201, 18.32] 0.793 [0.208, 3.056] 0.029 [0.000, 0.856] 2.297 [0.521, 4.560]

>180 mg/dL 37.74 ± 14.46 * 18.65 ± 7.893 * 14.10 ± 6.971 * 22.51 ± 8.715
32.41 [30.94, 49.71] 17.99 [13.74, 21.22] 13.06 [9.063, 19.05] 20.94 [18.96, 24.95]

[70 – 180]
mg/dL

62.26 ± 14.46 * 81.35 ± 7.894 * 85.88 ± 6.975 * 77.46 ± 8.706
67.59 [50.29, 69.06] 82.01 [78.79, 86.26] 86.94 [80.95, 90.94] 78.96 [75.05, 81.04]

<70 mg/dL 0.003 ± 0.011 0.004 ± 0.014 0.013 ± 0.037 0.029 ± 0.077
0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]

<54 mg/dL 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.005 ± 0.018
0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]

Hypoglycemia events

Level 1 0.033 ± 0.183 0.067 ± 0.254 0.167 ± 0.461 0.300 ± 0.702
0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]

Level 2 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.067 ± 0.254
0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]

Four meal compensation techniques, which share the main controller, were compared: 1)
absence of meal compensation (NoComp), 2) announced meals with carbohydrate counting

errors (MB), 3) announced meals with ideal boluses (IB), and 4) meal-detector-based
compensation (MD). Metrics are expressed in mean ± standard deviation and median [25th

percentile, 75th percentile] of the ten virtual adults. An asterisk represents statistically
significant differences regarding MD.

6.6 Conclusions

A meal-announcement-free artificial pancreas is presented, combining the rate of
glucose appearance and the meal detector developed in previous chapters with a
novel bolusing algorithm.

The in silico analysis revealed that the proposed system achieved a mean glucose
similar to that of a hybrid system with carbohydrate counting errors without
increasing the risk of hypoglycemia.

Despite the promising results, the tuning of the algorithm, especially for the first
bolus, is conservative, which, besides the meal detection delay, leads to an increase
of hyperglycemia and decrease of %time in 70–180 mg/dL regarding the hybrid
counterpart. This loss of performance was expected since the ideal hybrid controller

142



6.6 Conclusions

Figure 6.6: Populational glucose and insulin profiles of the comparison. Two of
the 30 days are shown comparing the hybrid system without boluses (NoComp), the hybrid
system with carbohydrate misestimation (MB), the hybrid system with ideal bolus (IB), and
the proposed system (MD). Shaded areas correspond to standard deviation values, while
solid lines are mean values.

(i.e., no misestimation errors) is the optimal therapy for postprandial control.
Anyway, %time above 180 mg/dL hyperglycemia achieved by the proposed meal-
announcement system is below the thresholds defined in the consensus statements
(Battelino et al. 2019).

Another weakness of the analysis is related to the simulations. The meal-
announcement-free system was evaluated for only ten virtual subjects. Also,
the effect of proteins, fat, or alcohol on the algorithm could not be assessed since
meals in the simulator only consider carbohydrates. Despite these limitations, the
conditions under the proposed module have been evaluated and can be regarded
as realistic since the scenario included multiple meals per day and sources of
variability.
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Finally, the proposed system is not flexible enough to handle exercise events,
another disturbance that severely impacts glucose, usually leading to a sharp
decrease. The next chapter presents an alternative strategy to deal with exercise.
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Chapter 7

Unannounced meal and exercise
compensation with a modified

Internal Model Control

Likewise meal intake, exercise severely impacts glucose home-
ostasis. Low-to-moderate exercise usually lowers glucose; fear of
hypoglycemia might discourage subjects from an active lifestyle, re-
nouncing its benefits for managing diabetes. Hybrid artificial pancreas
systems usually handle exercise by reducing the insulin dose before
the exercise bout. Since planning exercise is not always possible in
daily life, an automatic strategy to deal with unannounced exercise
is desirable. This chapter includes the design, the tuning, and the in
silico validation of an add-on module for a hybrid artificial pancreas to
eliminate the need to announce meal intakes and exercise. As opposed
to the previous chapter which was focused on meal control, here meal
and exercise disturbances are considered in a holistic way. The module
is built upon an internal model control and a switching logic that
mitigate the impact of unannounced meals and exercise by modifying
the insulin dose, reducing the insulin-on-board limits, and suggesting
rescue carbohydrates.
Authored publications related to this chapter:

- Sala-Mira, I.; Garcia, P.; Díez, J.-L., et al. (2022a). “Internal model control
based module for the elimination of meal and exercise announcements in
hybrid artificial pancreas systems”. In: Computer Methods and Programs
in Biomedicine (JCR 2021: Q1), p. 107061. issn: 0169-2607. doi: https:
//doi.org/10.1016/j.cmpb.2022.107061.

- Sala-Mira, I.; García Gil, P. J.; Company Bondia, J., et al. (2022b). “Method
for improving blood glucose control of a hybrid controller, add-on module for
being incorporated to an artificial pancreas system for perfoming the method
and artificial pancreas system incorporating the add-on module”. Pat. req.
P202230693. Universitat Politècnica de València (UPV).
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7.1 Introduction

7.1 Introduction

In type 1 diabetes, regular exercise improves fitness and well-being; it reduces
insulin resistance and body fat; and it is related to a decreased the risk of
cardiovascular complications and to more extended temporal beta-cell residual
function, i.e., the “honeymoon” period (Chimen et al. 2012; Codella et al. 2017;
Chetan et al. 2019). However, exercise perturbs the balance between muscle
glucose uptake and hepatic glucose production or meal intake, lowering or raising
the plasma glucose depending on its intensity, duration, or timing (Moser et al.
2020; Tagougui et al. 2019; Gomez et al. 2015). The counterregulatory mechanism
– glucagon, epinephrine, norepinephrine, or cortisol – malfunctions or is lost in
type 1 diabetes, increasing the risk of hypoglycemia during or after the exercise
bout (Codella et al. 2017). Due to the fear of hypoglycemia, patients abandon an
active lifestyle, renouncing all its benefits (Kime et al. 2018).

Traditional strategies to mitigate hypoglycemia rely on insulin dose reductions
(basal or pre-meal boluses), but they are efficient only if applied with sufficient
anticipation (e.g., 90 min; Zaharieva et al. 2020). Since planning exercise is not
always possible, an additional control action is needed. Dual-hormone artificial
pancreas systems complement the insulin infusion with exogenous glucagon infusion
or boluses to reduce the risk of hypoglycemia without the patient intervention
(Jones 2019; Infante et al. 2021). These systems under development reduce the
%time below 70 mg/dL more than insulin-alone AP, but their advantages in
severe hypoglycemia reduction are inconclusive (Haidar 2019). Moreover, glucagon
infusion might have side effects (nausea, vomiting, headache) and require more
complex and expensive hardware (Infante et al. 2021).

A more straightforward approach to manage exercise is carbohydrate supplements
consumption (Patel et al. 2016), but subjects must decide the size and timing of
these supplements (Moser et al. 2020). These decisions might become a burden
(Scott et al. 2019); hence automating them is desirable.

The control algorithm described in Chapter 6 effectively compensates for unan-
nounced meals. However, adding a carbohydrate suggestion feature would increase
the already large number of tuning parameters. In addition, relating the estima-
tion of the rate of glucose appearance with carbohydrate suggestions is not clear.
For those reasons, a new add-on module based on an internal model controller
, was designed in this chapter to manage either unannounced meal intakes or
unannounced exercise events. As in Chapter 6, the module will be added to the
SAFE-AP controller, and the complete system will be validated in silico.
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7.2 Control architecture overview

Figure 7.1 shows the proposed module (see blocks in gray). It aims to substitute
the disturbance-compensating actions following an announcement (meal intake or
exercise) in an already designed hybrid artificial control algorithm (referred to as
“main controller”) with similar control actions that do not require announcements.

The module integrates an internal model control loop (IMC) (Chen et al. 2010)
that estimates the output disturbance d̂(t) and calculates a virtual control signal
uIMC(t) to compensate for it. Then, a switching logic converts this virtual control
signal into a bolus-like insulin infusion (uins(t)) and rescue carbohydrates sugges-
tions (uresc(t)) to compensate for hyperglycemia and hypoglycemia, respectively.
The switching logic also makes the tolerated insulin-on-board more restrictive
after suggesting a rescue carbohydrate intake.

The modification of the tolerated insulin-on-board is the only change the proposed
module applies to the internal parameters of the main controller. Most hybrid
systems constrain the insulin-on-board through gains (Ruiz et al. 2012; Turksoy
et al. 2014; Khodakaramzadeh et al. 2019; Villa-Tamayo et al. 2022) or thresholds
(Ellingsen et al. 2009; Hu et al. 2015; Batmani et al. 2021); hence the modifica-
tion of the main controller is immediate. As in Chapter 6, the main controller
implements the SAFE-AP controller (Revert et al. 2013). This controller was
extended with rescue carbohydrates (Beneyto et al. 2018; Viñals et al. 2021) and
glucagon (Moscardó et al. 2019a) to compensate for unannounced exercise, but
meal announcement was always required.

7.3 Internal model control loop

If the “Switching logic” is ignored from Figure 7.1, the loop constituted by the
remaining blocks in gray frequently appears in the literature to improve the
performance against disturbances of a given feedback controller (Peng et al. 2013;
Vrančić et al. 2021): an internal model of the plant to estimate the output
disturbance and a filter that ideally – without modeling errors, noise, saturation –
would compensate the disturbance.

The IVP model is used in this chapter to estimate the disturbance since it is
structurally simple and, at least in the context of observers, performed similarly
to the Hovorka model (see Chapter 3). The model has already been described in
Chapter 3. To consider the rescue carbohydrate suggested by the “Switching logic”
or uresc(t) (Section 7.4.2) in the estimation of the disturbance, the following rapid
carbohydrate absorption model is included in the IVP (Hovorka et al. 2004):
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7.3 Internal model control loop

Figure 7.1: Diagram of the IMC-based add-on module. Blocks with gray background
represent the proposed controller: an Internal Model Control (IMC) loop (IVP and IMC
filter) with a non-linear logic (Switching logic). The controller provides three control actions:
insulin (solid gray), rescue carbohydrates (dotted gray), and maximum insulin-on-board
(IOB) limit command (dashed gray). Notation: G (glucose), Gr (glucose set point).

d1̇(t) = Aresc
g · uresc(t) − d1(t)

τresc

d2̇(t) = 1
τresc

(d1(t) − d2(t))

Rresc
a (t) = d2(t)

Vgτresc

(7.1a)

(7.1b)

(7.1c)

where d1 and d2 are the glucose masses (mg), τresc is the time to the peak
absorption of the rescue carbohydrate and Aresc

g is the carbohydrate bioavailability
Hovorka et al. 2004. The output Rresc

a is the rescue carbohydrate glucose rate of
appearance; this output adds the glucose equation in the IVP.

The parameters of the model were identified from the ten virtual adults of the
academic version of the UVa/Padova simulator (Dalla Man et al. 2014) because
this is the cohort used in the in-slico validation (Section 7.6.1). The scenario for
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identification corresponds to a two-week-length basal-bolus therapy with three
daily meals and multiple sources of variability (CGM noise, variability in the
insulin sensitivity, variability in the insulin pharmacokinetics, and variability in
meal absorption). The parameters of the rescue model were a priori selected to
represent a fast-acting meal (see the corresponding values in Table 7.1); hence,
these parameters were excluded from the identification. The identification of
the remaining parameters used information available in practical settings such
as CGM reading or insulin infusion. Unlike in Chapter 3, the identification did
not consider the meal rate of glucose appearance as an input signal, since this
signal is not available in a practical setting. Alternatively, the information about
mealtime and meal dose, more easily accessible in real-life conditions, is fed into
a meal model to estimate the meal rate of glucose appearance. The meal model
has the same structure than the rescue model described by (7.1), though with
different parameters. Remark that the meal model was only used for identification
purposes; it was not used by the internal model-based module since meals, except
for carbohydrate rescues, are assumed to be unknown. The parameters of the
IVP were selected according to the structural identifiability (Chis et al. 2011),
the global sensitivity (Brun et al. 2001), and the collinearity index (Brun et al.
2001) to reduce identifiability issues (see Garcia-Tirado et al. (2018) for a similar
approach). Table 7.1 includes the identified parameters.

The IMC filter Q(s) generates a virtual action (in insulin units) that attenuates
the effect of the disturbance. The filter Q(s) was selected as in the two-degree-of-
freedom IMC (Chen et al. 2010; Vrančić et al. 2021):

Q(s) = F (s) ·H−1(s) (7.2)

where s is the Laplace variable. H(s) is the linearization of the IVP model (for
uresc(t) = 0, i.e., the linearized effect of insulin infusion on glucose) given by

H(s) := G(s)
uT (s) =

= SIG
2
0

CIEGP
(︂

1
p2
s+ 1

)︂
(τ1s+ 1) (τ2s+ 1)

(︂
G0

EGP s+ 1
)︂

(7.3)

where G0 is the steady-state glucose value reached for the patient’s basal insulin
infusion.

Finally, the filter F (s) reads as:
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Table 7.1: Control model parameters corresponding to the virtual adults in
UVa/Padova simulator

Subject EGP SI V g p2
(mg/(dL min)) (mL/(µU min)) (dL) (1/min)

1 1.32 5.17 · 10−4 2.35 · 102 2.53 · 10−3

2 1.20 4.24 · 10−4 2.48 · 102 4.08 · 10−2

3 1.05 3.35 · 10−4 1.85 · 102 2.03 · 10−3

4 1.49 7.23 · 10−4 2.90 · 102 3.39 · 10−3

5 7.62 · 10−1 2.52 · 10−4 5.81 · 102 1.12 · 10−2

6 9.25 · 10−1 2.43 · 10−4 1.83 · 102 4.08 · 10−2

7 9.16 · 10−1 2.84 · 10−4 2.54 · 102 2.03 · 10−3

8 9.25 · 10−1 2.39 · 10−4 4.57 · 102 6.90 · 10−3

9 6.99 · 10−1 3.26 · 10−4 2.77 · 102 4.08 · 10−2

10 1.53 6.03 · 10−4 2.99 · 102 6.01 · 10−3

Populational Values

Aresc
g (unitless) 9.00 · 10−1

CI (mL/min) 1.22 · 103

GEZI (1/min) 2.35 · 10−3

τ1 (min) 7.43 · 101

τ2 (min) 4.54 · 101

τresc (min) 2.00 · 101

The first column represents the subject identifier in the simulator. Parameters EGP , SI,
V g, and p2 resulted from optimization. Parameters CI, GEZI, τ1, and τ2 are populational
values and correspond to the average of the values in Kanderian et al. (2009). Parameters

Aresc
g and τresc were a priori chosen to represent a fast-acting carbohydrate rescue; they are

populational values too and were excluded from the identification.

F (s) = k

(τs+ 1)5 (7.4)

where k is the gain of the filter (see Section 7.5 for its tuning). The order of the
filter is set to 5 for Q(s) to be a strictly proper transfer function when inverting
the fourth-order transfer function H(s). The time constant τ determines the
aggressiveness of Q(s). Meal intakes and exercise severely perturb plasma glucose
in the short term, but they eventually fade; hence an impulse-like uIMC(t) is
required. Also, because of measurement lags, the effect of the disturbance will
appear in d̂(t) with a delay. Therefore, for a high value of τ , the peak of uIMC(t)
will occur much after the disturbance peak; the effect of the filter will be negligible
and even counterproductive (e.g., in postprandial control, delayed insulin may
lead to hypoglycemia). Instead, the filter must quickly react against any deviation
in d̂(t) to reduce the effect of disturbances on glucose. For this reason, τ is set to
τ = 10 min, a low value close to the CGM reading rate (usually, 5 min).
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7.4 Switching logic

A low value of τ is required for uIMC(t) to timely react against the disturbances
(see Section 7.3). However, this tuning also amplifies the CGM noise, and uIMC(t)
becomes oscillatory. In the absence of disturbances, these oscillations would be
around zero (Figure 7.2). Hence, the slow dynamics of the insulin absorption would
filter uIMC(t); its negative areas would counteract the positive ones (

∫︁ T
0 uIMC(t) ≈

0), mitigating the influence of these oscillations in the CGM (Figure 7.2 blue lines).
Nevertheless, the actual insulin infused to the patient, i.e., uT (t), cannot be lower
than zero since it cannot be removed exogenously. This means that in the absence
of the “Switching logic” in Figure 7.1, the integral of uT (t) is always positive,
causing an undesirable glucose drop and, eventually, hypoglycemia (Figure 7.2
orange lines). The first goal of the switching logic is to ensure that the add-on
module computes an insulin infusion only if a disturbance has occurred; that is, it
eliminates from uIMC(t) the oscillations caused by measurement noise.

The switching logic also adequates the type of control action to the effect of
disturbance on the glucose. Insulin can compensate for the glucose rise following
a meal. However, insulin reductions inefficiently handle hypoglycemia-leading
disturbances, such as low-to-moderate aerobic exercise (Moser et al. 2020; Zaharieva
et al. 2020). To compensate for glucose drop – usually related to exercise and
insulin overdoses within the postprandial period – the switching logic reduces
the tolerated insulin-on-board and suggests rescue carbohydrates to the subject.
Therefore, the second goal of the switching logic is to convert the virtual control
signal uIMC(t) into three feedforward actions: insulin infusion, rescue suggestion,
and insulin-on-board limit modification. The details of this logic are provided in
the following subsections.

7.4.1 Hyperglycemia mitigation

The proposed loop mitigates a glucose rise with the insulin infusion uins(t) (Fig-
ure 7.1). This insulin infusion is calculated according to the following three-phase
logic (Figure 7.3):

1. Dead-zone. The insulin uins(t) is set to 0 if uIMC(t) is lower than a threshold
thins > 0 to avoid an insulin overdose due to oscillations in uIMC(t).

2. Glucose rise mitigation. A rising-glucose disturbance, such as meal intake,
will likely require an uIMC(t) that exceeds thins. To compensate for the
glucose rise, uins(t) matches uIMC(t) until it reaches an upper saturation
threshold thsat > 0, set to avoid overdosing.
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Figure 7.2: Example of hypoglycemia after uIMC(t) saturation. Saturating uIMC(t)
(orange line) lowers the glucose (upper panel), even leading to hypoglycemia. Without
saturation, the negative peaks of uIMC(t) counteract the positive ones; hence, the glucose
remains at the basal level. In this simulation, umc(t) = 1.22 U/h (basal insulin), uins(t) =
uIMC(t).

3. Later hypoglycemia prevention. Against a glucose rise, the IMC filter reacts
first with a positive peak (above phase), but then, it will have a negative
insulin peak (see the green areas in Figure 7.3). If uIMC(t) is higher than
thresc < 0, uins(t) will equal uIMC(t) to subtract insulin from the main
controller hence avoiding overdosing and the likely related hypoglycemia. If
uIMC(t) overpasses thres from above, reducing the insulin from the main
controller may be insufficient. Therefore, the negative-valued insulin is
converted into rescue carbohydrates suggestions (uresc(t), see Section 7.4.2)
and uins(t) zeroed to avoid both types of control actions coupling each other.
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Figure 7.3: Control logic to compensate meals. The switching logic processes the
virtual action uIMC(t) in three phases: dead-zone (Phase 1), glucose rise mitigation (Phase
2), and later hypoglycemia prevention (Phase 3). The insulin infusion uins(t) added to the
main controller. Parameters thins > 0, thsat > 0, and thresc < 0 are the thresholds to inhibit
uIMC(t), saturate it, or convert it into rescue carbohydrate suggestions, respectively.

7.4.2 Hypoglycemia mitigation

The uIMC(t) signal might be lower than zero if a sustained glucose reduction
occurs. The switching logic module converts this “negative insulin” into rescue
carbohydrate suggestions (see around 200 min at Figure 7.4) to avoid or mitigate
hypoglycemia. To this end, first, a virtual unquantized carbohydrate signal, uint(t),
is calculated by integrating uIMC(t) in a sliding window of length tw (tw = 60min)
as follows:

u∗
IMC(t) =

{︄
uIMC(t) if uIMC(t) ≤ thresc

0 otherwise
(7.5)
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uint(t) = −kresc

∫︂ t

t−tw

u∗
IMC(τ)W (τ)dτ−

−
∫︂ t−Ts

t−tw−Ts

uresc(τ)W (τ)dτ
(7.6)

The first integral in (7.6) accumulates the “negative insulin” and converts it into
carbohydrates units (g) through the gain kresc, similarly to Ramkissoon et al.
(2019). Minor fluctuations of uIMC(t) below zero (thresc ≤ uIMC(t) ≤ 0) might
correspond to noise or unrelevant glucose reduction that can be handled with
just reducing insulin (as in Phase 3 of Section 7.4.1). To avoid suggesting rescue
carbohydrates in those cases, the expression (7.6) stops considering the “negative
insulin” by setting the auxiliary variable u∗

IMC(t) in (7.5) to zero. In addition,
the forgetting factor W (t) attenuates the earlier values of u∗

IMC(t) in the sliding
window [t− tw, t]. W (t) reads as:

W (t∗) = e−2 · e(t∗−t+tw)/30 (7.7)

for t∗ ∈ [t− tw, t] where t refers to the current time and t− tw the beginning of
the sliding window (when the earliest value of u∗

IMC(t) is considered).

The second integral in (7.6) subtracts the carbohydrates suggested within the
sliding window to avoid increasing uint(t).

The virtual carbohydrate signal, uint(t), must be quantized for user convenience.
The quantized rescue signal, uresc(t), follows the next logic:

uresc(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌊︂
uint(t)˜︂cho

⌉︂
· ˜︃cho if uint(t) ≥ ˜︃cho/2 and

G∗(t) ≤ 70 and
∆tresc > 15˜︃cho if CGM(t) ≤ 70 and
G∗(t) ≤ 54 and
∆tresc > 15

0 otherwise

(7.8)

where ⌊·⌉ denotes the nearest integer operator, ∆tresc is the elapsed time between
two consecutive rescue suggestions (in min), and ˜︃cho is the minimum carbohydrate
rescue dose (quantization level). The parameter ˜︃cho was set to 15 g since it is
the most available size of commercial glucose supplements, e.g., Dex4 (Can-Am
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Care, Alpharetta, GA, USA), Glutose15 (Paddock Laboratories, Minneapolis, MN,
USA), TruePlus (Trividia Health, Fort Lauderdale, FL, USA), etc.

G∗(t) is the 30-min ahead glucose prediction (in mg/dL) computed with the
following linear extrapolation:

G∗(t) = CGM(t) + 30 · CGṀ (t) (7.9)

According to (7.8), the controller suggests carbohydrates in two situations:

• When the system predicts risk of moderate hypoglycemia and the accumulated
rescue carbohydrates is large enough. If uint(t) halves the minimum rescue
dose – as implemented in Moscardó et al. (2019a) and Beneyto et al. (2018) –
the algorithm calculates a rescue carbohydrate suggestion by approximating
uint(t) to the nearest multiple of ˜︃cho. If the predicted glucose is outside
hypoglycemia risk, the system will not suggest a rescue carbohydrate even
though uint(t) ≥ ˜︃cho/2 (see the orange squares in Figure 7.4).

• When the subject is in moderate hypoglycemia and the glucose tends to
severe hypoglycemia. Here, the system suggests a ˜︃cho-g rescue carbohydrate
regardless of the value of uint(t).

The algorithm considers a minimum elapsed time of 15 min between rescue
carbohydrates suggestions to avoid frequent recommendations.

Since the exercise impacts the insulin sensitivity even after the exercise event (Schi-
avon et al. 2013), the switching logic also reduces the insulin-on-board limitation
of the main controller to 70% of its nominal value and zeroes uins(t) within the
3h following the last rescue suggestion (see the red area in Figure 7.4). Reducing
the insulin-on-board is a common practice in the literature to control exercise
(Moser et al. 2020; Beneyto et al. 2018; Zaharieva et al. 2020). The system restores
the nominal values of insulin-on-board limitation and uins(t) whenever a risk of
hyperglycemia exists: when CGM(t) ≥ 140 mg/dL and G∗(t) ≥ 180 mg/dL.
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Figure 7.4: Example of hypoglycemia mitigation. The switching logic converts the
negative insulin of the IMC (uIMC(t), middle panel) into a continuous carbohydrate signal
(uint(t), bottom panel). If the predicted glucose (G∗(t), upper panel) is in hypoglycemia
and uint(t) ≥ 7.5 (dashed red line in bottom panel), the algorithm suggests a rescue uresc(t)
(bottom panel) by quantizing uint(t). Orange squares illustrate that rescue carbohydrates
are inhibited if no hypoglycemia risk exists. Insulin uins(t) is inhibited after the rescue
carbohydrate suggestion (red area in bottom panel).

7.5 Tuning

The proposed controller requires an individual tuning of the following five parame-
ters: the gain of F (s) (kins), the gain factor converting insulin into carbohydrates
(kresc), and the three thresholds of the switching logic (thins, thsat, and thresc).

Relating these parameters with parameters of the open-loop therapy (weight, total
daily insulin, etc.) would simplify the application of the add-on module in a
clinical setting. To this end, first, the five parameters were individualized for the
ten virtual adults of the UVa/Padova simulator according to optimal performance
criteria (areas in risks, Section 7.5.1). Then, multi-linear regression models were
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fit between the optimal tuning and open-loop parameters to find their relation
(Section 7.5.2).

7.5.1 Optimization-based tuning

An overview of the optimization procedure is illustrated in Figure 7.5: for each
subject, twelve iterations with different instances of variability were simulated,
and the highest cost within them is optimized. Each simulation consisted of a
7-day (Tsim = 10 080 min) scenario with three daily meals and one daily exercise
session.

Figure 7.5: Min-max optimization overview for a virtual subject. The parameters to
individualize are the gain of F (s) (kins), the gain factor converting insulin into carbohydrates
(kresc), and the three thresholds of the switching logic (thins, thsat, and thresc). The
worst-case among the 12 iterations with different variability is optimized with the CMA-ES
algorithm to individualize the parameters.

The cost related to each simulation instance reads as:

Jsim := JW AIR + JC (7.10)

This cost penalizes the weighted areas in risk (JW AIR) and constrains the magni-
tude or shape of the control actions (JC). The weighted areas in risk consider the
areas of the CGM exceeding the thresholds 54, 70, 180, and 250 mg/dL as defined
as:
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JW AIR = auu ·
∫︂ T sim

0
(Guu(τ) − 250) dτ+

+ au ·
∫︂ T sim

0
(Gu(τ) − 180) dτ+

+ al ·
⃓⃓⃓⃓
⃓
∫︂ T sim

0
(70 −Gl(τ))

⃓⃓⃓⃓
⃓ dτ+

+ all ·
⃓⃓⃓⃓
⃓
∫︂ T sim

0
(54 −Gll(τ))

⃓⃓⃓⃓
⃓ dτ+

+ aresc ·
∫︂ T sim

0
(Gresc(τ) − 140) dτ

(7.11)

where the scalars auu = 175, au = 1, al = 5000, all = 10000, aresc = 50 are the
weights. Those weights were tuned so that the areas in hypoglycemia cost more
than those in hyperglycemia. Although this definition of the cost is more complex
than other optimization-based tuning proposals in the literature (Olcomendy et al.
2020), it provides more flexibility in configuring the optimal performance. All the
integrals were calculated using the trapezoidal rule. Signals Guu(t), Gu(t), Gl(t),
Gll(t) in (7.11) correspond to the CGM after being saturated to the enclosing
thresholds as follows:

Guu(t) :=
{︄

250 if CGM(t) ≤ 250
CGM(t) otherwise

Gu(t) :=

⎧⎪⎨⎪⎩
180 if CGM(t) ≤ 180
250 if CGM(t) > 250
CGM(t) otherwise

Gl(t) :=

⎧⎪⎨⎪⎩
54 if CGM(t) < 54
70 if CGM(t) ≥ 70
CGM(t) otherwise

Gll(t) :=
{︄

54 if CGM(t) ≥ 54
CGM(t) otherwise

(7.12)

(7.13)

(7.14)

(7.15)

The add-on module might suggest rescue carbohydrates for a glucose drop caused
by an excessive insulin delivery. If the recommended carbohydrate size is large,
the add-on module might even provide an additional insulin infusion after the
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glucose rise, which, at the same time, triggers more rescue suggestions. The last
addend of (7.11) penalizes the glucose rebound after carbohydrate suggestions to
avoid this undesirable oscillatory behavior. Signal Gresc(t) represents the value
of the CGM that overpasses 140 mg/dL in the first 3 h after rescue carbohydrate
suggestions or up to mealtime if a meal occurs before then, as defined in:

Gresc(t) =

⎧⎪⎨⎪⎩
CGM(t) if (CGM(t) ≥ 140)

and t ∈ [tresc,min(tresc + 3h, tmeal)]
140 otherwise

(7.16)

where tresc and tmeal denote the rescue carbohydrates and meals times, respectively.
Mealtimes were available to define the cost function but were unknown to the
controller.

The cost JC penalizes the number of times the IMC activates the insulin mode
(Phase 2 of Figure 7.3) for uins(t) to behave like a bolus: being active a short time
with large insulin doses rather than being continuously activated with reduced
amounts. The cost JC also constrains the size of rescue carbohydrates. To reduce
the risk of compensating insulin overdosing with rescue carbohydrate suggestions,
the ones followed by meals (meal rescue carbohydrate) were weighted more than
those followed by exercise sessions (exercise rescue carbohydrate). For the exercise-
related rescue carbohydrates, the average rescue size per exercise event was limited
to 45g. The expression of JC is the following:

JC = bact · max
(︃
nimc_act

nmeal
− 1, 0

)︃
+

+ bmeal_resc ·
nmeal_resc∑︂

i=1
meal_resci+

+ bex_resc ·
(︃∑︁nex_resc

i=1 ex_resci

45nex_sessions
− 1, 0

)︃ (7.17)

where bact = 1400, bmeal_resc = 15000, and bex_resc = 4500 are weights. Terms
nimc_act, nmeal_resc, nex_resc, nex_session denote the number of times the IMC
enters Phase 2, the number of meal-related rescue carbohydrate, the number
of exercise-related rescue carbohydrate, and the number of exercise sessions,
respectively. meal_resci represents the meal rescue sizes (from i = 1 to i =
nmeal_resc) and meal_exi the exercise carbohydrate suggestion sizes (from i = 1
to i = nex_resc).
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The min-max problem was solved with the Covariance Matrix - Adaptation
Evolution Strategy (CMA-ES) algorithm, a black-box search optimizer suitable for
non-linear or non-convex problems (Hansen 2016). Table 7.2 includes the starting
values and the bounds of the parameters. To reduce the computational time, the
optimization was executed in the computing cluster of the Politechnical University
of Valencia (Universitat Politècnica de València, València, Spain) using 12 cores
of 3 GB (Mullor Casero et al. 2020).

Table 7.2: Initial values and bounds of the parameters in the optimization

Initial value Lower limit Upper limit
kins (-) 5 · 10−1 1 · 10−2 1
thmin(U/h) 5 1 3.0 · 101

thmax(U/h) 1.0 · 101 1 3.0 · 101

thresc(U/h) −1 −5 −5 · 10−2

kresc(g/(U h)) −1 · 10−1 −5 · 10−1 −5 · 10−4

Table 7.3 contains the resulted optimal tuning for the add-on module parameters.

Table 7.3: Control parameters that resulted from optimization

Subject kins thmin thmax kresc thresc

(-) (U/h) (U/h) (g/(U h)) (U/h)
1 4 · 10−2 4.43 9.38 −9 · 10−2 −4.8 · 10−1

2 1.7 · 10−1 1.46 1.434 · 101 −3.1 · 10−1 −1.5 · 10−1

3 3 · 10−2 1.08 1.320 · 101 −6 · 10−2 −5.3 · 10−1

4 8 · 10−2 5.50 1.219 · 101 −1.2 · 10−1 −7 · 10−2

5 1.1 · 10−1 3.72 2.595 · 101 −9 · 10−2 −7 · 10−2

6 2.5 · 10−1 7.57 1.962 · 101 −1.2 · 10−1 −2.08
7 2 · 10−2 5.42 1.025 · 101 −9 · 10−2 −1.2 · 10−1

8 1.4 · 10−1 6.83 1.522 · 101 −5 · 10−2 −2.45
9 3.4 · 10−1 2.34 8.08 −1.6 · 10−1 −7.2 · 10−1

10 1.4 · 10−1 9.69 1.569 · 101 −9 · 10−2 −3.5 · 10−1

The first column represents the virtual adult identifier in the UVa/Padova Simulator. The
second, third, and fourth columns include the parameters used for meal compensation, while

the remaining columns correspond to the exercise compensation (see Section 7.5).
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7.5.2 Regression-based tuning

The optimization-based tuning of Section 7.5.1 is only feasible for in silico studies.
To provide an initial tuning for a clinical trial, the optimal parameters were
related to the following standard parameters of the open-loop therapy (Reiterer
et al. 2019): the weight (BW , in kg), the total daily insulin (TDI, in U), the
basal insulin (ub, in U/h), the carbohydrate-to-insulin ratio (CR, in g/U), and
the correction factor (CF , in mg/(dL U)). The values of these parameters were
available in the UVa/Padova simulator.

For each optimal parameter (kins, kresc, thins, thsat, and thresc), a relation to
open-loop parameters was found as follows:

1. The 80 linear models that fit the corresponding optimal parameter with
the lowest root sum of squares error were selected. Models had up to 8
coefficients, including pairwise interactions of the open-loop parameters. The
selection was performed with the function regsubset (Fortran code by Alan
Miller 2020) of the R software (R Core Team 2021).

2. To mitigate the risk of overfitting, the selected models were fitted using
leave-one-out cross-validation (Kuhn 2021).

3. The final model was the model with the lowest number of coefficients that had
an accurate root-mean-squared error of the cross-validation (RMSEloocv)
and satisfied the diagnosis assumptions (normality and homoscedasticity of
the residuals).

The resulted multilinear models relating the optimal tuning with the open-loop
parameters are shown in Table 7.4. The adjusted R2 ( adjR2) and RMSEloocv

values indicate a proper fitting.

7.6 In silico validations

The proposed add-on module was validated in the UVa/Padova simulator. Since
the simulator models the 5-min sampling of the CGM readings, the module must
be discretized. The IVP model was discretized with Euler, whereas the filter
Q(s) (7.2) and the integral of the switching logic (7.6) were discretized with the
trapezoidal approximation. All discretization used a sample time of Ts = 5 min.
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Table 7.4: Regression equations of the controller’s parameters and related
goodness of fit metrics

adjR2 RMSEloocv

k̂ins = 14.2 + 6.17 · 10-2 · T DI − 2.59 · ub − 1.61 · 10-3 · BW · CF +
+ 3.93 · 10-3 · BW · CR − 4.67 · 10-3 · CF · T DI−
− 6.57 · 10-3 · CR · T DI

9.72 · 10−1 4.71 · 10−2

tĥins = −51.6 + 28.9 · CR + 0.872 · BW · ub − 2.53 · 10-2 · BW · CF −
− 12.9 · CR · ub − 0.226 · CF · CR

7.52 · 10−1 1.95

tĥsat = 4.01 · 102 − 1.05 · 102 · ub − 20.8 · CR − 8.82 · 10-2 · BW · CF +
+ 0.209 · BW · CR + 0.150 · CF · CR

8.90 · 10−1 3.16

k̂resc = 3.02 + 7.6 · 10-2 · CR − 3.11 · 10-4 · BW · T DI+
+ 1.74 · 10-2 · BW · ub − 1.76 · 10-4 · BW · CF −
− 8.18 · 10-2 · CF · ub

7.76 · 10−1 6.76 · 10−2

tĥresc = 12.3 + 0.133 · BW + 0.295 · T DI − 0.103 · BW · ub−
− 1.48 · 10-2 · CF · T DI + 2.55 · 10-3 · CF · CR

9.55 · 10−1 2.09 · 10−1

Evaluated metrics are the adjusted coefficient of determination (adjR2) for multivariable
regression models and root-mean-squared error of the leave-one-out cross-validation

(RMSEloocv). The five models have a low RMSEloocv and acceptable coefficients of
determination.

7.6.1 Validation setting

The following three validations were performed to study the effectiveness of the
proposed add-on module:

• Validation 1 analyzes whether the regression-based tuning (henceforth de-
noted with mIMC) preserves the performance of the optimal tuning (mIMC-
Opt).

• Validation 2 studies the effectiveness of the proposed module (mIMC) to
handle unannounced meals in the main controller (denoted as NoComp).
Also, this validation compares the mIMC to two controllers with meal
compensation: the main controller with announced meals (referred as Hybrid)
but with carbohydrate counting errors, following the model of Kawamura
et al. (2015); and the main controller extended with the meal-detector-based
bolusing algorithm presented in Chapter 6 (referred here as MD).
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• Validation 3 assesses the benefits of the rescue carbohydrate feature of the
mIMC to deal with unannounced hypoglycemia-inducing exercise events. To
this end, the mIMC is compared to two controllers that only can mitigate
glucose drops by inhibiting insulin: the mIMC controller with the rescue
carbohydrate suggestions deactivated (referred to as NoExComp) and the
MD controller.

All the validations were performed with a modified version of the UVa/Padova
simulator. Two scenarios were configured:

• Scenario 1 : The scenario considers 30 days with 3 daily meals. The meals
have random size and timing: 49.5 [33.0,55.0] g for breakfast at 6.92 [6.75,
7.08] h , 81.0 [72.0, 93.0] g at 13.75 [13.58, 14.17] h for lunch, and 64.0
[54.0, 79.0] g at 20.9 [20.8, 21.1] h for dinner, median [interquartile range]
(Figure 7.6). This scenario was used in Validation 2 (Section 7.6.3).

• Scenario 2 : This scenario shares the duration and the meal distribution of
Scenario 1 and includes one daily exercise. The exercise effect on glucose is
modeled as a variation on insulin sensitivity, following the pattern described
by Schiavon et al. (2013). The insulin sensitivity pattern in Schiavon et al.
(2013) approximately corresponds to an aerobic exercise of 60 min with an
intensity of 50 %V O2max (maximum percentage of oxygen volume). In the
simulation, a uniform distribution was added to this duration and intensity
(Figure 7.7). Exercise time was uniformly assigned to occur from 45 min to
240 min after a randomly selected meal of the day (i.e., breakfast, lunch,
or dinner), as illustrated in Figure 7.7 (see the top panel and left bottom
panel). Exercise beyond midnight was avoided. With this setting, the
exercise occurred 282.5 [230.0, 360.0] min before the immediate later meal
and 157.5 [115.0, 195.0] min after the immediate earlier meal. This scenario
was used for Validation 1 (Section 7.6.2) and Validation 3 (Section 7.6.4).

The scenarios described above share the following sources of variability: CGM noise,
one-day period sinusoidal-type insulin sensitivity variation with random amplitude
and phase, variation of subcutaneous insulin absorption rate at each meal following
a uniform distribution of ±30%, and variability of the meal absorption parameters.

The corresponding scenario is repeated in all the validations for each of the
ten virtual subjects included in the simulator. Meal features (time and size of
Figure 7.6) and exercise features (time, duration, intensity of Figure 7.7) are
shared between subjects. Other sources of variability (CGM noise, parameters
variability, etc.) were subject-dependent. Moreover, all the subjects ingested
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Figure 7.6: Timing and size distributions of the meal intakes in the Validation 2
scenario. In the boxplots, the red line indicates the median, the blue box width encloses the
interquartile range, the whisker encloses the extreme data (1.5 times the interquartile range),
and the dots represent the actual meal intake size.

the suggested rescue carbohydrate in the precise time and amount as commonly
assumed in the literature (Moscardó et al. 2019a; Beneyto et al. 2018; Ramkissoon
et al. 2019).

The performance within tunings (Validation 1 ) or controllers (Validation 2 and
Validation 3 ) was assessed through the following standard metrics (Battelino et al.
2019): CGM mean, CGM coefficient of variance (CV), %time above 250 mg/dL,
%time above 180 mg/dL, %time in 70–180 mg/dL, %time below 70 mg/dL, %time
below 54 mg/dL, and total daily insulin. In Validation 2, percentage-time-related
metrics within the postprandial period (from the mealtime until 3 h after each
meal) was calculated too. In addition, since the mIMC might suggest rescue
carbohydrates after insulin overdose, the percentage of meal intakes requiring
at least one rescue carbohydrate suggestion and the size of these suggestions
were reported. In Validation 3, the following exercise-related metrics were also
computed: the %time in hypoglycemia within the exercise period (from the exercise
time to 3 h after it), the %time above 140 mg/dL up to 3 h after each rescue, the
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Figure 7.7: Timing, duration and intensity distributions of the exercise events in
the in the Validation 1 and Validation 3 scenario. Panel description: (top) exercise
time and mealtime expressed as hh:mm; (bottom, left) represents the time difference between
the exercise and the closest meal “Before” or “After” the exercise; (bottom, middle) shows
the exercise intensity given in maximum percentage of oxygen volume; and (bottom, right)
shows the exercise duration in minutes. In the boxplots, the red line indicates the median,
the blue box width encloses the interquartile range, the whisker encloses the extreme data
(1.5 times the interquartile range), and dots represent the actual exercise event.

percentage of exercise events needing at least one rescue carbohydrate, and the
mean rescue size suggested for those events.

To compare the above metrics within tunings or controllers, linear random-intercept
(Barr et al. 2013) models with 95% Wald confidence intervals (Luke 2017) were
applied. Linear random-intercept models are similar to linear regression models,
but intercepts are individualized to one independent variable (random factor). In
this case, the random intercept is the virtual subject identifier in the simulator
(sub). Varying the intercept within subjects overcomes the data independence
condition assumed by linear models (Barr et al. 2013), which fails in the current
analysis since all simulations share the virtual subjects. The structure of the
random-intercept model is the following:
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ysub = β0 + Ssub +
nC−1∑︂

i=1
βixi + esub (7.18)

where ysub is the corresponding metric value for a given subject identifier, sub, and
nC is the number of controllers to be compared (or tuning in the case of Validation
1 ). Ssub is the random intercept and esub are the residuals, following a zero-mean
normal distribution (Barr et al. 2013). Fixed effects xis are dichotomous-coded
variables representing the controller (or tuning): for a specific controller i = k
only xk is 1, while other variables are 0. Fixed coefficient β0 is the intercept,
i.e., the estimated mean of the metric for the controller taken as the reference
for comparison. The coefficients βi can be interpreted as the difference in means
regarding the intercept given the dichotomous nature of xi. Since the data
presented some outliers, the linear random-intercept models were fitted with the
robust method presented in Koller (2016) using the statistics software R (R Core
Team 2021).

No statistic inference analysis was performed for the %time below 70 mg/dL
and %time below 54 mg/dL in Validation 2 since the normal assumption of the
residuals fails because these metrics contains many zeros. As a result, no linear
model can be applied directly. Several methods exist to handle data with an excess
of zeros (Min et al. 2002). However, they led to such wide confidence intervals
that they were uninformative. Therefore, these methods were discarded as well.

Results in the text are presented as median [25th percentile, 75th percentile] or
estimated difference in means (confidence interval).

7.6.2 Validation 1: Comparison of the regression-based tuning with
the optimal tuning

Figure 7.8 shows the glucose traces of 2 of the 30 days of Scenario 2, comparing
the optimization tuning (mIMC-Opt) with the regression-based tuning (mIMC).
Most of the time, the glucose profile of the regression-based tuning matches the
glucose of the optimal tuning. As a result, the mIMC achieved metrics that are
very similar to the mIMC-Opt (Table 7.7): the difference in means (regarding
mIMC-Opt) in %time in 70–180 mg/dL (0.0303 (−1.30, 1.91) %), %time above
180 mg/dL (−0.470 (−2.29, 1.35) %), and %time below 70 mg/dL ( 0.0576 (−0.199,
0.315) %) are negligible in magnitude and no significant difference is concluded
from the confidence intervals. These results indicate that the regression-based
tuning preserves the performance achieved by the optimal tuning.
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Figure 7.8: Comparison of the regression-based tuning with the optimal tuning.
The black circles in the upper panel represent meal intake events whose carbohydrate contents
are shown on the right axis. The black asterisks indicate exercise events whose maximum
oxygen volume is shown on the right axis.

7.6.3 Validation 2: Results of postprandial control

Calculated metrics are summarized in Table 7.5, and the mixed-effect model
estimations are in Table 7.6. Also, Figure 7.9 includes the glucose and insulin
traces of 2 of the 30 days of the simulation (Scenario 1 ).
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Table 7.5: Performance metrics of meal compensation (Validation 2)

NoComp Hybrid MD mIMC

Overall
Mean CGM
(mg/dL)

170.8 ± 22.1 144.7 ± 9.8 145.5 ± 11.9 140.9 ± 9.0
161.6 [158.9, 189.5] 140.6 [139.0, 154.2] 141.8 [139.0, 145.6] 140.0 [132.9, 144.8]

CV (%) 31.4 ± 3.9 25.9 ± 3.4 27.2 ± 3.8 26.5 ± 3.3
30.5 [28.7, 33.7] 25.2 [23.4, 26.5] 25.8 [24.4, 29.2] 25.2 [24.4, 28.6]

CGM time (%)

>250 mg/dL 11.5 ± 8.4 1.9 ± 2.3 2.2 ± 1.7 1.5 ± 1.3
8.2 [4.8, 19.5] 1.2 [0.3, 2.3] 1.9 [0.7, 4.0] 1.4 [0.3, 2.3]

>180 mg/dL 37.2 ± 14.5 18.1 ± 6.7 19.9 ± 8.4 16.6 ± 6.0
31.8 [29.9, 45.2] 16.0 [13.6, 24.1] 17.3 [16.2, 20.4] 14.7 [11.8, 22.1]

[70 – 180]
mg/dL

62.8 ± 14.5 81.9 ± 6.7 79.8 ± 8.3 83.4 ± 5.9
68.2 [54.8, 70.1] 84.0 [75.9, 86.4] 81.9 [79.3, 83.8] 85.1 [77.9, 88.1]

<70 mg/dL 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.8 0.1 ± 0.1
0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.1] 0.0 [0.0, 0.1]

<54 mg/dL 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.5 0.0 ± 0.0
0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

Daily insulin
(U)

35.8 ± 7.9 39.4 ± 8.8 38.9 ± 9.1 39.6 ± 8.5
34.7 [29.8, 37.4] 38.6 [34.0, 41.3] 38.3 [32.9, 39.9] 38.5 [34.1, 41.4]

Postprandial control
CGM time (%)

>250 mg/dL 19.7 ± 10.9 3.9 ± 4.4 5.5 ± 4.3 3.8 ± 3.4
17.5 [9.4, 28.3] 2.6 [0.9, 4.2] 5.1 [1.7, 9.4] 3.5 [0.7, 5.9]

>180 mg/dL 56.0 ± 9.9 32.6 ± 8.4 42.0 ± 9.7 36.3 ± 9.7
57.2 [49.1, 62.3] 34.0 [25.7, 35.5] 41.4 [37.6, 47.5] 34.9 [29.4, 45.5]

<70 mg/dL 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0
0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

<54 mg/dL 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

Meals needing
rescues (%)

0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.7 ± 5.1
0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 1.1]

Mean rescues
(g)

- - - 15.0 ± 0.0
- - - 15.0 [15.0, 15.0]

Four meal compensation techniques, which share the main controller, were compared: 1)
absence of meal compensation (NoComp), 2) announced-based compensation (Hybrid), 3)
meal-detector-based compensation (MD), and 4) proposed approach (mIMC). Metrics are

expressed in mean ± standard deviation and median [25th percentile, 75th percentile] of the
ten virtual adults. “Overall metrics” consider the entire simulation period (30 days), while

“Postprandial” control metrics refer to a specific period of the postprandial: percent of
time-related metrics aggregate the 3-h period after the meal, and rescue-related metrics

aggregate meal-to-meal period.
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The proposed module (mIMC), once added to the main controller, reduces in
19.29 (15.07, 23.52) mg/dL (Table 7.6) the %time above 180 mg/dL achieved by
the main controller without meal announcement (NoComp). The %time below
70 mg/dL slightly increases compared to NoComp (mIMC: 0.0 [0.0, 0.1] mg/dL
vs NoComp: 0.0 [0.0, 0.0] mg/dL) but it never reaches the safety upper limit of
4% (Battelino et al. 2019). Although the rescue carbohydrates suggestions are
crucial to avoid severe hypoglycemia, the controller recommended them only for
four subjects within the 30 days of the simulation: two subjects received a single
rescue carbohydrate, one subject received ten rescue carbohydrates, and another
received twelve rescue carbohydrates. All the rescue carbohydrate suggestions
contained 15 g.

Most of the confidence intervals of the original main controller with carbohydrate
counting errors (Hybrid) overlap with those of the mIMC. Therefore, the mIMC
improves the NoComp in a similar, not statistically significant, degree, with the
advantage of avoiding meal announcements (see columns “Hybrid” and “mIMC”
of Table 7.6). The most considerable difference between both controllers occurred
in the early postprandial period. Since the Hybrid timely delivers an insulin bolus,
its achieved glucose peak tends to be lower than the one achieved by the mIMC
(see Figure 7.9). The Hybrid also tends to reduce the %time above 180 mg/dL
within the postprandial period more than the mIMC, which reacts later to the
meal. However, the confidence intervals are too wide to conclude a statistically
significant difference. In contrast, when considering the entire simulation period to
compute the %time in 70–180 mg/dL and %time above 180 mg/dL, the confidence
intervals of Hybrid and mIMC are much closer to each other even with a slight
trend in favor of mIMC. The reason is that Hybrid takes longer to compensate
for large meals than the mIMC (see the fifth meal in Figure 7.9) because the
carbohydrate counting error model, which represents the most frequent practice
of real subjects, underestimates those meals (Kawamura et al. 2015).

Lastly, as expected from the results of Chapter 6, the MD improves, with statistical
significance, the %time in 70–180 mg/dL of the NoComp. The confidence intervals
of the MD overlaps with those of the mIMC, meaning that the mIMC might be
an alternative to the MD for unannounced meal compensation. The most relevant
difference between both controllers is the rescue carbohydrate suggestion feature.
Counteracting glucose drops is more challenging for the MD than for the mIMC.
Indeed, one virtual subject had severe hypoglycemia with the MD, while the
mIMC avoided them. Furthermore, the MD tends to be less aggressive than the
mIMC: it delivered less insulin and achieved greater hyperglycemia, especially for
the early postprandial period (Table 7.5).
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Table 7.6: Estimated intercept and coefficients of mixed-effect models for meal
compensation scenario (Validation 2)

Difference in mean regarding NoComp

NoComp Hybrid MD mIMC

Est. CI Est. CI Est. CI Est. CI

Overall
Mean CGM
(mg/dL) 167.5 (159.3,175.7) -23.3 (-28.6,-18.0) -22.0 (-27.4,-16.7) -27.0 (-32.3,-21.7)

CV (%) 31.1 (28.8,33.5) -5.5 (-6.4,-4.6) -4.2 (-5.1,-3.3) -4.7 (-5.6,-3.8)
CGM time (%)

>250 mg/dL 9.2 (7.5,10.9) -7.3 (-8.6,-6.1) -7.0 (-8.2,-5.8) -7.7 (-8.9,-6.5)
>180 mg/dL 35.8 (29.9,41.7) -17.8 (-22.1,-13.6) -16.0 (-20.2,-11.7) -19.3 (-23.5,-15.1)
[70 – 180]
mg/dL 64.1 (58.2,70.1) 17.8 (13.7,22.0) 15.8 (11.6,19.9) 19.3 (15.1,23.4)

Daily insulin
(U) 35.0 (30.4,39.7) 3.2 (2.4,4.1) 2.8 (1.9,3.7) 3.4 (2.6,4.3)

Postprandial
>250 mg/dL 18.9 (15.3,22.5) -15.1 (-17.3,-12.9) -13.4 (-15.6,-11.2) -15.1 (-17.3,-12.9)
>180 mg/dL 56.0 (49.0,63.0) -23.3 (-28.4,-18.3) -13.9 (-19.0,-8.9) -19.7 (-24.7,-14.6)

The column “NoComp” includes the estimation (Est) and the Wald 95% confidence interval
(CI) of the intercept, i.e, the estimated mean of the corresponding metric for the main

controller without any meal compensation. The columns “Hybrid”, “MD”, and “mIMC”
correspond to the estimated coefficients of the mixed-effect model for the hybrid main

controller with carbohydrates counting error, the main controller extended with the meal
detector and the main controller extended with the proposed add-on module, respectively.

These coefficients are interpreted as the difference in mean of the corresponding metric
regarding the main controller without any meal compensation.
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Figure 7.9: Population glucose and insulin profiles of meal scenario. It shows 2 of
the 30 days of the simulation comparing four meal compensation techniques: absence of meal
compensation (NoComp), announced-based compensation with carbohydrate error counting
(Hybrid), meal-detector-based compensation (MD), and proposed approach (mIMC). The
solid lines represent the median of the ten virtual adults, the shaded area is the interquartile
range, and the dashed lines are the 25th and 75th percentiles. The black circles in the upper
panel represent meal events whose carbohydrate contents are shown on the right axis.

7.6.4 Validation 3: Results of exercise control

Table 7.7 and Table 7.8 summarize the calculated metrics and the statistic analysis,
respectively. Figure 7.10 illustrates 3 of the 30 days of the simulation comparing
the proposed module (mIMC) with two controllers without rescue carbohydrates:
the meal-detector-based controller (MD) and the mIMC controller with rescue
carbohydrate feature unable (NoExComp).
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Figure 7.10: Population glucose, insulin profiles, and rescue carbohydrate sug-
gestions of exercise scenario. It shows 3 of the 30 days of the simulation comparing
two controllers without rescue carbohydrate suggestions (NoExComp and MD) with the
proposed controller (mIMC). MD is the meal-detector-based controller, and NoExComp
implements the disturbance compensation strategy of mIMC, but without rescue carbohydrate
suggestions. The solid lines represent the median of the ten virtual adults, the shaded area is
the interquartile range, and the dashed lines are the 25th and 75th percentiles. The black
circles in the upper panel represent meal intake events whose carbohydrate contents are
shown on the right axis. The black asterisks indicate exercise events whose maximum oxygen
volume is shown on the right axis.

The rescue carbohydrate suggestion capability of the mIMC lowered more than
3% the %time below 70 mg/dL and the %time below 54 mg/dL achieved without
carbohydrate suggestions in the NoExComp (Table 7.8). With this reduction,
the mIMC hypoglycemia-related metrics are within clinically acceptable ranges –
%time below 54 mg/dL and %time below 70 mg/dL is more down than 1% and 4%,
respectively (Battelino et al. 2019)– while NoExComp exceeds them (Table 7.8).

For reducing %time in hypoglycemia, the mIMC suggested 27.2 [23.7, 31.0] g
of carbohydrate per exercise session, which is comparable with other results of
unannounced exercise events in the literature (Beneyto et al. 2018; Ramkissoon
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et al. 2019; Moscardó et al. 2019a). Although more than 95% of exercise events
required at least one rescue carbohydrate, the mIMC preserves the %time above
180 mg/dL and the %time above 250 mg/dL achieved by the NoExComp. The
glucose mean increases 4.3 (1.2, 7.3) mg/dL regarding NoExComp; this increase
is admissible considering the relevant reduction in hypoglycemia.

The MD also enhances the %time below 70 mg/dL and %time below 54 mg/dL of
NoExComp (Table 7.7), but only at the price of increasing %time above 180 mg/dL.
In addition, the reduction of %time in hypoglycemia by the MD is inconsistent
within the simulation. For example, Figure 7.10 shows how the MD can either
behave like the NoExpComp (first exercise event), underperform it (second exercise
event), or overperform it (third exercise event). Also, the average reduction of
%time in hypoglycemia is negligible compared to the mIMC (e.g., the mIMC
lowers %time in hypoglycemia seven times more than MD within the 3 h after the
exercise, as observed in Table 7.8), which manifests the limitations of handling
exercise-induced hypoglycemia with only insulin reduction.
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Table 7.7: Performance metrics in the exercise case (Validation 3)

NoExComp MD mIMC mIMC-Opt

Overall
Mean CGM
(mg/dL)

136.9 ± 6.0 138.3 ± 8.2 141.1 ± 6.3 141.7 ± 5.9
138.2 [132.1, 141.7] 136.9 [135.6, 138.5] 141.9 [136.5, 146.2] 140.5 [138.4, 145.4]

CV (%) 33.5 ± 3.7 34.5 ± 4.1 29.7 ± 3.0 29.7 ± 3.0
33.3 [31.4, 34.4] 34.1 [33.1, 35.1] 29.6 [27.4, 32.0] 29.5 [27.5, 32.3]

CGM time (%)

>250 mg/dL 2.1 ± 1.7 2.5 ± 1.6 2.2 ± 1.6 2.2 ± 1.7
1.6 [0.8, 2.9] 2.2 [1.5, 3.6] 1.6 [1.0, 2.9] 1.7 [1.0, 2.7]

>180 mg/dL 17.7 ± 4.1 19.6 ± 5.6 18.0 ± 4.0 18.5 ± 3.8
19.2 [13.5, 21.1] 19.2 [18.1, 20.6] 19.8 [13.6, 20.8] 18.9 [16.0, 21.0]

[70 – 180]
mg/dL

76.9 ± 5.0 75.6 ± 5.9 81.1 ± 4.3 80.7 ± 4.2
75.5 [72.7, 81.5] 76.5 [71.6, 77.0] 79.6 [77.5, 85.5] 80.2 [77.6, 83.6]

<70 mg/dL 5.4 ± 1.8 4.8 ± 1.7 0.8 ± 0.6 0.8 ± 0.6
5.3 [4.5, 6.6] 4.6 [4.0, 5.1] 0.9 [0.4, 1.1] 0.8 [0.2, 1.2]

<54 mg/dL 3.4 ± 1.8 3.0 ± 1.6 0.1 ± 0.1 0.1 ± 0.1
3.7 [2.2, 4.1] 2.8 [2.0, 3.4] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

Daily insulin
(U)

38.6 ± 8.4 38.3 ± 9.1 38.7 ± 8.4 38.7 ± 8.6
37.9 [33.0, 40.7] 37.6 [31.8, 39.6] 37.7 [33.2, 40.6] 37.6 [32.9, 40.6]

Daily CHO (g) - - 28.1 ± 8.4 27.4 ± 7.0
- - 27.5 [23.9, 31.0] 27.2 [21.9, 29.8]

Exercise control
CGM time (%)

<70 mg/dL 37.4 ± 10.1 34.0 ± 8.8 6.4 ± 4.4 5.9 ± 4.5
38.3 [34.6, 44.1] 34.7 [30.7, 39.2] 6.5 [3.0, 8.7] 6.0 [1.9, 9.4]

<54 mg/dL 24.1 ± 11.3 21.8 ± 8.9 0.5 ± 1.0 0.4 ± 0.9
27.0 [17.0, 30.4] 21.6 [16.1, 26.4] 0.1 [0.0, 0.3] 0.0 [0.0, 0.3]

>140 mg/dL
(rescues)

- - 12.2 ± 11.6 13.0 ± 12.0
- - 9.6 [5.6, 12.8] 8.0 [5.8, 17.2]

Events needing
rescues (%)

- - 96.3 ± 1.1 96.7 ± 0.0
- - 96.7 [96.7, 96.7] 96.7 [96.7, 96.7]

Mean rescues
(g)

- - 27.9 ± 8.0 27.3 ± 7.2
- - 27.2 [23.7, 31.0] 26.9 [22.0, 29.7]

Metrics summary of the controllers assessed in Validation 3 : the meal-detector based
controller (MD), the proposed controller (mIMC), and the proposed controller with the
rescue suggestion module unable. The column “mIMC-Opt” includes the results of the

mIMC tuned with the optimal parameters (Validation 1 ). Metrics are expressed in mean ±
standard deviation and median [25th percentile, 75th percentile] of the ten virtual adults.

“Overall” metrics aggregate the entire simulation period (30 days), while “Exercise control”
metrics refer to a specific period after the exercise time: percent of time-related metrics

aggregate the 3-h period after the exercise, and rescue-related metrics aggregate
exercise-to-exercise period.
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Table 7.8: Estimated intercept and coefficients of mixed-effect models for exercise
compensation scenario (Validation 3)

Difference in mean regarding NoExComp

NoExComp MD mIMC

Est. CI Est. CI Est. CI

Overall
Mean CGM (mg/dL) 136.8 (132.3,141.3) 1.2 (-1.9,4.3) 4.3 (1.2,7.3)
CV (%) 33.2 (31.1,35.3) 1.0 (-0.2,2.3) -3.7 (-5.0,-2.4)
CGM time (%)

>250 mg/dL 2.0 (0.9,3.0) 0.4 (0.1,0.7) 0.1 (-0.2,0.4)
>180 mg/dL 17.7 (14.5,20.9) 2.0 (0.0,4.0) 0.3 (-1.7,2.3)
[70 – 180] mg/dL 76.8 (73.2,80.4) -1.5 (-3.2,0.2) 4.2 (2.5,5.9)
<70 mg/dL 5.5 (4.7,6.2) -0.9 (-2.0,0.1) -4.6 (-5.6,-3.6)
<54 mg/dL 3.3 (2.7,4.0) -0.6 (-1.5,0.3) -3.3 (-4.2,-2.4)

Daily insulin (U) 37.6 (32.8,42.3) -0.3 (-1.0,0.4) 0.1 (-0.6,0.8)
Exercise
CGM time (%)

<70 mg/dL 38.9 (34.7,43.2) -4.4 (-10.4,1.6) -32.5 (-38.5,-26.6)
<54 mg/dL 24.8 (20.0,29.5) -3.4 (-9.6,2.8) -24.2 (-30.4,-18.0)

The column “NoExComp” includes the estimation (Est) and the Wald 95% confidence
interval (CI) of the intercept, i.e, the estimated mean of the corresponding metric for the

mIMC with unable rescue suggestion feature. The columns “MD” and “mIMC” correspond
to the estimated coefficients of the mixed-effect model for the main controller extended with

the meal detector, and the main controller extended with the proposed add-on module,
respectively. These coefficients are interpreted as the difference in mean of the corresponding

metric regarding NoExComp.

7.7 Conclusions

The proposed module satisfactorily managed unannounced meals in the SAFE-AP
controller: the reduction in %time above 180 mg/dL is comparable to the original
hybrid SAFE-AP (considering carbohydrate counting error), and the %time below
70 mg/dL remains under 4%.

In a scenario with hypoglycemia-inducing exercise, the rescue carbohydrate sugges-
tion feature of the proposed module compensates hypoglycemia more effectively
than other controllers that only inhibit insulin, without increasing the %time in
hyperglycemia.
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7.7 Conclusions

Although the proposed module covers the chapter goals (eliminating meal and
exercise announcements with adequate %time in 70–180 mg/dL and %time in
hypoglycemia), some room for improvement still exists. In the tuning of the
add-on module, only ten subjects were used – the adult cohort in the simulator–,
which increases the risk of overfitting. The subject cohort must be extended in
future work, ideally with information from earlier clinical studies (Ahmad et al.
2021).

Furthermore, the add-on module was assessed only against hypoglycemia-inducing
exercise corresponding to a low-to-moderate aerobic exercise. Nevertheless, de-
pending on the type of exercise, intensity, duration, or timing, exercise can even
cause a glucose rise (Ruegemer et al. 1990; Moser et al. 2020), which might require
a different strategy to compensate for it. The simulator neither accounted for
the high intrapatient variability in the exercise (Notkin et al. 2021). Similarly,
the simulator considers that meals are composed of carbohydrates only. However,
meals also contain proteins, fats, or alcohol, modifying the absorption profiles
expected by the simulator. Due to the limitations of the in silico validations,
complete validation of the proposed module is only possible in clinical trials.
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Chapter 8

Conclusions and future work

This chapter closes the dissertation by outlining the main contri-
butions. Furthermore, it will overview the limitations of the developed
methods and the opportunities for future work to overcome them.

Food eating or exercise workout for people with type diabetes may be constant
reminders of their disease. Even with the most advanced insulin therapies com-
mercially available, i.e., hybrid artificial pancreas systems, patients must intervene
to compensate for these disturbances through meal announcements (carbohydrate
counting) or exercise announcements (announce the exercise event hours in ad-
vance). This dissertation aimed to develop methods that release patients from
these burdensome and life-restricting announcements without compromising the
glycemic outcomes.

8.1 Conclusions

The thesis resulted in the following two contributions (see “List of publications”
for the related publications):

1. A bolusing algorithm module that removes the need for meal announcement
in artificial pancreas systems.

2. An internal-model-based module calculating bolus-like insulin infusions and
suggesting carbohydrate rescues to release patients from meal and exercise
announcements.
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The bolusing algorithm module builds upon a meal disturbance estimator (Chap-
ter 3), a meal detector (Chapter 5), and a PD-like logic that computes corrective
boluses based on the meal disturbance estimation and the detection event (Chap-
ter 6). To design the meal disturbance estimator, an observer-based approach was
utilized. Factors like model complexity, observation algorithm, and intra-patient
variability are known to affect the estimation accuracy; the contribution of each
factor in the estimation of the meal disturbance was evaluated in an in silico
analysis in this dissertation (Chapter 3). The results revealed that the intra-patient
variability has the most considerable contribution in explaining the variations of
the estimation error; hence, more individualized models would result in a reduced
error. In addition, the estimated disturbance appears coupled with other distur-
bances. This limitation was underscored in Chapter 4. This chapter illustrated the
estimation of disturbances when signals (i.e., glucose and insulin infusions) from
real datasets are fed into the observer. Two clinical datasets were used, one for
meals and the other to reconstruct the disturbance caused by exercise. On the one
hand, the estimated meal disturbance resembled the expected meal-like shape in
the median. However, some examples were presented wherein other disturbances
or model mismatches hid the expected meal disturbance profile in the estimated
disturbance (e.g., oscillation, disturbance below zero). On the other hand, the
exercise disturbance was reconstructed assuming that the exercise effect on glucose
can be represented as an additive disturbance. It was shown that the impact of
carbohydrate intake before exercise mostly absorbed the effect of aerobic exercise
in the estimated disturbance.

The bolusing algorithm is triggered by a meal detection event. The meal detector
consists of a super-twisting-based residual generation and a decision logic that
determines the meal occurrence based on the residuals and glucose first derivative.
It has been exhaustively evaluated with synthetic and clinical datasets, achieving
acceptable results in the line of other meal detectors presented in the literature.

At detection time, the bolusing algorithm infuses a reduced-size bolus. If glucose
keeps increasing after that (indicative of a positive detection), corrective boluses are
delivered based on the estimated disturbance and a PD-like logic. As an application
example, the module was integrated into a hybrid artificial pancreas system (the
SAFE-AP, designed by the research group hosting this thesis project). The
complete system was also validated in silico under unannounced meal conditions.
It achieved similar glucose mean to the hybrid counterpart (when carbohydrate
misestimation errors were considered) without significantly increasing time spent
on hypoglycemia. However, the conservative tuning of the first bolus and the
detection delay led to a slightly longer time in hyperglycemia.
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8.1 Conclusions

This first contribution led to three journal articles (Sala-Mira et al. 2019; Sala-Mira
et al. 2021; Faccioli et al. 2022), two conference articles (Sala et al. 2018; Sala-Mira
et al. 2020), and two conference abstracts (Sala-Mira et al. 2018; Faccioli et al.
2021). Sala et al. (2018) presented a preliminary implementation of an observer
to estimate meal disturbances. Sala-Mira et al. (2019) first showed the superiority
of the First Order Sliding Mode Observer described in Chapter 3 over the first
proposal in Sala et al. (2018). The articles Sala-Mira et al. (2020) and Sala-Mira
et al. (2021) included the comparison of the First Order Sliding Mode Observer and
the Kalman Filter described in Chapter 3. Sala-Mira et al. (2019) also presented
and validated a preliminary implementation of the meal detector and the bolusing
algorithm. Finally, the improvements of the meal detector algorithm described
in Chapter 5 (e.g., implicit discretization or noise reduction) were presented in
Faccioli et al. (2021) and Faccioli et al. (2022), including more comprehensive
validations than the one included in Chapter 3.

The module developed in the first contribution yielded acceptable results against
unannounced meals; however, exercise-induced hypoglycemia would unlikely be
compensated with this module due to the long offset action of insulin. Thus, a
new module was designed to overcome this limitation by suggesting carbohydrate
intake (Chapter 7).

The module consisted of a filter, designed based on the internal model control
principle. The filter mitigates the discrepancy between the glucose measurement
and the glucose estimated with a glucose-insulin model. The output of this filter is
fed to a switching logic that, depending on the value of the filter output, the glucose,
and a glucose prediction, routes the filter output to the insulin pump or converts it
to carbohydrate suggestions. For convenience, the module was integrated into the
SAFE-AP to assess the module performance. However, any other hybrid controller
with some insulin-on-board limitation mechanism could have been applied. Once
integrated into the SAFE-AP, the complete system without meal announcements
yielded comparable results in %time in range and %time in hyperglycemia than
the hybrid counterpart with carbohydrate mismatch. In a challenging scenario
with daily unannounced exercises, the system markedly reduced the time in
hypoglycemia with an acceptable amount of suggested carbohydrates.

The second contribution gave rise to a journal article (Sala-Mira et al. 2022a)
describing the internal model-based module presented in Chapter 7. A patent
application related to this module was also submitted.
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8.2 Future work

The main limitation of the methods developed in this dissertation is that they
have been adjusted and validated in a small cohort of virtual patients. Although
the simulations performed in this dissertation included challenging conditions (e.g.,
parameter variability, sensor noise, and meals with different carbohydrate content,
timing, and absorption profile), complete validation is possible only in clinical
settings. A pilot clinical trial evaluating the bolusing algorithm with unannounced
meals has been projected for the near future under the scope of the National
project TAILOR (ref: PID2019-107722RB-C21)

Even if future clinical trials supported the feasibility of the proposed methods,
more effort should be made to apply these methods in real-life conditions. The
aggressiveness of the proposed modules should be adapted to overcome glycemic
changes due to circadian rhythms, hormonal changes, stress, or illness. Addressing
technical issues (e.g., pump occlusion, signal loss) is also required for long-term use.
In addition, the proposed methods were conceived to remove the meal and exercise
announcements entirely. However, patients with an active implication in their
disease management may initially untrust the system and feel uncomfortable ren-
dering complete control to the system. Thus, the proposed modules should be more
flexible and allow announcements if patients consider them. These requirements
will be addressed in the project Prometeo FLEX-AP (ref: CIPROM/2021/012)
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Appendix A

Implicit discretization of sliding
mode observers

According to the methodology described in Section 3.4.2, the implicit discretization
of the FOSMO applied to the Hovorka model follows the steps below:

• Calculate the output injection term and the output error

ψ[k] =

⎧⎪⎪⎨⎪⎪⎩
e∗[k]
β[k] , if e∗[k]

β[k] ∈ [−1, 1]
1, if e∗[k]

β[k] > 1
−1, if e∗[k]

β[k] < 1
ey[k] = e∗[k] − β[k]ψ[k]

(A.1)

(A.2)

• Update the state estimation
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Q1[k] = VG (y[k] − ey[k])

S1[k] = Tsu[k − 1] + S1[k − 1]
1 + Ts

τS

S2[k] =
Ts

τS
S1[k] + S2[k − 1]

1 + Ts

τS

I[k] =
Ts

τSVI
S2[k] + I[k − 1]
1 + Tske

x1[k] = Tskb1I[k] + x1[k − 1]
1 + Tska1

x2[k] = Tskb2I[k] + x2[k − 1]
1 + Tska2

x3[k] = Tskb3I[k] + x3[k − 1]
1 + Tska3

Q2[k] = Tsx1[k]Q1[k] +Q2[k − 1]
1 + Tsk12 + Tsx2[k]

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

The terms e∗[k] and β[k] are calculated with the following Matlab script:
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %% IMPLICIT DISCRETIZATION FOSMO WITH HOVORKA MODEL
3 % This script generates the function to calculate
4 % the discontinuous term v(k)
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 syms S1k S2k Ik x1k x2k x3k ...
7 Q2k Q1k positive %states at current iteration
8 syms S1km1 S2km1 Ikm1 x1km1 x2km1 ...
9 x3km1 Q2km1 Q1km1 positive %states at k=1

10 syms uk positive %insulin input
11 syms F01ck Frk positive%
12 syms tmaxI Vi ke ka1 ka2 ka3 kb1 kb2 kb3 k12...
13 EGP0 Vg invC2 positive %parameters
14 syms K k real % FOSMO gains
15 syms Ts positive %sample time
16 syms eyk psik yk real %output error, discontinuous
17 %term, actual output
18
19 %% Unmeasurable states
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20 % Equations of the unmeasurable states
21 % after implicit discretization
22 eqs={(S1k=S1km1)/Ts==uk=S1k/tmaxI
23 (S2k=S2km1)/Ts==S1k/tmaxI=S2k/tmaxI
24 (Ik=Ikm1)/Ts==S2k/(tmaxI*Vi)=ke*Ik
25 (x1k=x1km1)/Ts===ka1*x1k+kb1*Ik
26 (x2k=x2km1)/Ts===ka2*x2k+kb2*Ik
27 (x3k=x3km1)/Ts===ka3*x3k+kb3*Ik
28 (Q2k=Q2km1)/Ts==x1k*Q1k=k12*Q2k=x2k*Q2k};
29
30 sol=solve(eqs,[S1k S2k Ik x1k x2k x3k Q2k]);
31
32
33 S1_k=sol.S1k;
34 S2_k=sol.S2k;
35 I_k=sol.Ik;
36 x1_k=sol.x1k;
37 x2_k=sol.x2k;
38 x3_k=sol.x3k;
39 Q2_k_1=sol.Q2k;
40
41 %% Measurable states
42 % Equation of the measurable state
43 % after implicit discretization
44 Q2_k_2=simplify(solve((Q1k=Q1km1)/Ts===F01ck=...
45 x1_k*Q1k+k12*Q2k=Frk+EGP0*(1=x3_k)=K*eyk...
46 +k*invC2*psik,Q2k));
47
48 %% Calculate ey
49 % Consider that eyk=yk=hat(yk)
50 Q1_k=invC2*(yk=eyk);
51
52 % Solve the system of equations
53 Q2_k_1_subs=subs(Q2_k_1,Q1k,Q1_k);
54 Q2_k_2_subs=subs(Q2_k_2,Q1k,Q1_k);
55 ey_k=solve(Q2_k_1_subs==Q2_k_2_subs,eyk);
56
57 % Get e*(k) and B(k)
58 co=coeffs(ey_k,psik);
59 B_k==simplify(co(2));
60 east_k=simplify(co(1));
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61
62
63 %% Matlab function
64 % Write a function to create the terms B(k)
65 % and e*(k)
66 matlabFunction(B_k,east_k,'File',...
67 'getAuxiliarTerms','Optimize',false,...
68 'Vars',{[S1km1,S2km1,Ikm1,x1km1,...
69 x2km1,x3km1,Q2km1,Q1km1],yk,uk,K,k,Ts,F01ck,...
70 Frk,invC2,EGP0,k12,ka1,ka2,ka3,kb1,kb2,...
71 kb3,ke,tmaxI,Vi})

The script first defines the symbolic variables for the states, the parameters, and
the gains (lines 6–16). In lines 22–30, the Hovorka counterpart of the system
equations (3.31)–(3.38) are solved to obtain the unmeasurable state variables.
Then, the condition ey[k] = yk − ŷk is considered to obtain an expression for
ey[k], or eyk in above snippet (lines 44–55). In lines 58–60, the function coeffs
() is used to obtain e∗[k] (or east_k) and β[k] (or B_k). Finally, the function
matlabFunction() converts the symbolic expression to a Matlab function.

192



Appendix B

Description of the main
controller

B.1 Context

The SAFE-AP controller is the main controller the control algorithms developed
in this dissertation build upon. This controller has been developed by the research
group this thesis project belongs to: the Spanish Consortium on Artificial Pancreas
and Diabetes Technology. This is a multidisciplinary consortium integrated by
two engineering groups (The Lab on Artificial Pancreas and Diabetes Technology
from the Universitat Politècnica de València and the Modeling, Identification &
Control Engineering Laboratory from the Universitat of Girona) and three clinical
groups (Hospital Clínic de Barcelona, Hospital Clínico Universitario de Valencia y
Hospital Francesc de Borja de Gandia).

A first version of the controller was presented in Revert et al. (2013), where
the principal feature of the controller is described: an Sliding Mode Reference
Conditioning (SMRC) approach to constraint the insulin-on-board. In an 8-h
inpatient clinical trial, the controller yielded promising results under an announced
mixed meal test, outperforming the %time in 70–180 mg/dL achieved by pump
therapy without increasing the %time spent in hypoglycemia (Rossetti et al. 2017).
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Furthermore, Quirós et al. (2018) evaluated the SAFE-AP under aerobic and
anaerobic exercise sessions. Although the results were satisfactory, the user had to
announce the exercise 45 min in advance, something impractical in an ambulatory
use. The contributions of Beneyto et al. (2018), Ramkissoon et al. (2019), and
Bertachi et al. (2019) overcame this limitation with new rules to adapt the upper
bound limit of the insulin-on board, a carbohydrate suggester module, and an
exercise detection algorithm. The upgraded version of the SAFE-AP underwent a
clinical trial with a heavy aerobic session in both announced and unannounced
conditions. The SAFE-AP halved the number of hypoglycemic events achieved by
the open-loop therapy, decreased the %time below 70 mg/dL, and increased the
%time in 70–180 mg/dL (Viñals et al. 2021).

B.2 Basic controller architecture

This sections details the basic architecture of the SAFE controller. For simplicity,
the carbohydrate suggester module (Beneyto et al. 2018; Ramkissoon et al. 2019)
was not considered in this dissertation.

Figure B.1 overviews the SAFE controller. On the one hand, an Insulin Feedback
(IFB) limits the output of a PD controller when the estimated plasma insulin
exceeds its equilibrium value. On the other hand, an Sliding Mode Reference
Conditioning (SMRC) safety layer upper-bounds the insulin-on-board (insulin
stacked in the subcutaneous tissues ) by modifying the PD controller set-point. The
insulin calculated by the SAFE controller, umc, considers, besides the contribution
of the PD-IFB, the insulin basal infusion (ubasal(t)), required by the patient to
maintain normal (usually around 100 mg/dL) plasma glucose during starvation
periods. In addition, the control action considers a pre-meal bolus since the
original controller is hybrid. In Chapter 6 and Chapter 7, two strategies have been
addressed to remove this pre-meal bolus with minor additional modifications to
the SAFE controller.

The three elements integrating the system (the PD controller, the IFB structure,
and the SMRC layer) are described in the following subsections:
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Figure B.1: Description of the main controller. The main controller consists of
a proportional-derivative controller (PD), an insulin feedback (IFB), and a sliding mode
reference conditioning (SMRC). G(t), Gr(t), and Grf (t) denote the glucose reading, the
glucose setpoint and the filtered setpoint; γ and ∆ÎP (t) are, respectively, the IFB gain and
the estimated insulin plasma deviation regarding basal conditions. ω(t), ˆ︁IOB(t), and IOB(t)
correspond to the discontinuous signal, the estimated insulin-on-board and the upper limit of
the insulin-on-board. The total insulin provided by the main controller, umc, considers the
PD-IFB output, the basal infusion (ubasal(t)), and, only if meal are announced, the pre-meal
boluses (ubolus(t))

B.2.1 PD controller

The form of the PD controller including the derivative term in the forward path
has been adopted to avoid the “derivative kick” issue of the standard PD (Johnson
et al. 2005, Section 1.3), that is,

uP D(t) = Kp (G(t) −Grf (t)) +KpTdĠ(t) (B.1)

where G(t) is the CGM reading and Grf (t) is the filtered glucose reference required
for the SMRC layer (see Section B.2.3). The derivative time, Td, is set to 60 min
and the proportional gain, Kp (in U dL/(h mg)), is selected as (Palerm 2011):
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Kp = 60
Td

TDI

1500 (B.2)

where TDI is the subject’s total daily insulin (U).

B.2.2 Insulin Feedback

The IFB imitates the auto-suppression of endogenous insulin production found in
in vivo experiments (Palerm 2011), inhibiting the output of the PD controller as
follows:

uIF B(t) = uP D(t) + ubolus(t) − γ∆ÎP (t) (B.3)

where γ is a gain (set to 0.42 L/min) and ∆ÎP (t) = ÎP (t) − Î
∗
P is the deviation

of the estimated plasma insulin (ÎP (t)) regarding its equilibrium value (Î∗
P ).

Limiting the controller output depending on ∆ÎP (t) rather than ÎP (t) (as Palerm
(2011) initially proposed) avoids retuning the controller to retain the steady state
conditions of the PD controller without IFB.

The methods to measure plasma insulin in clinical trials are too invasive to be
applied for control purposes; hence the plasma insulin must be estimated from the
infused insulin. In this dissertation, the Identifiable Virtual Patient (IVP) model
(Kanderian et al. 2009), described in 3.3.1, is used.

B.2.3 Sliding Mode Reference Conditioning

The SMRC targets preventing severe hypoglycemia by constraining the insulin-
on-board through reference modulation (Revert et al. 2013). This technique
roots in invariance concepts: to constraint the insulin-on-board to an upper limit
IOB, a discontinuous law (ω(t)) modulating the reference forces the surface
Σ :=

{︂
x(t)|ˆ︁IOB(t) − IOB

}︂
– with x(t) being the extended state including the

insulin-on-board dynamics, controller, and set point filter states – to be invariant,
that is, for any x(0) verifying IOB(0) ≤ IOB(t) the constraint will hold for all t.
The discontinuous law achieving this purpose is given by:

ω(t) =
{︄
W+ if σSM (t) > 0
0 otherwise

(B.4)
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where W+ > 0 is a large enough constant with a nominal value set to 350 mg/dL
(Sala-Mira et al. 2017) and σSM (t) is defined as:

σSM (t) = ˆ︁IOB(t) − IOB(t) +
l−1∑︂
i=1

τSMi

(︂
ˆ︁IOB(t)(i) − IOB(t)(i)

)︂
(B.5)

where l is the relative degree between ˆ︁IOB(t) and ω(t), τSMi are gains, and the
superscript (i) refers to the ith-derivatives. In addition, a first order filter smooths
the modulated glucose set point:

Ġrf (t) = −τrfGrf (t) + τrf (Gr(t) + ω(t)) (B.6)

with τrf being the filter rate constant set as 0.1/min (Sala-Mira et al. 2017).

Like for the IFB, the insulin-on-board is estimated with the IVP models specifi-
cally, selecting the first-order dynamics of the subcutaneous insulin, i.e., ˆ︁IOB(t) =
ISC(t). Given this insulin-on-board dynamics, and the filter and controller de-
scribed above, the relative degree l = 2; thus only the first derivative of ˆ︁IOB(t)
must be considered in (B.5). Finally, τSM1 is tuned as τSM = 10 min.
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