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Abstract 

 

 

 

 
 

The use of water in our society is of great importance. This is used not only for human 
consumption but also for industrial and livestock activities. Once the water has been used and is 
no longer helpful for the activity, it becomes a waste called residual water. These waters contain 
substances that endanger human health and ecosystems. To reduce environmental damage, there 
are treatment plants that treat these waters to reduce their levels of contamination. We can find two 
types of sewage treatment plants, those that purify water from urban centres and industrial sewage 
treatment plants. Industrial treatment plants are responsible for reducing the contaminant load of 
the water so that it can be discharged into the public sewer system or into the environment. 

The presence of illegal discharges and overflows in the sewage system pose a threat to water 
bodies. Illegal discharges occur when a company or person discharges a volume of water into the 
sewer without authorization. These discharges can cause a drop in the performance of the treatment 
plant, which will cause an effluent of poorer quality. On the other hand, overflows are generated 
when the sewer cannot carry all the water that enters and it is necessary to use the sewer overflows. 
Overflows can cause pollution of water bodies. In many cases, it is not possible to detect who is 
responsible for the spills. What makes these go unpunished violating the environmental principle 
of that whoever pollutes pays. 

To solve this problem, the development of a low-cost system for monitoring water parameters 
to detect problems in sewers within the context of smart cities is proposed. Our working hypothesis 
is that in the presence of a discharge, the concentration of specific water parameters will change 
enough to be detected. When the site of the spill is detected, it will be possible to quickly go to the 
place in order to stop the spill in addition to taking the necessary legal actions against the person 
who is carrying out the spill. 

For our system, we have compiled information on the different parameters that are 
incorporated into other systems to monitor sewage, such as water level, temperature, conductivity, 
turbidity and other water contaminants such as organic matter, nutrients, pH and heavy metals. 
With this information, we have determined that the most exciting parameters that we are able to 
measure at a low cost are temperature, conductivity, turbidity, water and oil level. In addition, the 
use of rain sensors for storm sewers is included. 

To monitor these parameters, low-cost commercial sensors are chosen to monitor temperature, 
level and rainfall. For the other parameters, the low cost commercial options that currently exist 
are not helpful. That is why we decided to develop our own sensors. We decided to use inductive 
type sensors for conductivity and optical sensors for turbidity and oil control. 

Regarding the inductive sensors, we have determined that there are interferences of the solids 
and the water level in the response of the sensor. We have verified that these two parameters have 
an effect on the response of the sensor. However, in the case of solids, this interference is minor in 
the concentration of solids that exists in the sewage system (0.078 V/gram). On the other hand, the 
amount of water does affect the response of the coil significantly. Therefore, the sensor must be 
submerged. 

Regarding turbidity, we have made two different prototypes. One prototype has been 
developed for bodies of water and the other for sewage. The prototype developed for bodies of 
water is capable of determining the percentage of algae that exist in the water, knowing the amount 
of solids in the water. To determine the amount of solids, we use an algorithm that transforms the 
turbidity measurement to solids. Regarding the turbidimeter for sewage, we have tested with two 
similar turbidimeter prototypes with different coloured LEDs, an infrared LED and a photoreceptor 
at 0º and 180º. 
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For oil detection, we have developed another optical sensor. We have done tests at different 
heights of water. Seeing that we were able to identify if the oil came from a gasoline engine or a 
Diesel engine, and in the case of oil used by a gasoline engine, we were able to quantify it. 

Finally, regarding our system, we have analyzed through simulations the usefulness of a level 
sensor in the sewage system. We have detected that in the case of storm sewage, this can be useful. 
In addition, we have tested the inductive sensor and the oil sensor in a pipe with different 
concentrations of salt and oil to see how they work. 

Our system (sensor node) uses a microcontroller connected to different sensors. The estimated 
cost of each sensor node is 120 €. Our system will use a star type network topology. Where the 
different sensor nodes will send the information to a central point (cluster head). The cluster head 
will have Internet connection which allows the connection to a database placed in a server. 

The developed sensors can be used in other environments. For this reason, we show other 
works carried out during the thesis period with the developed sensors. These works are: (I) The 
use of coils for soil moisture monitoring, (II) the use of optical sensors to detect diesel B (low tax) 
in unauthorized vehicles, (III) the use of sensors and bioabsorption technology in irrigation canals 
affected by wastewater, and (IV) the use of the oil sensor in irrigation canals.  
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Resumen 

 

 

 
El uso del agua en nuestra sociedad es de gran importancia. Esta se utiliza no solo para el 

consumo humano sino también para actividades industriales y ganaderas. Una vez el agua se ha 
utilizado y deja de ser útil para la actividad, esta se convierte en un residuo llamado aguas 
residuales. Estas aguas contienen sustancias que ponen en peligro la salud humana y de los 
ecosistemas. Para reducir el daño medio ambiental existen las depuradoras que tratan estas aguas 
para reducir sus niveles de contaminación. Podemos encontrar dos tipos de depuradoras, las que 
depuran el agua de los núcleos urbanos y las depuradoras industriales. Las depuradoras industriales 
se encargan de reducir la carga contaminante del agua para que pueda ser vertida al alcantarillado 
público o al medio ambiente. 

La presencia de vertidos ilegales y desbordamientos en el alcantarillado suponen una amenaza 
para las masas de agua. Los vertidos ilegales se producen cuando una empresa o persona vierte al 
alcantarillado un volumen de agua sin autorización. Estos vertidos pueden provocar una bajada en 
el rendimiento de la depuradora lo que provocará un efluente de peor calidad. Por otro lado, los 
desbordamientos se generan cuando el alcantarillado no puede transportar toda el agua que entra y 
es necesario utilizar los aliviaderos del alcantarillado. Los desbordamientos pueden provocar la 
contaminación de las masas de agua. En muchos casos no es posible detectar al responsable de los 
vertidos. Lo que hace que estos queden impunes violando el principio ambiental de quien 
contamina paga.  

Para solucionar este problema se propone el desarrollo de un sistema de bajo coste para la 
monitorización de parámetros del agua para detectar problemas en los alcantarillados dentro del 
contexto de las ciudades inteligentes (Smart cities). La hipótesis de trabajo radica que ante la 
presencia de un vertido la concentración de ciertos parámetros del agua cambiará lo suficiente 
como para que pueda ser detectado. Al detectarse el sitio del vertido se podrá acudir rápidamente 
al lugar a fin de cesar el vertido además de tomar las acciones legales que sean necesarias contra 
la persona que está realizado el vertido.  

Para el sistema hemos recopilado información sobre los diferentes parámetros que se 
incorporan en otros sistemas para monitorizar el alcantarillado como son el nivel de agua, 
temperatura, conductividad, turbidez, pH y de otros contaminantes del agua como son la materia 
orgánica, nutrientes y metales pesados. Con esta información se determina que los parámetros más 
interesantes y que pueden ser medidos con un bajo coste son temperatura, conductividad, turbidez, 
nivel de agua y aceite. Además, se incluye el uso de sensores de lluvia para el alcantarillado de 
pluviales. 

Para la monitorización de estos parámetros se escogen sensores comerciales de bajo coste 
para la monitorización de la temperatura, el nivel y la lluvia. Para los otros parámetros las opciones 
de bajo coste comerciales que existen en la actualidad no son útiles. Por ello se decidió desarrollar 
nuestros propios sensores. Para ello se utilizó sensores del tipo inductivos para la conductividad y 
sensores ópticos para el control de la turbidez y el aceite. 

Respecto a los sensores inductivos, se ha determinado que existen interferencias de los sólidos 
y del nivel de agua en la respuesta del sensor. Se ha comprobado que estos dos parámetros tienen 
un efecto en la respuesta del sensor. Sin embargo, en el caso de los sólidos esta interferencia es 
pequeña en la concentración de solidos que existe en el alcantarillado, siendo esta de 0.078 
V/gramo. En cambio, la cantidad de agua sí que afecta a la respuesta de la bobina de forma 
significativa. Por tanto, el sensor deberá estar sumergido. 

Respecto a la turbidez se han realizado dos prototipos diferentes. Un prototipo ha sido 
desarrollado para cuerpos de agua y el otro para el alcantarillado. El prototipo desarrollado para 
cuerpos de agua es capaz de determinar el porcentaje de algas que existen en el agua conociendo 
la cantidad de solidos en el agua. Para determinar la cantidad de solidos utilizamos un algoritmo 
que transforma la medida de la turbidez a sólidos. Respecto al turbidímetro para alcantarillado 
hemos testeado con dos prototipos similares de turbidímetro con diferentes LEDs de colores, un 
LED infrarrojo y un fotoreceptor a 0º y 180º.  
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Para la detección del aceite hemos desarrollado otro sensor óptico. Hemos hecho pruebas a 
distintas alturas de agua. Viendo que éramos capaces de identificar si el aceite provenía de un 
motor gasolina o de un motor Diesel, y en el caso de aceite usado por un motor de gasolina éramos 
capaces de cuantificarlo. 

Por último, respecto a nuestro sistema hemos analizado mediante simulaciones la utilidad de 
un sensor de nivel en el alcantarillado. Hemos detectado que en el caso de alcantarillado pluvial 
este sí que puede ser útil. Además, hemos testeado en una tubería el sensor inductivo y el de aceite 
con diferentes concentraciones de sal y aceite para ver su funcionamiento. 

Para nuestro sistema utilizaremos un microcontrolador donde irán los diferentes sensores. El 
coste estimado de cada uno de los nodos sensores es de 120 €. Nuestro sistema utilizara una 
topología del tipo estrella, donde los diferentes nodos sensores enviaran la información a un punto 
central (cluster head) este tendrá conexión por internet al ordenador central.  

Los sensores desarrollados pueden ser utilizados en otros ambientes. Por ello, mostramos 
otros trabajos realizados durante el periodo de la tesis con los sensores desarrollados. Estos trabajos 
son: (I) el uso de bobinas para la monitorización de la humedad del suelo, (II) el uso de sensores 
ópticos para detectar gasóleo B (bajo en impuestos) en vehículos no autorizados, (III) el uso de 
sensores y tecnología de bioabsorción en canales de riego afectados por aguas residuales y (IV) el 
uso del sensor de aceite en canales de riego. 
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Resum 

 

 

 
L'ús de l'aigua a la nostra societat és de gran importància. Aquesta s'utilitza no sols per al 

consum humà, sinó també per a activitats industrials i ramaderes. Un cop l'aigua s'ha utilitzat i 
deixa de ser útil per a l'activitat, aquesta es converteix en un residu anomenat aigües residuals. 
Aquestes aigües contenen substàncies que posen en perill la salut humana i dels ecosistemes. Per 
reduir el danys mediambientals existeixen les depuradores que tracten aquestes aigües per reduir 
contaminació la seua carrega contaminants. Podem trobar-hi dos tipus de depuradores, les que 
depuren l'aigua de nuclis urbans i les depuradores industrials. Les depuradores industrials 
s'encarreguen de reduir la càrrega contaminant de l'aigua perquè es pugui abocar al clavegueram 
públic o al medi ambient. 

La presència d'abocaments d’aigua il·legals i els desbordaments al clavegueram suposen una 
amenaça per a les masses d'aigua. Els abocaments il·legals es produeixen quan una empresa o una 
persona aboca al clavegueram un volum d'aigua sense autorització. Aquests abocaments poden 
provocar una baixada en el rendiment de la depuradora, lo que provocarà un efluent de pitjor 
qualitat. D'altra banda, els desbordaments es generen quan el clavegueram no pot transportar tota 
l'aigua que entra i cal utilitzar els sobreeixidors del clavegueram. Els desbordaments poden 
provocar la contaminació de les masses d’aigua. En molts casos no és possible detectar el 
responsable dels abocaments. Això fa que aquests queden impunes violant el principi ambiental de 
qui contamina paga. 

Per solucionar aquest problema es proposa el desenvolupament d'un sistema de baix cost per 
a la monitorització de l'aigua per detectar problemes als claveguerams dins del context de les ciutats 
intel·ligents (Smart cities). La hipòtesi de treball consisteix que davant la presència d'un abocament 
la concentració de certs paràmetres de l'aigua canviarà lo suficient perquè es pugui detectar. En 
detectar-se el lloc de l'abocament es podrà acudir ràpidament al lloc per cessar l'abocament a més 
de prendre les accions legals que siguin necessàries contra la persona que està realitzat l'abocament. 

Per al sistema hem recopilat informació sobre els diferents paràmetres que s'incorporen en 
altres sistemes per monitoritzar el clavegueram com són el nivell d'aigua, temperatura, 
conductivitat, pH, terbolesa i altres contaminants de l'aigua com són la matèria orgànica, nutrients, 
i metalls pesants. Amb aquesta informació s’ha determinat que els paràmetres més interessants i 
que poden ser mesurats amb un baix cost són temperatura, conductivitat, terbolesa, nivell d'aigua 
i oli. A més, s'hi inclou l'ús de sensors de pluja per al clavegueram de pluvials. 

Per monitoritzar aquests paràmetres s'escullen sensors comercials de baix cost per 
monitoritzar la temperatura, el nivell i la pluja. Per als altres paràmetres, les opcions de baix cost 
comercials que hi ha actualment no són útils. Per això es decideix desenvolupar els nostres propis 
sensors. Decidim utilitzar sensors del tipus inductius per a la conductivitat i sensors òptics per al 
control de la terbolesa i l'oli. 

Pel que fa als sensors inductius, s’ha determinat que hi ha interferències dels sòlids i del nivell 
d'aigua en la resposta del sensor. S’ha comprovat que aquests dos paràmetres tenen un efecte a la 
resposta del sensor. No obstant això, en el cas dels sòlids aquesta interferència és petita en la 
concentració de sòlids que hi ha al clavegueram, aquesta és de 0.078 V/gram. En canvi, la quantitat 
d'aigua sí que afecta la resposta de la bobina de manera significativa. Per tant, el sensor haurà 
d'estar submergit. 

Pel que fa a la terbolesa s’han realitzat dos prototips diferents. Un prototip ha estat 
desenvolupat per a cossos d'aigua i l'altre per al clavegueram. El prototip desenvolupat per a cossos 
d'aigua és capaç de determinar el percentatge d'algues que hi ha a l'aigua coneixent la quantitat de 
sòlids a l'aigua. Per determinar la quantitat de sòlids utilitzem un algorisme que transforma la 
mesura de la terbolesa a sòlids. Pel que fa al turbidímetre per clavegueram hem testejat amb dos 
prototips similars de turbidímetre amb diferents LEDs de colors, un LED infraroig i un fotoreceptor 
a 0º i 180º.  
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Per detectar l'oli hem desenvolupat un altre sensor òptic. Hem fet proves a diferents alçades 
d'aigua. Veient que érem capaços d'identificar si l'oli provenia d'un motor benzina o d'un motor 
dièsel, i en el cas d'oli usat per un motor de benzina érem capaços de quantificar-lo. 

Finalment, respecte al nostre sistema hem analitzat mitjançant simulacions la utilitat d'un 
sensor de nivell al clavegueram. Hem detectat que en el cas de clavegueram pluvial aquest sí que 
pot ser útil. A més, hem testejat en una canonada el sensor inductiu i el d'oli amb diferents 
concentracions de sal i oli per veure'n el funcionament. 

Pel nostre sistema utilitzarem un microcontrolador on aniran els diferents sensors. El cost 
estimat de cadascun dels nodes sensors és de 120 €. El nostre sistema utilitzarà una topologia del 
tipus estrella, on els diferents nodes sensors enviaran la informació a un punt central (cluster head), 
aquest tindrà connexió per internet a l'ordinador central. 

Els sensors desenvolupats poden ser utilitzats en altres ambients. Per això mostrem altres 
treballs realitzats durant el període de la tesi amb els sensors desenvolupats. Aquests treballs són: 
(I) L'ús de bobines per a la monitorització de la humitat del sòl, (II) l'ús de sensors òptics per 
detectar gasoil B (sota impostos) en vehicles no autoritzats, (III) l'ús de sensors i tecnologia de 
bioabsorció en canals de reg afectats per aigües residuals, (IV) l'ús del sensor d'oli a canals de reg.  
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In this PhD thesis, we propose a system to monitor the presence of pollutant incidents (PIs) 
in sewerage and water bodies that can receive untreated wastewater or PIs. In this chapter, we 
introduce the dissertation topic, the research goals, the precedents, and finally, the structure of the 
dissertation.  

First, it is essential to remember the importance of water because life cannot exist without it. 
The first human civilisations begin near rivers. The Egyptians were in the Nile, Mesopotamia in 
Tigris and Euphrates, the Chinese in the yellow river or Indus Valley Civilisation in Indus and 
Ganges rivers. Thus, water is an indispensable resource for life (UNESCO, 2020). In addition, 
water is essential in many human activities such as food production, industry, street cleaning, etc. 
Humanity catches the water of the environment and uses it. After the water is used, it is dumped 
and considered waste. Thus, it is converted to wastewater. The wastewaters contain polluting 
substances that pollute the environment. To reduce wastewater pollution, Wastewater Treatment 
Plants (WWTP) are used. The producers of wastewater and the WWTP are connected by sewerage. 
The use of sewerage started in 3750 AC. However, the first modern sewerage was designed in 
Hamburgo in 1842. These infrastructures have been demonstrated to be a measure for reducing the 
mortality of the population (Alsan and Goldin, 2019), (Naja and Volesky, 2013). We can 
differentiate between two types of sewerage, separated and combined sewerage (Mannina and 
Viviani, 2009) (Zgheib, Moilleron and Chebbo, 2012). The difference between these two systems 
is the drainage of the rainwater. In the combined system, the runoff of rainwater (in urban areas) 
is collected in the same pipes as the wastewater. This water will go to a WWTP, where it will be 
treated. In the split systems, the wastewater and runoff go in separate pipes. In addition, in some 
sewerage-separated systems, domestic wastewater and industrial wastewater have different pipes. 
The wastewater will go to a WWTP, and the runoff will be poured into a body of water (river, lake, 
sea, etc.). The combined sewerage is typical of the centre of the cities by inheritance from the 
constructive methods of past eras. In the new areas of urban expansion, the separate sewage system 
is more common. The construction of separated sewerage is more expensive than combined 
sewerage because it is necessary to place two pipes. In separated sewerage, the rainwater is not 
treated in WWTP, which reduces the maintenance cost. 

It is essential to keep water free of pollutants to continue using it. All water used by humans 
ends up in water bodies (lakes, seas, oceans, rivers, wetlands, etc.). Therefore, we must confirm 
that water gets to the water bodies as cleanly as possible. This is not an easy task to accomplish, 
considering the significant amount of water used every day in our society. Pollution comes from 
many places, from big companies which create tons of waste (Garrido et al. 2016) to the tiny house 
in which the owner uses soap with phosphates (Mousavi and Khodadoost, 2019). The most 
important aspect of waste treatment is controlling and accurately monitoring the pollutants. 
Knowing their origin site and the process through which they are treated is vital to correctly 
managing them. The astounding percentage of global wastewater which is released to the 
environment without treatment is 80 % (UNESCO, 2020). The percentage of untreated wastewater 
release changes in different areas of the world. This percentage is lower in rich countries than in 
developing countries because the rich countries have specific legislation to prevent pollution and 
more systems for collecting and treating wastewater. In Europe, wastewater is treated within the 
activity that has generated it until achieving sufficient quality to be discharged into the public sewer 
or to the environment (Directive 91/271/EEC). In America, the Clean Water Act regulates the 
discharge of pollutants into the waters and the standards of surface waters (Clean Water Act, 1972). 
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1.1.  Pollution incidents and overflows in sewerage. 

This subsection is focused on the PIs and overflows in the sewerage that affected the WWTP 

or water bodies. We analyse the problem and number of PIs and overflows that occur in some 

parts of the world. A PI can be spilt directly into the environment, generate a sewerage overflow 

or arrive at the WWTP. The overflows are generated when the sewerage cannot transport all the 

water that reaches it. A solution to reduce illicit dumping into the environment is increasing the 

control methods (Fujikura, 2011). 

The Irish environmental protection agency defines PI in urban wastewater as: "I) any 

discharge that does not comply with the requirements of this licence or certificate; II) any incident 

with the potential for environmental contamination of surface water or groundwater, or posing an 

environmental threat to land, or requiring an emergency response by the relevant Water Services 

Authority." (EPA, 2021). The presence of illicit discharges in the wastewater can affect the water 

and sludge's biological and physical treatment of the WWTP (Purschke et al., 2020). In December 

2016, the illegal disposal of high volumes of sulfuric acid affected the plant of Baarle-Nassau, 

Netherlands. The repairs cost between 80,000 and 100,000 euros. In addition, it affected the 

bioreactor and the capacity to depurate the wastewater (Chachuła, Nowak and Solano, 2021).  

The PIs do not follow a determined spatial or time distribution. In the report of Toronto 

Water in 2018, the company detected 664 notices of violation of sewer by-law (Toronto Water, 

2018). In the United Kingdom, the number of PIs were 2,204 in 2019, an increase from 1,863 in 

2018 and 1,827 in 2017 (UK government, 2020). In the report by the Public Entity for Wastewater 

Sanitation in the Valencian Community (EPSAR), in 2018, there was 3,109 illegal PIs were 

detected in the sewerage of Valencia Community (Spain). Of which, in 559 PIS, the culprits were 

detected (EPSAR, 2018). In 2020, 3,239 PIS were detected, affecting 217 WWTP (44% of the 

WWTP in the region) (EPSAR, 2020). These numbers show that the presence of PIs is a severe 

environmental problem. It violates the environmental principle that the polluter pays. In the 

Valencia region in 2020, 49.7% of spills were detected in the WWTP entry, 34 % in the sewerage, 

and the rest in industrial parks or factories. In most of the incidents, the culprits were not detected. 

The main pollutions were conductivity, organic matter, biological inhibitors, nutrients, and 

postharvest products (EPSAR, 2020). In addition, the sewerages have a large size and are much 

branched, which makes it difficult to detect illegal discharges and illegal connections. For solving 

the problem of detected PIs and illicit connections in sewerage, a solution is the use of Wireless 

Sensor Networks (WSN) or analysers. 

In addition, PIs are a critical problem in cities all over the world because they can cause 

problems in water bodies (Moreira and Bondelind, 2016). Historically, people have thrown their 

waste into the rivers to be washed down. Thus, it caused a handful of environmental issues in the 

surrounding area downstream. Nowadays, we have WWTPs, which process the sewage water so 

it can be returned to a water stream. They are designed to operate for a calculated range of flow 

and concentration of pollutants. Therefore, if there is an illegal discharge, the WWTP will be 

unable to completely process the water. Moreover, this is very important because if the water is 

not processed correctly, it will affect the ecosystem downstream (Ichinose and Yamamoto, 2011). 

These discharges contain pollutants such as nitrates, sulphates and, in the worst cases even heavy 

metals and other pernicious compounds. However, illicit discharge can be produced in the 

sewerage. Iloms et al. (2020) demonstrated that industrial discharge in the sewerage had a 

negative effect on the WWTP outflow in Vaal, South Africa. The detection of PIs in the sewerage 

is challenging. Sometimes, these are detected in the entry of the WWTP or in the sewer spillways 

(as we have seen with the previous data). Therefore, the bigger problem is not the pollution itself, 

it is the illicit discharges which are detrimental to the environment. WWTP are designed to work 

within established pollution thresholds (ONU, 2015). These thresholds are calculated taking into 
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account the size of the population the WWTP is catering to. They are not prepared for a sudden 

peak of pollution, which is what happens whenever there is an illegal discharge into the sewage 

system (Brown, Caraco and Pitt, 2004). When it happens, the water coming out of the WWTP is 

not fully treated, it still has pollutants. Therefore, that water is not safe to be released back into 

the environment. An illicit discharge could not only cause an isolated accident, some WWTP use 

processes done by bacteria. Pollutant levels higher than the threshold could disrupt the ecosystem 

created for those bacteria, thus causing a significant problem for the WWTP treatment process. 

There have been some attempts to create frameworks for the management of these discharges 

(Aulinas et al. 2012). 

Nowadays, the most used techniques for the detection of these illicit discharges involve the 

detection before they reach the WWTP. Early detection in sewage or in storm drains is the best 

regarded method. In order to identify an illicit discharge, several techniques can be employed. 

They can be divided in four groups: (i) sensory methods, (ii) temperature, (iii) chemical 

parameters, and (iv) microbiological parameters (Panasiuk et al., 2015). Among those different 

approaches, both temperature and microbiological parameters are non-conservative parameters. 

Moreover, microbiological parameters techniques are still under development. Furthermore, 

chemical parameters can be expensive to measure. Sensory methods, as well as temperature, are 

low-cost options. The disadvantage sensory methods present is difficulty in detecting low 

concentrations of pollutants. Among some unusual methods which have been proposed for the 

tracking of illicit discharges is scent detection by dogs in storm drains (Van De Werfhorst et al. 

2014). 

Another problem in sewerage is overflows. An overflow is produced when a sewage network 

receives more water than can be transported to the WWTP, and the excess water is dumped into 

spillways. The sewerage networks have overflow channels at different points of distribution for 

dumping the excess water. These channels are located in the upper bound of the pipeline. Excess 

water discharge is usually produced in water bodies or ravines. The overflows can be produced 

by broken pipes, runoff rainwater, lack of power, failure in pumps, and pipeline blockage (EPA, 

2003). In addition, an overflow can be produced in the WWTP. If a WWTP receives more 

wastewater than can be treated, the excess water is dumped. The problem with the overflows is 

that untreated or partially treated wastewater is dumped into the environment. Overflow problems 

are common in all sewerage networks. In 2020, there were 14,625 overflows in combined 

sewerage caused by rains in the United Kingdom. (UK Government, 2020). In the basin of the 

great lakes in the United States of America (USA), 1,482 overflows were produced (EPA, 2016). 

In the city of San Diego (USA), the maximum number of spills occurred in 2000, with 365 spills. 

In the following years, spills were reduced to 41 in 2010, 36 in 2020, and 42 in 2021 (Sandiego, 

2021). In the Congaree river (USA), 168 overflows were produced, resulting in more than 

1,387,000 gallons (5250 m3) of sewage spilt in 2020 (Congaree riverkeeper, 2020). The pollution 

problems of overflows do not only occur in combined sewerage. In storm events in separate 

sewerage, the wastewater can enter into the storm sewerage, if combined sewerage is connected 

to separate sewerage. Xu, Yin and Li (2014) studied the non-stormwater in storm drains in the 

city of Shangai. They concluded that 51% of water was an inappropriate entry of sewage flow 

into the storm drains. However, different studies have been showing high contamination levels in 

the runoff rainwater in the separate sewerage. In addition, the presence of illicit connections or 

wastewater pipes that are discharged in the rainwater is hazardous to water bodies because the 

water is not treated. To reduce overflow numbers, the water infrastructures must be improved. 

Nevertheless, the overflows cannot be obliterated by sewerage. However, their environmental 

effects can be reduced by monitoring water bodies that receive the overflows. 
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1.2. Analyser and sensor. 

In situ monitoring is a tool to control water quality. In this section, we present the two 

technologies used for continuous monitoring (analysers and sensors). Cambridge dictionary 

defines an analyser as "a person, machine, or device that examines something in detail to discover 

exactly what it is or consists of." In the same dictionary, a sensor is "a device that is used to record 

that something is present or that there are changes in something" (Cambridge University Press, 

2022). In the past, laboratory techniques were used to monitor the environment. Nowadays, 

laboratory analyses are still used but have been reduced using sensors and analysers. Laboratory 

analyses provide more accurate and reliable values than sensors and analysers. Nevertheless, 

laboratory analyses are expensive because they require one person to take the samples and procure 

an external laboratory (Zhang, 2016). Though, there are currently parameters such as emerging 

contaminants, the determination of solids, pesticides, etc., requiring laboratories. 

On the one hand, the analysers are like a small laboratory. It is performed the different steps 

of an analytic method autonomously. The analysers take a sample and add the different reagents 

to the sample. Subsequently, the analyser measures some parameters of the sample to determine 

the concentration of the parameter to be analysed. On the other hand, a sensor is a device that 

responds to a change in the environment. The sensors use the physical properties of the sample 

(absorbance, electric conductivity, capacitance, irradiation, fluorescence, etc.) or the change of 

material properties (change of Young's modulus, dilation, substance filter, ability to provide 

electrons, etc.) or a combination of both to determine the parameter that we want to monitor. 

Different sensors and analysers have been developed in the last years. In general, the use of 

sensors is preferable to analysers, because analysers need the use of reagents and management of 

the chemical residues generated in the measure. However, any parameter cannot be measured 

whit sensors. Thus, it is necessary the use analysers. The data collected by these devices is saved 

internally. These data can be downloaded when the responsible person goes to where the device 

is located or transmits them wirelessly or wired. The use of wireless technologies has given rise 

to WSN. 

The WSNs are formed by different motes. Each mote is formed by the sensing unit (sensors), 

a processing unit (microcontroller), and a transmitter/receiver unit (antenna). In addition, the 

WSNs have an operative system for the motes and a communication protocol (Jondhale, 

Maheswar and Lloret, 2022). The use of WSNs have grown in recent years. The use of sensors in 

underwater condition has been studied previously. The monitoring of water needs knowledge of 

different parameters. All types of substances can be discharged into the sewerage. For this reason, 

it is essential to determine the types of industries in an area for selecting the sensors that we will 

install. 

The use of sensors is currently widespread in most of our daily tasks. The application field 

of sensor is vast, and we can find many sensors-based applications in agriculture, industry 
processes environment monitoring our e-health, among others (Rawat et al. 2013). The WSNs 

allow us to follow the real-time evolution of some parameters. With this information, we can take 

the corrective measures that are necessary or check that everything works correctly. 

Nevertheless, the maintenance cost of the sensors can difficult their use in some areas, i.e., 
if the manufacturing cost of these devices is too high, the monitoring of large areas can be costly. 

For this reason, there is an increased tendency to develop low cost and low maintenance sensors. 

Some low cost sensors have been developed for monitoring turbidity (Murphy et al. 2015) or 
conductivity (Parra, 2014), etc. In this sense, chemical sensors are not recommended for 

implementing this kind of systems since they require continuous maintenance. Thus, the use of 

physical sensors is the best option for long-term monitoring. 
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1.3.  Water scarcity. 

The PIs affect the available water, because they affect the water quality causing that water 

to become unusable or increasing its purification costs. Water deficit is one of the most significant 

problems of nowadays. The exploitation of water resources combined with climate change are 

precursors of this delicate situation (Gosling and Arnell, 2013). The reuse of purified wastewater 
is a measure to reduce water scarcity. Now, the reuse of purified wastewater is more commoner 

in arid or semiarid regions than in humidity regions, because of the humid regions, there are more 

available water. However, global warming decreases the water available. Therefore, the reuse of 
wastewater is expected to increase (Verstraete and Vlaeminck, 2011).  

Nowadays, four billion people suffer scarcity of water at least one month a year (Mekonnen 

and Hoekstra, 2016). Approximately 65-70% of fresh water is for agricultural purposes (CDC, 
2019). Water is a relatively scarce resource because only 1% of the water in the world is suitable 

for human consumption and accessible (NASA, 2022). Therefore, its use should be rational and 

avoid its waste. In cities, water is used for human consumption, irrigation of green areas, 

ornamental use, cleaning of roads and other uses. One of the sources of fresh water is sub-aquatic 
water and its protection is vital. The result of excessive water consumption has produced a 

depletion of groundwater (Wada et al. 2010). Depletion also causes seawater intrusion in coastal 

areas (Werner et al., 2013). The seawater intrusion affects negatively the water quality because it 
increases the amount of salt in the water. This negatively affects the irrigation of the fields and 

can turn the water unfit for human consumption. In addition, we must not forget the use of water 

in agriculture. It may seem that agriculture is far away from cities. However, it is this that provides 
the food that is used by cities. Finally, you must control the use of water in green areas. Because 

although they have an ornamental function has been shown that their presence improves the 

quality of life of people (Lee and Maheswaran, 2010). Different methodologies have been 

developed to reduce water use in agriculture. Some of them are: drip irrigation, the use of sensors, 
reduce the amount of irrigation water, reuse of wastewater, etc. The use of technology, 

methodology of watering, and study of the variability in crops is englobed in the definition of 

precision farming. 
 The quality of water also plays a significant role when it comes to using water to irrigate. In 

most areas, the water quality is enough to be used for irrigation, but in other places, especially in 

third world countries or in the process of development, water is not suitable for irrigation due to 

its high content of pollutants. In Europe, a multitude of projects have been carried out for the 
reuse of wastewater 

Reusing purified wastewater can present risks, such as microorganisms and toxic substances 

affecting soil, groundwater or food production. For this reason, it is essential to control wastewater 
reuse and improve WWTP (Ungureanu, Vlăduț and Voicu, 2020). Kirhensteine et al. (2016) 

studied the different key barriers that difficult the reuse wastewater. (I) Water reuse is more 

complicated than freshwater use, (II) the price of the water reuse, (III) the perception of the reused 
wastewater is risker than freshwater and (IV) the difficulty of selling the food products. The 

presence of PIs in sewerage that arrives at WWTP affects the quality of the effluent. Therefore it 

will affect the quality of these waters for reuse.  

1.4.  Smart Cities. 

Currently, there is an increase in the population, which will cause an increase in the demand 

for resources. This together with the rural exodus generate that the environmental impacts are 
concentrated in urban areas. It is expected that the population in cities in 2050 will be 6 billion 

(70% of the world population) (Jin et al. 2014). To face the challenges of the future is necessary 

the rational use of resources. Therefore, the cities have an important challenge in the management 
of resources. In this ambit, the cities adopt policies for reducing the use of resources. These 

policies are grouped into the current of smart cities (Perera et al., 2013) (Hancke, Silva and 
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Hancke, 2012) (Chourabi et al., 2012). This concept has developed in recent years by different 

authors and institutions. According to the European Commission, "A smart city is a place 
where traditional networks and services are made more efficient with the use of digital solutions 

for the benefit of its inhabitants and business " (European Commission, 2019). Therefore, a smart 

city must have Information and Communication Technologies (ICT) solutions. The history of 

smart cities started in late 1960 in Los Ángeles using computational statistical analysis. With ICT 
improvement, more cities have developed plans to become smart cities in recent years. In this 

process, companies have an essential role. An example is Cisco Systems, which launched its 

Connected Urban Development program in partnership with San Francisco, Amsterdam, and 
Seoul with $25 million from the Clinton foundation in 2006. Therefore, the main purpose of a 

Smart City is to increase its sustainability through digitisation. It is essential to highlight that 

sustainability is not only from an environmental point of view. It includes human and economic 

factors. One of the purposes of smart cities is the increased quality of life of its citizens (Neirotti 
et al. 2014). Thus, daily problems must be solved or minimised like traffic, air and water pollution, 

excessive energy consumption, noise, and others. Finally, the cities have the challenge of 

managing the natural resources that are in their proximity and that the city uses to meet the needs 
of its inhabitants.  

One pillar of smart cities is the Internet of Things (IoT). The IoT is a type of WSN where 

different objects are connected to Internet. There are different definitions of IoT. However, the 
majority of authors agree that IoT is based on different objects (smartphones, headphones, 

washing machines, lamps, wearable devices, etc.) that are connected to Internet and can receive 

and send information (Berte, 2018).  

IoT devices can monitor many parameters of cities, improving citizens' quality of life and 
avoiding wasting resources (Jin et al. 2014). The usefulness of a smart WSN has been widely 

proven (Siregar et al., 2018). Many resources were used to develop different technological 

systems that allow rapid and safe control of the other media that affect cities, such as water 
channels, lakes, water purification, discharge control, air pollution, light pollution, e-health, 

traffic, and others. The use of sensors and the communication and monitoring of these are essential 

to control these environments. IoT is used in smart cities to monitor the environment and improve 
decision performance. Examples are the use of noise sensors to establish noise maps Liu et al. 

(2020), e-health devices to improve the health of the people (Rathee, Ahuja and Hailu, 2019), 

control of the quality of drinking water, control and prevention of forestal fires (Lloret et al. 2009), 

etc.  
The IoT devices have a microcontroller or microprocessor, which is in charge of obtaining 

the reading of the sensors and controlling their turn on. Microprocessors have more RAM, flash 

memory, and computing power than microcontrollers. However, microcontrollers are cheaper 
than microprocessors (Microsoft, 2021). The selection of one of them will depend on the 

calculation needs. IoT projects generally use microprocessors that send data to Internet, where a 

device with more power computation proceeds to perform the analysis. One problem with IoT 

devices is energy consumption. In some cases, these devices are powered by batteries. This 
implies that their energy consumption must be reduced to reduce energy costs. Different solutions 

are proposed to reduce the energy use of these devices (Mehmood et al. 2020). 

Smart cities are the future of urban development. However, nowadays, present important 
gaps that need to be solved.  

(I) Smart City requires a considerable investment of capital.  

(II) There is an increase in dependence on technological services and new technologies.  
(III) There are still groups that are reluctant to use new technologies or do not feel 

comfortable.  

(IV) An increase in housing prices prevents the young's access to housing.  

The integration of technologies in Smart cities can help to detect illegal dumps. This proves 
to be highly beneficial for the citizens, who have more available information, as well as better 
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services. The services for smart cities do not only benefit the population directly using an app but 

also provide energy efficiency and environmental management. Both factors affect the lives of the 
citizens, as well as the planet. A good smart city would be one that covers not only the citizens' 

primary necessities but also the environmental ones.  

As the world is becoming more and more technologically advanced, it is becoming more 

polluted as well. New products lead to new contaminants and more waste. The industrialisation 
of cities has always been associated with a higher pollution level. Human activities generate 

different types of waste, which can be classified into solids, liquids, and gases. The global trend 

is to increase productivity to move the economy forward. Many times, the underlying 
consequence of said development is a deterioration of the environmental quality (Cao, You and 

Liu, 2017). This is a price which has been paid in the past. Nevertheless, it is one we should strive 

towards never paying again. Not if we want the world to be as it has been so far. 

1.5.  Objectives and hypothesis. 

This subsection presents the hypothesis that we use to develop the PhD thesis, the objectives, 

and the requirements of the system that we develop. 

1.5.1. Hypothesis. 

This dissertation starts from the point that it is possible to detect the presence of a PI in the 

sewerage or spillway with low-cost techniques and detect pollution in water bodies that can 

receive wastewater. The purpose is to prevent possible damage to the WWTP and the 
environment. In addition, detect the culprits to take the appropriate legal measures. 

In Figure 1.1, we show a simulation of the evolution of the concentration of a pollutant in 

wastewater (solids) and what happens in the case of two spills. The pollutant concentration at 
night is less than during the day. It is from 5:00 hours that you begin to see a rise in the 

concentration of pollutants until noon. In midday, there is a small drop in the pollutant 

concentration until mid-afternoon. From this time, there is a constant drop until the next day. In 
the case of a discharge, this can be more, less, or the same concentration as the wastewater. With 

the monitoring of different parameters, the probability that the discharge concentration is the same 

as wastewater is reduced. The sensor will detect a change in wastewater concentrations in the 

other two cases. To discard the change in the concentration due to daily fluctuations, the values 
must be sent to a central node where the values will be compared with the historical series and 

the values of other nearby sensors. With this information, it is possible to detect the presence of 

a spill. 
In the case of a water body, the concentration of a substance is more constant. However, with 

an illicit discharge, overflow, or other problem, a change in the concentration of a pollutant is 

produced. Therefore, with a sensor system capable of continuous monitoring, we will be able to 
detect it. 
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Figure 1.1. Simulation of solids' evolution throughout the day and the effect of two 

discharges. 

1.5.2. Research goals 

In this subsection, we present the objectives of the PhD. The main objective is to develop a 

WSN to detect PIs in sewerage and water bodies. The goals that have been accomplished are 
shown following: 

• Selecting the water parameters present in PIs can be monitored with our system. 

o Determine the main pollutants that are present in PI. 

o Reviewing the techniques used to monitor the pollutants that are in PI. 
o Selecting the techniques that can be used in our system. 

o Searching commercial sensors that accomplish the requisites of our proposal. 

• Developing the sensors capable of measuring the water parameters, and there are no viable 

commercial options. 

o Test the different configurations of the prototype sensor. 
o Obtain the mathematical equations related to pollutant concentration with the 

sensor's response. 

o Verify the sensor with measures not included in the calibration. 

• Creating an algorithm to generate the alarms in case a PI is located in a pipe or water 
body. 

o Develop the algorithm for nodes located in water bodies. 

o Develop the algorithm for nodes located in storm sewerage. 
o Develop the algorithm for nodes located in combined or wastewater sewerage. 

Besides, some of the developed sensors can be implemented in other environments. Thus, 

some applications of the sensors in other environments, such as agriculture and WWTP, are 

studied. 

1.5.3. Requirements of system. 

In this section, we analyse the characteristics that should have the sensors in the WSNs 

proposed for monitoring the sewerage. Some requirements are similar to the ones presented in 

other articles. Like the ones presented by (Parra, 2018a) for aquaculture (Sha, Shi and Watkins, 
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2006) for fire rescue for transportation systems (Khanafer, Guennoun and Mouftah, 2009) and Li 

et al. (2017) for wastewater. The different characteristics are: 

I. Low cost. An essential parameter for the development of a WSN is the budget. The 

sewerage in the cities and industrial parks has many kilometres. If we pretend to detect 

PI, we should use many sensor nodes. It should be at a low cost to ensure the system's 

economic viability.  

II. Not having moving parts or being that easily clogged. The wastewaters have many 

materials that can be introduced into the sensors. These materials include wet wipes, oils, 

food rest, etc. These substances cause problems of blockage in the pipes. Significantly, 

the wet wipes cause critical blockage in the pipelines of the cities. If our system has 

mobility or small diameter parts where the water runs, these will clog and stop working. 

These parts are widespread in the analysers when the system collects a water sample and 

adds reaction agents. For this reason, using analysers is not recommended in monitoring 

sewerage on a significant scale. In addition, corrosion is another problem in the 

underwater system. Corrosion can cause the break of moving parts.  

III. Energy consumption. The sensor nodes are in the sewerage. In many cases, we need uses 

of battery because we do not have access to the electrical grid or we cannot use alternative 

energy fonts (solar panels, wind power, etc.). The battery is used for functioning the 

sensor and sending the data. Many protocols have been developed for reducing the 

sensors' energy use. Send the data in an alarm situation and one or two times a day. In a 

system for the sewerage, we recommend that sensors send an alarm in abnormal situation 

when the user demand information or at determined moments in the day. For this reason, 

the nodes must have a save system. 

IV. Fault tolerance. The WSN can be composed of different sensor nodes. To save energy, 

the motes do not send the information directly to the data manager but to a central node 

that sends the data. In case of failure, the network must be ready to solve it (Parra, 2018b). 
Depending on the distance between sensors, the sensor nodes send the data directly from 

the cloud or a central sensor node to the cloud. 

V. Real-time monitoring. The dumping can be produced anytime (especially in untimely 

hours). Therefore, the sensors must function every time. The time between one reading 

and another cannot be high. The user should determine this interval. When the interval is 

smaller, the probability of detecting dumping increases. However, energy demands 

increase. If we increase, the interval of measuring the opposite happens. 

  



Chapter 1. Introduction 

 

 

 
11 

1.6. Precedents. 

The idea of creating a system to detect pollutant incidents in sewerage started in 2016. That 

year, I started my external practices in the WWTP of Gandia (Spain). In the period that I was in 

the WWTP, different pollutant incidents affected the water purification process. After verifying 

that the only solution was to file a complaint and that it was a problem that affected more areas, 

the PhD thesis project was started with my two directors. 

To develop a system to monitor the sewerage, it is necessary to use low cost sensors. On the 

one hand, the director Jaime Lloret is the director of the PhD "Deployment of Efficient Wireless 

Sensor Nodes for Monitoring in Rural, Indoor and Underwater Environments", where the PhD 

student developed low cost sensors to monitor the environment (Sendra Compte, 2013). Next to 

this work, a PhD thesis about using low-cost sensors to monitor aquaculture farms was defended 

in 2018 (Parra, 2018a). On the other hand, the director Jesus Mengual is an expert in the water 

cycle with different publications about reducing phosphorus in the water. The two directors have 

differentiated professional profiles, which causes some positive synergies between both directors 

for the development of the dissertation. 

In this PhD thesis, different sensors have been developed to detect pollutant incidents in the 

sewerage and the water bodies susceptible to receiving the dumping of crude or purified 

wastewater. However, the sensors developed can be used in other environments and applications, 

as demonstrated in the publication of other works unrelated to this PhD thesis. 

The following projects and grants partially supported this dissertation: 

• “Generalitat Valenciana” through the “Subvencions per a la contractació de 

personal investigador de caràcter predoctoral (ACIF) (Convocatoria 2017)”. Grant 

number ACIF/2017/069 

• “Ministerio de Educación, Cultura y Deporte”, through the “Ayudas para 

contratación predoctoral de Formación del Profesorado Universitario FPU (Convocatoria 

2016)”. Grant number FPU16/05540. 

• European Union through the "ERANETMED (Euromediterranean Cooperation 

through ERANET joint activities and beyond)" project ERANETMED3-227 

SMARTWATIR 

• “Ministerio de ciencia e Innovación” Red Heterogenea Inteligente de Sensores 

Inalambricos para Monitorizar y Estimar el Contenido de Resina de Cistus 

Ladanifer (PID2020-114467RR-C33) 

1.7. Structure. 

In this subsection, we show the structure of the thesis. 

Chapter 2 presents the wastewater cycle, the main pollutants of wastewater, and the state of 

art of monitoring the different pollutants of wastewater. It is essential to know the techniques used 

to monitor the pollutants to adapt them to a low-cost system if there is no low-cost technology for 

the said parameter. First, we study the technology used nowadays in sewerage. Then we analyze 

the parameters that can be measured, such as water level, temperature, nutrients, solids, oil, etc. 

Once we have analyzed and determined the parameters that we want our system to have, we will 

begin to develop the sensors that must be necessary. 

In Chapter 3, we analyze the use of coil inductivity sensors to determine water conductivity. 

First, it is essential to determine if this type of sensor is affected by other parameters apart from 
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conductivity. Thus, we test using inductive coils to monitor other parameters. We determine the 

effect of solid concentration and water level on the induced voltage of this type of sensor.  

In Chapter 4, we analyze the turbidity sensor. We develop two different turbidimeters. One 

is used in water bodies, and the other is used for sewerage. On the one hand, The turbidimeter to 

water bodies can determine turbidity and differentiate between turbidity caused by solids and 

algae. This allows us to determine if we are in a body of water that can suffer eutrophication. On 

the other hand, for the turbidimeter to sewerage, we study the effect of the water height in the 

measure of turbidity in our sensor.  

Then, in chapter 5, we show a new oil sensor based on the optical properties of the oil. For 

the experiments, we use oil used. In the first experiment, we use used oil from a gasoline engine, 

and the sensor is located down the sample with oil. In the second experiment, we test with two 

oils obtained from a diesel and a gasoline engine. The used oil is black if it comes from a diesel 

engine instead. If it comes from a gasoline engine is black with a brown tonality. Our experiments 

demonstrated that it could be differentiated between the used oil of a gasoline engine and to diesel 

engine. In addition, the concentration can be quantified in the gasoline engine's used oil. 

In Chapter 6, tests with used oil and inductive sensors in a pipe are shown. We install the 

sensors of oil and conductivity in a pipe to check the sensor function. In addition, we check the 

use of water level sensors to detect problems in sewerage. We use simulation software to 

determine if the water level sensor is valid. 

In Chapter 7, we study the different existing topologies to determine the best one for our 

system. In addition, we have also studied the cost of the sensor nodes. 

Chapter 8 presents other work that we developed in the course of this dissertation and that 

may be of interest to other fields of study. These works are (I) the use of inductive sensors to 

monitor the moisture in the soil, (II) the use of an optical sensor to detect dyed fuels (low tax) in 

particulars vehicles, (III) a proposal to combine absorption and WSN to reduce the pollution in 

irrigation channels and (IV) the use of oil sensor in irrigation channels. 

Finally, Chapter 9 presents the conclusions, the publications derived from this thesis, the 

future work, and the fulfilment of the objectives and difficulties found during the process.
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This dissertation proposes a system to detect PIs in sewerage and the effects of wastewater 

overflows in the environment. To develop our system, first, we need to know the theoretical 

framework of the current systems proposed for sewerage, the pollutants present in wastewater, 

and the existing sensors we can use for our proposed system. 

This chapter, first explains the wastewater cycle in section 2.1. The main pollutants present 

in sewerage are shown in section 2.2. Section 2.3 analyses the sensors and systems used in 

sewerage and water bodies. Finally, section 2.4 presents a discussion and our main conclusions 

about the already existing systems and sensors. We also determine which sensors or methods are 

helpful to our proposal.  

2.1 Wastewater cycle. 

Wastewater is generated in houses, commercial locals, and industries and transported to the 

WWTP through sewerage networks. The sewerage networks have two main functions preventing 

flooding by rainwater in urban areas and the connection between human buildings and WWTP. 

The wastewater treatment capacity in a WWTP is limited and usually cannot be increased easily. 

When a WWTP is built, this considers the future volume increases in wastewater. Simulation 

software allows the calculation of the maximum volume and quality of wastewater that WWTP 

can treat. Mikosz, (2014) used a computer simulation to estimate the maximum pollution load a 

WWTP could treat. This was done calculating the relationship between required biomass 

concentration and Chemical Oxygen Demand (COD) load as a function of process temperature. 

Depending on the temperature range, a range of biomass volumes which could be treated was 

calculated. For this reason, the presence of PIs are harmful to the WWTP as they can exceed the 

design capacity and cause a loss of effluent quality. 

Figure 2.1 represents the connection between the neighbourhood and the WWTP. The main 

problems in the sewerage are overflow, the presence of illegal spills, PIs, and blockages. In the 

following subsections, we analyse the overflow in the sewerage and the presence of illicit spills. 

A pollution increase of wastewater can produce that WWTP cannot achieve the quality objectives 

in the effluent. In addition, the presence of toxins can affect the WWTP's biological treatments. 

In the worst case, the toxins can kill the bioreactor performing the WWTP unable to function 

properly for months. 

 

 
Figure 2.1 Scheme of a sewerage network and WWTP. 
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The wastewater that reaches the WWTPs remains in these plants between 24 and 48 hours. 
They must receive treatments for taking advantage of and recovering these waters. Treatments 
receiving wastewater depend on the size of the WWTP. There are usually two lines, the water line 
and the sludge line. On the one hand, the purpose of the sludge line is to treat the sludge obtained 
by decanting the wastewater in the primary and secondary sedimentation tanks. On the other hand, 
the water line's objective is reducing water pollution and can be divided into preliminary, primary, 
secondary, and tertiary treatments. Now, we describe the different processes used in the WWTPs 
to purify wastewater. Each WWTP is different in Figure 2.2, the schematic of a typical WWTP is 
presented. Therefore, not all the processes described here are present in all WWTPs. Preliminary 
treatments are used to protect the machinery of the WWTP and adequate the wastewater to the 
posterior treatments. The first pretreatment is screening. This is based on bars and sieves systems 
to protect the pipes and machinery from the impact of great solids (such as rocks) and abrasion. 
After the bars and sieves are located the grit removal. Grit removal eliminates the sands and other 
big solids that were not previously removed. In addition, if the grit removal is big enough 
(hydraulic retention times greater than 20 minutes), the oil and fats can be removed from the 
wastewater. Finally, as the wastewater volume entry in the WWTP is not uniform, some WWTPs 
have an equalization tank to store excess water during rush hours. This allows better control of the 
processes that are carried out below. When preliminary treatment is finished, the primary treatment 
is performed. In primary treatment, the wastewater is stored in large tanks called clarifiers (primary 
clarifiers). In clarifiers, the separation between solids and water is produced. In these tanks, solids 
settle to the bottom, from where they will be transported to the sludge line. To improve the 
sedimentation, some WWTP add chemicals to the water (flocculants and coagulants) that group 
the solids causing them to increase their sedimentability. Chemical addition can be produced before 
or after the primary and secondary clarifier or in a clarifier at the final water line. At the end of the 
primary clarifier, start the secondary treatment. This treatment consists of the use of 
microorganisms to reduce pollution. The wastewater passes to large rafts (bioreactors) populated 
by different microorganisms that feed organic remains and nutrients. The organisms can be mixed 
in the water or fixed on a surface. When organisms are mixed with wastewater, the water is 
constantly mixed to prevent the sedimentation of the solids. Biological treatment can be anoxic, 
anaerobic, aerobic, or a combination of them. After the bioreactor, there are clarifiers or a filtration 
system. The filters are usually found after the clarifiers and are often used to reuse the water in 
agriculture, and industries or spill in sensible areas. A part of the sludge obtained at the bottom of 
secondary clarifiers is recirculated to the bioreactor to maintain the concentration of solids 
(microorganisms). The tertiary treatments consist of sand filters, chemical adsorption, or other 
processes to increase the water's quality. Finally, the water can be disinfected by ultraviolet light 
(UV) or chlorine. With all these processes, water is obtained to be suitable for discharge into the 
environment, making possible to reuse it in agriculture or industrial processes. About the sludge 
line, the sludge extracted from the clarifiers goes to the sludge line. The sludges have a significant 
percentage of biodegradable solids. Before the sludge leaves the WWTP, the sludge must 
stabilisation. The stabilisation can be biological or chemical. Biological stabilisation uses aerobic 
or anaerobic reactors for it. In the anaerobic process, the sludge is thickened before the anaerobic 
reactor. In the aerobic process, the thickening process can be produced before or after the aerobic 
reactor or does not exist. Chemical stabilisation uses chemicals such as Calcium oxide (CaO) to 
increase the pH of sludge and inert it. Finally, there are mechanical dehydration or drying eras (in 
small WWTP). The dehydrated sludge can be used on farms as fertiliser, compost, industry 
process, etc. (EPA, 2004), (Oconomowoc, 2012), (Cole-Parmer, 2021), (Ferrer Polo and Seco 
Torrecillas, 2007), (Hegab et al., 2018). 
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Figure 2.2. Schematic diagram of domestic wastewater treatment process. 

2.2 Pollution of wastewater 

The main domestic sewage pollutants are solids, organic matter, nutrients, oils and grease, 

acidity, microorganism, emergent contaminants, and chlorides (Marcos Von Sperling, 2007) 
(Barnstable County, 2015).  

We can divide the solids between suspended or dissolved solids and volatile or not volatile 

solids. Volatile solids are considered organic compounds, and not volatile solids are mineral 

compounds, inert or not oxidisable matter. The organic matter is divided into biodegradable and 
no biodegradable. COD and Biological Oxygen Demand (BOD) are used to measure organic 

matter. The COD is the quantity of oxygen required to oxidise all the organic matter. The BOD 

is the quantity of oxygen that requires the organism to degrade the biodegradable organic matter. 
The difference between volatile solids and COD is the units. Volatile solids are expressed as 

mg/L, and COD is expressed as mgO2/l. The solids have effects on WWTP and water bodies. In 

WWTP, 50% to 70% of solids are sedimented in the primary decanted. The decanted solids 

(sludge) are digested in aerobic or anaerobic within the sludge stabilisation process (in some 
plants, there is chemical stabilisation). The solids with no sediment arrive at the biological reactor 

and are digested if they are biodegradable. However, if the solids are not biodegradable, these 

will escape through the plant's effluent or sediment in the clarifiers. In water bodies, the presence 
of solids generates a turbidity increase. This increase causes a reduction of light that arrives at the 

bottom. That causes the death of vegetation. This supposes a decrease in the oxygen of the water 

for two reasons: (I) plants no longer generate oxygen, and (II) the aerobic digestion of dead plants. 
The increase in solids also affects animals. The solids can cause damage to their tissues in addition 

to making it difficult to hunt other species due to loss of vision. 

Organic matter will affect processes depending on whether it is in particulate or dissolved 

form. In the case of particulate organic matter, this involved the process that we described as we 
describe in the solids. The biodegradable organic matter in aerobic digestion (bioreactor and 

aerobic sludge stabilisation) increases oxygen demand. If the WWTP cannot provide enough 

oxygen, the reactors can enter anoxic or anaerobic conditions, which can cause problems with 
purifying performance, sedimentation in secondary clarifiers, odours, etc. In addition, in the 

bioreactors, even if enough oxygen is supplied, sedimentation problems can appear by the 

proliferation of filamentous bacteria. In anaerobic reactors, the effect of an increase in 
biodegradable organic matter is not noteworthy. As long as its design capacity is not exceeded 

and the relationship between nutrients and organic matter is not modified. Currently, some 

WWTP organic pollutants are injected into the anaerobic reactor as a source of extra income for 

the plant. In water bodies, organic matter can cause anoxia or anaerobic processes in the water or 
the sediments. 

Like organic matter, nutrients can be in particulate or dissolved form. The presence of 

organic nitrogen, ammonia, and ammonium Total Kjeldahl Nitrogen (TKN) increases the oxygen 

demand in aerobic digestion in WWTP and water bodies, because TKN is oxidised by the 

microorganisms and transformed into nitrate and nitrite (to a lesser extent) by the nitrification 

process. The nitrate and nitrite cause the rising sludge by forming nitrogen gas in the lower parts 
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of the WWTP clarifiers. Another effect of WWTP is the contamination of the anaerobic areas of 

the biological reactor. The phosphorus in the WWTP can unbalance biological processes in 

biological reactors, leading to unwanted microorganisms' appearance. In water bodies, the most 

critical problem of nutrients is the generation of eutrophication blooms that cause a reduction of 

biological diversity, anoxic and anaerobic conditions, the presence of toxins, etc. 

Nowadays, there are few studies about emerging pollutants' effects on WWTP. Deblonde, 

Cossu-Leguille and Hartemann, (2011) review the emerging pollutants in wastewater and show 

that most cases eliminate these between the influent and effluent of the WWTP. However, in some 

cases, such as Fenofibric acid, the concentration increases by 148 %. This indicates that these 

emerging contaminants interact with microorganisms and therefore can affect the plant's 

performance. In the water bodies, the presence of emergent pollutants is associated with maturing 

problems in animals, the birth of more males than females (and vice versa) for certain species, the 

intoxication of the waters due to pesticides, etc. 

Finally, heavy metals are substances that are toxic to the organism. The presence of these 

metals in WWTP and water bodies affects the development of living beings. In WWTPs, this 

means a reduction in contaminant removal performance. In water bodies, it implies a loss of 

biodiversity, in addition to the fact that these metals are introduced into food chains, affecting the 

health of the nearby ecosystem. 

The purification of wastewater is produced in WWTP. The most critical process in the 

depuration is in the biological reactors. The typical performance of an active sludge is 97 ± 1% 

for BOD, 93 ± 1% for COD, and 24 ± 7% for nitrogen (Ignatev and Tuhkanen, 2019). The 

biological removal of nitrogen in the active sludge increases the elimination by 85%. However, 

other systems, such as Anammox or denitrification after the secondary clarifier, can increase 

nitrogen elimination (McCarty, 2018). However, these systems are not common in Urban 

Wastewater Treatment Plant (UWWTP). The elimination of solids depends on the technology 

used. With the use of secondary clarifiers, the performance is 94%± 2% in the elimination of 

solids regarding an average concentration of 27 mg/L (Hegazy and Gawad, 2016). The option of 

using filters reduces the solid concentration in the effluent to values near 5 mg/L. Another nutrient 

is phosphorus. The concentration of this can be reduced with the use of biological removal. 

However, this reduction is not enough to accomplish the discharge values in sensitive areas. The 

use of physical chemical treatment is needed. The performance of these depends on the 

components of the water, the use of filters in the water line, and the chemicals used. Another 

critical group of pollutants in WWTP is heavy metals. The microorganism in the bioreactor and 

physical chemical treatments eliminate these compounds from the water line. These are 

accumulated in the sludge being able to cause the mud cannot be used in the fields. 

However, these performances in eliminating the pollution and the WWTP effluents can have 

adverse effects (Pereda et al. 2020). The presence of high levels of nutrients may cause the 

eutrophication of the water (Preisner, Neverova-Dziopak and Kowalewski, 2020) or affect the 

water's biodiversity. Discharging hazardous substances and illicit connections adversely affects 

the WWTP and the water bodies. Nhapi and Tirivarombo, (2004) determined that the discharge 

of untreated water increases nutrient levels in the Marimba River, Zimbabwe. Another example 

is in the corals. Wear and Thurber (2015) studied the effect of the effluent of WWTP in the coral. 

They observed that the presence of nutrients, endocrine disrupters, solids, toxins, heavy metals, 

and the reduction of salinity due to the purified wastewater is a cause of the decline of coral reefs. 

Some techniques can be used to reduce the effect of wastewater as bioremediation by 

vegetated drainage ditches (Nsenga Kumwimba et al. 2018), the use of microorganisms (bacteria, 

algae, fungi) (Saeed et al. 2022), or the use of artificial wetlands (Martín et al. 2020). 

Bioremediation is a helpful tool to prevent damage to the environment produced by purified 

wastewater. However, improving the WWTP by reducing PI effects is more interesting than 

pollution remediation. In addition, bioremediation needs much space and produces biological 

waste that may be polluted.  
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2.3 Monitoring in sewerage and water bodies. 

This section first analyses the different sewerage sensors to detect PIs. After that, we analyse 

the different technologies in the sensor and laboratory to determine the concentration of pollutants 

in sewage and other parameters that can be used to detect PIs and overflows in sewerage. 

In the environment, the use of sensors is widespread. Usually, the systems used in the 

environment are based on one or more sensors to monitor water concentration and parameters. 

Siregar (2018) proved the need of a low-cost smart environment system to analyse in real-time the 

wastewater quality. They developed a WSN to detect changes in pH, conductivity, temperature, 

and dissolved oxygen. Besides, it was equipped with a notification feature that would send an alarm 

when the parameters exited specified thresholds. Faustine et al. (2014) used pH, conductivity, 

temperature, and oxygen demand sensors. The conductivity sensor is based on the salt bridge, the 

pH in an Ion-Selective Electrode (ISE), and the oxygen demand in the electrocatalytic method. 

They used an Arduino to monitor Lake Victoria with a low cost system and checked that 1250 

US $ could monitor the lake versus the 3400 US $ commercial sensors. Parameswari and Moses 

(2019) used IoT to create a WSN endowed with sensing nodes to monitor water quality. They 

implemented a system to alert the end-user when the pollution levels were too high using SMS. 

Similarly, Simitha and Subodh Raj, (2019) created an IoT-based WSN system to monitor water 

quality in a Smart City context. Using a LoRa module based on the LoRaWAN protocol, they 

were able to create a low-cost, low-power and long-range approach to the issue at hand. 

2.3.1 Current systems for sewerage. 

In this section, we show different works related to monitor sewerage. Traditionally, PIs are 

detected with visual inspection in the WWTP or the spillways. This has changed in the last years. 

Different monitoring technologies have been developed and implemented. Nowadays, the use of 

continuous monitoring techniques, laboratory analyses, and inspections are used to detect the 

presence of anomalies in sewerage. The systems used in the sewerage should be different if it is 

located in a combined or separate sewerage (storm or wastewater sewerage). 

One alternative to detect illicit discharges in storm sewerage is visual recognition in 

combination with other techniques. One technique that does not need laboratory analyses is using 

trained dogs. These dogs can detect the presence of wastewater mixed with stormwater. Van De 

Werfhorst et al. (2014) used 2 trained dogs that were taken to the manhole covers where the 

presence of wastewater was suspected. The results showed that one dog detects 70% of the 

samples, while another detects 100% of samples with human waste. In another study, Berounsky, 

Travers and Reynolds, (2018) determined that canines can detect concentrations of bacteria less 

than 10cfm/100 ml. Then, using trained dogs is an excellent alternative to seeing illicit 

connections and the presence of wastewater in storm sewerage in urban areas. The use of trained 

dogs cannot be possible in some locations. For this, the use of an e-nose can be a good option. 

Moufid et al. (2021) used an electronic nose and a voltammetric electronic tongue to distinguish 

between clean water and wastewater. They tested it with 7 samples of water obtained from 

different points of the Oued Fez and Sebou rivers (Morocco), the inlet, and the effluent of WWTP. 

The two systems showed excellent performance in distinguishing the presence of wastewater. The 

problem with using an e-nose is that these are very complex. Nowadays, it is tough for the location 

of many e-noses in the sewerage to detect illicit discharge. However, the e-noses can be used in 

each case to detect the presence of pollutant incidents in certain places. The e-nose and e-tongue 

do not detect certain pollutants, so laboratory analysis should be used. Examples of laboratory 

analysis are presented by Irvine et al. (2011). They developed a program to detect and eliminate 

illicit discharge in storm sewerage. First, they performed a visual inspection in dry conditions to 

detect water in the pipes. If water is detected, a sample is taken for analysis in the laboratory. In 

the laboratory, different low-cost techniques were performed. They determine that the measure of 

Escherichia coli, ammonia, nitrate, fluoride, total chlorine, potassium, detergents, phosphorus, 
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and turbidity successfully tracks the illicit discharge and the source. Yin et al. (2019) investigated 

the use of 52 chemical markers in order to identify domestic and industrial flows entering the 

storm drains. Sodium, potassium, chloride, acesulfame, clarithromycin, and isomalto-

oligosaccharide presented better results for masses of water coming from the toilet. Meanwhile, 

glycerol and theanine proved to work better for tracking water coming from other domestic uses. 

They proved the use of markers as a low-cost option to find misconnected wastewater entries. To 

prevent the formation of blockage, Rony et al. (2021) proposed an IoT system to control waste 

entry into channels to prevent it. The system uses an ESP32 microcontroller to send and store the 

data collected. For collecting the waste of wastewater (insoluble waste), they use two motors and 

different level sensors to control the water level to prevent overflows and control the amount of 

waste. The system can send an SMS about the overflows using a Global System for Mobile 

communications (GSM) module.  

For continuous monitoring, it is essential the use of sensors. The viability of a WSN network 

in sewage is demonstrated by Abbas et al. (2017). They studied a smart sewerage detection system 
on the Campus of Lille University (France). The system included turbidity, level, and velocity 

water sensors connected to a data logger with GSM/GPRS connection. By comparing the real 

values obtained by the sensors and the values obtained by modelling the sewerage, the abnormal 

and faults situations can be detected. While the system was implemented, it detected the entry of 
stormwater into the sanitary sewer, and the entry of infiltration water into the sewerage, which is 

indicative of the poor state of the sewer system. In a WSN, many parameters can be monitored. 

One of the parameters more studied is temperature. Hoes et al. (2009) investigated the use of 
fibre-optic Distributed Temperature Sensing (DTS) for detecting illicit connections in stormwater 

sewerage. They located the sensor in two storm sewerages (Korendijk and Groningen 

(Netherlands)). There was evidence of illicit connections in these storm sewerages, but the 

location was unknown. The spatial resolution was 2 m, and the measurement interval was 30 s. 
The observed temperature values showed that the storm sewerage had a temperature between 5 

and 20 ºC with low daily variation. However, the wastewater flow of houses or industries had a 

higher temperature than storm sewerage. The temperature difference generated warm plumes that 
the optical fibre could detect. The authors showed that there are increases or reductions in the 

temperature in the case of stormwater runoff. For this reason, in wet conditions, the system cannot 

detect the presence of illicit discharges. However, the system can detect the presence of illicit 
connections in dry conditions. In another work, Nienhuis et al. (2013) proposed the use of fibre-

optic cables as temperature sensors to detect illicit connections in storm sewerage. They located 

three sensors in the bottom and top of the sewerage and floating in the water. With the variation 

in the temperature, they detected illicit connections. Of the three positions tested, the cable in the 
bottom of the pipe presents deficiencies in detecting spills. However, the other two work well. In 

addition, the distance between the connection and the sensing point has an essential effect on the 

detection. Another system based on optical fibre is presented by Vosse (2013). They determined 
the noise levels in the measurements of the temperature at different distances for 2 hours. Then, 

they compared the temperature of the water with the value of the noise. The sensor sends an alarm 

if there is an important difference between the measured temperature and the noise. The 
measurements were elaborated twice to improve the performance of the sensor. With this system, 

the authors have detected 99 of 100 artificial spills. Temperature sensors are useful for monitoring 

illicit connections in the sewerage.  

Another parameter that can be controlled in sewerage is the water level. Water level sensors 
can be helpful to detect blockage in sewerage. See et al. (2009) developed a low-cost WSN for 

detecting blockages in sewerage based on acoustic sensors in manholes. The collected data were 

categorised into three categories, low, normal, and high, according to the water level. The 
different sensor nodes are connected with the protocol Zigbee to the data gathered node. In this 

study, the maximum distance that sensor nodes and data gathered can be connected was 66.5 m. 

Granlund and Brännström (2013) tested the use of water level sensors to monitor the presence of 

abnormal events in sewerage. They located an ultrasonic level sensor above 500 mm of the water 
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level and a GSM device to send the data gathered. They tested that the system could be extended 

to other places to monitor the sewerage. In another work, Wahyuni, Wijaya and Nurmalasari 
(2014) used an ATMega 128 as a microcontroller and monitored the level, velocity, and rainfall 

in combined sewerage. The different sensor nodes are connected by a radio frequency module 

(XBeeTM) if they are close or GSM if the connection is not possible. The topology used was bus 

when the information of the sensor nodes. The network was organised in a Bus topology. In this 
case, the information of the sensor nodes is sent to a gateway that transmits all the information to 

a database server. This database is connected with a Geographical Information System (GIS) to 

visualise the drainage information. 
Until now, we have presented different works to monitor sewerage with temperature and 

water level sensors. Using these sensors may not be enough to detect PI. Therefore, it is necessary 

to monitor other parameters. Liu et al. (2014) studied the parameters that can be used to detect 

PIs in sewerage. They measure temperature, pH, turbidity, conductivity, oxidation reduction 
potential (ORP), UV- 254 (organic matter), nitrate-nitrogen, and phosphate with commercial 

sensors. The sensors were in a pipe into which water was pumped from a tank without pollutants. 

This water is internally recirculated and introduced with another pump to the pollutants. 
Glyphosate, lead, atrazine, chromium, and cadmium were used as pollutants. The sensors used 

are to monitor other parameters that the introduced into the pipe. However, the detection method 

is based on the response of the different sensors to the pollution presence (virtual sensing). The 
correlation between the sensor response and the pollution is evaluated using the Pearson 

correlation. The researchers concluded that the different pollutants provoke a reaction in the 

sensors. Therefore, various sensors and correlation coefficients can be used to identify and 

quantify the different pollutants. The advantage of this versus using only an ideal sensor for each 
pollutant is that it prevents false positives or negatives. Finally, the time to detect a pollutant 

dumped was 9 minutes after dumping. In a posterior work, the authors propose an algorithm to 

improve the detection of PIs (Liu, Smith and Che, 2015). They used the same parameters and 
Pearson correlation, but they added the use of Euclidean distance. To calculate the Euclidean 

distance, a matrix with the correlation index of the different sensor responses is created in pairs 

(for example, pH and turbidity). The matrix values are converted to a vector with the correlation 
values and compared with the values to the point of origin. An alarm is generated if the value 

obtained is higher than the threshold alarm. The system presents a detection index of 95% of 

contamination events and a generation of 2% of false alarms. In another test, Hauser et al. (2019) 

used pH, chloride, and conductivity electrodes to detect PI. To simulate the PI, the authors 
performed 4 samples with values of pH, conductivity, and ions remarkably different from the 

normal values in residual water. These mixed samples were diluted up to 50 times in a static 

wastewater environment. The results showed that these electrodes could detect an illegal 
discharge 10 meters downstream of the discharges point but could not characterise the 

composition and the source of pollutant (illegal waste, household chemicals, or pipe cleaner). 

Buras and Solano Donado, (2021) study the use of machine learning to location of PI sources. 

They used pH and conductivity sensors to determine the presence of a PI and its localization. 
They observed the change of pH and conductivity along the time and observed minor oscillation 

of them than in the case of a PI. When a PI is produced, the pH and conductivity values rapidly 

change. The distance can be calculated with the XGBoost algorithm and the peak size. The worst 
location error of the proposed system is 14.2 m in a range of 210 m, and the mean is 6.3 m. Other 

authors reduce the number of parameters to detect abnormal values. Li et al. (2017) propose 

monitoring 4 parameters (temperature, pH, conductivity, and turbidity). They used a pump to 
capture sewerage water to the sensing unit. The sensing unit has a data processing and 

communication unit to transfer the data. Its system was tested for 3 years in different sewerages. 

Due to the presence of solids and the generation of biofilms in the system, the authors studied the 

use of a diameter channel in the sensing unit of 14 mm, with a current flow between 40 and 60 
l/min. They determined that the system is sustained for 12 months without blockage and 
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significant biofilm formations. Thanks to the system, different abnormal events related to illegal 

industrial discharges to the sewerage have been detected.  
We studied works that used sensors to monitor sewerage. The main parameters measured are 

turbidity, conductivity, temperature, organic matter, ORP, chloride, etc. In addition, other 

contaminants such as oil, nutrients or heavy metals are present in the sewerage. In the following 

subsections, we analyse the different technologies used to measure these contaminants to 
determine their application in sewerage. 

2.3.2  Related work on water level sensors. 

In this subsection, we analyse different works about water level sensors. The water level 

measure provides information about blockage in the pipes and overflows. There are various 
methods to measure the water level that are shown then. 

The electrical conductivity of the water can be used for evaluating the water level in an area 

or tank. Hernández-Nolasco; et al. (2016) developed a system for floods based on the electrical 
conductivity of the water. The system consists of a microcontroller Netduino Plus 2 to process 

and send the information. The sensing part consists of different open circuits that close when the 

water touches the two ends of the loop. The circuits consist of a copper wire in the base and 
secondary copper wires located at different heights. When any of the circuits closes, it sends the 

information to an access point and from this to a computer. The computer processes the 

information and sends an alarm to the smartphones of the population. Capacitive sensors are 

another alternative for measuring water levels. Reverter, Li and Meijer, (2007)) used a capacitive 
sensor for monitoring the water level in a metallic tank. The sensor has two electrodes, and one 

is insulated. The water level can be calculated due to the change in the difference between the 

dielectric value of air and water. Chetpattananondh et al. (2014) showed a low cost capacitive 
sensor for water level measurement in the range of 0 to 30 cm with a resolution of 0.2 cm. They 

used a comb electrode of 70–80 mm width, 300 mm height, and 1–2 mm spacing between each 

comb. According to the results, this sensor is highly sensitive. It presents good repeatability and 

low energy consumption. 
 In some cases, it is not possible to use the electrical properties of water to measure the water 

level. For this reason, some authors proposed alternative methods to measure the water level, such 

as acoustic sound, remote sensing, buoys, optical fibre properties, and light or acoustic reflection. 
Miček et al. (2016) proposed the measurement of the acoustic signal generated by the water flow 

with a microphone for measuring the water level. Michailovsky et al. (2012) studied the use of 

Satellite radar altimetry (obtained from the Earth and Planetary Remote Sensing Lab) for 
monitoring the surface water in the Zambezi River basin. The objective was to calculate the 

discharge of the rivers in the basin. They studied three scenarios (I) with an in situ rating curve 

available, (II) With one simultaneous field measurement of cross-section and discharge, and (III) 

with historical discharge data available. These scenarios have been compared with the values of 
the real discharge. They obtained that the first method has an error between 4.1 to 6.5 %, while 

the other methods have an error of 6.9 to 13.8 %. Another option to measure the water level is the 

use of buoys. Buoys are sensors that contain a floating element in the element measure. With a 
limit switch to generate alarms or other electronic devices to know the liquid level. Carlson et al. 

(2020) presented a buoy to monitor glaciers' meltdown and changes in glacial lakes' water levels. 

The system uses an Adafruit Feather M0 as a microcontroller, a Global Position System (GPS) to 
know the position of the buoy, an inertial motion unit sensor to see the acceleration of the buoy's 

position, batteries to power the system and solar panels to provide energy to batteries. These 

components are located in a waterproof box that floats. Their results showed the potential of the 

system to monitor water levels in glacial lakes. Nowadays, the methodology most used is the 
reflection of an acoustic or light wave. These sensors emit light or acoustic waves that are 

reflected in the surface of the water. However, these methods present problems when performing 

measurements in areas with high agitation or with the presence of waves. To solve this problem, 
Li et al. (2014) proposed the use of multiple-input multiple-output ultrasonic transducers. They 
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used four transmitting elements and four receiving elements. They achieved an improvement in 

measurement accuracy. Fisher (2013) proposed the measurement of water level with a system 
composed of an ultrasonic sensor, a temperature sensor, and a microcontroller. The ultrasonic 

sensor measures the distance from the sensor to the liquid surface. The temperature sensor is used 

to compensate for the change in acoustic waves. The use of optical fibre and the change of their 

characteristics with the presión of water is another alternative. Antonio-Lopez et al. (2011) 
showed an optical fibre sensor for measuring the water level. A multimode fibre without cladding 

was used as an optical fibre. The sensor works due to when the fibre is submerged in a liquid, and 

the refractive index changes depending on how submerged it is. They concluded that the more the 
fibre is submerged in water, the more the peak wavelength will be shifted to longer wavelengths. 

This type of sensor has the same gaps that we explained for capacitive sensors. Li et al. (2016) 

developed a sensor based on fibre optics formed by the integration of an asymmetrical fibre 

Mach– Zehnder interferometer with a Bragg fibre grating. The Bragg fibre is used to monitor 
temperature (this method is explained in section 2.3.3). This method is based on the change of 

light intensity of the core mode and dominant low-order cladding mode of the asymmetrical fibre 

Mach– Zehnder. This sensor was able to measure the liquid level (0 to 7.5 cm) and temperature. 
The sensors' resolution is 0.15 cm in liquid level and 1.01 ºC in temperature.  

2.3.3 Related work on temperature sensors. 

Temperature is a physical parameter indicating a system's hotness or coldness according to 

a scale. Different methods can be used to measure the temperature.  
Some authors proposed the use of optical fibre to monitor the temperature. Leal-Junior et al. 

(2018) proposed using a polymer optical fibre to control the temperature. This method is based 

on temperature modifies the mechanical properties of the fibre. One of the properties is Young's 
module. Therefore, in applying a force (stress) on the fibre, the behaviour of the fibre will be 

modified according to the temperature. The authors use a light source and measure the wavelength 

of reflected light in the optical fibre. The results show that the polymer optical fibre has a Relative 

Error (RE) below 2% and can operate until temperatures of 110 ºC. In another work, Gonzalez-
Reyna et al. (2015) tested fibre Gragg Grating to monitor the temperature. These fibres transmit 

specific wavelengths and reflect others. The authors use a laser diode with a central peak at 977 

nm as a light source and an optical spectrum analyser to analyse the wavelengths that cross the 
fibre. Their prototype ranges from 20 to 90 ºC. one advantage of using fibre is the possibility of 

developing DTS. Ukil, Braendle and Krippner (2012) review the different technologies used in 

this type of sensor. These sensors are based on in measure the light backscattering in optical fibre. 
The measure of backscattering is produced by 3 principles (I) Raman, (II) Brillouin, and (III) 

Rayleigh. Brillouin scattering is based on the scattering of a light wave in an acoustic wave due 

to the interaction with the acoustic phonons in a nonelastic medium. The frequency of the wave 

is related to temperature. Raman scattering is based on doped quartz with amorphous solid 
structure that provokes lattice oscillation with the temperature increase. The light interacts with 

the oscillation generated scattered light with a spectral shift related to the frequency of the lattice 

oscillation. The fibre imperfections generated that fibre can be modelled as a Fibre Bragg Grating. 
The Rayleigh dispersion is generated depending on the fibre's temperature and strain. 

Optical fibre to measure temperature is complex and requires expensive materials. Thus, 

other systems are used based on the change of their properties with temperature. The most 
common temperature sensor are resistance temperature detectors (RTD), thermocouples, and 

thermistors (Arman Kuzubasoglu and Kursun Bahadir, 2020). In another review, Parra et al. 

(2018a) determined that the technologies that can be used in water are RTD, thermocouples, 

semiconductors, capacitance thermometers, and Infrared thermography. A RTD is based on the 
resistance variation of a conductive element with the temperature. Some elements used in these 

sensors are platinum, copper, nickel, and molybdenum. Similar to the RTD, there is the 

thermistor. These types of resistance change the internal resistance according to the temperature. 
The difference between thermistors and RTD is the materials used. On the one hand, the RTD is 
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performed with pure materials. On the other hand, the thermistors combined polymeric and 

ceramic materials. Another technology is the thermocouple. The thermocouple is based on the 
joining of two metals that, according to the temperature, generate a voltage due to the Seebeck 

effect. The use of semiconductors is another alternative to monitor the temperature. 

Semiconductors are materials that are conductors or insulators depending on the electric or 

magnetic field, pressure, incident radiation or temperature. The semiconductors more used are 
transistors and diodes. In transistors and diodes, the voltage drop changes with the temperature. 

The capacitive temperature sensors are based on the change of the electric permittivity. The 

change in permittivity changes the amount of energy the capacitor can store. Finally, there is the 
infrared thermography technique. This is based on the radiation emitted by bodies according to 

their temperature (Ley de Stefan-Boltzmann). (Arman Kuzubasoglu and Kursun Bahadir, 2020), 

(Parra, 2018a). 

2.3.4 Related work on conductivity meters. 

Conductivity is defined as the resistance of an aqueous environment to carry an electric 

current. The conductivity of water is related to the concentration of salt, the kind of salt, and the 

temperature. The increase of the salts and temperature produces a conductivity increase. The 
standard methods present two methods for measuring water salinity, conductivity cells, and 

density method (Rice, Eaton and Baird, 2017). In addition, other methods have developed as the 

use of inductive sensors (Parra et al., 2015a), (Yin et al. 2008), (Völker, Eberheim and Pechstein, 

2008), and optical sensors (Zhao et al., 2009).  
The density method is based on sample density being proportional to the square of the 

vibration's period and density being proportional to salinity. This method places the sample and 

two solutions of known conductivity in different vibrated tubes. Conductivity is calculated by the 
period difference between the sample and the two calibrated solutions (Rice, Eaton, and Baird, 

2017). Optical sensors are another method to measure the conductivity in water. This method is 

based on the light's refraction when the water's salinity changes. Zhao et al. (2009) used optical 

sensors to measure conductivity. They determine that the measurement range is 0‰–45‰, and 
the measurement repeatability is better than ± 0.25 ‰. These methods are few used currently. 

Conductivity cells are the most common method to determine conductivity. It is based on 

using two or more electrodes and measuring the conductivity bridge between them. One problem 
of the conductivity cells is the polarization of water, to avoid it, three or more electrodes are used. 

Huang et al. (2011b) presented a sensor with seven electrodes and a temperature sensor to correct 

the measures. The precision of the sensor is 0.03 mS/cm in the range of 25 to 55 mS/cm. Ramos 
et al. (2005) developed and tested an in-situ conductivity sensor using cells for water quality 

monitoring. The sensor consists in three electrodes and two terminal devices. This system works 

by exchanging ions creating an electric field. When the water flow passes through this system, 

the electric field varies. Gong et al. (2008) propose a conductivity sensor based on two flat 
electrodes built on a PBC board. The author makes the measurements using KCI and milliQ water. 

This sensor works at 334kHz, obtaining significant variations in a wide range of salinity, suitable 

for marine environments. The conductivity cell can be performed with different low cost 
materials. Carminati and Luzzatto-Fegiz, (2017) used a micro-USB cable as the electrode, an 

Arduino Uno as microcontroller, an AD5933 to convert the signal, and different electronic 

elements to generate and receive the voltage. They determine that the sensor has a resolution of 
0.1% and a good adjustment between measuring a commercial conductivity in the range of 3.5 to 

0.5 S/m.  

Finally, induced conductivity sensors based on Faraday's law have been developed in the last 

few years. This law says that when a changing Electromagnetic Field (EF) interacts with an 

electrical circuit, it generates an induced electrical current. The inductive sensors to monitor the 

conductivity usually are based on two coils a Powered Coil (PC) and an Induced Coil (IC). Some 

examples of the use of inductive sensors are presented next. Wood et al. (2010) developed a sensor 

to measure the salinity in estuaries. The system is based on two coils to monitor the conductivity, 
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a temperature sensor (LM335), and a microcontroller. The two sensors are controlled by an 

Automatic Voltage Regulator microcontroller that saves the data in a flashcard and sends the data. 

The conductivity sensor is composed of two coils in solenoid form (a PC and an IC) covered with 

1-dodecanethiol to protect against corrosion. The temperature sensor is used to adjust the values 

of conductivity to salinity. The maximum measure of the sensor is 67 g/l of table salt. Parra (2014) 

proposes the development of a low-cost wireless conductivity sensor to control freshwater 

flooding of lakes and mangrove reserves. The sensor used is composed of a toroidal coil and a 

solenoid, so that the first is fed by a sinusoidal wave, and this induces the second. The results 

show a wide range of detection able to detect differences between small and large amounts of salt, 

typical of the sea. In a posterior work, Parra et al. (2015a) improved the sensor. They tested with 

18 prototypes, changing the PC and IC spire number, copper diameter, and coil diameter. They 

concluded that the best prototype has a copper diameter of 0.4 mm, a diameter of 25 mm, 40 

spires in PC and 80 spires in IC. The best prototype functions in the concentration of 0.58 mS/cm 

to 73 mS/cm. The sensibility of the sensor changes with the conductivity of the sample. The best 

sensibility is in the range of 0.6 to 5.5 mS/cm with a value of 0.1 mS/cm. The worst sensibility is 

in the range of 41.1 to 86.7 mS/cm, with a value of 0.6 mS/cm. Yin et al. (2008) used a noncontact 

coil sensor to monitor the water level and conductivity. They obtained errors of 2% for the level 

and 3% for conductivity. These sensors are submerged in water. A solution to avoid water contact 

with the sensor is the use of coupled Contactless Conductivity Detection (C4D). This is a new 

methodology currently being investigated. Huang et al. (2012) developed a new C4D sensor based 

on two electrodes. An AC powers one electrode, and the other electrode is induced. These 

electrodes are located on a pipe of 1.8 and 3.2 mm in diameter. The results show that the sensor 

can work between 0.1348 to 105.3 mS/cm with less than 3.5% RE. The main gap in the use of 

C4D is the diameter of the pipe. These proposals are good for small diameter applications but not 

for big diameters of pipes. Other inductive sensors can be used to monitor water conductivity. 

Kandur, Harms and Kern (2021) show a transformer type inductive conductivity sensor as a low-

cost sensor to measure the conductivity in different temperatures. They used two coils with a core 

of Mn-Zn encapsulated in resin. The conductivity samples tested are between 0 to 55 mS/cm. 

With the temperature increase, the sensor presents an error of +-3.5%. However, the temperature 

influence can be compensated, and that way, you obtain an error approximately of 0.9%. In 

another paper, Kang Hui et al. (2020) propose using an inductive sensor based on coils to measure 

the conductivity. The coils have a magnetic core of Mn-Zn ferrite and copper wires coiled around 

them. One coil is the PC the other is the sense coil. The range of the prototype is between 0 to 

350 mS/cm.  

2.3.5 Related work on sensors to measure total solids in water. 

Solids are one pollutant in wastewater and water bodies. That pollutant has three effects on 
water: (I) the loss of water transparency, (II) the transport of pollutants, and (III) physical damage 

to living beings. Solid concentration can indicate the presence of pollution problems in water. The 

standard method to control solid concentration in water is drying at 103-105 ºC. This method is 
based on placing a volume of water in a pre-dried container and known weight. The container is 

located in an oven. When the water is evaporated, the container is weighed and put back in the 

oven. The process is repeated until the difference between the container's mass (container+solids) 

measured at different times is less than 0.5 mg (Rice, Eaton and Baird, 2017). The problem with 
this technique is that it is not instantaneous. Dried does not allow continuous monitoring because 

the results take several hours. There is no other method to direct the quantification of solids. Thus 

some authors propose using turbidity sensors and empirical models that relate solids and turbidity 
(Gippel, 1995) (Downing, 2006). Nowadays, there are four methods for measuring turbidity: (I) 

Secchi disk, (II) acoustic sensors, (III) remote sensing, and (IV) optical sensors.  

The Secchi disk is based on immersing a disk in the water and keeps checking when it is not 
visible. The Secchi disk was used first by Angelo Secchi in 1865. For a long time, it was the most 
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used system for measuring turbidity. However, now it has been substituted for other techniques. 

Nevertheless, it is still used for surface water monitoring (Philippart et al., 2013). Bigham 
Stephens et al. (2015) collected individual Secchi disk measurements across the United States 

performed by volunteers and professionals in different water bodies. They inserted this data into 

a database for future research and water management. One problem with this technology is that it 

is subjective since the person who performs the methodology sees or stops seeing the disk. 
Another method to determine the concentration of solids is presented by Pavanelli and Bigi, 

(2005). They used an Imhoff cone to determine the concentration of solids in an indirect way. 

They compared the use of the cone with the nephelometer and concluded that the use of an Imhoff 
cone has a good correlation with the total solids. They determined that the use of a cone is better 

than a nephelometer, especially in cases with high concentrations of solids, because it does not 

need dilutions 

The alternatives to the Secchi disk are acoustic and optical turbidity sensors. First, we analyse 
the acoustic sensors. Acoustic sensors are based on the backscatter of the acoustic waves when 

colliding with solids. Chanson, Takeuchi and Trevethan (2008) used an acoustic sensor for 

monitoring the solids in a small subtropical estuary of Eastern Australia. They used a microADV 
(16 MHz) system to generate the acoustic waves and a YSI™ 6600 probe to check the function 

of the acoustic sensor. The samples were performed with water from the estuary and solids 

collected on the stream bed and bank just below the high-water mark. First, they studied that the 
relation between suspended solids and turbidity was linear. However, the relation between 

backscatter intensity, turbidity, and solids does not present a linear relation. In each case, the 

values of correlation are high. The results showed that the sensor's calibration depends on the 

origin of the solids. Pallarès et al. (2016) studied the use of this sensor in sewerage and rivers. 
They used two different sensors for the different waters. UB-Flow 156 measured the river water 

and the WWTP with the UB-Flow 315. Their results showed that the backscatter of solids 

depended on the size of the solids and the frequency of the acoustic wave. Optical turbidity 
sensors are based on the absorption or backscattering of infrared light or other electromagnetic 

radiation. The standard methods indicated that the use of infrared light and a photoreceptor must 

be at 90º degrees of the incident light. However, other positions of the photoreceptor and light 
radiation have been studied (Rice, Eaton, and Baird, 2017). The turbidity is related to the Tyndall 

effect. Due to this effect, the light that passes through a medium is scattered when there are small 

particles in suspension in it. However, turbidity is specific to liquids and not to any medium. In 

addition, other substances that are not suspended can contribute turbidity to the water.In the 
literature, there are many works about the development of optical turbidimeters. Now, we analyse 

some works. Bilro et al. (2010) showed a turbidity sensor with two photodetectors at 90º and 180º. 

The light source used was a Light-Emitting Diode (LED) with a centre wavelength of 660 nm 
(red colour). They tested with different concentrations of solids and different sizes of samples. 

The distances used in the samples that the light had to go through were 2, 5, and 10 mm. They 

selected a distance of 5 mm because it had good sensitivity and capacity to operate with suspended 

particles of large dimensions. In another work, Song et al. (2020) developed a turbidimeter using 
the FX-11A optical fibre sensor and STM32F407 Microcontroller. This microcontroller is used 

to power the optical fibre and has ethernet transmission to connect it to a network infrastructure, 

allowing access through a smartphone or computer webpage. The optical fibre has two sets of 
fibres. One is used to emit light received at 180º by the other fibre. The results showed an error 

of 3.5% in the 400 to 1500 Nephelometric Turbidity Unit (NTU) range. The sensor values 

obtained from 0 to 400 NTU are similar in different concentrations. The same issue occurs in the 
range of 2500 to 4000 NTU. The solution proposed has an important gap in the monitoring of 

sewerage. The most popular method used to monitor turbidity is based on optical sensors. Prerana 

et al. (2012) proposed using optical fibre to monitor turbidity in terms of the total interaction 

coefficient of light. The optical fibre comprises seven peripherical plastic cladding silica fibres to 
collect the light scattered in the sample. In addition, the optical fibre has a glass core to provide 

light to the sample. They used a laser of 632.8 nm to irradiate the glass fibre and a mirror to reflect 



Study and design of a sensor system for the detection of illicit discharges in sewers and water bodies  

 

 
26 

the light captured by the peripherical fibres. Their sensor obtained good results in low turbidity 

levels. Other work is presented by Yeoh et al. (2019). Their proposal is based on a pair of 
multimode fibres. They used a laser of 808 nm as a light source and tested with 3 angles between 

the emitting and receiving fibre. They selected the angle of 45° due to it presents the best 

correlation between the mathematical model and the measurements. The sensor can work between 

0 to 110 NTU with a medium quadratic error of 2.38 NTU. Optical fibre can have a high cost. 
Therefore, other authors propose the use of LEDs as the light source. Wang et al. (2018) proposed 

a low-cost turbidity sensor for monitoring freshwater. They used an infrared LED of 850 nm, a 

phototransistor at 90° to detect the scattered light, and a photodiode at 180°. These components 
are fixed to a transparent acrylic tube of 20 mm. The phototransistor at 90° was used in the range 

of 0 to 200 NTU (precision 0.1 NTU), and the photodiode at 180° was used in the range of 0 to 

1000 NTU (precision 1.0 NTU). In the sewerage, we discard the photoreceptor at 180° due to the 

water level being variable in time. The use of a photoreceptor at 90° is not recommended because 
if the photoreceptor is placed inside the water, it can get dirty, and if it is placed outside the pipe, 

light may not reach the photoreceptor.  

In water bodies, eutrophication is an important problem caused by increased algae 
concentrations produced by high concentrations of nutrients. The increase in nutrient 

concentration is produced by the supply of nutrients to the water body. In many cases, the nutrient 

supply is produced by the dump of wastewater or purified wastewater. Eutrophication provokes 
a solid increase in water. Different solutions have contributed to monitor the presence of algae. 
Lin et al. (2020) proposed the use of a technique for order preference by Similarity to an ideal 

solution method and Monte Carlo Simulation for evaluating the eutrophication level in lakes. The 

technique is a multicriteria decision method to select an alternative. They used the concentration 
of chlorophyll-a, total nitrogen, Secchi disc, total phosphorus, and COD as criteria. They divided 

the values of eutrophication in 5 levels (>20, >40, >60, >80, >100). The Monte Carlo Simulation 

is used to reduce the uncertainty of the data collection. They used this methodology in Lake Erhai 
and concluded that the results were consistent with the values of eutrophication. Their results 

pointed out that COD and Secchi disc are the most sensitive factors. In another work, Yao et al. 

(2019) used a multidimensional similarity cloud model to determine a lake's eutrophication. In 
this paper, the criteria are the same as the one described by Lin et al. (2020). In this model, the 

authors use a randomised weighting method to process the information to reduce the effect of 

possible errors in the values obtained of monitoring criteria. The data are introduced in a reverse 

cloud generation to obtain digital cloud characteristics, and results are compared with the different 
eutrophic levels. Another method used in water bodies to detect eutrophication is remote sensing. 

One of the satellites used in remote sensing is the Landsat satellite. Zhou, Wang and Zhou (2004) 

used the images of Landsat to measure the chlorophyll in Lake Taihu (China). They demonstrated 
that the TM4 band is the one with the better single-band relationship. Nevertheless, the TM1, 

TM2, and TM4/TM3 ratio bands have the best correlation (R2 = 0.809). With this method, they 

can monitor concentrations between 5 to 100 mg chlorophyll a/m3. This model has been adapted 

by Sòria-Perpinyà et al. (2018) to monitor Valencia's Albufera (Spain). They used the image of 
Landsat 5 and 7. In this case, TM1 and TM2 are not used, and they have a Pearson correlation 

coefficient of 0.83 and an R2 of 0.93. Another algorithm was proposed by Ha, Koike and Nhuan 

(2013). They used the Moderate Resolution Imaging Spectroradiometer (MODIS) in the ratio of 
green and blue band reflectance (bands 9 and 12). The images obtained by MODIS were pre-

processed to reduce the specular reflections at the sea surface and atmosphere. In addition, they 

used an ordinary kriging method to improve the pixel resolution to 100 m. They used a histogram 
minimum method (dark-object subtraction). The paper's objective is the measurement of Chl-a in 

a shallow lake (Tien Yen Bay in northern Vietnam). In these cases, they measure the presence of 

chlorophyll in the water surfaces. Xue et al. (2015) proposed a method to estimate the vertical 

distribution of Chl-a. They used MODIS (terra and aqua). They calculated the Normalised 
Difference algal Bloom Index (green and red bands) combined with wind speed value. These 
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values are inserted in a decision tree for calculating if the vertical distribution is vertically 

uniform, Gaussian, exponential, or hyperbolic.  
Using sensors is an alternative to detect eutrophication in water bodies. We find a few 

examples of sensors used to monitor the presence of sediment or algae. Parra (2018b) proposed a 

system based on 4 LEDs (red, yellow, green, and infrared) and light receptors. Their prototype 

was tested with two species of phytoplankton (green and brown) and sediment. They use an 
algorithm that determines the turbidity with the infrared led. Afterwards, the red LED is used for 

determining the type of algae or sediment.  

2.3.6 Related work on oil sensor. 

The used oil is a pollutant of human origin that can reach the water due to illegal dumping 

or accidents. Oil-polluted water represents a danger to the crop's quality or safety and the farmers' 

economy (Lopes et al. 2010). In the literature, there are different methods to monitor the presence 

of oil in water. Remote sensing is the alternative most used for great surfaces. Laneve and Luciani 

(2015) suggested the use of Specific Absorption Rate system combined with a multispectral 

sensor like MODIS to detect oil in water. In this work, the results achievable through the 

development of dedicated algorithms for automatic image processing from MODIS data and a 

method to classify and describe oil spill events are presented. Furthermore, Klemas (2012) used 

remote sensing, satellite, and aircraft, for tracking the oil spills at various resolutions over broad 

areas and using different frequency intervals. The satellite provides the possibility to drift 

prediction models, such as oil spill locations. They concluded that the model required a vast range 

of environmental data to predict the oil spill trajectory. Iler and Hamilton (2015) applied an 

Integrity Applications Incorporated, which collected electro-optical polarimetric imagery to 

evaluate its effectiveness for detecting oil in water. They obtained the data at multiple sun angles 

for vegetable oil and crude oil to demonstrate polarimetric imagery sensitivity to different liquids 

and collection geometries. Their conclusions highlight the optimal behaviour of the system and 

the possibilities of applying it to detect agricultural runoff or effluent from industrial facilities. In 

this context, it is necessary to evaluate the systems based on sensors rather than remote sensing 

systems. Fingas and Brown (2017) differentiate between passive and active methods. On the one 

hand, the passive methods use the light reflected by the water bodies to detect the presence of oil. 

The light regions that can be used are (I) Visible spectrum, (II) infrared, (III) near-infrared, and 

(IV) ultraviolet. On the other hand, active methods are based on the emission of light or sound to 

detect the oil spill. The active methods are (I) Laser fluorosensors, (II) Radar, and (III) Acoustic 

travel time. An example of the passive method is preset by Arslan (2018). Arslan proposed the 

use of Sentinel 1 C-band SAR and Landsat 8 to study the oil spills. They used a real oil spill in 

Ildır Bay (Izmir, Turkey) on 18 December 2016. The band selected in Sentinel l1 is vertical 

transmission and vertical reception of radar images (VV). First, the radar image showed the 

possible presence of an oil spill near the ship. After, Landsat 8 was used to validate the 

information. In another work, Srivastava and Singh (2010) analysed the use of Moderate-

Resolution Imaging Spectroradiometer (MODIS-Aqua) high resolution bands (250 and 500 m) in 

Lake Maracaibo, Venezuela on 18, 19 and 20th January 2003. They concluded that radiation at 

469, 555 and 645 nm atmospherically not corrected presents a good performance to detect the 

spill. However, the image treatment to correct the atmospherical perturbation can mask oil stains 

in these bands. To better the identification of spills, the authors propose that the sum ratio of band 

3 (645nm) and band 2 (555nm) normalised with band 1 (469 nm)' produced significant results. 

Peterson et al. (2015) proposed the use of an airborne visible and infrared imaging spectrometer 

applying multiple endmember spectral mixture analysis to detect the presence of oil in the 

marshes of Barataria Bay (Louisiana, USA). The proposed system is based on the similarities in 

oil and non-photosynthetic vegetation spectra, differing only in two narrow hydrocarbon 

absorption regions around 1700 nm and 2300 nm. Confusion between non-photosynthetic 

vegetation and oil is expressed as an increase in oil fraction error with increasing non-
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photosynthetic vegetation. The presented study obtained an accuracy ranging from 87.5% to 

93.3% in oil detection. Another example of remote sensing is presented by Nezhad et al. (2018). 

They proposed an oil spill detection system by analysing Sentinel 2 images in the Persian Gulf. 

Their study followed the evolution of one oil spill event using multi-sensor satellite images in the 

Al Khafji zone (between Kuwait and Saudi Arabia). Oil slicks were characterised by multi-sensor 

satellite images over the Persian Gulf. They analysed the bands in order to detect and classify oil 

spills in this zone. They used ENVI software for analysing satellite images and automated data 

inquiry for oil spills for oil weathering modelling. In addition, Taravat and Del Frate (2012) 

presented a study in which they examined Landsat ETM+ images' feasibility to detect oil spill 

pollution in the Gulf of Mexico. The authors concluded that the bands' difference between 660 

nm and 560 nm, and division at 825 nm and 560 nm, normalised by 480 nm provide the best 

result. Another remote sensing-based approach for oil detection is presented by Zhao (2014). They 

studied the spectral signature in the visible and infrared domain of oil slicks observed in shallow 

coastal waters of the Arabian Gulf. They used a MODIS, medium resolution imaging 

spectrometer, and Landsat data. Images of the floating algae index and estimation of sea currents 

from hydrodynamic models supported the multi-sensor oil tracking technique. They pointed out 

that scenes with and without sun glint as a spectral signature of oil slicks in the optical domain 

depends upon the viewing geometry and the solar angle. Depending on the combination of those 

factors, oil slicks may exhibit dark or bright contrasts concerning oil-free waters. To track oil 

slicks and forecast their potential landfall, they used ocean circulation and wind data. Another 

alternative to detect oil spills was shown by Pisano, Bignami and Santoleri (2015). They used 11 

MODIS images, seven of them to develop the methodology and four for validating the method. 

The ratio image R = L′GN/LGN is used to detect possible areas with oil spills. In this ratio, L′GN 

is the MODIS-retrieved normalised sun glint radiance. The other variable, LGN is an image 

correction independent of the wind direction obtained by Cox and Munk isotropic sun glint model. 

Their results indicated that using a threshold is possible to isolate the spills. As a result, the spills 

of the validation dataset are successfully detected. Salberg, Rudjord and Solberg (2014) examined 

the Specific Absorption Rate of images operating in a hybrid-polarimetric mode to detect oil 

spills. They proposed and reviewed several strategies for oil spill detection based on hybrid-

polarimetric SAR data. Their results pointed out that low-wind lookalikes may be suppressed 

simultaneously as the contrast of the oil spills is maintained using hybrid-polarimetry data. Thus, 

those multi-feature images may be constructed to enhance the performance of oil spill detection. 
Another approach was followed by Hübner and Minceva (2020). They developed a novel 

method to determine compositions on the bimodal of a biphasic system. They proposed a method 

based on mass balance. This balance correlates a multicomponent biphasic system with a 

heterogeneous composition with the position phase interface in the microchannel. Finally, they 
proposed an extension of the method using the information on the bimodal compositions in a 

subsequent step to calculate phase equilibrium compositions. In the same context, Ramírez-

Miquet et al. (2016) proposed implementing optical feedback interferometry for the analysis at 
the microscale of multiphase flows, starting with the case of parallel flows of two immiscible 

fluids. This implementation will be a new tool for studying more complex interactions between 

immiscible fluids. Nonetheless, its application in irrigation channels might be challenging due to 
the heterogeneity in the suspended solids, which might cause problems with microfluidic 

technologies. MacLean et al. (2003) presented an optical sensor which was able to detect the 

presence of hydrocarbon spills. They used a sensor containing liquid-swelling polymers that 

convert the swelling into a micro bend force on an optical fibre when activated. This sensor was 
able to locate 1-meter-long spill events with a location accuracy of 2.5 m over a range of 2 km. 

Finally, they concluded that the sensor would be able to operate in adverse environmental 

conditions. A novel modular, mid-infrared, evanescent wave fibre optic sensor for the detection 
of hydrocarbon pollutants in the water had been designed, constructed, and tested by McCue et 

al. (2006) design utilised simple, low-cost production of the rugged field-based sensor. Besides, 
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they use a fibre optic sensing element coated with an analyte-enriching polymer that concentrates 

the analyte in the sensing region. Then the output signal of the optic fibre is filtered at an analyte 
absorption peak and coupled to a thermopile detector whose signal is read into a computer for 

analysis. The results concluded that the system could be used as a pollutant detector, with benzene 

quantified down to 500 ppm using a PVC polymer coating.  

 Parra et al. (2015b) proposed an optical sensor for hydrocarbon detection in ocean water. 
The presented sensor is composed of LEDs as a light source and a photoreceptor as a light 

detector. They performed several tests using light sources with different wavelengths (violet, blue, 

green, orange, red, and white). Their results concluded that the white colour provides the best 
results. This study is performed only to verify the presence of hydrocarbon in water, but the 

authors do not detail the capacity of their proposal to quantify it. The use of LEDs as a light source 

(or signal) to monitor the presence of oil, in general terms, is not a new issue. Hou et al. (2017) 

proposed the use of a sensor based on ultraviolet-induced fluorescence and fluorescence-filter 
systems to monitor the presence of oil in the yellow sea (China). They used a Xenon lamp (200-

300 nm) as a light source, a photomultiplier tube as a light receptor, and a light filter system. The 

light filter system allows light to pass between 300 and 400 nm. This filter is used to increase the 
accuracy and reduce the noise in the photoreceptor due to the sunlight. The use of ultraviolet light 

can be expensive. One solution is the use of LEDs as light sources. Oh and Lee (2012) studied 

the use of artificial light to detect the presence of oil. They tested different colour LEDs (red, 
green, blue and orange) submerged at 20 mm, and they illuminated a CCD sensor located at 4 cm 

to the water surface. In the 4 LEDs, the blue light presents the best relationship between the 

increase of oil thickness and the light intensity in the CCD sensor. McCue (2006) proposed a new 

modular mid-infrared evanescent wave fibre optic sensor to detect hydrocarbons in water. The 
sensor uses a broadband source with back-reflecting optics coupled to a fibre optic sensing 

element. This is coated with an analyse-enriching polymer that concentrates the analyse in the 

sensing region. The experiment results indicated an optimal behaviour of the sensor, with a 
concentration of benzene below 500 ppm. Next, Péron et al. (2009) presented an accurate 

synthesis of Surface-enhanced Raman scattering/spectroscopy active substrates, based on a gold 

colloidal monolayer, suitable for in situ environmental analysis. They demonstrated that Au-
colloidal hydrophobic films synthesised by quartz salinisation provide polycyclic aromatic 

hydrocarbon (PAH) pre-concentration as well as a SERS effect. Then, Albuquerque et al., (2004) 

proposed using poly(dimethylsiloxane) to detect aromatic hydrocarbons in water using near-

infrared spectroscopy. They could classify the water into distinct groups, contaminated by 
gasoline A (without ethanol), gasoline C (with 25% of anhydrous ethanol), or diesel fuel.  

2.3.7 Related work on Nutrients, organic matter, acidity and heavy metals. 

Nutrients, organic matter, pH and heavy metals are water pollutants well studied due to their 

environmental effects. The presence of nutrients causes the eutrophication of water. 
Biodegradable organic matter causes anoxic or anaerobic conditions in the water. Non-

biodegradable organic matter is associated with pesticides, plastics, organic solvents, etc. The pH 

changes the chemical equilibrium. Finally, heavy metals are toxic to living beings and cause 
bioaccumulation in the food chain. Due to the adverse effects of these pollutants in water, some 

authors proposed systems to monitor them in an integrated way. Yeh et al. (2017) studied the 

application of LEDs in optical sensors and chemical sensing devices for the detection of 
biochemical, heavy metals, and environmental nutrients. This system worked in the range of 

ultraviolet (UV) and infrared. They found that the less used LEDs are the orange, yellow, and 

green ones. The research concluded that LEDs had become the prominent light sources of 

chemical sensors  

2.3.7.1 Nutrients 

Nutrients are chemical compounds used by the organism to grow and survive. The two more 

important nutrients are nitrogen and phosphorus, usually the limiting nutrients in water 
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ecosystems. Generally, nitrogen is the limiting nutrient in salt water and phosphorus in freshwater. 

These nutrients are present in the wastewater and purify wastewater. In Europe, the dump of 
nitrogen and phosphorus is regulated by Directive 91/271 CEE. 

In water, nitrogen is in the form of organic nitrogen, nitrogen gas, ammonia, ammonium, 

nitrate, and nitrite (Trygar, 2009). Nitrogen gas comes mostly from water denitrification processes 

and is few soluble in water. Thus, it will quickly pass into the atmosphere. The summary of the 
concentration of the other nitrogen compounds is the total nitrogen. The standard methods for 

measuring total nitrogen are In-line UV/Persulfate Digestion and Oxidation with Flow Injection 

Analysis and persulfate (Rice, Eaton and Baird, 2017). This is based on the oxidation of nitrogen 
to nitrate using heat alkaline persulfate and ultraviolet radiation. Then nitrate is reduced to nitrite 

by a cadmium granule column. The nitrite formed is transformed into diazonium ion with 

diazotisation with sulfamide in acid condition. The diazonium reacts with a pink dye (N-(1-

naphthyl)ethylenediamine), and the absorbance of the sample at 540 nm is related to the nitrogen 
total in the sample. Other methods are the measure of nitrate. After the oxidation of total nitrogen 

to nitrate can be determined the nitrate with the different methods that will show later. Carrying 

out these procedures in situ supposes a consumption of chemical substances, and their analysis 
could only be carried out with an analyser, because of that, some authors proposed using different 

variables such as pH, oxygen demand, conductivity, Turbidity, NO2–N, NO3–N, NH4–N, and 

PO4–P to estimate the total nitrogen value (Lee, Han, and Kim, 2013). Another author proposed 
using 220 nm and 254 nm absorbance with a PARAFAC analysis. Hur and Cho (2012) studied 

the samples obtained for an urban river with PARAFAC analysis and detected three components. 

The first component (C1) is 250 nm/405 nm (excitation/emission). The second component (C2) 

has two peaks, 250 nm/450 nm, and 350 nm/450 nm. Finally, the third component has one peak 
at 280 nm/350 nm. C1 and C2 are related to humic-like organic substances, and C3 to protein. 

These measures can estimate the values of total nitrogen, biodegradable matter, and organic 

carbon matter in water. In these cases, the nitrogen and organic matter are obtained with different 
empirical relations in each water. 

Nitrogen can be divided into TKN, nitrite, and nitrate. The TKN is the nitrogen that is not 

oxidised (organic nitrogen, ammonium and ammonia). Nitrite and nitrate are oxidised forms of 
nitrogen in water. The techniques used for detecting nitrate and nitrite are: (I) potentiometric, (II) 

amperometric, (III) chromatography, (IV) biosensors, (V) analysers, (VI) electromagnetic, (VII) 

voltammetric and (VIII) spectrophotometric (Alahi and Mukhopadhyay, 2019). The 

electrochemical methods (potentiometric, amperometric, and voltammetric) are based on the 
impedance, potential difference, or current generated between different electrodes. The different 

electrodes can be performed with copper, silver, platinum, gold, glassy-carbon electrode, 

graphite-epoxy, chitosan/bentonite, and graphene (Alahi and Mukhopadhyay, 2019). These 
methods need an ISE. That electrode has a membrane that allows the passage of nitrate ions. 

Chromatography is a method of separation of the different components of a sample. After, the 

element of interest (in this case, nitrate or nitrite) is analysed. Chromatography is an expensive 

laboratory technique that requires significant devices (Cosnier et al. 2008). Another technique is 
the use of electromagnetic sensors. Finally, the spectroscopic method is useful for monitoring 

nitrate and nitrite. These compounds have good absorption in 302 nm nitrate and 356 nm nitrite 

(Moo et al. 2016). The problem with using the spectrophotometric method is that (Cui, Wu and 
Ju, 2015) organic matter has good absorption in the ultraviolet region. It needs the determination 

of this interference or elimination. Another method is using the other substance that reacts with 

the nitrates. The use of graphene oxide mixed in water is an example. The absorption of light from 
graphene oxide (567 nm) changes with the presence of nitrate (Tang et al. 2016). 

Organic nitrogen is determined by the Kjeldahl methods and block digestion (Rice, Eaton, 

and Baird, 2017). There are two variants, macro and semi-micro Kjeldahl. The election of the 

variant is dependent on the expected concentration. The method eliminates ammonia by adding 
NaOH, which reacts with ammonia at a pH of 9.5. After the digestion of the sample with H2SO4, 

K2SO4 and CuSO4 to convert the organic nitrogen to ammonia. After, the sample is heated to 
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remove acid fumes and distillation. Finally, a method to measure ammonia is used. In block 

digestion, the nitrogen organic is digested with H2SO4 and CuSO4 at a temperature of 200 ºC for 
one hour and then at 380 ºC for another hour. After an analysis with the FIA instrument (explained 

above in the total nitrogen) is used. 

To monitor ammonia, there are different methods. For in-situ measuring, the best option is 

the use of specific electrodes. The use of the physical sensor for measuring the ammonium and 
ammonia with the membrane is presented in different papers, in seawater (Ding, 2017), in 

wastewater (Been et al. 2014), for monitoring nitrate, nitrite, and ammonium (Nuñez et al. 2013), 

(Schwarz, Kaden, and Pausch, 2000). The standard methods describe the use of an ISE and present 
two methods, titrimetric and phenate methods (Rice, Eaton, and Baird, 2017). The two methods 

are based on a previous distillation of the sample and after the titration of sulfuric acid or phenol. 

The other important nutrient is phosphorus. The methods to determine the concentration of 

this nutrient are based on (I) colourimetric, (II) electrochemical, (III) fluorescence, (IV) 
microfluidic, and (V) remote sensing (Islam et al. 2016), (Warwick, Guerreiro, and Soares, 2013). 

Colourimetric methods consist of the reaction of phosphorus with other substances. This reaction 

generates a change of colour in the sample. When more colour intensity, the concentration of 
phosphorus is higher. The electrochemical sensors are based on measuring the loss or the gain of 

electrons production for a reaction. The fluorescence sensors are based on a spectroscopic analysis 

in which the electrons of a substance are excited with electromagnetic radiation and emit different 
radiation. The microfluidic techniques perform the chemical reactions in a controlled environment 

in a set of micro-channels to reduce the number of chemicals. Finally, remote sensing analyses 

the multispectral radiation in aircraft or satellites (Islam et al. 2016), (Warwick, Guerreiro and 

Soares, 2013). The electrochemical method is presented in used in different environments. Wang 
et al. (2014) developed a gold microband array electrode based on reducing a molybdophosphate 

complex using the linear sweep voltammetric. The sensor has three electrodes, a platinum counter, 

a gold microband array as the working electrode, and an Ag/AgCl electrode as the reference 
electrode. The measurements performed in different phosphorus concentrations are in a detected 

solution of molybdate sodium. The sensor presents a linear range from 0.02 to 0.5 mgP/l with a 

R2 of 0.99. Similar results are observed by Bai et al. (2014). Taylor et al. (2015) developed an in-
situ analyser for orthophosphate and total phosphorus. The analyser used the chloride-

molybdenum blue method following oxidative digestion with acidic peroxodisulfate. The 

prototype analyser ranges from 30-200μg P/L with a precision of ±4.3%. The cost of the system 

is $3000 (10 times less than a commercial one). As with nitrogen, some authors use different 
parameters to estimate the total phosphorus concentration. 

2.3.7.2 Organic matter. 

Organic matter is a vast and heterogeneous group of components formed by compounds that 

contain carbon and hydrogen or carbon and carbon bonds. In this subsection, we analyse methods 

to monitor organic matter in general. We do not explore those works that seek to analyse specific 

organic components such as sugars, lipids, proteins, organic pesticides, etc. In wastewater, 

organic matter is usually divided into non-biodegradable, biodegradable, and total organic matter 

methods. 

The methods for monitoring total organic matter (biodegradable and no-biodegradable) are 

based on (I) photocatalytic, (II) electrocatalytic, (III) chemiluminescence, and (IV) optical 
methods (Namour and Jaffrezic-Renault, 2010). The photocatalytic sensors are based on radiation 

with an ultraviolet lamp and the superficies of a photocatalytic compound (for example, TiO2) to 

generate electron holes. This will allow the oxidation of organic matter through the oxygen 
present in the water. After an oxygen sensor monitors the oxygen concentration. An example of 

a photocatalytic sensor is presented by Kim et al. (2001). Their sensor range is 0.12 to 8 ppm of 

COD, and a complete analysis took about 10 min. The electrocatalytic sensor is based on the use 
of electrodes to oxidise organic compounds. Specific metal electrodes (catalysis) are needed to 

ensure the oxidisation of organic compounds and not that of water. The electrons required for the 
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oxidation of the organic matter can be measured as an electrical current (Namour and Jaffrezic-

Renault, 2010) (Ai et al. 2004), (Wang et al., 2012). Ai et al. (2004) used this method with a nano-
PbO2 electrode. Their sensor works in a range of 5 to 3000 ppm and limit detection to 2.5 ppm. 

Wang et al. (2012) used cobalt oxide sensing film was prepared on a glassy carbon electrode 

surface via constant potential oxidation. The sensor range is 1.7 to 170 ppm, with a correlation 

coefficient of 0.995. Other materials have been tested as copper (Silva et al. 2008), nickel (Cheng, 
2011), etc. Gutiérrez-Capitán et al. (2015) tested with electrodes manufactured with Ni, NiCu 

alloy, CoO nanoparticles, or CuO/AgO. The best prototype manufactured was CuO/AgO. This 

was tested with real wastewater with good precision. Chemiluminescence is based on measuring 
radiation emitted by a chemical reaction (Namour and Jaffrezic-Renault, 2010). This method was 

used by Liu et al. (2012) to monitor the oceans' organic matter. They used ozone that reacted with 

the organic matter and measured the radiation emitted. The optical sensors are based on the 

interaction of light whit the organic matter in water. Usually, these sensors use an ultraviolet lamp 
of 254 nm to measure the absorbance (Namour and Jaffrezic-Renault, 2010). Kim et al. (2016) 

used a deuterium lamp, and the light was sent into optic fibres to test samples placed in a quartz 

cell. The sensor has a good coefficient of determination (0.964) between potassium hydrogen 
phthalate (the substance used for calibration) and absorbance. As we saw earlier in the nitrogen, 

the optical sensor with a PARAFAC can be used for monitoring different types of organic matter 

(Hur and Cho, 2012). Other authors use the same technique to monitor total and biodegradable 
organic matter ((Yang, Shin and Hur, 2014). This sensor can be used for monitoring the total 

organic carbon in water. The use of fluorescence has the potential to detect accidental pollution 

events. However, the fluorescence methods have problems with implementation as high quantities 

of suspended solids, temperature, fouling, etc. (Carstea et al. 2016). 
The biodegradable organic matter sensors are based on oxygen consumption (when the 

microorganisms consume the organic matter) or microbial fuel cells (Namour, 2010). Usually, it 

uses sensors for monitoring the total organic matter because the biodegradable organic matter 
sensors need microbial growth. (Wang et al. 2010) developed a faster biosensor that can have 

measurements 8 times a day. (Other biosensors have similar times for measuring). In addition, 

the optical sensor can be used to estimate biodegradable organic matter (Yang, Shin and Hur, 
2014). 

2.3.7.3 pH and Oxidation Reduction Potential.  

The pH is defined as the negative logarithm of the concentration of protons (pH=-log [H+]). 

The pH affects the growth of microorganisms, precipitation of substances, and corrosion of 
materials. The typical pH value in natural water is between 4 to 9, and distilled water has a pH 

value of 7. The standard method for measuring the pH is the electrometric method (Rice, Eaton, 

and Baird, 2017). The glass electrode is the most common method for measuring pH. The glass 

electrode has two electrodes. A reference electrode and a hydrogen electrode. The hydrogen 
electrode contains dilute HCl (or other substance), a wire metal, and a specific membrane to H+. 

When this glass bulb is immersed in a sample, it is generated a potential between the inter glass 

solution and the sample. The reference electrolyte contains a wire metal, a solution of KCl (or 
other salts). This electrode has an orifice that, with the dissolution of the salt, generates an electric 

bridge between the two electrodes (Bolan and Kandaswamy, 2005). The value of pH in the 

pHmeters depends on temperature. For this reason, these instruments need a temperature sensor 
to correct the pH value. The structure of the pH meter does not change in the last decades. 

However, different authors tested with different electrodes, membranes, etc. The glass electrode 

has a critical gap which is fragility. For this reason, different authors proposed using other 

materials, such as Iridium oxide (Huang et al. 2011a) (Kim and Yang, 2014), as ISE. pH sensors 
are the most common and are used for monitoring the pH in different environment as rivers (Chen, 

Guo and Shi, 2013). However, the use of membrane presents problems in the obturation of the 

porous, which needs clean and continuous calibration. 
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As some substances present significant changes in colour at different pH (pH indicator) has 

been used for monitoring it. The mobile camera with a pH indicator can be used to monitor the 
water's pH (Dutta, Sarma and Nath, 2015) (Hossain et al., 2015). Other authors propose the use 

of other substances. Bishnoi et al. (2006) developed an Au nanoshell with a surface-enhanced 

Raman scattering. They used para-mercaptobenzoic acid as an adsorbate layer that responds to 

infrared wavelength depending on the pH range of 5.8 to 7.6. Alvarado-Méndez et al. (2005) used 
an optical fibre with a blue bromophenol (pH-sensitive dye). The dye compound is immobilised 

in the optical fibre creating a glass-like porous structure of silica. They used the transmittance in 

the infrared range to measure the pH from 5 to 7. The use of chitosan is used as a pH dye with 
anthocyanin (Maciel, Yoshida, and Franco, 2015). As obtained from Bauhinia blakeana Dunn (a 

tree), they extracted natural dyes containing anthocyanin and immobilised them in chitosan 

(Biopolymer), whose colour changed from red to green in the pH range 2.2–9.0 (Zhang, Lu and 

Chen, 2014).  
Similar technology is used to monitor the ORP. This sensor works with two electrodes. One 

reference electrode and the other electrode are manufactured of a noble metal (usually platinum 

or gold). The noble metal electrode does not react with the water elements but can take or give 
electrons. The voltage difference between the two electrodes and Nernst's equation determine the 

ORP. The structure of an ORP sensor is similar to a pHmeter differentiating in the presence of a 

selective membrane to H+. However, the pH is related to ORP and can be estimated empirically 
in controlled environments. Lin et al. (2017) developed a low cost sensor to measure pH, ORP 

and conductivity. Their proposal is based on three platinum electrodes (anode, cathode and 

sensing electrode) with an area <1 mm2 and subjected to physical vapour deposition (Ti/Pt). With 

Labview 2011, the difference between the sensing electrode and anode, and cathode and sensing 
electrode to determine the ORP and the voltage difference between anode and cathode indicated 

pH. The sensor can measure pH from 4 to 10 with a precision of 0.5 to 1. In the ORP measure, 

the range is between 150 to 800 mV. 

2.3.7.4 Heavy metals 

Heavy metals are metals of high specific weight. The main heavy metals are mercury (Hg), 

cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), magnesium (Mg), manganese (Mn), 

molybdenum (Mo), nickel (Ni), selenium (Se), zinc (Zn). Heavy metals are toxic to the 
environment and humans. The toxicity depends on the compound, chemical species, the 

exposition route, etc. (Tchounwou et al. 2012). In the WWTP, heavy metals affect the biological 

reactors and the toxicity of the sludge. The sludges with heavy metals need special treatment. It 
cannot dump in the fields. The main sensors for detecting heavy metals are electrochemical, 

optical, Plasmonic, and Surface Enhanced Raman Scattering (Ullah et al. 2018). 

Electrochemical methods use three electrodes (a working electrode, a reference electrode, 

and a count electrode). The electrodes can be metals, oxide, carbon, Organic molecular ligands, 

organic polymers, etc. (Cui, Wu and Ju, 2015). The fabrication of electrodes has traditionally used 

mercury (Choi et al. 2001). They used an HgO-modified working electrode, Ag/AgCl reference 

electrode, and a carbon counter electrode, because of the hazards of this metal in the last years, 

other materials have been used to replace this metal. Morton et al. (2009) used the voltammetric 

method for detecting heavy metals. The electrodes are composed of an l-cysteine-functionalized 

carbon nanotube. The cysteine form a complex with the heavy metal. Second, the heavy metal is 

a reduction with negative potential produced for the electrode. Finally, the heavy metal is returned 

electrochemically to the solution. Other authors used Bismuth (Sahoo et al. 2013). Finally, 

Aragay, Pons and Merkoçi (2011) tested screen-printed electrodes without surface treatment in 

seawater, and the sensor was stable for 5 weeks. Ding et al. (2016) presented a review of the 

development of nanomaterial-based optical sensors for Hg2+ detection, which showed the benefits 

of simplicity, rapidity, high sensitivity, selectivity, and cost-effectiveness. They summarised the 

published innovations in nanomaterial-based optical sensors for the detection of Hg2+ according 

to different sensing strategies, including colourimetric, fluorescent, and surface-enhanced Raman 
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scattering detection. An example of optic sensors is presented by Forzani et al. (2005). They show 

a sensor based on high-resolution differential surface plasmon resonance. They use light polarised 

(635nm) that is focused onto a metal film that has a sensitive area able to trap heavy metals and 

a reference area 

2.4 Discussion and future challenges on sensors. 

In this section, we analyse the techniques and technologies previously presented to develop 

our system proposal. First, we analyse the system to detect illicit discharge in sewerage, and after, 

we discussed the different techniques that can be used for the different water parameters. 

Different works have been developed to detect the presence of spills in storm sewerage. One 

research line uses trained dogs and visual recognition of the sewerage. Visual recognition is 

effective in detecting the illegal connections to storm sewerage and the presence of water when 

there should not be. Visual recognition is not enough to detect wastewater in storm sewerage. One 

alternative is using trained dogs. These can detect the presence of human waste in the water. This 

line is helpful in storm sewerage but presents an essential gap in combined sewerage. In a normal 

situation, only rainwater must be circulated in a storm sewer. Thus, human waste signals a spill 

from home, industry, or the transfer of wastewater from a combined sewer or waste sewerage to 

storm sewerage. Therefore, this methodology is helpful for storm sewerage but not for wastewater 

or combined sewerage. In addition, using dogs is not viable for continuous monitoring; thus, using 

e-nose is an alternative to continuous monitoring. These techniques present two important gaps 

that cannot detect non-volatile elements such as solids, organic matter, nutrients, heavy metals, 

etc. and cannot be used in combined and wastewater sewerage because, in these, the presence of 

human waste is expected. In water bodies, these techniques probably cannot be used, because the 

concentration of bacterias are low (except in exceptional cases of spills). Analysing samples 

obtained from the sewerage in a laboratory solves the first gap, because in a laboratory, the non-

volatile substance can be monitored. In addition, in a laboratory, expensive equipment such as 

High Performance Liquid Chromatography (HPLC), mass spectrophotometer, thermal cycler, 

etc., can be used to analyse the wastewater. The use of costly analytical measures performs the 

detection of spills economically unfeasible. In some works, the use of specific parameters for the 

detection of spills has been studied. Monitor parameters such as Escherichia coli, ammonia, 

nitrate, fluoride, total chlorine, potassium, detergents, phosphorus, or turbidity, are useful to detect 

the presence of illicit discharge. However, the laboratory analysis does not solve the problem of 

continuous monitoring. 

For continuous monitoring, it is necessary using sensors. The values obtained by the sensors 

should be transmitted to perform the decisions. In this context, the WSNs are used to monitor the 

sewerage and water bodies. We found that some examples included temperature and water level. 

In addition, the measure of pH, turbidity, conductivity, ORP, organic matter, nitrate-nitrogen, and 

phosphate can detect the presence of a PI. As many parameters increase the cost of the system, 

the number of parameters can be reduced. 

To monitor the water level, there are different techniques: (I) using water electrical 

conductivity, (II) using the sound generated by water, (III) buoys, (IV) fibre Bragg grating and 

(V) acoustic or light reflectance. The electrical properties of water can be used to control the water 

level. The distilled water does not conduct electricity, but the freshwater has dissolved salt that 

converts the water into a good conductor. This can be used in conjunction with an open electrical 

circuit so that the water closes the circuit. This technique is useful for establishing thresholds, but 

it is not good to monitor the water level because it works as a digital sensor. Another use is the 

use of water as dielectric material in a capacitor. The air and water have different dielectric 
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constants. Thus, we can perform a capacitor between the water and air in a tank. This solution's 

main gap is that the dielectric constant of water changes with the conductivity. Ergo, it is 

necessary to know the conductivity. The measure of the sound is an alternative used in the 

environment but is hard to implement in the sewerage. In a buoy, the measure of the level is based 

on its movement. The wastewater has solids that can jam the buoy movement system, which 

makes this sensing technique not optimal. The use of optical fibre is another option. However, as 

we have seen previously, these fibres are affected by temperature. Finally, the sensors are based 

on the reflectance of light or sounds. The use of reflectance is the best option because they can 

measure the water level analogically without being in contact with water. The latter prevents the 

appearance of oxidation problems. 

The technologies to monitor the temperature can be divided into (I) optical fibre, (II) infrared 

thermography, and (III) the change of material properties with temperature. The optical fibre 

allows temperature monitoring to be distributed. This technology needs the use of optical 

analysers to detect the backscattering. This increases the cost of the sensor and the complexity of 

the same compared to other technologies to monitor the temperature. Infrared thermography 

presents the advantage of not needing to be in contact with the water. This reduces the corrosion 

that can suffer the sensor. However, this technology uses infrared cameras that capture the 

infrared spectrum in photography. This photograph should be analysed to obtain the temperature 

values. This implies an increase in the computational cost of the microcontroller. An increase in 

this cost implies an increase in energy consumption, the use of a more powerful microcontroller, 

and the economic cost of the system. The better option is using technologies based on the change 

of material properties. These technologies are maturated enough and exist in low cost commercial 

sensors. 

Conductivity is another parameter that can signal the presence of a PI in the sewerage. We 

detect three technologies that can be used to control the conductivity (I) density, (II) conductivity 

cells and (III) inductive. The use of density methods presents significant gaps in controlling the 

conductivity in sewerage. (I) the vibration of the tube can cause the broken of it. (II) the change 

in sample density can be produced by solids that do not increase conductivity. Nowadays, this 

method is few used in the comparison of conductivity cells. The conductivity cells are a more 

maturate technology than inductive sensors. The conductive cells have more precision and 

sensibility than inductive cells. However, it is not the best option to monitor the conductivity of 

the sewerage. Due to the fact that in sewerage, there may be solids that impact the electrodes and 

change the distance between them, and it will be out of calibration. In addition, since the sensor 

is in contact with water, its electrodes can oxidate or change their chemical structure over time.  

Another pollutant of wastewater is total solids. Direct solids determination is performed by 

the drying of samples. However, this method cannot apply in a WSN because of the excessive 

energy used to heat the water and the time needed. The alternative is to measure turbidity because 

this parameter is related to solid concentration. Turbidity can be determined with (I) Secchi disk, 

(II) optical methods, (III) acoustic methods, and (IV) remote sensing. Secchi disk is a method that 

does not allow continuous monitoring. This method is easy to use and can be used by volunteers 

to control the turbidity in water bodies. However, it is not utility to our system because it does not 

allow continuous monitoring as if the optical, acoustic, and remote sensing methods permit. 

Remote sensing is used on big surfaces such as rivers, lakes, seas or oceans. Thus, it is not 

helpful in pipes. Thus, it can be used to control water bodies that receive purified wastewater or 

overflows. However, remote sensing with satellite images cannot detect PI, because satellites have 

a temporal resolution of days, they cannot detect punctual spills but can spot the environmental 

degradation of the water body. In addition, the satellites are affected by clouds which impede the 
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direct observation of the earth's surface. Accordingly, the use of sensors is the technology that 

should be used to monitor the pipes and water bodies. This technology allowed continuous 

monitoring. Moreover, the sensors have a small since and can be deployed in different parts of 

the water body regardless of the dimensions of the monitored area. Finally, the sensors can be 

located at different depths to monitor the water column itself. We can use two techniques to 

monitor turbidity in water (optical and acoustic sensors). Optical sensors are a better option than 

acoustic sensors because acoustic sensors are a technology less maturated than optical sensors to 

monitor turbidity. In addition, the acoustic sensors are sensitive to the size of the particle. This 

characteristic can help control sedimentation in WWTPs. 

Eutrophication is an important pollution problem that causes the degradation of water bodies. 

This phenomenon does not affect the wastewater that is in pipes. The determination of a water 

body is in the process of eutrophication profitable to take measures to reduce the nutrient supply 

and detect the presence of continuous PI. To determine eutrophication, usually, the concentration 

of chlorophyll A is determined. Determining this compound can be done using laboratory 

techniques or remote sensing. The disadvantages of these techniques are the ones listed above. 

Thus the determination of eutrophication with different wavelengths is an alternative. 

Nutrients are indispensable to living beings. However, an excess of nutrients generates an 

imbalance in the environment and WWTPs' bioreactors. In wastewater, the main nutrients are 

nitrogen and phosphorus. Nitrogen total is the summary of all nitrogen components. According 

to standard methods, it is measured using two methods based on converting the total nitrogen to 

nitrate after measuring it. These techniques require the use of reagents and the digestion of the 

samples. Thus, these techniques need an analyzer to be carried out continuously. This would 

significantly increase the maintenance costs of the proposed system. Other authors propose the 

use of PARAFAC analysis. The problem with this analysis is that the use of ultraviolet light in 

wavelengths in the range of 220 to 350 nm is needed. Deuterium and mercury lamps have 

traditionally been used to achieve these emission wavelengths. Nowadays, there are developed 

new LEDs that are capable of emitting in these wavelengths that are used as germicidal. Hsu et 

al. (2021) studied the perspective of ultraviolet LEDs. The LEDs based on aluminium gallium 

nitride AlGaN work in the range between 200 to 400 nm. However, the LED efficiency is reduced 

in wavelengths lower than 365 nm. This implicates the heating of the LEDs. These two gaps are 

coupled with the need to develop packaging resistant to ultraviolet light. Juarez-Leon et al. (2020) 

used a UVC-LED CUD5GF1B to inactivate the SARS-CoV-2 virus. This LED is powered with 

a voltage of 7.5V and a peak wavelength of 255 nm. The use of ultraviolet LED is an alternative 

to an optical sensor that needs the use of UV. However, it is not viable for our system because it 

needs a cooling system to prevent overheating. With the evolution of technology, it is expected 

that its energy efficiency will improve and, therefore, its use for future improvements to our 

system. Finally, the nitrogen total can be determined with an empirical equation relating to other 

parameters such as nitrate, phosphorus, etc. The determination of organic nitrogen is realized 

similar to total nitrogen but with the elimination of ammonia with NaOH. The determination of 

this parameter has the same inconveniences as total nitrogen. Other components of nitrogen are 

nitrate and ammonia. Like the previous compounds, these can be monitored through chemicals. 

In addition, the use of ISE is presented in the standard methods. We discard the use of ISE because 

the contact of the membrane in an aqueous environment provokes changes in the chemical 

composition of the membrane, which causes a reduction in its useful life, and changes in its 

operation (Maksymiuk, Stelmach and Michalska, 2020). 

Organic matter is a heterogeneous group that can divide into biodegradable and non-

biodegradable. To monitor the COD, there are 4 methods. The first is photocatalytic. This method 
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is discarded to monitor sewerage because it presents two gaps: (I) it needs dissolving oxygen to 

oxidize the organic matter, but wastewater usually is in an anoxic condition, and (II) to monitor 

dissolved oxygen with a sensor, membranes are needed. The second method is electrocatalytic. 

This method has been used in wastewater. Nowadays, the fabrication of these sensors needs the 

use of nanoparticles which implies a complexity for its application. The chemiluminescence needs 

reagents. Finally, there are optical methods. This has two gaps: (I) it needs a membrane with that 

dissolved oxygen reacts, and, (II) it needs ultraviolet light. To monitor biodegradable organic 

matter, it is needed the use of microorganisms. This type of sensor can take measurements every 

certain number of hours (every 3 hours at most), making sewage unfeasible. However, its use can 

become helpful in the case of bodies of water. We have decided to rule out its use since it cannot 

be applied in sewers. 

As far as we know, there are not methodologies to measure the pH without a chemical 

assessment or ISE. However, using ORP sensors can estimate the pH value of water. The ORP 

can apport information about the presence of an illicit discharge because some substance changes 

the oxidation-reduction balance of water. However, we discard the use of this parameter because 

the measure is unstable. Finally, to monitor the heavy are analytic methods and the use of sensitive 

metal film. This type of sensor is delicate; therefore, its use is not recommended in sewage 

systems.  

In conclusion, we will use the reflection of light or sound to monitor water level, a sensor 

based on properties material change to monitor temperature, an inductive sensor to monitor 

conductivity, and an optical sensor to monitor turbidity, eutrophication and oil. In addition, a rain 

sensor can be used to determine the presence of rain in an area to determine different scenarios in 

stormsewerage. 

To develop our system, there are commercial sensors that accomplish our system's 

requirements. Regarding temperature, various temperature sensors have been developed for 

Arduino, raspberry and other platforms. Some examples are DHT11, LM35DZ, TMP36, and 

LM75. These sensors are not waterproof, and an encapsulation must be manufactured to be able 

to be introduced into the water. Nowadays, there are waterproof temperature sensors such as 

DS18B20. In the case of monitoring the water level, an option is the use of a HC-SR04 sensor. 

This is a sensor used to monitor the distance between the sensor and one obstacle (the wastewater, 

in our case).
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The inductive sensors that control conductivity can present interferences with other water 

parameters. In this chapter, the effect of solids and water level are studied to check if the inductive 

sensors are a good option to monitor the sewerage. This chapter is structured as follows. First, we 

present the general test bench. The general test bench presents information about the electric 

circuit and devices used. Specific information about the samples' concentration, the voltage used 

in the PC, frequencies tested, and prototypes are presented in each test. Then, we study the effect 

of solids in inductive sensors. Different solid concentrations are studied to know the effect of the 

induced voltage in the IC with the increase of the solids. After, we study the effect of water level 

in the inductive coil. In the first experiment, we study if IC presents different induced voltage in 

air and water. Then, we study different water amounts inside a pipe. Finally, we show the 

conclusions of this chapter. 

3.1 General test bench. 

In this subchapter, we present the general test bench of the inductive sensors. The specific 

information on the different tests performed is presented in the subsequent sections.  
In the experiments performed, the inductive sensors are based on 2 coils. The spires are made 

of copper, and the coil body is made with PolyVinyl Chloride (PVC). The different prototypes are 
coiled against the hands of the clock, trying to make the spires as close as possible, to obtain the 
best results. Besides, the prototypes are powered in the same direction. In this case, upside-down 
of the coiled way, using the clockwise direction. This helps to maintain a similar basis for all 
prototypes and to obtain more relevant data. Figure 3.1 represents the winding prototypes. 

One coil is the PC, and the other is the IC. The PC is powered by an alternating signal and 

generates an EF that induces the IC. In Figure 3.2, we show the electric circuit used. The electric 

circuit of the PC has a resistance placed in series. The function of the resistance is to limit the 

current intensity in the PC to prevent short circuits. As a power source, we use a generator 

AFG1022 (Tektronix, 2022a). In the circuit of the IC, we place a capacitator of 10 nF. This 

stabilises the signal and protects the oscilloscope from voltage peaks. The oscilloscope used to 

measure the induced voltage is a TBS1104 (TBS1000, 2022).  

We need to know the Working Frequency (WF) in the experiments. This is the frequency that 

we use in the prototype. To select the WF, we need to account for different parameters such as the 

voltage difference between the concentration tested, the ease of mathematical model used in the 

calibration, the errors in the calibration and verification test, etc. 
 

  

Figure 3.1. Coiled direction and powered 

direction. 

Figure 3.2 Circuit coil used in the laboratory. 
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3.2 Effect of solids in inductive sensors.  

In this section, we analyze the possible effect of solids in the inductive sensors. It is expected 

that the solids have an effect in the induced voltage because the value of inductance depends on 

the environment surrounding the sensor. However, we check if this effect is significant in the 

concentration of sewerage.  

We test with different prototypes of inductive sensors and solid concentrations in the then 

subsections. In Figure 3.3, we show the operating scheme of the prototype. 

3.2.1 Material and methods. 

In this subsection, we explain the methodology used in this experiment. First, we perform 

different samples with different solid concentrations. For the calibration of the prototypes, the 

concentrations tested are 0, 5, 10, 14, 17, 20, 24, 28, 32, 36 and 40 % of solids (1 % of solid 

concentration= 10.000 mg/L of solids or 10 g/l). To the verification test, we used the concentration 

of 8.8, 12.6, 13.4, 15.5, and 16 % of solids. In all cases, we prepared 750 ml of solutions and 

placed them in glasses with a volume of 1 L. The solids have been obtained from dehydrated 

sludge from a WWTP and are dried in an oven following the standard method. These ranges of 

concentrations are higher than the typical solid concentration in wastewater. However, do not 

forget that the objective of this experiment is to check the effect of solids in inductive sensors, 

not to monitor the concentration of solids in a sewer. To do it, we have introduced each model in 

a sample of tap water. The PC has been powered by a sinus wave with different frequencies from 

1Hz to 500 kHz, each 25 kHz.  

About to the prototypes used these are presented in Table 3.1. We test with 6 different 

prototypes. These prototypes are done by combining two types of coils solenoids and toroids. 

These prototypes are introduced in the glass with the sample, as shown in Figure 3.4. 

 

 

Figure 3.3 Operating scheme. 
Figure 3.4. Example of how the measurement is 

taken. 
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3.2.2 Results. 

In this subsection, we present the results of the different prototypes in the calibration and the 

selected prototype in the verification test. 

3.2.2.1 Calibration. 

The results obtained by the different prototypes are represented in Figure 3.5 shows the 

results of detecting different concentrations of solids in water for each model. We can observe in 

all prototypes there is a difference in the magnitude of induced voltage between the value of 0% 

and 40% of solids. On the one hand, we observe that prototypes 1, 2 and 5 have the most 

significant difference of induced voltage between 0% to 40% of solids. These differences are 0.85 

V in m1, 1.08 V in m2 and 0.93 V in m5. These prototypes have in common the presence of a 

toroid with 220 spires. On the other hand, if we compare the differences in the induced voltage 

for concentrations higher than 20%, the differences are small. The maximum voltage difference 

is in the prototype m5 between the concentration of 0 and 5 % of solids. The voltage difference 

is 0.39 V, equivalent to a difference of 0.078 V/% of solids. Considering the typical concentrations 

of solids in the sewer, these will not present significant interference in the conductivity readings 

of the sensor. So we decided to select the model m2 which is the one that presents the biggest 

difference between 0% and 20%. The voltage difference between 0% and 20% of concentration 

of solids is 0.92 V. Finally, we can model the behaviour our system by a linear equation shown 

in Figure 3.6. The equation is 3.1 and has a correlation coefficient of R2= 0.9959, which can be 

considered quite good.  

  

Figure 3.5 Induced voltage results Figure 3.6 Results of model m2. 

 

𝐈𝐧𝐝𝐮𝐜𝐞𝐝 𝐯𝐨𝐥𝐭𝐚𝐠𝐞 (𝐕𝐨𝐮𝐭) = 𝟎.𝟎𝟒𝟔𝟖 ∗ 𝐬𝐨𝐥𝐢𝐝 (%𝐨𝐟 𝐬𝐨𝐥𝐢𝐝𝐬) + 𝟑. 𝟎𝟑𝟒𝟗 (3.1) 
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Table 3.1. Characteristics of the different coils. 

 

  

Coils 
Characteristics of the different coils 

Picture PC IC 

m1 
 

 

 

 

Solenoid, 

Nº Spires:70 

High: 34 mm  

Diam: 25 mm 

Toroid, 

Nº Spires: 220 

High: 28 mm  

Inner Coil Diam:25 mm, 

Outer Coil Diam:34 mm 

m2 

Toroid 

Nº Spires: 220 

High: 28 mm, 

Inner Coil Diam:25 mm, 

Outer Coil Diam:34 mm 

Solenoid 

Nº Spires:70 

High: 34 mm, 

Diam: 25 mm 

m3 

 

 

 

Solenoid 

Nº Spires:90 

High: 42 mm 

Diam: 25 mm 

Solenoid 

Nº Spires:30 

High: 14 mm 

Diam: 25 mm 

m4 

Solenoid 

Nº Spires:30 

High: 14 mm 

Diam: 25 mm 

Solenoid, 

Nº Spires:90 

High: 42 mm,  

Diam: 25 mm 

m5 

 

 

 

 

 

Toroid 

Nº Spires: 220 

High: 28 mm, 

Inner Coil Diam:25 mm 

Outer Coil Diam:34 mm 

Toroid 

Nº Spires: 70 

High: 28 mm 

Inner Coil Diam:25 mm 

Outer Coil Diam:34 mm 

m6 

Toroid 

Nº Spires: 70 

High: 28 mm 

Inner Coil Diam:25 mm 

Outer Coil Diam:34 mm 

Toroid 

Nº Spires: 220 

High: 28 mm 

Inner Coil Diam:25 mm 

Outer Coil Diam:34 mm 

m7 

 

 

 

 

 

Toroid 

Nº Spires: 300 

High: 25 mm 

Inner Coil Diam:43 mm 

Outer Coil Diam:52 mm 

Toroid 

Nº Spires: 220 

High: 28 mm 

Inner Coil Diam:25 mm 

Outer Coil Diam:34 mm 
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3.2.2.2 Verification. 

This subsection shows the verification tests to determine the accuracy of the proposed sensor. 
That is, we need to ensure that after calibrating the developed sensor, it is possible to detect 
unknown samples and tag it accordingly to our previous analysis. To carry out this verification, we 
have prepared 5 unknown samples which have been monitored by our sensor to obtain the resulting 
induced voltage. The results are introduced in our mathematical model to estimate the 
concentration of solids. Finally, we compare the actual value of solids with the values calculated 
by our mathematical model. The results are shown in Table 3.2. The maximum error obtained is 
3.18 %, and the minimum error is 0.56 %. If we compare our result with the existing sensors, we 
observe that our proposed sensor can operate in a larger range than turbidity sensors, presenting a 
detection limit of 10% of solids concentration. Our sensor can measure in a range from 0% to 20%. 

Table 3.2. Errors in verification test. 

% solids Real Voltaje Measure (V) % Solids model Error (% solids) RE (%) 

8.8 3.44 8.52 0.28 3.18 

12.6 3.62 12.36 0.24 1.87 
13.4 3.68 13.66 0.26 1.98 

15.5 3.76 15.41 0.09 0.56 

16.0 3.80 16.30 0.30 1.84 

3.2.2.3 Sensor implementation. 

We check that the solids affect the induction value of the IC. However, this effect is low 
because it is 0.078 V/% of solids. The typical value of solid concentration in wastewater is between 
350 mg/L for low pollution levels to 1200 mg/L for highly polluted wastewater (FAO, 2019). 

The results showed that the prototype m2 could work in the range of 0 to 20% of solids with 
a maximum error of 3.2 %. Regarding to the obtained results, our sensor is able to measure higher 
concentrations than a turbidity sensor. A possible application is the condition monitoring of 
industrial processes as the treatments of sludge in water in WWTP. The design of the node to the 
application of our prototype is presented then. 

To implement our sensor, we must integrate it in a node capable of generating the signal and 
gathering the data. To do it, we need a microprocessor (a NodeMCU module (NodeMcu, 2014)) 
and some discrete components to implement a voltage amplifier (See Figure 3.7). The NodeMCU 
is an open source platform specially designed to deploy IoT solutions to solve most of the 
requirements the society is currently demanding. The main features of this device are the following: 
(I) It incorporates a 32-bit MCU of low consumption (Tensilica L106), (II) IEEE 802.11 b/g/n Wifi 
interface, (III) 128 kB of RAM memory, (IV) 10-bit analogue input, and (V) GPIO input and output 
pins (general purpose). 

Figure 3.7. Complete circuit of our Low-cost sensor. 

The power consumption of this device is typically 140 mA when transmitting with IEEE 
802.11 g standard. However, it requires up to 320 mA during the start phase. Using the power save 
mode DTIM3, it is possible to reduce the power consumption lower than 1 mA. To power it, we 

Vcc =10V
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can use batteries with alternative energy sources or connecting it to the electrical network. Because 
this module can only generate 4.5 V output signals and our coils need at least 9 V signals, we have 
implemented an universal polarization network based on a bipolar junction transistor. The 
NodeMCU generates an alternating signal (a square or sinus signals are appropriate). This signal 
is amplified by the universal polarization network which is calculated to offer a voltage gain of 
2.5. The output signal is driven to the PC. After that, the induced current is gathered by the 
NodeMCU which in charge of processing and storing the measured results. These values can be 
sent to a computer that acts as server. Table 3.3 shows the detailed cost of the electronic part of 
our proposed low cost sensor. The use of this kind of modules able to be integrated to a network 
permits the real-time and remote monitoring of a place or parameter since the sampling period time 
can be programmed according to our requirements. 

Table 3.3. Prices of electronic components of our sensor. 

Component Price 

Discrete components (Resistors, Capacitors, 
Transistors) 

1.90 € 

NodeMCU Module 19.82€ 
Coils 1.83€ 
Total 23.55€ 

3.3 Effect of water level. 

As with solids in water, the amount of water in the inductive sensor can affect the values of 
the induced voltage. Now, we evaluate if there are significant differences between the water 
quantity surrounding the sensor. First, tests with air and water are performed to the effect of the 
induced voltage. Subsequently, carry out the experiments with different amounts of water. 

3.3.1 Difference between water and air. 

3.3.1.1 Test bench  

The prototypes were created using different sizes of PVC material, consuming 2.2 cm long 
and 1.7 cm of diameter for the P1. Besides, 5.2 cm long and 2.5 cm of diameter were needed for 
the P2. Copper wire was used to coil the different prototypes. The P1 was coiled using 0.2 mm 
thickness copper. Nevertheless, a 0.4 mm copper coil was employed for the P2. Otherwise, the P1 
and P2 were distinguished in two different sides, the PC and IC. The P1 was designed with ten 
winds for the PC part and five winds for the IC; likewise, 40 winds for PC and 80 winds for IC 
were used in P2. This information is represented in Table 3.4.  

Table 3.4 Developed prototypes. 

Prototype  P1 P2 

Image  

 
 

Spires of PC  10 40 

Spires of IC  5 80 

Layers  1 2 
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We powered the coils in a clockwise direction, using the end of the coil as a negative part or 
ground reference. Besides, we applied 10 V to power the P1 and P2 using the generator. The 
experiment was done using a glass bottle where measure marks were drawn every 2.5cm, from 0 
to 15 cm. The glass has a height of 16.2 cm and 8 cm of diameter. Following, the coil was placed 
suspended between two different marks. The P1 was located between 5 cm and 7,5 cm, and P2 
between 5 cm and 10 cm. Once the coil was placed, we began to fill the bottle with water measuring 
the Voltage Output (Vout) for each mark. The water volume that we use is 1L. Finally, we test the 
stability of the P1 and P2. For this, we put each coil into the glass bottle, and we fill the bottle up 
to the mark of 15 cm. Then, we introduce the sensor between 5 cm and 7.5 cm, in the case of P1 
and 5 cm and 10 cm for P2. Following, a tool was used to shake the sensor with intensity, changing 
the variation of movements to simulate the real environment. Figure 3.8 are represented the 
experiment's setup. 

 
Figure 3.8. Experimental setup. 

3.3.1.2 Results 

In this section, we detail the results of the prototypes that we have used for the measurements. 
First, the test of each prototype with a different quantity of water are detailed. Successively, the 
prototypes are used to verify the stability of the measures that are obtained by the sensors. Finally, 
the best sensor is tested for different water column positions.  

First of all, the WF was found. The WF for P1 was detected at 770 kHz and for P2 in 130 
kHz. Following, the P1 was located between the marks 5 cm and 7.5 cm, and the glass bottle started 
to fill each 2.5 cm. Then, the same was done for the P2. Figure 3.9 is displayed the results of each 
prototype. The P1 shows an initial Vout of 14.18 V for 0 cm depth and a final Vout of 9.72 V that 
exposed the tendency of voltage to decrease as the water layer increases. However, the P2 
represents the opposite situation, where the initial Vout is 23.80 V, and the final is 28.23 V. In this 
situation, the voltage growth with the increase of the water layer. The two prototypes behave 
differently from each other because the magnetic field that each one produces is not the same. 
Additionally, the performance of the magnetic coil is closely related to the structure of the 
prototypes. Looking at the results, we can see that the presence of water affects the induction of 
the sensor 
 

 
 
 

 
Figure 3.9. Vout in the different depths. 
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3.3.2 Difference between different water levels. 

As we have seen previously, inductive sensors are affected by the presence of water or air in 
their surroundings. In this section, we analyse other inductive sensors to determine if it is possible 
to monitor the water volume in a pipe with this type of sensor. 

We use a resistance of 100 Ω in the PC and a capacitor of 10nF in parallel of the IC (circuit 
represented in Figure 3.2. In Figure 3.10, we observe the assembly in the laboratory, and in Figure 
3.11, we observe a recreation of the coils in the pipe. The coils are inside the pipe. The PC is 
connected to a signal generator and the IC is connected to an oscilloscope. The voltage of the signal 
is 5 V peak to peak. 

  
Figure 3.10 Experimental test. Figure 3.11 Placement of the coil inside the 

tube. 

3.3.2.1 Test to found the WF of each prototype. 

In this subsection, we are going to describe the first test that we will perform. This test will 
be done to find the WF. 

We will introduce the different prototypes on a pipe of PVC 32 mm of diameter, 3 mm thick 
and length of 100 mm. The extreme of the coil will be 2 cm from the end of the large pipe. We add 
a transparent plastic at the end of the pipe to be able to see the inside of the pipe. The pipe will 
have two holes where we will pass the copper wire. The two coils will be placed on the opposite 
walls of the pipe that contains them. Thus, the wires that come out of the pipe will be tense to 
ensure that the coil stays fixed while the holes are sealed with hot-melt glue. Once the glue has 
dried, the cables will be untensioned since the coils will have been fixed to the pipe. 

To find the WF, the PC of each prototype will be powered by a sine wave with amplitude of 
3.3V peak-to-peak. We will test different frequencies from 1 kHz to 25 MHz. In the range of 1 
kHz to 1,000 kHz, we will record the values every 20 kHz. However, in the range of 1 MHz to 25 
MHz, we will record the values every 0.5 MHz. The induced voltage will be measured with the 
oscilloscope. The prototypes will be tested in two conditions: empty pipe and full water pipe. The 
frequency that presents the greater difference between the two conditions will be set as the 
frequency of work. 

Then, we will test the different prototypes in the same conditions used in the first test. To test 
the prototype, we will place the coils inside the pipe (as explained in the previous section), fill it 
with water, and record values of induced voltage when water reaches a height of 0%, 20%, 40%, 
80% and 100% of the diameter of the pipe. Once the pipe is full, we will remove the water, and we 
will start the process again. This test will be done 3 times to analyze the mean values to find the 
best prototype. The best prototype will be the one that combines a big difference between the 
different percentages of water on the pipeline and that has the best adjustment equation. 

The prototypes used are composed of two copper coils. Each coil has been created with 
enamelled copper of 0.4 mm diameter coiled over a semi-cylinder of PVC with a diameter of            
20 mm and 1 mm thick. The prototypes are shown in  

Table 3.5 includes the characteristics of the coils used in each one. We propose six different 
prototypes. The prototype 1 (P1) is done with copper coils forming two toroids. The two coils have 
the same inner diameter, outer diameter, number of spires, and height. The prototype 2 (P2) is 
composed of two coils in a solenoid shape. The IC has 55 spires, and the PC has 30. This prototype 
has the same height of PVC in both coils, but due to the IC has more spires, this coil has more 
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height. For this reason, the beginning of the IC is placed at the same point that the PC, but the 
finish not. The prototype 3 (P3) is the P2 but changing the PC by IC and vice versa. The coils of 
prototype 4 (P4) are in solenoidal form like the P2 and P3. In this case, the two coils have the same 
number of spires, 55 spired. The PCV of the P2 to P4 measures 48 mm height. The prototype 5 
(P5) is formed by two coils in toroid shape. The PC has 30 spires and the IC has 55 spired. The 
coil with 55 spires covers all the PVC but in the case of 30 spires it does not happen. Therefore, 
we cover with copper the center of PVC, leaving the same PVC distance uncovered on both sides. 
Like the P2 and P3, the prototype 6 (P6) is the P5, but changing the powered and IC. In  

Table 3.5 we can observe the parameters of different prototypes. 

Table 3.5 Characteristics of the prototypes. 

  PC IC     PC IC 

P1 
 

Type: Toroid 

Nº Spires: 55 

High: 48 mm 

Inner Diam: 18 

mm 

Outer Diam 21 

mm 

Type: Toroid 

Nº Spires: 55 

High: 48 mm 

Inner Diam: 18 

mm 

Outer Diam 21 

mm 

P4 

 

Type: solenoid 

Nº Spires:55 
High: 28 mm 

Diam: 20 mm 

Type: solenoid 

Nº Spires:55 
High: 28 mm 

Diam: 20 mm 

P2 

 

Type: solenoid 

Nº Spires: 30 

High: 15 mm 

Diam: 20 mm 

Type: solenoid 

Nº Spires:55 

High: 28 mm 

Diam: 20 mm 

P5  

 

Type: Toroid 

Nº Spires: 30 

High: 48 mm 

Inner Diam: 18 

mm 

Outer Diam 21 

mm 

Type: Toroid 

Nº Spires: 55 

High: 48 mm 

Inner Diam: 18 

mm 

Outer Diam 21 

mm 

P3 Type: solenoid 

Nº Spires:55 

High: 28 mm 

Diam: 20 mm 

Type: solenoid 

Nº Spires:30 

High: 15 mm 

Diam: 20 mm 

P6 Type: Toroid 

Nº Spires: 55 

High: 48 mm 

Inner Diam: 18 

mm 

Outer Diam 21 

mm 

Type: Toroid 

Nº Spires: 30 

High: 48 mm 

Inner Diam: 18 

mm 

Outer Diam 21 

mm 

3.3.2.2 Measurement results. 

In this section, we are going to detail the obtained results in the different performed tests. 
First, we present the results of the test done to select the WF. Next, we show the results of the test 
done at the WF.  

3.3.2.3 Test to found the WF of each prototype. 

First, we present the data from the test performed to find the WF of each prototype. Figure 
3.12 presents the data gathered with P1 at different frequencies with the tube full of water and full 
of air. The frequencies, 300 to 340 kHz and 24.5 to 25 MHz, present higher differences between 
both situations and are shown in Figure 3.12. The maximum difference was found at 320 kHz. The 
frequencies where there are differences between both situations for P2, from 320 to 370 kHz, are 
shown in Figure 3.13. The maximum difference was found at 340 kHz. For P3, the frequencies 
with different induced voltages are between 450 and 550 kHz and at 25MHz, see Figure 3.14. The 
maximum difference is found at 490 kHz.  
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In the prototypes P4, P5 and P6, the differences in induced voltage in different environments 
can be seen in Figure 3.15, Figure 3.16, and Figure 3.17. Figure 3.15 shows the induced voltages 
of P4 at different frequencies. The frequencies shown are 300 to 360 kHz. The maximum difference 
was found at 340 kHz. For the P5, the values of the first test are presented in the Figure 3.16. In 
this case, the frequency in which we have seen differences are between 300 to 380 kHz. The highest 
difference was observed at 340 kHz. Finally, for P6 (Figure 3.17), the frequencies where we detect 
different induced voltages are between 440 to 500 kHz and at 25 MHz. The maximum difference 
was found at 460 kHz. 

  

Figure 3.12 Gathered data with P1 at 

different frequencies. 

Figure 3.13. Gathered data with P2 at different 

frequencies. 

 

Figure 3.14. Gathered data with P3 at different 

frequencies  

Figure 3.15. Gathered data with P4 at different 

frequencies  
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Figure 3.16. Gathered data with P5 at different 

frequencies. 

Figure 3.17. Gathered data with P6 at different 

frequencies  

 

3.3.2.4 Test to determine the best prototype as a water level sensor. 

In this subsection, we present the results of the different prototypes when the water level on 
the pipe changes. Previously, we have determined the WF of each prototype, and now we use that 
frequency in the corresponding prototypes. 

In Figure 3.18, we can see the means of values of the induced voltages (we do three 
repetitions) for each prototype and different amounts of water in the pipe. We observed in almost 
all the prototypes (except P6) that the values of induced voltage decrease when the water level 
inside the pipe increases. We can observe that data from P4 present the biggest difference of all 
the prototypes. The difference in induced voltage between empty and full tube has a value of 1.05 
V. The P2 and P3 have a similar difference, with values of 0.95 V and 0.96 V between empty and 
full pipe. The P1 has a difference of 0.38 V and P5 has a difference of 0.29 V. Finally, the P6 has 
the worst difference of the tested prototypes. The P2, P3 and P4 have a significant difference in 
the induced voltages compared to the other prototypes tested. These have in common that they are 
prototypes based on solenoidal coils. The best prototype will be selected between these. 

If we observe the induced voltage when there are different amounts of water in the prototypes, 
they have a similar evolution. For this reason, we select the P4 as the best prototype because P4 is 
the one that presents the higher difference on the induced voltage.  

 

Figure 3.18. Gathered data with the different prototypes at its WF.  

Subsequently, an adjustment equation is sought to explain the differences between the induced 
voltage and the amount of water in the pipeline. In Figure 3.19, we can see the values of induced 
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voltage in P4 and a representation of the adjustment equation as a mathematical model. The 
adjustment equation is present as equation 3.2. This equation has a correlation coefficient of -0.97, 
which indicates that there is a negative correlation. As this value is close to 1, it indicates that both 
variables have a good relation. Finally, the standard error is 0.086 V. The good relationship and 
the small standard error indicate that this prototype can be used to monitor the water level in pipes.  

Figure 3.19. Gathered data with P4 and the mathematical model. 
 

𝐼𝑛𝑑𝑢𝑐𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 =  𝑒0.617 − 0.0101% of water (3.2) 

 

3.4 Conclusions. 

In this chapter, we studied the possible effects of the solid concentrations and water level in 
the inductive sensors. These two water parameters affect the inductive voltage in the IC. On the 
one hand, the concentration of solids in the water affects the measurement. However, the effect is 
low and can be depreciated. On the other hand, the water has an important impact on the induced 
voltage. Therefore, the sensor must be submerged in water to measure. Another parameter that can 
affect the measure is temperature. However, in a previous work, García et al. (2019) tested the 
effect of temperature in inductive sensors. They obtained a change of 0.3 V between the 
temperatures of 1.2 ºC to 20 ºC with an induced voltage of 10.9 V. 

Finally, the different sections of this chapter have been published in the following references 
(Basterrechea, 2020b), (Rocher, 2018a), and (Rocher, 2018b)

0.50

1.00

1.50

2.00

0 20 40 60 80 100

In
d

u
ce

l v
o

lt
ag

e 
(V

)

Water amount in the pipe (%)

Data Matematical model



 

 
51 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Turbidity Sensor. 
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In this chapter, we analyze the two prototypes of turbidimeter developed. First, we presented 

the development of a prototype to control eutrophication in irrigation channels and water bodies 

affected by overflows or illicit discharges. Next, we study the effect of water level in different 

turbidity concentrations. Finally, we improve the use of the infrared LED. 

4.1 Turbidimeter to Eutrophication in water bodies. 

As we saw previously, natural water bodies can be affected by overflows of combined 

sewerage, stormwater sewerage, or illicit direct discharges. The overflows and illicit discharge 

can affect the water quality and provide nutrients. The increase of nutrients in the water increases 

the eutrophication problem. One solution to prevent eutrophication events is using a turbidimeter 

that can differentiate between the turbidity caused by sediments and turbidity caused by algae. In 

previous works, this idea was developed by Parra (2018b). However, they only specify whether 

the turbidity is of sedimentary or algae origin. We want to know the percentage of algae or 

sediment in the water. 

4.1.1 System Description. 

The prototype used in this experiment is crafted in PVC and glass. The PVC has been 

selected because of its robustness and watertight properties, making it suitable for high durability. 

The glass contains the water to be measured; it is selected because of its transparent characteristics 

that will allow the path of light through the sample. The developed prototype is characterized by 

its modularity, ensuring that damaged elements can be easily replaced. The casing is performed 

with a 20 cm T-shaped PVC. This external module has an internal and outer diameter of 4 cm and 

5.6 cm, respectively. 

The internal section, where the sensing elements are placed, is made of PVC, with a length 

of 18 cm and a thickness of 0.3 cm. The inner diameter of this tube is 2.6 cm, and the external 

diameter is 3.2 cm. A total of 12 holes to place the sensing elements have been made in the inner 

tube, divided into two groups of six holes placed at 180° of each other. The space between holes 

in each group is 1 cm. On the one hand, as a light emitter, six LEDs (blue, green, yellow, orange, 

red, and infrared) are inserted in one of the groups of holes. On the other hand, as light receptors, 

five Light-Dependent Resistors (LDRs) are used for the visible light, and a photodiode is selected 

for the NIR light. Although six lights are included in the prototype, we focus on the visible lights. 

In our prototype, we select the use of LDR for visible light. The LDRs do not present response 

times as fast as photodiodes. In real conditions, this is an advantage since sudden changes will 

less influence the sensor's response in incident light. The possible sudden changes might include 

the pass of fauna, rocks, or flocs across the light pass. Furthermore, eutrophication processes are 

slow processes concerning the response time of an LDR. Therefore, the response time of our light 

detectors is appropriate to evaluate the algal growth. Finally, the electronic circuit of the LDR is 

more straightforward than the photodiode circuit, facilitating maintenance, repair, and 

construction tasks. The cover of the upper part of the sensor has been modified by creating a 

perforation to include the glass vial. This vial has an internal diameter of 0.9 cm and a length of 

1.5 cm. Waterproof silicone was used to seal the space between PVC and the glass vial. The vial 

is aligned between the light emitters and receptors, allowing to measure the absorption of light 

without direct contact between sensing elements and water. 

Figure 4.1 is represented a schematic of the prototype. Figure 4.2 presents the different 

sections of the developed prototype. Figure 4.2a represents the encapsulation of the prototype, 

Figure 4.2b the core of the sensor, and Figure 4.2c the vial where the sample is deposited. Finally, 

Figure 4.2d displays the arrangement of the LEDs and LDRs inside the prototype. Table 4.1 

summarizes the dimensions of the prototype, and Table 4.2 outlines the characteristics of selected 

LEDs. 
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Figure 4.1. Prototype of algae turbidimeter 

 

 

 

Figure 4.2. Representation of the used prototype. 

(a) Casing; (b) Prototype; (c) Sample vial; and (d) Position of LEDs and LDRs. 

 

Table 4.1. Dimensions of each section of the prototype. 

 Encapsulate Nucleus Vial 

External diameter (cm) 5.6 3.2 1.5 

Internal diameter (cm) 4.0 2.6 0.9 

Length (cm) 20 18 16 

Thickness (mm) 80 30 5 

 

Table 4.2. Characteristics of the LEDs of the prototype employed in these tests. 

Characteristics Blue Green Yellow Orange Red 

Wavelength (nm) 467–476 562–575 581–594 581–618 612–625 

Diameter (mm) 3 3 3 3 3 
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4.1.2 Test Bench. 

This section describes the equipment used to perform the tests and the methodology selected 

for the entire data collection, calibration, and verification process. 

4.1.2.1 Measuring Methodology. 

In this subsection, the process followed for calibrating the sensor using different samples is 

detailed. A total of seven samples were prepared, two pure samples (one of sediment and one of 

Chlorella vulgaris (as algae)) and five mixed samples with different percentages of each turbidity 

source. The combinations used are: 80% sediment/20% algae; 60% sediment/40% algae; 40% 

sediment/60% algae; 20% sediment/80% algae. Drinking water from the tap was used to perform 

the samples. For these samples, sediment or algae are weighted to prepare the solution with a 

concentration of 7142 mg/L. The volume of the solutions is 100 mL. A serial dilution process is 

applied to generate the eight dilutions the each one of the solutions. The concentrations of the 

solutions are: 0 mg/L, 15 mg/L, 50 mg/L, 200 mg/L, 800 mg/L, 1500 mg/L, and 4000 mg/L. 

Once we have obtained the different samples and their dilutions, 25 mL of each is used to 

take measurements with the prototype; 25 mL is the volume of the sensor vial. The aliquots are 

transferred to the vial, and the measurement process starts. The LEDs are powered sequentially 

(blue-green-yellow-orange-red), and the resistance of the associate LDR is measured to gather the 

data. The value of the LDR requires a short time to stabilize its measure. The data were collected 

once the value was stable. After each measurement, the LED is turned off, and the subsequent 

LEDs are powered. Using this methodology, we obtain the data as resistance values (kΩ). A 

voltage divider has been simulated to attain the results in voltage units (V). The exact values of 

the voltage divider are presented in the results. 

4.1.2.2 Instrumentation. 

First, we describe the equipment used to power the systems and measure the light detectors' 

sensing elements' output signal. To power the LEDs, a FAC 662-B (Promax, 2019) generator has 

been used. LEDs are powered at 5 V with continuous current, and resistors of 470 Ω have been 

used. Regarding the light receptors, we focused on the use of visible light. Therefore, to measure 

the response of the LDRs, a multimeter TENMA 72-2600 (TENMA, 2022) has been used. To 

prepare the sample, a precision balance ENTRIS II model BCE223i-1x (Sartorius, 2022) was used 

to measure the weight of sediments and algae. To create the samples, tap water was used and a 

graduated cylinder with a volume of 100 mL and a precision of 1 mL. 

4.1.3 Results. 

In this section, the obtained results are presented. First, we compare the resistance values 

gathered in the different LDRs. Following, we transformed the resistance of the LDRs to voltage 

and evaluated the sensor's calibration with varying models of regression. Finally, we test the use 

of an artificial neural network to enhance the accuracy of the classification of samples. 

4.1.3.1 Resistance of LDRs with the Use of a Combination of Turbidity Sources and Lights. 

This section analyses the resistance values obtained for the different concentrations tested of 

sediment, Chlorella vulgaris, and their mixture with other lights in the LDRs used. First, we 

elaborated a multifactorial analysis of variance (ANOVA) to determine if there are significant 

differences between the type of turbidity and the concentration of solids. This information will 

indicate whether using the prototype to differentiate turbidity sources at different concentrations 

is possible. In Table 4.3, the results of the multifactorial ANOVA are shown. We observe that the 

p-values are below 0.05 in all the cases. Thus, we can determine that there are significant 

differences in the resistance values of the LDRs between the different types of turbidity sources 



Chapter 4. Turbidity 

 

 
55 

and the tested concentrations. This indicates that it is feasible to distinguish the turbidity 

concentration and its origin by using the gathered data. 

Table 4.3. Multifactorial ANOVA for the LDR resistances in the different lights. 

 p-Value for the Evaluated Factors of Turbidity 

Light colour Turbidity source Concentration of turbidity 

Blue 0.0000  0.0000  

Green 0.0004  0.0000  

Yellow 0.0003  0.0000  

Orange 0.0011  0.0000  

Red 0.0006  0.0000  

Next, we evaluated these differences. Therefore, we assess the resistance values obtained for 

the different turbidity sources and concentrations. The figures below represent the resistance 

values of the LDRs for the different light sources. Although the X-axis represents the tested lights, 

the concentration levels are represented in Y-axis logarithmically. In general terms, we can 

observe an exponential growth of the resistances with the increase in turbidity, except with the 

red and orange lights. In these cases, the resistance values decrease between 0 to 15 mg/L in all 

the samples tested and increase again until 4000 mg/L. This effect might be produced by the 

different reflections and refractions of light in the glass compared with other LEDs due to slight 

differences during the assembling.  

In Figure 4.3 and Figure 4.4, measured resistance values of LDRs are represented for the 

different tested concentrations of sediments, see Figure 4.3; and Chlorella vulgaris, see Figure 

4.4. Except for low concentrations, 15 and 50 mg/L, gathered resistance values are higher when 

Chlorella vulgaris is used as a turbidity source for all light sources. The observed differences are 

greater for the highest concentrations. For the green light, especially for the concentration of 15 

mg/L, there is a big difference in the resistance values, 22.5 kΩ in algae turbidity and 27.93 kΩ 

in sediment. Regarding the concentration of 50 mg/L, the resistance values for algae and 

sediments are similar, with values of 27.5 to 28.3 kΩ, respectively. The same phenomenon occurs 

when the yellow, orange, and red lights are used. Resistance of LDRs presents a high difference 

between the algae and the sediments at 15 mg/L. Nonetheless, for the concentration of 50 mg/L, 

the resistance values are similar regardless of the turbidity source. This might occur due to the 

algae's liberation from pigments into the water, causing an increase in light absorption at specific 

wavelengths. 

Figure 4.5 is represented the resistance obtained with the mix of 80% of sediment and 20% 

algae. With the blue light, there is an exponential growth of the resistance. In the three low 

concentrations of solids tested, the resistance values are near 8.8 kΩ. After these concentrations, 

the maximum resistance is measured in 4000 mg/L with a mean of 201.5 kΩ. The maximum 

resistance is obtained by the concentration of 4000 mg/L using green light (233.5 kΩ of mean). 

In contrast to blue light, there is a difference between the concentration of 0 and 15 mg/L in the 

green light. The resistance increases from 20.9 kΩ to 27.6 kΩ, respectively. In the other 

concentrations, we observe an exponential increase in the resistance. This change between the 

concentration of 0 to 15 mg/L is also observed in the yellow light. In this, the resistance increase 

is 1.2 kΩ (from 3.7 to 4.9 kΩ).  In the blue, green and yellow lights, the LDR resistances increase 

between the concentrations 0 to 15 mg/L. However, there is a decrease in the LDR resistance 

between the concentrations 0 to 15 mg/L in the orange and red lights.  

The same behaviours are observed in the other mixtures. Figure 4.6 are represented the values 

obtained in the different lights with the mixture of 60% sediment and 40% algae. Of all the 

mixtures made, this is the only one where the maximum resistance is obtained with blue light with 

a value of 347.4 kΩ compared to 323.9 kΩ obtained with the green light with a concentration of 



Study and design of a sensor system for the detection of illicit discharges in sewers and water bodies  

 

 
56 

4000 mg/L. In Figure 4.7, the mixture 40% sediment and 60% algae are shown. In this, the 

maximum resistance is in the use of green light and the concentration of 4000 mg/L with a value 

of 414.6 kΩ as the mean. Finally, the mixture of 20% sediment and 80% algae is presented in 

Figure 4.8. In this, the mean of maximum resistances is 492.1 kΩ. As in the rest of the samples, 

the same trends of resistance increase are followed. The resistance values of mixed samples are 

expected to be between the resistance values of sediment and algae. In general terms, resistance 

values are between pure sediment and algae resistance. When resistance values are out of the 

expected interval, the gathered values are like the values of sediment or algae. As occurred in the 

results of pure samples, the increase in solids concentrations in mixed samples led to an upsurge 

of the LRDs resistance values in all cases (except the rise from 0 to 15 mg/L in red and orange 

LEDs). 

  
Figure 4.3. Measured resistance values for sediment. Figure 4.4. Measured resistance values for algae. 

  
Figure 4.5. Measured resistance values for mixture 

80% sediment and 20% algae. 

Figure 4.6. Measured resistance values for mixture 60% 

sediment and 40% algae. 

 
 

Figure 4.7. Measured resistance values for mixture 

40% sediment and 60% algae. 

Figure 4.8. Measured resistance values for mixture 20% 

sediment and 80% algae. 
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4.1.3.2 Calibration of the Sensor for Different Sources. 

In this subsection, we describe the calibration models for the different lights and turbidity 

sources. Firstly, resistances are converted into voltages, which are the variables measured by the 
node. Then, we use Statgraphics Centurion XVIII (Statgraphics, 2022) to obtain the mathematical 

models that correlate the solids concentration with the input voltage at the node, which is the 

output voltage of the voltage divider. 

To simulate the operation of the node, we use a voltage divider, see Equation (4.1, to 

determine the change of voltage in the node input due to the differences in resistance of the LDRs. 

Where input voltage (IV) is the voltage provided by the node, the output voltage (Vout) is the 

voltage after the voltage divider (the input voltage for the node), the circuit resistance (CR) is the 

value of second resistance, the value we will adjust, and the LDR resistance (RLDR) is the 

resistance of each one of the LDRs of the prototype. As IV, we use 3.3 V since it is the typical 

voltage of pins in different microcontrollers such as Arduino or Raspberry. 

V out(V) =
IV (V) ∗  RLDR(Ω)

CR (Ω) + RLDR(Ω)
  (4.1) 

To improve the sensibility of our sensor, we select a CR that maximizes the voltage 

difference between 15 mg/L and 500 mg/L for a particular turbidity source. We delete the 

concentration equal to 0 mg/L of the calibration. Thus, we chose 15 mg/L as the minimum 

expected concentration. We select 500 mg/L because we do not expect the concentration of 

sediments to exceed 500 mg/L in normal conditions. We need to choose one of the different 

turbidity sources to maximize the differences. Sediment was selected as a turbidity source since 

it has the minor difference between the minimum and maximum resistance values. Considering 

that resistances calculated with Equation (4.1) are not standard resistance values and those 

resistances are hard to obtain, we use the most similar standard resistance. In Table 4.4, there are 

the values of resistance obtained by this and the standard values used. 

Table 4.4. Mathematical and standard resistance to fixed resistance in the voltage divider. 

Light Source Blue Green Yellow Orange Red 

Mathematical resistance (kΩ) 9.7 27.6 4.9 3.9 6.3 

Standard resistance (kΩ) 10.0 27.0 5.1 3.9 6.8 

Once we have established the fixed resistance values in the voltage divider, we can calculate 

the node’s voltage values. It is important to note that the node cannot measure all values of the 

analogic signals. The analogic pins convert the signal from analogue to digital. For this function, 

the node has a limited number of values (10 bits). Therefore, we must convert the analogue values 

obtained with Equation (4.1 into digital values with 10 bits of resolution. First, we determine the 

minimum input voltage in the node when the different light sources are used. We established that 

the maximum voltage is 3.3 V, the maximum value Vout can reach. After that, we calculate the 

difference between the minimum and maximum voltage for each light. This value is divided into 

1024 (10 bits), and we obtain the accuracy of the reading to calculate the new voltage values 

(Equation (4.2). In Equation (4.2), Voutc is the new corrected voltage. Vout is the value obtained, 

and precision is the precision of the input for the light source used. In Table 4.5, we show the 

calculated precision of the analogy. 
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Table 4.5. The precision of the analogy entry. 

 Blue Green Yellow Orange Red 

Minimum Voltage (V) 1.497 1.438 1.381 1.521 1.441 

Maximum Voltage (V) 3.300 3.300 3.300 3.300 3.300 

Difference (V) 1.803 1.862 1.919 1.779 1.859 

Precision (mV) 1.76 1.82 1.87 1.74 1.82 

 

Voutc (V) = Integer (
𝑉𝑜𝑢𝑡(𝑉)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑉)
) ∗ Precision (V) (4.2) 

The following step is to have a mathematical model that correlates the concentration of both 
two types of solids (sediment and algae) in the water with the gathered Vout in the node when 

one or more lights are used. We use Statgraphics Centurion XVIII (Statgraphics, 2022) to generate 

the regression models. We search for the best model with the higher R2 coefficient that relates 
them. Our objective with the models was to determine the concentration of one of the turbidity 

sources, alga in this case, and infer the turbidity of the second source based on the total 

concentration of solids in water. This is estimated using the infrared LED described in (Parra, 

2018b). 
With Statgraphics Centurion XVIII (Statgraphics, 2022), we performed a multiple regression 

analysis to determine the model that related the Vout obtained with the different light sources 

with the turbidity source or sources. In the initial model, the voltage obtained with the orange 
light is insignificant, with a p-value of 0.1818. We delete this parameter and the new model 

represented in Equation 4.3 with an R2 of 0.7721. In Equation 4.3 , VoutB, VoutG, VoutY, and VoutR 

represent blue, green, yellow, and red output voltage, respectively. Equation 4.3 model is 
modelled using all the gathered data (all turbidity sources and all tested concentrations). Figure 

4.9 represents the predicted versus the observed values of the concentration of algae using 

Equation (4.3. We can observe many differences between the predicted and the observed values. 

 

𝐴𝑙𝑔𝑎𝑒 (𝑚𝑔/𝐿) = −1547.2 − 2654 ∗ 𝑉𝑜𝑢𝑡𝐵(𝑉) − 7293.1 ∗ 𝑉𝑜𝑢𝑡𝐺(𝑉) + 8523 ∗ 𝑉𝑜𝑢𝑡𝑌(𝑉)  
+ 2688 ∗ 𝑉𝑜𝑢𝑡𝑅(𝑉)  

(4.3) 

 

Figure 4.9. Observed versus predicted values of algae concentration with Equation 4.3. 

Another option is using Eureqa software (Datarobot, 2022) to obtain a mathematical model 

that correlates with the gathered data. Eureqa is software that searches for a model that adapts the 
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observed values with a mathematical model. As previously, the orange light values are discarded. 

Thus, we do not include this variable in the Eureqa model. We select a model with low complexity 
(16 of Eureqa complexity value) and high R2 (R2 of 0.9542). The model used is represented in 

Equation (4.4). We observe that the voltage obtained with yellow light parameter is not included 

in this model. The predicted versus observed values of algae concentration are represented in 

Figure 4.10. As in the previous case, the difference between predicted and observed is high. 

The problem with this type of regression is caused because of the wide range of 

concentrations tested and the non-linear response. For this reason, we discard the use of multiple 

regression with all the concentrations. Therefore, it is necessary to reduce data variability to obtain 

better adjustments. 

𝐴𝑙𝑔𝑎 (
𝑚𝑔

𝐿
) =  498.6 ∗ 𝑉𝑜𝑢𝑡𝐵(𝑉) + 

−81.5

𝑉𝑜𝑢𝑡𝐵(𝑉) − 3.3
 −  802.3 − 𝑉𝑜𝑢𝑡𝐺(𝑉)2  

(4.4) 

 

Figure 4.10. Observed vs predicted values of algae concentration with Eureqa. 

As the previous solution does not present a good performance, we decide to use different 

models according to the concentration of solids in the water. First, we determine the solids 

concentration with a turbidimeter. We will select a particular mathematical model according to 

the concentration of solids. In the case of intermediate concentrations between the studied 

concentrations, an interpolation is performed. 

Figure 4.11, Figure 4.12, Figure 4.13, Figure 4.14, Figure 4.15, Figure 4.16, Figure 4.17, and 

Figure 4.18 represent each solid concentration's predictive versus observed algae concentration. 

In addition, we can observe the mathematical models and R2 in Table 4.6. The lowest value of R2 

is presented in the Equation (4.5) of 15 mg/L with a value of 0.8620, see Figure 4.12. In this 

concentration, predicted values differ from observed more than in other concentrations. The rest 

of the models used present good values of R2. The model calculated for 15 mg/L of solids present 

and a relative average error of 40%. The lower errors are in the 800, 500, and 200 mg/L 

concentrations, with relative average errors of 4.9%, 5.2%, and 6.2%, respectively. The models 

for 50 and 1500 mg/L concentration are characterized by 12.1% and 10.0% of relative average 

error. Finally, the REs in the mix of sediment or algae are maximum in the concentration of 80% 

sediment and 20% algae, with a RE of 32.1%. The rest of the samples with mixed turbidity sources 

have REs between 4.3% to 11.1%. 

Figure 4.18 illustrates the observed versus predicted voltage values for all joined models. We 

can observe that the combined model presents good predictability of the algae values. The average 

error between the predictive algae concentration and the observed is 36.52 mg/L and a RE of 

12.56%. 
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Table 4.6. Values of R2. 

Concentration (mg/L) 15 50 200 500 800 1500 4000 

R2 0.8620 0.9773 0.9975 0. 9854 0. 9974 0. 9568 0. 9890 

Equation 4.5 4.6 4.7 4.8 4.9 4.10 4.11 

 

𝐴𝑙𝑔𝑎 (𝑚𝑔 𝐿⁄ ) = 115.46 + 292.87𝑉𝑜𝑢𝑡𝐵(𝑉) − 67.919𝑉𝑜𝑢𝑡𝐺(𝑉) − 288.19𝑉𝑜𝑢𝑡𝑂(𝑉) 

 
(4.5) 

𝐴𝑙𝑔𝑎 (𝑚𝑔 𝐿⁄ ) = −1440.44 +  509.45𝑉𝑜𝑢𝑡𝐵(𝑉) −  157.68𝑉𝑜𝑢𝑡𝑂(𝑉) +  610.25𝑉𝑜𝑢𝑡𝑅(𝑉) 

 
(4.6) 

𝐴𝑙𝑔𝑎 (𝑚𝑔 𝐿⁄ ) = −2032.23 + 649.97𝑉𝑜𝑢𝑡𝐵(𝑉) − 424.16𝑉𝑜𝑢𝑡𝐺(𝑉) + 872.32𝑉𝑜𝑢𝑡𝑌(𝑉)

+ 173.63𝑉𝑜𝑢𝑡𝑂(𝑉) 

 

(4.7) 

𝐴𝑙𝑔𝑎 (𝑚𝑔/𝐿) = 1982.85 + 5819.45𝑉𝑜𝑢𝑡𝐺(𝑉) − 8138.27𝑉𝑜𝑢𝑡𝑌(𝑉) − 933.002𝑉𝑜𝑢𝑡𝑂(𝑉)

+  2205.87𝑉𝑜𝑢𝑡𝑅(𝑉) 

 

(4.8) 

𝐴𝑙𝑔𝑎 (𝑚𝑔/𝐿) = −4306.95 + 3180.65𝑉𝑜𝑢𝑡𝐺(𝑉) − 909.23𝑉𝑜𝑢𝑡𝑌(𝑉) − 1448.35𝑉𝑜𝑢𝑡𝑂(𝑉)

+ 1342.88𝑉𝑜𝑢𝑡𝑅(𝑉) 

 

(4.9) 

𝐴𝑙𝑔𝑎 (𝑚 𝑔 𝐿⁄ ) = 4521.11 − 16788.3𝑉𝑜𝑢𝑡𝑌(𝑉) + 13227.3𝑉𝑜𝑢𝑡𝑂(𝑉) + 2210.21𝑉𝑜𝑢𝑡𝑅(𝑉) 

 
(4.10) 

𝐴𝑙𝑔𝑎 (𝑚 𝑔 𝐿⁄ ) = −22384.7 + 10404.0𝑉𝑜𝑢𝑡𝑂(𝑉) − 2251.3𝑉𝑜𝑢𝑡𝑅(𝑉) 

 
(4.11) 

 

 
Figure 4.11. Observed vs predicted values of algae concentration with a solid concentration of 15 mg/L. 

 

 
Figure 4.12. Observed vs predicted values of algae concentration with a solid concentration of 50 mg/L. 
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Figure 4.13. Observed vs predicted values of algae concentration with a solid concentration of 200 mg/L. 

 

 
Figure 4.14. Observed vs predicted values of algae concentration with a solid concentration of 500 mg/L. 

 

 
Figure 4.15. Observed vs predicted values of algae concentration with a solid concentration of 800 mg/L. 
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Figure 4.16. Observed vs predicted values of algae concentration with a solid concentration of 1500 mg/L. 

 

 
Figure 4.17. Observed vs predicted values of algae concentration with a solid concentration 

of 4000 mg/L. 

 

 
Figure 4.18. Observed vs predicted values of algae concentration with different models. 

If we observe the different figures of the models presented, in some cases, we find that the 

concentration of algae is negative or higher than solid concentration. As this cannot happen in 

natural conditions, we apply two modifications to the results. On the one hand, if the result is a 

negative concentration, the result will be changed to 0 mg/L of Algae. On the other hand, if the 

result is an algae concentration higher than a solid concentration, the result will be adjusted to a 

solid concentration (100% algae). We reduce the Absolute Error (AE) to 31.95 mg/L with these 

simple modifications and the RE to 11.0%. 
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Finally, Figure 4.19 present the algorithm of the prototype. When the prototype starts the 

measure, we set different thresholds. Then, we start the function loop. First, the data of the 

different photoreceptors is obtained. With infrared light, we determine the concentration of solids. 

If the solid concentration is lower than 15 mg/L, the prototype will be on standby until the 

subsequent measurement. If the solid concentration is higher than 15 mg/L and lower than 4000 

mg/L, the prototype will use the closest equations for the solids concentration and perform 

interpolation to obtain the algae concentration. Once the concentration of algae is obtained, the 

corrections are applied to verify that the concentration is greater than 0 and lower than or equal 

to the concentration of solids. Finally, this information is sent, and the prototype will rest until 

the subsequent measurement. If the concentration is higher than 4000 mg/L, the prototype sends 

an alarm. We assume that this concentration is too high for irrigation water. After sending the 

warning, as in the previous cases, the sensor will go into standby status. 

 

 

Figure 4.19. Prototype algorithm. 

With the multiple regression models adjusted for every tested concentration, it was possible 

to reduce the error and reach a reasonable adjustment that allowed an optimal operation of the 

sensor. The computational requirements of including these models do not differ too much from 
the requirement for a single multiple regression model. The errors obtained in this calibration and 

the R2 are similar to those in other papers describing low-cost sensors. For example, in 

(Basterrechea, 2021), another optical-based prototype for water quality monitoring, REs between 

4.9% and 19.6% are related, and R2 values are between 0.99 and 0.97. Unless R2 between this 
range characterizes the model for 15 mg/L, the rest of the models and the average RE is also 

between the range of (Basterrechea, 2021). 

4.1.3.3 Artificial Neural Network. 

In the previous section, we study the use of different models to determine the concentration 

of algae. Now, we analyze the use of an artificial neural network to determine the percentage of 

algae in the different mixtures as an alternative to previous models. The aim of exploring this 

option is that some nodes might be able to use these systems in the short term to maintain low-

cost devices and low-energy consumption. Therefore, we wish to compare the performance of 

existing solutions which can be included nowadays in the node with the nearby possibilities. 
To develop a neural network analysis, we use Statgraphics Centurion XVIII (Statgraphics, 

2022) software. 90 and 36 random values are used for the training and validation phases. The 
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analyses were performed five times to include the possible effect of this random selection on the 

success. Figure 4.20 represents the values of training and validation success for different 
combinations of lights. We test the use of 2, 3, 4, and 5 lights. The best percentage of success is 

93% with the use of three LEDs (green, yellow, and red); another high rate of success is for the 

use of the 5 LEDs, with a value of 92%. In general terms, there does not seem to be a relationship 

between the use of a specific light source and a high success rate in the neural network. Regarding 
validation, the highest value is 98% with the use of 5 LEDs. 

 
Figure 4.20. Training and validation of neural network. 

We have selected 5 LEDs for our neural network since it is the one with the highest 

percentage of success. Table 4.7, and Table 4.8 summarize the success of training and validation, 

respectively. In the case of training, the values of success are high. The group with less percentage 

of success is 60% of algae. In this group, two points are misclassified as 0% of algae. The same 

occurs in the group of 40% algae, where two other values have been classified in the group without 

algae. Regarding the validation, we observed 100% effectiveness when classifying the values. 

Table 4.7. Correctly classified cases in the training dataset. 

Actual Group 
Predicted Group 

Correctly Classified 
0 20 40 60 80 100 

0 13 1 0 0 0 0 92.86% 

20 1 16 0 0 0 0 94.12% 

40 2 0 13 0 0 0 86.67% 

60 2 0 0 12 0 0 85.71% 

80 0 0 1 0 14 0 93.33% 

100 0 0 0 0 0 15 100.00% 

Table 4.8. Correctly classified cases in the validation dataset. 

Actual Group 
Predicted Group 

Correctly Classified 
0 20 40 60 80 100 

0 7 0 0 0 0 0 100% 

20 0 4 0 0 0 0 100% 

40 0 0 6 0 0 0 100% 

60 0 0 0 7 0 0 100% 

80 0 0 0 0 6 0 100% 

100 0 0 0 0 0 6 100% 
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The use of an artificial neural network implies a tremendous demand for calculation. 

Although there are different proposals for implementing artificial neural networks in 

microcontrollers, we consider that the best option to monitor the presence of algae or sediments 

and their mixtures is the proposed algorithm. Even though the algorithm can be less efficient than 

an artificial neural network, it requires a lower calculation power. If better precision is required, 

the data can be sent to a computer to perform the neural network. This solution would improve 

the determination of the mixing percentage at the cost of higher energy consumption. 

4.2 Determine solid. Effect on algae and sediment concentrations in 
mg/L in the turbidity (NTU). 

As we have seen previously, our prototype to determine the percentage of algae in water 

needs solid concentration knowledge. Thus, it is necessary the development a system to determine 

the solid concentration of the sample. Section 2.3.5 shows that the turbidity sensor is the better 

option for continuously controlling the solids in water. However, the NTU contribution of a gram 

of solids is different from algae's contribution. That is why we need to know the equivalence of 

grams of solids with grams of algae in order to be able to determine the concentration of algae 

and solids using turbidity. Next, the different mathematical models and algorithm used in our 

turbidimeter are presented. 

4.2.1 Test Bench. 

This section presents the materials and methodology used in the experiment. To perform the 

measures, we use a commercial turbidimeter model TU-2016. The samples are elaborated using 

two sources of turbidity. As sediment, we use a mix of silt and clay from fluvial deposits sieved 

with a maximum of 0.06 mm. As algae, we use a commercial pack of Algae chlorella. We 

elaborate pure samples of Algae and turbidity with a concentration of 15 g/l. Next, we perform 

200 mL of five samples with the combination of the pure samples. The combinations are shown 

in Table 4.9. With these samples, we perform different dilutions to obtain samples with 

concentrations of 0, 15, 50, 200, 800, 1500, and 4000 mg/L. 

Table 4.9. Samples elaborated 

Sample 1 2 3 4 5 6 

% Algae 100 80 60 40 20 0 

%Sediment 0 20 40 60 80 100 

4.2.2 Results. 

In this subsection, we analyze the turbidity of different samples with a mixture of algae and 

sediments. 

Figure 4.21 represents the NTU obtained by the different mixtures of algae and sediment in 

different solids concentrations. In concentrations lower than 4000 mg/L, there is an increase in 

turbidity with the rise of the % of sediments. Instead, in the concentration of 4000 mg/L, the 

turbidity is reduced with the increase in the % of sediment. In addition, in the concentration of 

1500 mg/L, the turbidity in the % of sediment of 80 and 100 % is similar with 690 and 692 NTU 

values, respectively. If we observe Figure 4.22, we can observe that between the concentration of 

0 to 1500 mg/L, the sediment samples present higher turbidity than algae samples. The opposite 

occurs in the concentration of 4000 mg/L. This occurs because in the sediment samples, the 

turbidity limit is near 917 NTU, and in the algae, samples are higher than 1039 NTU. For this 
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reason, in the concentration of 4000 mg/L, when we reduce the sediment concentration, the 

samples' turbidity increases. 

Figure 4.21.NTU in the different concentrations of solids and % of sediments. 

 

Figure 4.22. Turbidity of samples with pure Algae and Sediment 

Equation 4.12 related the concentration of solids in mg/L to the NTU of algae. We use 

statgraphics to calculate this model. The best model is a double square with a R2 of 0.9985. 

However, we choose the lineal model (R2=0.9972) to represent turbidity's evolution with the algae 

solids' increase. Because the double square cannot be used in low concentrations of Algae. The 

R2 of the double square is 99.85%. In the case of the sediment, we select a polynomic model 

represented in 4.13 with an R2 of 0.9986. 

Solids (mg/L) = -50.5728 + 3.82683*NTUalgae (4.12) 

Solids (mg/L)  =  −9𝐸−5𝑁𝑇𝑈𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡2  +  0.5908NTUsediment −  4.9636 (4.13) 

First, we analyzed the correlation between sediment concentration and algae with the 

turbidity observed. We obtained a correlation between the turbidity values and the concentrations 

of sediment and algae with a P-value of 0.0000. We use the software Eureqa (Datarobot, 2022) to 

elaborate a model to relate turbidity with the values of concentration of algae and sediment. To 

elaborate on the model, we divide the data into two categories calibrations and verification. The 

data assigned in each category are randomly selected. For it, we located the data in an excel 

archive and generated a new column with random integers numbers between 1 to 3. The line with 
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a value of 3 is selected for verification and the other for calibration. We obtained 27 values for 

the calibration and 17 values for the verification. We obtained Equations (4.14), (4.15), and (4.16) 

that related the concentration of algae [A] and sediment [S] in mg/L with the NTU. These 

equations present R2 values of 0.9991, 0.9961, and 0.9856, indicating a good correlation. The 

errors obtained by the equations in the calibration and verification are shown in Table 4.8 the 

errors of the 3 models are presented. We can check that the errors in the verification are higher 

than in the calibration, and with the increase in the complexity of the model, the errors decrease. 

The absolute minimum errors are 6.0 NTUs in the calibration and 17.8 NTUs in the verification. 

That supposes an AE of 10.7 NTU. 

Figure 4.23 are presented the observed versus the predicted values of the three models. The 

three models present essential differences in the higher solids concentrations. Model 4.16 has 

essential differences between the observed NTUs of 592, 630, and 692 and the predicted NTUs. 

These NTUs correspond to the concentration of 1500 mg/L. 

NTU =  4.1169 +  0.4435[S] +  0.2964[A]  +  1.6364𝐸−4[A][S] 

+  4.8604𝐸−5[S]2 −  2.5606𝐸−8[S]3 −  6.0049𝐸−8[S][A]2  

−  8.3739𝐸−8[A][S]2 

(4.14) 

NTU = 0.5811[S] + 0.3025 [A] - 1.0620𝐸−4 [A][S] - 8.797𝐸−5[S]2 (4.15) 

𝑁𝑇𝑈 =  
1421.2243[S]  +  665.3329[A]

2199.4485 + [S]
 (4.16) 

 

In Table 4.10, the errors of the 3 models are presented. We can check that the errors in the 

verification are higher than in the calibration, and with the increase in the complexity of the model, 

the errors decrease. The absolute minimum errors are 6.0 NTUs in the calibration and 17.8 NTUs 

in the verification. That supposes an AE of 10.7 NTU. 

Figure 4.23 are presented the observed versus the predicted values of the three models. The 

three models present essential differences in the higher solids concentrations. The model given in 

equation 4.16 has essential differences between the observed NTUs of 592, 630, and 692 and the 

predicted NTUs. These NTUs correspond to the concentration of 1500 mg/L. 

Table 4.10. Absolute and REs of Eureqa models with NTU. 

Size Error Calibration Verification Total 

45 
Absolute (NTU) 6.0 17.8 10.7 

Relative (%) 7.4 11.4 9.0 

19 
Absolute (NTU) 13.0 24.3 17.5 

Relative (%) 11.3 21.0 15.1 

12 
Absolute (NTU) 21.2 25.2 22.8 

Relative (%) 13.0 21.4 16.3 
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Figure 4.23. NTU predicted versus NTU observed in Eureqa models 

As we saw in section 4.1, it is necessary to know the total solids' concentration to determine 

the solids' percentage of algae and sediments. The better option to monitor the solid concentration 

is the use of turbidity sensor. However, algae and sediments provide different values of turbidity 

per gram. Therefore, we elaborated an interactive process to determine the percentage of algae 

and sediments. This process is represented in Figure 4.24. First, we determine the value of 

turbidity of the sample. For the first interaction, we assume that the percentage of algae is 100%. 

With this assumption, we calculate the solid concentration with equation 4.12. Knowing the 

amount of solids, we apply the algorithm we have seen in Figure 4.19. With this algorithm, we 

obtain the algae and sediment concentration and can apply equation 4.15. With this equation, we 

calculate NTU's teorical value with these algae and sediment concentrations (NTUp). If the value 

of NTUp is different from the value of NTU that we are measuring with the sensor, we repeat the 

process with the new values of the concentration of algae and sediment using equation 4.18. As 

this process can be taken to infinity, we have decided that it is considered finished if the process 

reaches 20 interactions. 

𝑆𝑜𝑙𝑖𝑑𝑠 (
𝑚𝑔

𝐿
) = 2.4201𝑁𝑇𝑈 + 0.2699𝐴𝑙𝑔𝑎𝑒 + 7.7682𝐸−12𝑁𝑇𝑈5

+ 2.6837𝐸−6𝐴𝑙𝑔𝑎𝑒 ∗ 𝑁𝑇𝑈2 − 17.4815 − 4.1994𝐸−6𝑁𝑇𝑈3  

−  3.8049𝐸−9 ∗ 𝐴𝑙𝑔𝑎𝑒 ∗ 𝑁𝑇𝑈3 

(4.17) 

𝑆𝑜𝑙𝑖𝑑𝑠 (
𝑚𝑔

𝐿
)  =  2.2321 ∗ 𝑁𝑇𝑈 +  3.0122𝐸−12𝑁𝑇𝑈5  −  5.4230𝐸−4𝑁𝑇𝑈

∗ 𝐴𝑙𝑔𝑎𝑒 

(4.18) 

𝑆𝑜𝑙𝑖𝑑𝑠 (
𝑚𝑔

𝐿
)  =  𝐴𝑙𝑔𝑎𝑒 +  4.7524𝐸−3𝑁𝑇𝑈2 − 1.3269𝐸−3 ∗ 𝑁𝑇𝑈 ∗ 𝐴𝑙𝑔𝑎𝑒 (4.19) 
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Table 4.11. Absolute and REs of Eureqa models to determine solids. 

Size Error Calibration Verification Total 

47 

Absolute (mg/L) 27.5 129.4 64.3 

Relative (%) 7.6 15.4 11.4 

21 

Absolute (mg/L) 108.8 160.5 125.2 

Relative (%) 26.8 39.8 31.7 

13 

Absolute (mg/L) 138.8 106.0 123.4 

Relative (%) 29.4 28.8 28.5 

 

Figure 4.24. Algorithm to calculate the solid concentration. 

4.3 Turbidity Levels. 

In this subchapter, we study the effect of the height of the water on a turbidity sensor with 

the photoreceptor and light emitter located down the water column. 

4.3.1 Proposal. 

In this section, we present the proposed sensor for monitoring the presence of 

illicit/uncontrolled discharges in the sewerage. We present the physical characteristics of our 

sensors, the cost of the hardware components needed to develop a prototype with a 

microcontroller, and finally, the algorithm used to detect the measurable parameters. Although 

the principal aim of this sensor is to detect the presence of illicit discharges in sewerage systems 

continuously, we do not discard the possibility of using this sensor to detect the presence of 

particles in liquids for other applications such as irrigation channels industry, etc. Our sensor is 

based on 6 LEDs. 5 of them emit light in the visible spectrum at different frequencies, and the 

other is an infrared LED. An LDR and a photodiode measure the result of emitting light through 

the water sample. Those elements are placed at 0° and 180° concerning the LEDs position. 

4.3.1.1 Proposed sensor. 

In this subsection, we describe the physical characteristics of our sensor and the hardware 

used to implement them.  

We develop two prototypes where the difference between them is the position of the LEDs. 

This is done to test which one works better as a sensing method to detect illicit/uncontrolled waste. 

In prototype 1 (P1), the position of LEDs from left to right is white, yellow, blue, green, and red. 
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In prototype 2 (P2), the order of position of LEDs is green, red, white, yellow, and blue. This 

involves changing the LEDs position: yellow in P1 by white in P2, yellow by red, blue by white, 

green by yellow, and finally, red by blue. 

The prototypes are built using a 5cm long piece of PVC pipe with a diameter of 5 cm and a 

thickness of 4 mm. The LEDs measured 10 mm for colour LEDs (yellow, blue, green, red, and 

white) and 3 mm for infrared LEDs. The polarization voltage for the red and yellow LEDs is 1.8-

2 V, while this value increases up to 3-3.4 V for the white, green, and blue LEDs. Finally, the 

infrared LED requires a polarization voltage of 1.5 V. The LDRs used to have 5 mm diameters, 

and the photodiodes have diameters of 3 mm. In the two prototypes, there is an LDR and a 

photodiode in the structure of the prototype (0° degrees). Besides, an LDR and a photodiode are 

located at 180° of the LEDs. Both prototypes share the LDR and photodiode at 180°. The 

photodiode model is the SFH 203 (3 mm), and the LDR used is NSL-19M51 (3 mm). In Figure 

4.25-a, a picture of the two prototypes (P1 and P2) is shown. 

The changes of resistance in the LDR and photodiode are transformed into voltage with a 

voltage divider (Figure 4.25-b). The voltage divider is based on two resistances. A fixed-

resistance, and another, which is the LDR / photodiode. The value of fixed resistances is 

calculated to maximize the voltage difference between the maximum and minimum values for 

LED. This is done for all the studied solid concentrations and heights. The Equation that 

represents the operation of a voltage divider is Equation (4.20. In this Equation, Vin is the entering 

voltage in the voltage divider (in volts). Vout is the output voltage after the first resistance (in 

volts). and 𝑅𝑐𝑖𝑟𝑐𝑢𝑖𝑡  is the value of the fixed resistance (in ohms). Finally, 𝑅𝐿𝐷𝑅 or 𝑅𝑃ℎ𝑜𝑡𝑜𝑑𝑖𝑜𝑑𝑒  is 

the resistance of the LDR or photodiode (in ohms). 

 

The LDRs and photodiodes change their resistance when the light hits them. The LDR 

decreases its resistance when more light is received. In contrast, the photodiode increases its 

resistance when the light hits it. The light travels from the LED to the sample, and a part is 

reflected, another is absorbed, and finally, a part comes out in the upper part of the water (Figure 

4.26). In the case of the photodiode and the LDR located at 0°, we measure the light reflected by 

the sample (in the direction of the prototype). On the contrary, for the photodiode and the LDR 

located at 180°, we measure the light through the water column. 

 
a) 

 
b) 

Figure 4.25. a) Picture of the prototypes; b) electronic scheme of a voltage 

divider. 

 

Rcircuit

GND 

RLDR or
RPhotodiode

𝑉𝑜𝑢𝑡(𝑉) = 𝑉𝑖𝑛(𝑉) ∗
𝑅𝐿𝐷𝑅

𝑅𝐿𝐷𝑅 + 𝑅𝑐𝑖𝑟𝑐𝑢𝑖𝑡
 

(4.20) 
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Figure 4.26. Operating principle 

We locate the LDR and photodiode at 0° because this way it is easier to manufacture the 

sensor. In the literature, standard methods indicated that the nephelometer (instrument for 

monitoring turbidity) detector is located at 90° (Rice, Eaton and Baird, 2017). However, in this 
case, placing the photodetector at 90° is not possible due to the positioning of the sewerage pipe. 

Miroslaw Jonasz and Fournier (2007) recollect information about the angles used in the 

photodetector of the nephelometer, and these angles are from 0° to 180°. In some cases, there are 

multiple photodetectors. We selected the 0° measurement angle to check its operation. It is 
expected that in real conditions, problems arise due to the solids carried by the water.  

4.3.1.2 Cost of our proposal. 

In order to implement a commercial device, it is also required to add additional devices to 

collect and process the measured data. This subsection exposes how to design and connect those 

elements and the cost of our proposal. This price does not consider the manufacturing cost of a 

chain production, i.e., we have only considered the material to develop one. 

We inquired about several electronic shops to know the average price of each component. 

Table 4.12 shows the list of components and elements required to develop a prototype and the 

average price of each one. As we commented before, our prototype requires 5 LEDs of different 

colours and an infrared LED as light emitter sources. Two LDRs and two photodiodes are located 

at 0° and at 180°, taking the position of LEDs as a reference. Additionally, the sensor will be 

placed inside a small piece of circular PVC pipe. To limit the current thought of those elements, 

several resistors are required. Finally, the voltage registered as a function of the received light 

should be processed by a microcontroller. We can design an electronic board or use an already 

developed and commercial model among the range of possible solutions. In our case, we decided 

to use an Arduino UNO WiFi Rev. 2 based on the ATmega4809 8-bit microcontroller from 

Microchip and the ESP8266 WiFi module. The Arduino Uno WiFi is functionally the same as the 

Arduino Uno Rev3, but with the addition of WiFi/Bluetooth connectivity and some other 

enhancements. This module has 14 digital input/output pins, 5 of which can be used as PWM 

outputs and 6 analogue inputs with 10-bits Analog-to-Digital Converters (ADC). This 

microcontroller has output pins that provide a 𝑉𝑜𝑢𝑡  of 5 V for powering the different LEDs and 

the LDRs or the photodiodes, respectively. The Arduino UNO WiFi Rev. 2 can be powered by 

batteries. So, we decided to use a 5000 mAh USB Power Bank. Finally, the entire system is placed 

inside a waterproof plastic box to protect it from environmental factors and possible damage from 

rodents. The total cost of the out prototype is 72.34 euros. Figure 4.27 shows the connection of 

the different elements described before and required to develop the prototype. 
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Table 4.12. Prices of the main components 

Component Cost (€) Component Cost (€) Component Cost (€) 

2 SFH 203 
(Photodiode) 

1.08 1 Powerbank 
5000 mah 

15.00 2 NSL-19M51 
(LDR) 

1.88 

1 Infrared LED 0.73 12 resistance  0.48 PVC 1.00 
5 colour LEDs 0.75 Microcontroller 47.00 Waterproof box 5.00 

 

Figure 4.27. Connection diagram of our prototype. 

Finally, it is important to bear in mind the effect of having a 10-bits ADC over the measures. 

According to the Arduino UNO specifications, the maximum voltage that an analogue input can 

measure is 5V, while the maximum number of levels to be considered is 1024 (210, being 10, the 

number of bits of the ADC). This implies that the maximum error in reading will be 5 mV due to 

the effect of quantization by the ADC. So, if the maximum value of turbidity or suspected solids 

it is expected to measure with these prototypes is 10000 mg/L, the maximum error in turbidity 

will be ± 9.8 mg/L. 

4.3.1.3 Deployment Scheme. 

In this subsection, we analyze an example of deployment for our prototype in the sewerage. 

Due to the wide variety of sewerage conditions, other configurations may be better. The prototype 

should be encapsulated to prevent damage from environmental factors (animals mostly).  

In the environment, the proposed deployment is composed of two parts. One part is under 

the pipe. In this part, the LEDs are located on a transparent part of the pipe (methacrylate for 

example). The second part of our proposed deployment is a waterproof box where the 

microcontroller, power bank, and resistances would be. This part can be anywhere, and we 

propose to place it on top of the pipe in an accessible location. The two parts are connected by 

copper wires which would be used to power the LEDs. In Figure 4.28, we present our proposal 

for deployment. One problem with sensors in the environment is the damage they can cause to 

living beings. In this case, the sensor does not present a hazard for the species that live in the 

sewerage. 

LDR

IR Photodiode

UNO Rev.3 +WiFi
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Figure 4.28 Proposal deployment 

4.3.2 Test Bench. 

In this section, we explain the methodology used to obtain the data. From the preparation of 

the samples to the usage of the prototypes. We are starting with the technological characteristics 

of the equipment employed for the measures. 

4.3.2.1 Materials. 

In this subsection, we explain the materials used in the experiment. For preparing the 

samples, we select clay as a source of solids and diluted it in freshwater. We select clay to prevent 

sedimentation problems in the glass container. We prepare different concentrations (1 mg/L, 40 

mg/L, 80 mg/L, 160 mg/L, 320 mg/L, 630 mg/L, 1250 mg/L, 2500 mg/L, 5000 mg/L, 10000 mg/L 

of solids). The concentration of 80 mg/L, 320 mg/L, and 5000 mg/L are used to verify the 

mathematical model. The rest of the concentration is to build the mathematical model. We are 

interested in knowing the range of our sensor, for this reason, we test them in low and high 

concentrations of solids. The typical value of solid concentration in wastewater is between 350 

mg/L for low pollution levels to 1200 mg/L for highly polluted wastewater (FAO, 2019). The 

concentrations tested are above and below that range. The different concentrations tested can be 

observed in Figure 4.29. For measuring the different samples, we use a jar inside which we put 

the samples. The jar's height is 25 cm, and its diameter is 13 cm, the glass of the jar has a thickness 

of 3 mm. The volume of the jar is 4 litres. In the jar, we locate marks for knowing the height of 

the water column. In Figure 4.30, the assembly can be observed. 

We use two different prototypes, represented in Figure 4.25 and explained in subsection 3.1. 

The LEDs of the two prototypes are powered with a voltage of 5 V obtained by a power supply 

model FAC-662B. Between the power supply and the LED, there is a resistance of 470 Ω with a 

tolerance of 5 % for all LEDs.  

4.3.2.2 Methodology. 

In this subsection, we explain the methodology used. First, we introduce the sample in the 

glass beaker at the solid concentration and height that we want to measure. The heights tested are 

3 cm, 5 cm, 8 cm, 10 cm, 13 cm, 15 cm, 18 cm, and 20 cm. There are not typical values for the 

height of the water sheet since it depends on multiple factors. Those factors include the diameter 

of the pipe, whether it is a separate sewer or not, the flow, etc. When the sample is introduced, 
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we shake it. After the shake, the glass and the prototype are covered with a box to prevent the 

entry of light from the outside. In sewerage, the water is in movement, which would prevent the 

effect of sedimentation. 

Then the different LEDs are powered sequentially in the order of yellow, red, blue, green, 

white, and infrared. We wait 20 seconds to take the resistance measurement due to the delay that 

the LDRs have as standard. This process is replicated 3 times, and we note the resistance values. 

We measure the resistance of the LDRs with a tester (Tenma 72-2600 (TENMA, 2022)). For the 

photodiode, we use an oscilloscope (TBS 1104 (Tektronix, 2022b)). All measurements of P1 are 

carried out, and then those of P2 are started. All the measurements for the different heights for 

the same turbidity are carried out before moving on to the next one.  

For the transformation of resistance to Vout in Equation (4.20), the Vin is 5 V. We selected 

5 V because it is a typical voltage of the outputs of microcontrollers and the voltage that we power 

the LEDs. RLDR is the different resistances measured with the tester. Regarding Rcircuit, we 

want to use the resistance that maximizes the difference between the minimum and maximum of 

Vout. This is done to improve the accuracy of the solid concentration measurement. In this 

process, we have used the Solver tool (Microsoft, 2022) in excel to search for the Rcircuit for 

each LED in the different heights. Once calculated, the Rcircuits for the different heights have 

been averaged, and the Rcircuit for each LED has been obtained. 

To determine the mathematical model, we use Statgraphics software (Statgraphics, 2022) 

and Eureqa software (Datarobot, 2022). We use Statgraphics for the data of LDR/photodiode in 

0. This is a popular software for statistical analysis. The Eureqa software is used in the case of the 

LDR in 180°. This is a software to search mathematical models from a data set. The use of 

Statgraphics in the case of the LDR / photodiode at 0° is due to the height having a less significant 

effect than in the case of 180°. That is why specific software is not necessary. To calculate the 

best mathematical model, we look for the one that offers the highest R2 among the different 

models offered by Statgraphics. This model will relate the concentration of solids to the voltage. 

Once the model is obtained, the data will be linearized. Afterwards, selecting the option of 

regression models, we will obtain the R2 taking into account the height and the concentration of 

solids or only the height. 

 

Figure 4.29. Tested samples. 

 

Figure 4.30. Assembly. 
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4.3.3 Results. 

In this section, we present the results of our prototypes. We tested them in different 

concentrations of solids and at different heights. We tested the effect of different heights due to 

the daily variations in the amount of water carried by the sewer system. The height of the water 

will affect the amount of light that the water absorbs and reflects. 

4.3.3.1 Results LDR 180°. 

In this subsection, we analyze when the LDR is located at the top of the glass (180°). The 

values of the photodiode located at 180 are analyzed in section 5.3. We calculate the Rcircuit to 

obtain the maximum voltage difference (Table 4.13). Nevertheless, these resistance values are not 

the ones that are used as the standard resistance. We select them as those close to the theoretical 

value. In Figure 4.31 to Figure 4.40, we can observe the values of Vout obtained. In all colour 

cases, we can observe an exponential increase in the voltage with increasing solids and water 

height.  

Concerning the output voltage in a concentration of 1 mg/L of solids, it is in the range of   
0.63 V to 0.09 V. The output voltage is near 4.5 V when the concentration of solids or the height 

of water does not allow light to shine on the LDR. In these cases, the resistance of the LDR is 20 

MΩ according to the datasheet of the component. The average Vout for P1 and P2 in the 1 mg/L 
concentration is 0.49 V and 0.25 V in yellow, in red, it is 0.44 V and 0.33 V, in the case of blue 

is 0.36 V and 0.28 V, 0.18 V and 0.20 V in the green light, and finally, 0.2 V and 0.15 V in the 

white LED. In the two prototypes, for a concentration of 160 mg/L of solids, the two prototypes 

start to fail at the highest of the heights tested. The typical concentration of solids in wastewater 
polluted weakly is 350 mg/L (FAO, 2019). Accordingly, the LDR in the top of the pipe presents 

a measuring gap in pipes with diameters longer than 20 cm. The Vout is related to turbidity in an 

exponentially increasing way. In general, we have observed that the water tends to increase (or 
keep stable) the Vout values for lower concentrations, and then they rise more abruptly from 

approximately 10 cm. We believe that this is because the water redirects the light at an angle that 

favours the illumination of the LDR from those heights. Concerning the highest concentrations, 
an exponential increase in the Vout values with height has been observed. 

In Figure 4.31 and Figure 4.32, the values for the yellow LED are shown. The average Vout 

in 1 mg/L is 0.97 V and 0.62 V for P1 and P2, respectively. The resistances are 20,000 kΩ in the 

concentration of 10,000 mg/L and 3 cm. As well as for the concentration of 2,500 mg/L and 5 cm 

or 8 cm. In 10 cm and 13 cm, this happens for concentrations of 1,250 mg/L. Finally, for 

concentrations of 630 mg/L, it happens for the rest of the tested heights. Concerning the range, 

the two prototypes do not present differences. Regarding height, an exponential increase is 

observed in concentrations greater than or equal to 80 mg/L. For 1 mg/L and 40 mg/L, we observe 

that the Vout values remain stable up to 10 cm. From that point, they begin to increase the Voltage 

for P1. For P2, no pattern is observed at these concentrations. 

The Vout values for the red LEDs are presented in Figure 4.33 and Figure 4.34. The average 

of Vout for 1 mg/L is 0.85 V for the P1 and 0.65 V for the P2. As in the previous case, the range 

of the two prototypes is the same. The maximum concentration that could be measured (less than 

20,000 kΩ) is 5,000 mg/L for 3 cm. For the rest of the heights, the maximum has been found at 

2,500 mg/L and 5 cm, 1,250 mg/L, and 8 cm, and 10 cm, 13 cm, 15 cm, and 18 cm for 630 mg/L. 

Finally, for 20 cm, we have not been able to measure in concentrations greater than 160 mg/L. In 

this case, we see that concerning the height, there is an exponential decrease starting with the 160 

mg/L concentration. 
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Table 4.13. Resistance in voltage divider in LDR top mathematical and standard 

Colour 
P1_top 
(kΩ) 

P2_top 
(kΩ) 

P1_top standard 
(kΩ) 

P2_top standard 
(kΩ) 

Yellow 2177.5 1026.5 2200 1000 

Red 1807.0 1432.9 1800 1500 

Blue 1343.8 1308.4 1200 1500 
Green 767.6 818.3 820 820 

White 738.6 575.0 680 560 

 

 
 

 
 

Figure 4.31. Prototype 1, yellow LED, LDR 180° Figure 4.32. Prototype 2, yellow LED, LDR 

180° 

 

  

Figure 4.33. Prototype 1, red LED, LDR 180° Figure 4.34. Prototype 2, red LED, LDR 180° 

 

Next, we analyze the blue LED (Figure 4.35 and Figure 4.36). This one, together with the 

green LED are the ones with the worst ranges (resistance of the LDR change). This LED has a 

maximum of 2,500 mg/L in 3 cm, 630 mg/L in 5 cm, 8 cm, and 10 cm the maximum is 160 mg/L. 

For the rest of the tested heights, the maximum is 160 mg/L. For the concentration of 1 mg/L for 

P1, we observed an increase in Vout. For the concentration of 1 mg/L for P2 and 40 mg/L for P1 

and P2, a drop in voltage values is observed up to 10 cm. From this point on, an increase in the 

values is observed. 

We show in Figure 4.37 and Figure 4.38 the Vout for the green LEDs. As in the previous 

case, its maximum measurement range is 2,500 mg/L in 3 cm. For 5 cm it is 1,250 mg/L. In 8 cm 
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and 10 cm, the maximum is 630 mg/L. 160 mg/L is the maximum in 13 cm, 15 cm, and 18 cm. 

Finally, in 20 cm, the maximum is 160 mg/L. In this case, the heights have different distributions 

according to solid concentration. For 1 mg/L, the P1 reduces the Vout from 3 cm to 8 cm. From 

this point, there is a linear increase in Vout. In 40 mg/L, the same happens but up to a height of 

13 cm. For 1 mg/L in P2 increases but does not seem to follow a trend. For the same prototype, 

the concentration of 40 mg/L in the Vout remains stable. 

Finally, we analyze the last LED tested, the white one. Figure 4.39 and Figure 4.40 present 

the values of Vout for them. The heights and concentration levels for which the resistance of the 

LDR is the highest are 5 cm at 2,500 mg/L, 8 cm, and 10 cm at 1,250 mg/L, and the rest of the 

heights tested at 630 mg/L. As in the previous cases, it is observed that with 1 mg/L and 40 mg/L, 

the values tend to decrease in the first heights tested and increase later. The concentration of 80 

mg/L in P2 is observed in a cloud of points that tends to decrease. The rest of the concentrations 

show an exponential decrease. 

 

 
Figure 4.35. Prototype 1, blue LED, LDR 180° 

 
Figure 4.36. Prototype 2, blue LED, LDR 

180°.  

 
Figure 4.37. Prototype 1, green LED, LDR 180° 

 
Figure 4.38. Prototype 2, green LED, LDR 

180° 
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Figure 4.39. Prototype 1, white LED, LDR 

180° 

Figure 4.40. Prototype 2, white LED, LDR 

180° 

For the LDR at 180°, it is obvious that the height has an important effect on the value of 

Vout. We use the Statgraphics software (Statgraphics, 2022) to determine if there are differences 

between the means of the different Vout. We obtain that there are not statistically significant 
differences between the means (with a p-value of 0.6874).  

We have used the Eureqa software (Datarobot, 2022) again to calculate the best fit 

mathematical model. If we use all the concentration levels tested, the values of R2 are inferior. 
Therefore, we decide to eliminate the concentration with a resistance of 20,000 kΩ. With this 

modification, we got R2 values of 0.993, 0.998, 0.991, 0.998, and 0.996 for yellow, red, blue, 

green, and white respectively in P1. In P2, the R2 are 0.997, 0.993, 0.999, 0.999, and 0.9994 for 

yellow, red, blue, green, and white respectively. These models are very complex, because of this, 
we select those models with a complexity lower than 20 (according to the Eureqa criteria) even 

though they have a lower R2. We obtain 0.990, 0.990, 0.990, 0.998, and 0.996 for yellow, red, 

blue, green, and white respectively in P1. 0.993, 0.92, 0.99. 0.999, and 0.9994 for yellow, red, 
blue, green, and white respectively in P2. This simplification of the model implies a reduction of 

the R2 of 0.047, but it greatly simplifies the calculations. This sensor presents an enormous change 

in the Vout when the values of solids increase (especially in solids concentration above 40 mg/L 

and heights above 3 cm). These prototypes can be used to monitor areas with fast changes in the 
concentration of solids. For example, the clarifiers of a WWTP. In the clarifiers, the solids are 

accumulated in the lower part of the clarifier (Sludge), and water comes out the top. Our sensor 

can be located in the clarifier at the critical height of sludge to start the suction pumps so that it 
does not reach the critical height. 

4.3.3.2 Results LDR 0°. 

In this section, we present the results of our prototypes (P1 and P2). We measured the 

resistance of the LDR and photodiode with a tester and transformed it to output voltage with 

Equation (4.20. We observed that the values of the resistances are different in the two cases. These 

differences can be caused by the distance between the LED and the LDR/photodiode.  

The values of the fixed resistance can be observed in Table 4.14.  

In Figure 4.41 to Figure 4.49, we can observe the values of the two prototypes for the 

different colour LEDs, when the LDR is located at the same place as the LEDs. Except for the 

case of the blue LED in P2, the turbidity and Vout have a positive and logarithmic function. In 

the different water heights, we observe that its evolution is not constant. In the sample with 1 

mg/L of solids, the Vout reduces until a height of 8 cm is reached in P1 and 10 cm in P2. We 

believe that this behaviour change is due to light reflection on the glass walls. 
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Now, we analyze the different LEDs. We start our analysis with the LEDs that have poor 

performance for solids detection. We discard the use of blue and green. In the case of blue LEDs 

(Figure 4.41 and Figure 4.42), the difference between the minimum and maximum concentrations 

tested are minimal. In P1, the difference is 0.30 V (averaged between the different heights in 1 

and 10,000 mg/L of solids). The average Vout for 1 mg/L is 2.49 V compared to 2.19 V for 10,000 

mg/L. In the P2, the average Vout is 2.41 V for 1 mg/L and 2.58 V for 10,000 mg/L. Regarding 

the form of the function, we observe that in P1, the maximum values are reached for the 

concentration of 2,500 mg/L. This is an unexpected result. It would be expected that once a 

maximum reflection of the light towards the LDR at 0° is reached, it would remain stable. 

Regarding P2, as we have previously stated, this one presents a strange shape. Finally, we observe 

a notable difference between the two prototypes, from the form of the function to the different 

values of Vout. 

Table 4.14. Resistance in voltage divider in LDR down. 

Colour 
P1_Down 
(kΩ) 

P2_Down 
(kΩ) 

P1_Down 
standard (kΩ) 

P2_Down 
standard (kΩ) 

Yellow 112.9 139.2 120 120 

Red 648.9 49.6 680 47 

Blue 42.5 328.1 47 330 

Green 76.3 56.9 82 56 

White 10.8 19.5 12 18 

 

There is an important difference between the green LED (Figure 4.43 and Figure 4.44) in the 

two prototypes. In P1, the difference is 0.22 V. The average Vout value for 1 mg/L is 2.51 V and 

for 10,000 mg/L, it is 2.29 V. Whereas in P2, the difference is 1.22 V with voltage values of 3.04 

V for 1 mg/L and 1.81 V for 10,000 mg/L. This difference may be due to the change of position 

of the LED in the prototypes. Therefore, it is not accurate enough and should not be considered 

for the development of our prototype. In addition, it is important to note 2 things. (i) this is the 

colour with the greatest dispersion at the concentration of 1 mg/L. At first, it was believed that 

they would be incorrect values. But after repeating the experiment, it was confirmed that these 

values were correct. (ii) in prototype 2, between concentrations 1 mg/L, 40 mg/L, and 80 mg/L, 

there is a high dispersion between the values with 3 cm of the water column and the rest of the 

values. 

Regarding the LEDs that have worked the best, they are the yellow, red, and white LEDs. 

These have a difference between 0 mg/L to 10,000 mg/L of 1.73 V, 1.76 V, and 1.13 V in P1 and 

1.58 V, 1.84V, and 1.35 V in P2 for the LEDs yellow, red, and white respectively (Figure 4.45 to 

Figure 4.50). In all the cases we analyze, the Vout values between 1 mg/ l and 40 mg/ l are very 

similar. Therefore, we consider that the minimum concentration of solids that our sensor can 

measure is 40 mg/L. 
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Figure 4.41. Prototype 1, blue LED, LDR 0°. 

 
Figure 4.42. Prototype 2, blue LED, LDR 0°. 

 
Figure 4.43. Prototype 1, green LED, LDR 0°. 

 
Figure 4.44.Prototype 2, green LED, LDR 0°. 

In Figure 4.45 and Figure 4.46, the values of the yellow LEDs in P1 and P2 are represented. 

The values of Vout are 3.27 V and 3.43 V for 1 mg/L to 1.55 V and 1.84 V for 10,000 mg/L (1.73 

V and 1.58 V difference in P1 and P2 respectively). Regarding the range of higher concentrations 

tested, we see that in P1 the values stabilize after 2,500 mg/L and in P2 after 1,250 mg/L. 

Therefore, the measuring range will be from 40 mg/L to 2,5000 mg/L for P1 and will be shortened 

to 40 mg/L to 1,250 mg/L for P2. Equations 1 and 2 represent the mathematical model of the 

yellow LED in P1 and P2 respectively. The ranges of these models are 40 mg/L to 2,500 mg/L in 

P1 and 40 mg/L to 1,250 mg/L to P2. These solids models are not a function of heights since the 

difference of R2 is 0.0005 in P1 and 0.0002 in P2. These differences do not justify adding more 

complexity to the model. The values of R2 are 0.9963 in P1 and 0.9830. 

In Figure 4.47 and Figure 4.48, we can observe the values of Vout in the red LED. In P1, the 

first thing that stands out is the great dispersion of 1 mg/L. The minimum value (for this 

concentration) is 2.58 V, and the maximum is 3.82 V. This dispersion does not carry over to the 

other concentrations. We believe that this dispersion only occurs in very transparent waters, which 

does not happen in the sewer. Therefore, we do not rule out the use of this LED. In addition, in 

P2, there exists dispersion for 1 mg/L (between 3.25 V to 3.57 V), but the range is not as large. 

In addition, we observe that the maximum value of Vout is 1,250 mg/L. After this value, a slight 

drop in the values is observed. The values of Vout are 3.27 V and 1.51 V in P1 for 1 mg/L and 

10,000 mg/L (1.76 V of difference). In P2, the values are 3.43 V and 1.59 V (1.84 V of difference). 

The lower threshold of these LEDs is 40 mg/L (as with the yellow LED). In the case of P1, the 

higher threshold is for 1,250 mg/L, and in P2, it is for 2,500 mg/L. From these concentrations on, 
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the voltage difference remains stable. Finally, in P2 we observe that the voltage value for 40 mg/L 

and 3 cm is far from the rest of the points. Furthermore, for 160 mg/L, there is a dispersion of the 

values in P2 and for 40 mg/L in P1. 

The mathematical models for the red LED in P1 and P2 are represented in Equations 4.21 

and 4.22, respectively. The ranges of these models are 40 mg/L to 1,250 mg/L in P1 and 40 mg/L 

to 2,500 mg/L to P2. The values of R2 are 0.9887 in P1 and 0.9905 in P2. These solids models are 

not a function of heights since the difference of R2 is 0.0002 in P1 and 0.0015 in P2. These 

differences do not justify adding more complexity to the model. In addition, in the case of P2, the 

highest R2 is that of the model without considering the height. 

The last LED analyzed is the white LED (Figure 4.49, Figure 4.50). In this case, it is striking 

that there does not seem to be a dispersion of the data according to the height in P1. Nevertheless, 

it does exist in P2. For 1 mg/L in P1, the average is 2.94 V, for 10,000 mg/L, it is 1.81 V 

(difference of 1.13V). The P2 has a Vout of 3.22 V for 1 mg/L and 1.86 V for 10,000 mg/L (a 

difference of 1.13 V). According to the range, both LEDs can differentiate between 40 mg/L and 

2,500 mg/L. Finally, the mathematical model is represented in Equations 4.23 and 4.24. The 

values of R2 are 0.9914 and 0.9794. As in the previous cases, when adding the height to the model, 

the difference in the R2 when adding the height to the mathematical model is minimal. 

 

 
Figure 4.45. Prototype 1, yellow LED, LDR 0° 

 
Figure 4.46. Prototype 2, yellow LED, LDR 0° 
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𝑆𝑜𝑙𝑖𝑑𝑠 (𝑚𝑔/𝑙)  = (
−39.3278 +  151.496

𝑉𝑜𝑢𝑡𝑦𝑒𝑙𝑙𝑜𝑤1(𝑉)
)
2

 (4.21) 

𝑆𝑜𝑙𝑖𝑑𝑠 (𝑚𝑔/𝑙)  = 𝑒15.3912 − 6.18087√𝑉𝑜𝑢𝑡𝑦𝑒𝑙𝑙𝑜𝑤2(𝑉). (4.22) 

𝑆𝑜𝑙𝑖𝑑𝑠 (𝑚𝑔/𝑙)  = (
−9.3713 +  58.8425

𝑉𝑜𝑢𝑡𝑟𝑒𝑑1(𝑉)
)
2

 (4.23) 

𝑆𝑜𝑙𝑖𝑑𝑠 (𝑚𝑔/𝑙)  = (
−40.0554 +  161.361

𝑉𝑜𝑢𝑡𝑟𝑒𝑑1(𝑉)
)
2

 (4.24) 
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Figure 4.47. Prototype 1, red LED, LDR 0°. 

 
Figure 4.48. Prototype 2, red LED, LDR 0°. 

 
Figure 4.49. Prototype 1, white LED, LDR 0°. 

 
Figure 4.50. Prototype 2, white LED, LDR 0°. 

We have previously seen that there is no difference in the values of R2 when the height is 
added to the model. Now, we proceed to study if there is a statistical difference to check if there 

are significant differences between the height values. For this, we performed an ANOVA 

multifactorial analysis (confidence interval 95%, p-value greater than 0.05 for differences to exist) 
with the software Statgraphics (Statgraphics, 2022). The results of the ANOVA can be checked 

in Table 4.15. We can conclude that in most cases, there is a statistically significant difference. 

Also, except for the yellow LED and red LED in P2, the p-value for the other LEDs is lower than 

0.0001. In the future, we will have to study if these differences are due to the change of position 
of the LEDs, the agitation of the sample, or some defect in the glass. Since it is observed that 

although the results between the different LEDs (except for green and blue) may be similar, there 

are some differences. 
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𝑆𝑜𝑙𝑖𝑑𝑠 (𝑚𝑔/𝑙)  = (
−40.0554 +  161.361

V𝑜𝑢𝑡𝑤ℎ𝑖𝑡𝑒2(𝑉)
)
2 

. 
(4.25) 

𝑆𝑜𝑙𝑖𝑑𝑠 (𝑚𝑔/𝑙)  = 𝑒12.2156 − 7.07235∗ln(V𝑜𝑢𝑡𝑤ℎ𝑖𝑡𝑒2(𝑉). (4.26) 
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Table 4.15. ANOVA height in LDR 0°. 

Colour p-value P1 down p-value P2 down 

Yellow ≤0.0001 0.0002 

Red ≤0.0001 0.0002 

Blue ≤0.0001 ≤0.0001 

Green ≤0.0001 ≤0.0001 
White ≤0.0001 ≤0.0001 

 

For these reasons, we determine that although the height has statistically significant 

differences, it does not affect the general function of the sensor. Therefore, it can be used in the 

sewer system without having to use other sensors to determine the height and more complex 

models that require more than one variable. The three LEDs obtain high R2 values. Therefore, 

these mathematical models are very well adapted to experimental values. 

4.3.3.3 Results photodiode 0° and 180°. 

In this subsection, we analyze the values of the infrared LED at 0° and 180°. First, we need 

to determine the best resistance in the circuit of the photodiode. In this case, we use an 

oscilloscope (TBS1104) to measure the resistance voltage. Because the resistance of the circuit is 

high, the measurement of voltage in the tester can be affected due to the tester's internal resistance 

not being high. 

We test the maximum and minimum turbidity to determine the resistance. When the 

photodiode is at 180°, we test at two heights (3 cm and 18 cm). This is due to the height having 

an important effect on the photodiode's signal. In Figure 4.51we can observe the voltage (Vout) 

in the resistance extremes. In the case of a water column of 3 cm, the values of 1 mg/L are upper 

bounded approximately in 0.167 V. The value of 0.167 V is in the resistance of 8.2 MΩ. When 

the solids concentration is 10000 mg/L, the values are bounded in 0.002 V. This means that the 

photodiode does not receive signals from the infrared LED. In the case of 18 cm, the maximum 

voltage is 0.004 V in the concentration of 1 mg/L and 0 in the maximum concentration tested. We 

discarded the use of the photodiode at 180º due to these bad results. Usually, the turbidity can 

measure at this angle. However, the distance between the infrared LED and photodiode is large 

in our case. We discarded reducing this distance due to the low distance between the emitting 

signal and the receptor, which can obstruct the water entry to the sensor. In the sewerage, hairs, 

solid materials, wipes, etc. are very common, which can cause obstructions. 

When the photodiode is located at 0°, we test with a water height of 18 cm (Figure 4.52). 

The voltage values are upper bounded in 0.67 V in the concentration of 10,000 mg/L and 0.4 V 

in the concentration of 1 mg/L. From the 8.2 MΩ resistance, the bounded zone has been reached. 

It is chosen to place this resistance because it is the one that offers us the greatest difference 

between the two concentration levels with the least resistance. Placing a higher resistor can cause 

problems in the current sensor development. 
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Figure 4.51. Voltage in resistance photodiode 

at 180º 
Figure 4.52. Voltage in resistance 

photodiode at 0º 

The photodiode results are shown in Figure 4.53 for P1 and Figure 4.54 for P2. In P1, the 

voltage is between 0.402 V in 1 mg/L to 0.68 V in 10,000 mg/L. In P2, the voltage is between 

0.10 V in 1 mg/L to 0.34 V. The voltage difference is 0.28V in P1 and 0.24 in P2. The two 

prototypes have the same traits. We think that these differences in voltage are due to the 

manufacturing process that is done by hand. We observe in the two prototypes that the increase 

of voltage increases with the concentration of solids. However, for the first points, the variation 

is low. The increase in voltage is produced from the concentration of 630 mg/L. For this reason, 

we think that with the current circuit, this LED cannot be used for monitoring the concentration 

of solids. However, it could be used to verify the presence of an illicit dumping. If a coloured 

LED detected a high concentration of solids, the infrared LED could light to confirm the possible 

presence of a spill.  

 
Figure 4.53. Prototype 1 infrared LED 

 
Figure 4.54. Prototype 2 infrared LED 

  

4.3.3.4 Verification. 

In this section, we analyze the mathematical models of our prototypes with verification 

concentration levels of 80 mg/L, 320 mg/L, and 5,000 mg/L. 
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When the LDR is 180°, errors are present, especially in the low concentrations and low 

heights, which is unacceptable for the sensor we are developing. Moreover, the errors in low 

concentration levels (1 and 40 mg/L) and 3 cm of height are high. Other turbidity and solids 

sensors work with a photosensor at 180°. Our sensor possibly presents these bad errors compared 

to the other sensors because the light pierces through two environments (water and air). When the 

light changes from water to air, a refraction of light has negatively affected the results obtained.  

Regarding the LDR when at 0°, in Table 4.16, the relative and AEs of the models are shown. 

Previously, we determined that our prototypes could measure in a maximum concentration of 

2,500 mg/L. For this reason, the concentration of 5,000 mg/L is not used to verify the functioning 

of the prototypes. The greatest error is in red LED of P2 with a relative value of 49.2% and an 

absolute value of 174.8 mg/L. Generally, the red LEDs are the ones that have greater errors. 

Regarding yellow LED, P1 presents fewer errors than P2. Finally, for the white LEDs, P1 presents 

a RE of 8.3% and 8.9 % for concentration levels of 80 mg/L and 320 mg/L, and P2 presents values 

of 19.6% and 18.5% for the same concentrations.  
The two prototypes for the different LEDs (yellow, red, and white) have similar values of R2 

and operating ranges. As seen in Table 4.16, the errors in the verification of red LEDs are greater 

than for the other LEDs. Moreover, their Vout values are similar to those of yellow LEDs. Red 

LEDs have a Vout difference of 1.16 V and 1.21 V in P1 and P2 respectively, compared to the 
difference of 1.14 V and 1.05 V in yellow LEDs. Therefore, we discard the use of red LEDs. 

White LEDs present values of less than 1 V. Even though the white LEDs have lower REs than 

the yellow ones, we consider that the best LED is yellow. Since it has a greater voltage difference 
(greater sensitivity) and similar errors. A commercial sensor for measuring turbidity is CUS50D. 

This sensor has a maximum error for monitoring the solids of 5% with a specified range of 0 mg/L 

to 25,000 mg/L (Endress+Hauser, 2018). Another commercial sensor is the OBS501, with a range 
of 0 NTU to 4,000 NTU and an accuracy of ± 2% or 0.5 NTU (which is greater) (Campbell, 2022). 

Although these sensors are more precise, their cost is higher than that of our prototype. This 

prevents a large number of sensors from being located in the sewer, which is possible with our 

sensor. An example of a low-cost sensor is presented by (Wang et al. 2018). The sensor has a 
20% difference between the lecture from their prototype and the reference turbidity (HI 93703) 

in the range of 0–1000 NTU. This value is similar to the maximum error that we have obtained. 

 

Table 4.16. Errors in the LDR 0° 

 Solids (mg/L) Yellow P1 Yellow P2 Red P1 Red P2 White P1 White P2 

RE (%) 
80 9.2 19.3 17.2 19.5 8.3 19.6 

320 13.5 4.9 15.4 54.6 8.9 18.5 

AE (mg/L) 
80 7.4 15.5 13.8 15.6 6.6 15.7 

320 43.4 15.7 49.2 174.8 28.6 59.1 
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4.4 Improve the infrared sensor. 

4.4.1 Test Bench. 

In this subsection, we explain the materials and methodology used in the experiment. 

4.4.1.1 Material. 

The different samples have been elaborated with clay using the concentrations shown in 
Table 4.17. Figure 4.55 includes a photograph with the tested concentrations. We decided to use 

a wide range of concentrations to know the range of the prototype in order to evaluate other 

applications in the future.  

The prototype is located below a glass that contains the sample. The diameter of the glass 
used to perform tests has 8 cm, its thickness is 4 mm, and its height is 16.5 cm. We elaborated 

200 ml of sample, equivalent to the height of a water sheet of 4.5 cm in the glass. Figure 4.56 

shows our prototype. We located the infrared LED and the photodiode below the glass. Between 
the infrared LED and the photodiode, we put a wall to prevent the infrared LED light reaches the 

photodiode without going through the glass with the sample. 

On the one hand, we used an infrared LED (TSUS5400 model), which features are: a peak 

wavelength of 950 mm, a diameter of 5 mm, a forward current of 150 mA, and an angle of hall 
intensity of 22º (RS online, 2022). On the other hand, we used an OSRAM photodiode (SFH 203 

model), which features are: diameter of 5 mm, a package in clear epoxy, and a switching time of 

5 ns (RS online, 2018). 

Table 4.17. Solid concentrations of the samples used in the experiment. 

Calibration (mg/L) 
0 15 50 80 200 300 500 800 

1500 2500 4000 5000 7000 8000 9000 10000 

         

Verification(mg/L) 30 100 400 1000 3000 6000   

 

 

Figure 4.55. Picture of the used samples. 

4.4.1.2 Methodology. 

First, we measure the turbidity of the samples with the commercial turbidimeter (TU-2016). 
The turbidimeter has been calibrated with 0 and 100 NTU calibrations. 

We power the LED and photodiode in our prototype with a power supply (FAC-662B). This 

power supply has two channels, one is used to power the LED, and the other is to power the 

photodiode with a voltage of 5 V. The LED and the photodiode are firstly powered for 5 seconds 
before taking measurements in order to ensure the correct measurement. The measurement is 

taken three times for each concentration in the calibration and verification. The different 

combinations of intensity in infrared LED and resistance are represented in Table 4.18. 
The glass with the sample and prototype is located within to opaque container to prevent the 
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natural light effect in the measurements. Once a measurement is performed, the container is 

removed, the sample is shaken, and the opaque container is replaced. In order to select the best 
combination of resistances in the LED and the photodiode circuit, we test the different 

combinations of resistance with concentrations of 0, 500, and 5000 mg/L. Then, we search the 

maximum difference of Vout between the three concentrations tested. When the best combinations 

are selected, we test the samples using the same procedure explained previously, but this time 
with the concentrations shown in Table 4.17. 

With the data gathered, we use Statgraphics program to find a mathematical model that 

relates the concentration of solids with the Vout. 

Table 4.18. Values of resistance and intensity used in the led and the resistance in the photodiode. 

Resistance LED (Ω) 560 270 220 150 100 68 33 22 

Intensity LED (mA) 7.09 14.50 17.73 24.14 35.29 53 100 150  

Resistance (kΩ) 10 47 100 220 6800 1000 2200 8200 

 

 

Figure 4.56. Prototype drawing. 

4.4.2 Results. 

In this section, we present the results obtained with infrared LED. First, we analyze the 

relation between turbidity and solids in the elaborated samples. Secondly, we select the best 
combination of resistances in the photodiode circuit and the intensity of the infrared LED. Finally, 

we present the calibration and verification of our prototype. 

4.4.3 Relation between turbidity and solids. 

First, we analyze the relation of solids with the NTU. It is an empirical relation that depends 
on the type of solids. 

In Figure 4.57, the NTU values for each concentration of solids are shown. We observe a 

linear relation between the turbidity (expressed as NTU) and the solid concentrations in the range 
of 0 mg/L to 1500 mg/L. In addition, it can be observed an upper limit (with a value of 900 NTU) 

when there are concentrations higher than 1500 mg/L. 
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Figure 4.57. Relation between solids and turbidity. 

4.4.4 Selection of best combination of resistances. 

In this subsection, we perform the test with different currents to power the infrared LED and 

different resistances in the voltage divider of the photodiode. To determine the best combinations 
of resistance and intensities, we perform the test with three concentrations: 0, 500, and 5000 mg/L. 

Figure 4.58 and Figure 4.59 shows the data obtained. We observe that when the current in the 

infrared LED increases, the Vout increases. The same occurs when we increase the resistance in 
the voltage divider. 

Figure 4.58 shows the Vout obtained when we fix the resistance at 10, 47, 100, and 220 kΩ. 

When the resistances are 10, 47, and 100 kΩ, we observe that the difference of Vout between the 

concentrations of 0 to 500 mg/L is near 0 V, with a maximum difference of 0.061 V, in the current 
of 150 mA and 100 kΩ of resistance. In the range of 0 to 5000 mg/L, the maximum difference is 

produced in the same current and resistance. The Vout is 0.732 V in 0 mg/L and 1.221 V in 5000 

mg/L (difference of 0.489 V). When the resistance is 220 kΩ, the voltage differences increase 
concerning the other resistances shown in Figure 4.58. The differences are 0.131 V between the 

concentration from 0 to 500 mg/L and 1.036 V between the concentration from 0 to 5000 mg/L 

for the maximum currents tested. 

Continuing with the test of different fixed resistances, in Figure 4.59, we show the values of 
680, 1000, 2200, and 8200 kΩ of fixed resistances for different currents. In this case, we observe 

higher differences than the ones shown in Figure 4.58 for different concentrations using a current 

of 53 mA when 1000 kΩ is used as fixed resistance. In this case, the currents higher than 53 mA 
present a value of Vout near 5.3 V for the three concentrations. Finally, we tested what happens 

when the fixed resistance is 2.2 and 8.2 MΩ. In those cases, we observed very similar Vout for 

the tested currents in those concentrations. On the one hand, when we used the resistance of 2.2 
MΩ, the maximum difference was obtained with a current 24.1 mA, with values of 4.021, 4.282, 

and 5.045 V in the concentration of 0, 500, and 5000 mg/L respectively. On the other hand, when 

we used 8.2 MΩ, the difference was 0.251 and 1.202 V for the concentration of 0 to 500 mg/L 

and 0 to 5000 mg/L, respectively. 
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Figure 4.58. Data obtained for different currents tested for the resistances from 10 to 220 kΩ. 

 

 
Figure 4.59. Data obtained for different currents tested for the resistances from 680 to 8200 

kΩ. 

Considering the previous experiments, we select the combination of 7.09 mA and 8200 kΩ, 
35.29 mA and 1000 kΩ, 53 mA and 680 kΩ, 53 mA and 1000 kΩ, and 100 mA and 680 kΩ, 

because this combination produces the maximum difference between the concentration of 0, 500, 

and 5000 mg/L. 

4.4.5 Calibration and verification. 

In this subsection, we show the results obtained in the calibration and verification of the 

previously selected configuration.  

Figure 4.60 shows the Vout values for the configurations previously selected. In all cases, 

we observe that Vout increases with the concentration of the solids increases. As we will analyze 
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below, in some of the studied cases, there are changes in the Vout increase trend. 

The configurations of 7.09 mA and 8200 kΩ, and 53 mA and 680 kΩ have similar trends. In 
both cases, the Vout of solid concentrations 0, 15, and 50 mg/L have similar voltage values. In 

solid concentrations from 50 to 4000 mg/L, Vout increases when the concentration of solids 

increases. But in the concentration of 5000 mg/L, in the current of 7.09 mA, and 4000 mg/L, in 

the current of 35.29 mA, there is a change in the slope up to the concentration of 7000 mg/L. 
From this concentration, the voltage values remain similar. In the configuration of 35.29 mA and 

1000 kΩ, we observe that the values from 80 to 200 mg/L increase very few, in the range from 

200 to 7000 mg/L there is an exponential increase of the Vout, and finally, when there are 
concentrations higher than 7000 mg/L, the Vout is constant. We discard the use of these last 

configurations because there are changes in the slope Vout vs the concentration of solids. It makes 

more difficult to create a mathematical model relating both parameters. 

Finally, we analyze configuration 1 (current of 53 mA and resistance 1000 kΩ, and 
configuration 2 (current of 100 mA and resistance 680 kΩ). In configuration 1, the Vout of the 

solid concentrations 0, 15, 50, and 80 mg/L are similar. In the case of configuration 2, this occurs 

in the concentration of 0, 15, and 50 mg/L. In both configurations, we observe an upper limit of 
5.33 V. This limit occurs in the concentration of 7000 mg/L in configuration 1 (however, in the 

verification step, we are going to observe that this limit occurs in 6000 mg/L). In configuration 2, 

the limit occurs to 4000 mg/L. In configuration 1, the working range is 200 to 5000 mg/L with an 
increase of the Vout of 1.66 V, and in configuration 2, the working range is 80 to 4000 mg/L with 

an increase of the Vout of 1.2 V (the upper limit starts in the concentration of 4000 mg/L). 

According to FAO, the values of solids in wastewater are between 350 mg/L in low polluted and 

1200 mg/L in strongly polluted wastewater (FAO, 2019). Therefore, the typical range of solids in 
the sewer is within the operating range of our sensor. In configurations 1 and 2, we observe that 

the working range has a higher concentration than 1500 mg/L. If we observe Figure 4.57, in the 

range higher than 1500 mg/L, the turbidity is within the upper limit. This tells us that the proposed 
sensor does not respond to the turbidity but to the concentration of solids. Figure 4.61 are 

represented Vout values versus turbidity expressed as NTU in the range of 1.78 to 894 NTU (solid 

concentrations of 0 and 2500 mg/L, respectively). In solid concentrations higher than 2500 mg/L, 
the turbidity has an upper limit (Figure 4.57). However, the Vout increase (Figure 4.58). In all 

cases, there is an increase of the Vout with the turbidity increase. The difference in Vout between 

the minimum and the maximum turbidity is near 0.57 V in the configurations 7.09 mA, 8200 kΩ, 

35.29 mA, 1000 kΩ, and 53 mA, 680 kΩ. In the other configuration, the differences are near      
1.1 V. 

 

 
Figure 4.60. Calibration values of the tested configurations (Solids). 
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Figure 4.61. Calibration values of the tested configurations (NTU) 

Now, we calculate the absolute and REs of the calibration and verification tests. The models 

have been obtained using Statgraphics (Statgraphics, 2022). Between the models calculated by 

Statgraphics, we selected the 4 models with the highest R2 mean of both configurations.  

First, we analyze the models that related the turbidity and the Vout. The absolute and REs 
are less in configuration 1 than in configuration 2. The minimum RE in the calibration is in the 

square root of X with a value of 7.0 %. Similar to the error with a linear model with an error of 

7.1 % and a logarithm of X model with a RE of 7.5 %. In the verification, the REs of the four 
models tested are between 4.4 to 4.8%. 

Then we analyze the models that related the solid concentration and Vout. The AEs are shown 

in Table 4.19. In Table 4.20, the REs are presented.  
On the one hand, we can observe that in the calibration, the minimum errors are given in 

configuration 1, with values of 68 and 72 mg/L in the Square Root of Y model and Double Square 

Root model, respectively. On the other hand, in configuration 2, the minimum error in calibration 

is 99 mg/L in the model Square Root-Y Square-X. Regarding the verification, in general, the AEs 
are lower in configuration 1 than in configuration 2. However, the absolute minimum error is 83 

mg/L in the Square Root-Y Log-X model. If we calculate the mean of all errors (calibration and 

verification), configuration 1 presents lower AEs than configuration 2. The minimum error is 
given in the model Square Root of Y with a value of 72 mg/L. In Table 4.20, we observe the REs. 

As in the AEs, the calibration of configuration 1 presents lower error than configuration 2. In 

configuration 1, the lower REs are shown in the model Square Root-Y Square-X instead of in the 

model square root of Y as occurs in the AE. We select configuration 2 because the errors in the 
calibration are higher than in configuration 1. In the verification, there are lower errors. This is 

indicative that configuration 2 presents better performance in the points between the calibrations 

of the 4 models analyzed. We select the model based on the Square Root of Y. Although it presents 
higher total errors than those based on Square Root-Y Square-X, it presents fewer calculation 

difficulty and minor verification errors. Equation 4-27 represents the model of configuration 1, 

and Equation 4-28 represents the model of configuration 2. 
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Table 4.19. AEs statgraphics. 

Configuration Data 

Square Root-Y 

Square-X 
(mg/L) 

Square Root 

of Y (mg/L) 

Double Square 

Root (mg/L) 

Square Root-Y 

Log-X (mg/L) 

1 Calibration 100 68 72 97 

2 Calibration 99 125 139 153 
1 Verification 121 84 85 94 

2 Verification 129 97 90 83 

1 Total 106 72 76 96 

2 Total 109 116 123 130 

Table 4.20. REs statgraphics. 

Configuration Data 
Square Root-Y 
Square-X (%) 

Square Root 
of Y (%) 

Double 

Square Root 

(%) 

Square Root-Y 
Log-X (%) 

1 Calibration 7.1 7.7 10.7 14.4 
2 Calibration 8.0 10.7 12.6 14.4 

1 Verification 4.9 5.5 7.3 9.2 

2 Verification 11.5 6.6 7.4 8.4 
1 Total 6.5 7.1 9.7 13.0 

2 Total 9.1 9.3 10.8 12.4 

𝑆𝑜𝑙𝑖𝑑𝑠 (
𝑚𝑔

𝐿
) =  (−29.1892 +  4.07327 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2)2 

(4.27) 

  

𝑆𝑜𝑙𝑖𝑑𝑠 (
𝑚𝑔

𝐿
) = (−158.696 +  41.4702 ∗ 𝑉𝑜𝑢𝑡 (𝑉))2 (4.28) 

 

Finally, we use Eureqa software (Datarobot, 2022) to calculate a model that relates the Vout 

with the solid concentration. Table 4.21 shows the AEs of the models estimated by Eureqa. Eureqa 

classifies the models that are calculated by the size of the model. In our case, we compare 4 
models, which sizes are 9, 20, 22 and the maximum size (max size). When we used Statgraphics, 

the minimum AEs were presented in configuration 1, with a value of 9 mg/L in the model with a 

size of 20. In the verification, configuration 1 presents lower errors than in the use of Statgraphics 
(except in the model with the size of 22). This does not occur in configuration 2. Finally, if we 

compare the total errors, the models proposed by Statgraphics present higher values than the 

Eureqa models. In Table 4.22, the REs of the models are shown. As it was in the case with AEs, 
the REs have lower values than in Statgraphics (except in the verification of configuration 2). For 

this reason, we consider that configuration 1 is the best configuration. With the increase of the 

size of the model, the RE decreases but the calculation difficulty increases. The model with a 

maximum size has a complexity of 118 versus the complexity of 22 of the select model, according 
to Eureqa. In addition, the select model has 5 coefficients versus the 12 coefficients of the model 

with a maximum size. We select the model with a size of 22 (represented in Equation 4-29. This 

model presents a RE in the calibration of 2.8 % and 5.3 % in the verification. We consider that 
the improvement of the REs with the use of the model with a maximum size does not compensate 

for the increase in calculation costs. 

 
 

 



Chapter 4. Turbidity 

 

 
93 

Table 4.21. AEs Eureqa 

Configuration Data Size 9 (mg/L) 
Size 20 

(mg/L) 

Size 22 

(mg/L) 

Max size 

(mg/L) 

1 Calibration 21 9 111 42 
2 Calibration 50 28 77 50 

1 Verification 58 50 140 63 

2 Verification 157 156 123 143 
1 Total 31 20 118 48 

2 Total 86 70 92 81 

 

Table 4.22. REs Eureqa 

Configuration Data Size 9 (%) Size 20 (%) Size 22 (%) Max size (%) 

1 Calibration 7.0 3.6 2.8 1.8 

2 Calibration 8.0 6.3 6.5 5.3 

1 Verification 6.2 5.6 5.3 3.3 

2 Verification 10.3 11.7 12.3 11.7 

1 Total 6.8 4.1 3.4 2.2 

2 Total 8.7 8.1 8.4 7.5 

 

 

Solids (
mg

l
) =  5783.8 +  139.0 ∗ 𝑒𝑉𝑜𝑢𝑡(𝑉) −  2753.7 ∗ Vout (V)  −  0.342

∗ 𝑒2𝑉𝑜𝑢𝑡(𝑉) 
(4.29) 

4.5 Conclusions 

In this chapter, we studied the use of two different turbidimeters in sewerage and water 

bodies. On the one hand, in water bodies, the measurement of water turbidity might not be enough 

in many cases since different turbidity sources might require other actions. For the same level of 

solids concentration, if turbidity is caused by sediment, it can indicate a high water runoff. In 

contrast, the algae might indicate a pollution event linked to eutrophication. Therefore, the 

characterization of turbidity is essential. We have developed and calibrated a low-cost sensor 

based on light absorption capable of quantifying the concentration of algae and sediment in mg/L 

independently. The prototype is based on the light absorption of 5 LEDs with different light 

colours. Two operational methodologies for the prototype operation are given and compared. On 

the one hand, the use of multiple regression models adjusted for different solids concentrations is 

proposed. The combined model (a combination of seven multiple regression models) is 

characterized by low absolute and RE, similar to those of other low-cost sensors, which 

possibilities its use. On the other hand, for a more powerful node, using an artificial neural 

network ensures a drastic reduction in errors with a correct classification of 100% of the cases in 

the validation phase. This turbidimeter needs to know the concentration of solids to determine 

the % of alga. For this reason, we developed an algorithm that used of turbidity to obtain the solid 

concentration and, through an iterative process, obtain the % of algae. 

On the other hand, for sewerage, we developed two prototypes for monitoring the 

concentration of solids in sewerage. This was done to create a system capable of detecting illegal 

discharges in the sewerage. We studied two situations: when the LDR/photodiodes are at 0° and 

when they are at 180°. The infrared LED presented a voltage difference that was accentuated in 

high concentrations for the sewer system.  
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In the case of the 180° LDR, a significant voltage difference between the minimum and the 

maximum was achieved. For the concentration of 1 mg/L, the Vout is approximately 3 V, which 

changed until reaching 0 V for the highest concentrations and heights. We consider that due to 

this limitation, this sensor would not be suitable for sewer monitoring. Nevertheless, it could be 

used to detect possible excesses in already treated wastewater. 

In the case of the LDR at 0°, the LEDs yellow, red, and white presented voltage differences 

between the minimum value of Vout and the maximum. The blue LEDs presented low voltage 

differences. Regarding the green LEDs, P2 offered a significant difference between the minimum 

and the maximum, which does not happen for P1. Therefore, we have ruled out the use of this 

LED for future prototypes. The yellow, red, and white LEDs presented the biggest voltage 

differences, which are 1.14 V, 1.16 V, and 0.74 V in P1 and 1.05 V, 1.21 V, and 0.89 V in P2 

respectively. In this case, a greater dispersion of the results was observed for low concentrations 

of solids. Since these concentrations are unlikely to occur in wastewater, we believe this will not 

have a significant effect on our sensor. Finally, mathematical models that relate the Vout with the 

concentration of solids were developed. It was seen that although height had a statistically 

significant effect, good R2 was achieved with models that do not include it. Taking into account 

the errors in the verification phase, we concluded that the best LED is the yellow one. To improve 

the development of the infrared LED, we use different combinations of resistance in the 

photodiode circuit and intensities in the infrared LED. We obtained an improvement in the 

precision of the sensor due to the voltage difference between the minimum and maximum has 

been increased. However, we have seen that it does not respond satisfactorily to the NTU but 

rather to the concentration of solids. Therefore, in future works, we will test with other 

configurations in order to be able to detect the concentration of algae in the water. 

Finally, the work presented in this chapter has been published in the following references 

(Rocher et al. 2021a), (Rocher et al. 2021b), (Rocher et al. 2022)
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5 Oil sensor. 
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5.1 Proposal. 

In this section, we summarise the included elements in our proposal. First, we show the 

characteristics of the proposed prototype. Our prototype is based on photoreceptors and colour 

LEDs. Finally, an operational algorithm that integrates the sensor on a WSN is displayed. The 

algorithm sends an alarm to the people responsible for water control to inform them that oil is 

detected. The control of oil presence in water is critical to prevent the contamination of soils. The 

proposed sensor is part of the SMARTWATIR project. This project aims to develop and deploy 

a WSN to detect and purify irrigation water in the Mediterranean area. 

5.1.1 Description of the Optical System. 

In our prototype, the light source is activated using five colour LEDs: blue, yellow, red, 

green, and white. Besides, photodetectors are selected to receive the amount of light absorbed, 

dispersed, reflected or passed through the water column. For this purpose, two photodetectors 

(LDRs) are located at 0° and 180° from the LEDs. We assume that the amount of the oil modifies 

the percentages of dispersed, reflected, absorbed or passed light, causing different lectures of the 

LDRs. The light radiated by the LEDs crosses the water column and hits the oil layer (if there is 

oil pollution). In cases where there is an oil layer, part of the light is reflected in the oil layer, 

going back to the LDR located at 0°, and another part crosses it, reaching the LDR located at 

180°. The physical operating principle related to light dispersion and the location of LDRs and 

LEDs of the proposed sensor can be seen in Figure 5.1. 

 

Figure 5.1. Sensor working diagram. 

The selected LEDs for our prototype are diffused LEDs with different function voltages. The 

function voltages are 1.8–2 V for yellow and red and 3–3.4 V for white, blue, and green LEDs. 

The vision angle is 20°, and the maximum recommended intensity is 20 mA for all of them. As a 

photodetector, the NSL-19M51 (5 mm) was selected. Finally, the prototype is crafted with a PVC 

pipe characterized by an external and internal diameter of 5 cm and 4 cm, with a thickness of 5 

mm. Figure 5.2 depicts the preliminary design of the proposed prototype. To test this prototype’s 

usability and obtain a calibration, we placed the prototype below a glass tank with water and 

added different amounts of oil. 
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5.1.2 Operational Algorithm. 

The operational algorithm of the proposed sensor is outlined in Figure 5.3. First, the threshold 

values are set (THx). Then, the sensor determines the presence of oil in the water (by turning on 

the LEDs and gathering the data with the LDR). Since the height of the water column might affect 
the measurement of oil concentration, we use the sensor level presented previously (Basterrechea, 

2020). If the sensor detects oil presence, the turbidity sensor (Rocher, 2021) is activated. The 

turbidity sensor is used to impede false positives of oil presence caused by the presence of 
particles in the water. To properly control the presence of oil, the measured turbidity value has to 

be below the pre-established threshold. If turbidity values are below the threshold, the system 

determines that there is pollution by oil, sends an alarm, and the concentration and type of oil data 

are stored in the SD card of the node. If the turbidity value is above the threshold, it can be a false 
positive. In this case, data are stored, but no alarm is triggered. We have limited the number of 

records that the node can store to 3600. When new data is saved, the algorithm adds +1 to a 

variable (clock). If the “clock” is full (3600 records stored), the system sends all the stored data 
and erases the SD to release the internal memory. Then, for starting a new measure, the system 

waits for a time (t2).  

 

 
Figure 5.2. Design prototype. 

 
 

Figure 5.3. Algorithm of oil detection. 
 

5.2 Test Bench. 

This section shows the methodology used to power the sensor, the obtention of oil, and 

prepare the samples for calibration and verification tests. 

5.2.1 Electronic Operation. 

An AC power supply model FAC-662B is used to power the LEDs with a voltage of 5 V. 

The required resistors for each LED are calculated using the voltage drop of the LEDs. We 
calculated the resistance for an intensity of 15 mA. We selected resistors based on the most similar 

available standard electronic components. The following resistors, 220 kΩ, 220 kΩ, 150 kΩ, 150 

kΩ, and 100 kΩ, were selected for yellow, red, blue, green, and white LEDs respectively. Due to 
the differences in resistance between the calculated and used resistors, we had different intensities 

for the LEDs. The intensities were 13.48 mA, 13.00 mA, 12.33 mA, 13.60 mA, and 12.39 mA for 

the yellow, red, blue, green, and white LEDs. To gather the data, we measured the resistance of 
the LDRs with a tester (Tenma 72-2600 (TENMA, 2022)). As the LDRs have a delay, we waited 

for 20 s to gather the data for each LED. We repeated the measurements three times in order to 
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work with mean values. Once we gathered the data, we turned off the LED. Then, we turned on 

the subsequent LED. The sequential order to power the LEDs was yellow, red, blue, green, and 
white. 

5.2.2 Sources of Oil. 

The industrial fuels that we used were obtained from a mechanical workshop. Two types of 

oil were used for the experiment, oil used by a gasoline engine and oil used by a diesel. The oil 

used was 0w/30, characterised by an SAE (Society of Automotive Engineers) viscosity of 0 in 
cold conditions and an SAE viscosity of 30 at working temperature. The used oil is from a 

mechanical workshop of Valencia province (Spain). The oil is INEO FIRST 0W-30 manufactured 

by TOTAL QUARTZ (Madrid (Spain)). The two oils have similar values of kinematic viscosity 

with a value of 25.4 mm2/s at 25 °C. Furthermore, the oils used belong to different types of 
engines. The first was used in a diesel engine with 77,000 km and three years of use. A gasoline 

engine with 31,000 km and two years of use was selected for the second oil source. This type of 

oil is one of the most common oils used in vehicles and machines. In general, the oil of diesel 
engines is dirtier than the oil of gasoline engines. Diesel engines generate more particles than 

gasoline engines, and some end up in engine oil. For this reason, used oils in diesel engines tend 

to be darker than used oils in gasoline engines. In addition, the used oil of diesel or gasoline 

engines might present some differences in the additives, neutralization number, oxidation, and 
nitration (Agocs et al. 2020). 

5.2.3 Samples for Calibration and Verification. 

The experiment was performed at static conditions introducing the samples in a glass tank of 

approximately 17 L, measuring 35 cm long, 21 cm wide, and 23 cm high. Although the conditions 

were static, we noticed that the oil stains had some movement on the water’s surface due to small 

performances, such as vibrations, that occurred during the measurement. The glass tank was 

marked with red tape at water heights of 0 cm, 5 cm, 10 cm, 15 cm, and 20 cm to carry out the 

measurements. We gathered the data with water at each one of the different heights. In addition, 

we obtained the data by setting the LDR to 0° and 180°. Figure 5.4 illustrates the used tank, with 

water up to 20 cm and 0.03 mLoil/cm2 (used by a gasoline engine). In the first round, different 

amounts of oil were used: 0, 7.1, 21.2, 28.3, 35.4, 56.6, 70.7, 106.1, and 141.5 mL. The used 

volumes correspond to concentrations of 0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, and 0.2 mL on the 

surface of the water. Each of these oil quantities was measured at different water heights. The 

data obtained was then used to obtain a calibration. Once the calibration had been obtained, four 

new samples were used to verify the models obtained. The samples for the verification had the 

following characteristics: 0.02, 0.06, 0.12, and 0.18 mLoil/cm2. 
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Figure 5.4. Experimental tank with 0.03 mLoil/cm2 from gasoline engine at 20 cm height. 

5.3 Results. 

In this section, the results obtained by our sensor are described. First, we analyze the 

performance of the developed sensor with industrial oil from a diesel engine. Then, we display 

the results with the industrial oil from a gasoline engine. Finally, the verification of the obtained 

mathematical models is analyzed. 

5.3.1 Industrial Oil of Diesel Engine. 

This subsection shows the sensor’s performance when the pollution comes from industrial 

oil used by a diesel engine. 

Figure 5.5 to Figure 5.9 represent the data of the LDR’s resistance at 0° for the different light 

sources tested. We verify that the resistances of the LDR at 180° are not stable due to oil stains 

moving on the water surface, which causes shadows on the 180° LDR. It is expected that in real 

conditions, this situation will get worse. Therefore, we decided not to use this LDR. In general 

terms, and before analyzing case per case, we can identify two different behaviours according to 

the gathered data. On the one hand, we can see that the resistance of the LDR increases when the 

concentration of samples increases. This phenomenon indicates that the oil in the water layer 

absorbs more photons than the same portion of the interface water/air (in the samples without oil). 

Thus, fewer photons are reflected and reach the LDR, increasing its resistance value compared 

with the samples without oil. On the other hand, we can find that the oil layer reflects more 

photons than the interface water/air. Thus, more photons will reach the LDR, decreasing its 

resistance. The chemical compounds’ optical behaviour explains the different tendencies in the 

oil and the wavelength of the different light sources. 
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Figure 5.5. Resistance of LDR at 0° in diesel oil in the yellow LED. 

 
Figure 5.6. Resistance of the LDR at 0° in diesel oil in the red LED. 

 
Figure 5.7. Resistance of the LDR at 0° in diesel oil in the blue LED. 
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Figure 5.8. Resistance of the LDR at 0° in diesel oil in green LED. 

 
Figure 5.9. Resistance of the LDR at 0° in diesel oil in white LED. 

In the following, we analyze the resistance values of the LDR with different light sources 

and water column heights. The LDR resistance values for the different concentrations of oil used 

by a diesel engine when the yellow light source is used are displayed in Figure 5.5. The resistance 

values of LDR of the four tested heights in the concentration of 0 mLoil/cm2 are around 151 kΩ. 

The resistance of the LDR increases when the oil concentration rises. The absolute (and relative) 

differences between the water without oil and the maximum oil concentration tested are 19.6 kΩ 

(12.94%) at 5 cm, 20.5 kΩ (13.26%) at 10 cm, 20.6 kΩ (13.44%) at 15 cm, and 25.7 kΩ (17.15%) 

at 20 cm. For the four tested heights, the maximum value of resistance is found at 0.05 mLoil/cm2. 

From this concentration, the resistance values decrease slightly (except for 5 cm height, where 

there is a significant decrease in resistance of the LDR between concentrations of 0.05 and 0.08 

mLoil/cm2). The resistance values obtained with a water column of 5 cm are slightly away from 

the rest of the heights for an identical oil concentration. Meanwhile, the values of 10, 15, and 20 

cm are relatively similar. Regarding the dispersion of the results in general, this is low. The 

relative average of standard dispersion is 0.30%, and the maximum standard dispersion occurs in 

the case of 0.01 mLoil/cm2 at 5 cm of water with a value of 3.23 kΩ. 

The data gathered using the red LED as a light source is represented in Figure 5.6. The red 

light has the maximum absolute resistance difference in the LDR between the water without oil 

and the maximum concentration tested among all tested lights. The absolute (and relative) 

resistance difference between the minimum and maximum oil tested is 48.1 kΩ (18.5%) at 5 cm, 
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40.3 kΩ (14.5%) at 10 cm, 48.2 kΩ (17.6%) at 15 cm, and 66.3 kΩ (25.8%) at 20 cm. As in the 

yellow light source, at all tested heights, LDR resistance values present a great change between 0 

to 0.01 mLoil/cm2. The resistance values are similar in each height between the concentration of 

0.01 and 0.4 mLoil/cm2. At all heights, when the oil concentration increases to 0.05 mLoil/cm2, the 

resistance data upsurges. At 5 cm, we observe a significant decrease of the resistance value of the 

LDR for the samples with concentrations from 0.05 to 0.08 mLoil/cm2. At this height, with the 

increase of oil concentration, the values are stable. The samples with a concentration above 0.05 

mLoil/cm2 present similar values in the other heights. 

In this light source, there is a significant dispersion of the resistance values in the LDR. The 

maximum standard deviation is 6.99 kΩ. The average standard deviation is 0.84 kΩ, and the 

relative average standard deviation is 0.25%. 

Figure 5.7 presents the results gathered when the blue light is used. The absolute (and 

relative) resistance difference in the LDR between the concentrations of 0.00 to 0.20 mLoil/cm2 is 

13.8 kΩ (19.4%) at 5 cm, 18.2 kΩ (23.8%) at 10 cm, 18.3 kΩ (23.8%) at 15 cm, and 15.9 kΩ 

(21.2%) at 20 cm. In contradistinction to the results above, the resistance values of LDR decrease 

with increasing oil concentration. In this light, the dispersion of resistance values is low; both 

maximum and average values are low. The maximum standard deviation is 0.16 in 0.01 mLoil/cm2 

at 15 cm, and the relative average standard deviation is 0.091%. As in the other light sources 

previously studied, the values gathered at 5 cm differ from the other resistance values gathered at 

different water column heights. In this case, we do not observe a tendency such as in yellow and 

red LEDs. The main change of resistance is between 0 to 0.01 mLoil/cm2. Then, from 0.03 

mLoil/cm2 to 0.20 mLoil/cm2, the resistance values are similar, tending to 57 kΩ. 

Figure 5.8 displays the data gathered (LDR at 0°) when the green light is used. The absolute 

(and relative) differences between the first and last samples are 8.1 kΩ (15.8%) at 5 cm, 6.0 kΩ 

(10.6%) at 10 cm, 6.5 kΩ (18.0%) at 15 cm, and 9.7 kΩ (18.0%) at 20 cm. The values of resistance 

tend to an upper bound of 60 kΩ at 5 cm, 62.13 kΩ at 10 cm, 62.93 kΩ at 15 cm, and 63.53 kΩ. 

The maximum dispersion is 0.49 kΩ in the concentration of 0.15 mLoil/cm2, and the average 

dispersion is 0.07 kΩ. 

The resistance values measured with the LDR when the white LED is selected as a light 

source are presented in Figure 5.9. In this case, the absolute (and relative) differences are 5.0 kΩ 

(27.8%) at 5 cm, 5.9 kΩ (31.1%) at 10 cm, 6.0 kΩ (31.1%) at 15 cm, and 5.8 kΩ (30.3%) at 20 

cm. Except in the concentration of 0 and 0.01 mLoil/cm2, the rest of the resistance values for the 

different heights are similar. In this case, the maximum standard deviation and the average for the 

concentration of 0.01 mLoil/cm2 at 20 cm are 0.34 kΩ and 0.06 kΩ, respectively. 

Subsequently, we apply a multifactorial Multivariate Analysis of Variance (ANOVA) using 
Statgraphics Centurion XVI (Statgraphics, 2022) to analyze if the observed differences between 

resistance values at different concentrations and different heights are significant or not. The 

results for the analyses are outlined in Table 5.1. In all the cases, the p-value is lower than 0.05. 

Thus, we can state with a probability of 95% that there are statistical differences in the different 
heights. We do the same for the oil used by an engine and verify that the value of p is lower than 

0.0001. 

Table 5.1. Multivariate analysis of variance for the height and concentration of diesel oil. 

Significance levels: *** p < 0.05. 

 p-Value for Height p-Value for Concentration 

Yellow 0.0031  <0.0001 

Red 0.0006  <0.0001 

Blue <0.0001  <0.0001 

Green <0.0001 <0.0001 

White 0.0107 <0.0001 
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Although there is a statistical difference among the LDR resistance values for all the used 

light sources, the lack of a homogeneous trend along the tested samples precludes determining 

the sample’s concentration. Thus, it is impossible to have a calibration for detecting industrial oil 

used by diesel engines. The sole option is to determine the presence or absence of oil. 

5.3.2 Industrial Oil of Gasoline Engine. 

In this subsection, we analyze the resistance values of the LDRs obtained with different light 

sources and using the industrial oil used in the gasoline engine. As in the case of oil used by a 

diesel engine, we discard the use of LDR at 180° due to the oil stains generated shadows in the 

LDR. Now, we focus on the change of resistance of LDR with the different colour light sources 

and oil concentrations. First, we analyze the results gathered using the yellow light, which is 

displayed in Figure 5.10. The absolute (and relative) difference in resistance values between the 

maximum and minimum concentration of oil is 3.5 kΩ (3.5%) at 10 cm, 7.2 kΩ (7.2%) at 15 cm, 

and 10.9 kΩ (10.9%) at 20 cm. At the height of 5 cm, the resistance values do not have a 

homogeneous and defined trend. The most probable explanation for the gathered data is the non-

homogeneous distribution of the oil over the water. This phenomenon is observed to a lesser 

extent in industrial diesel engine oil. At 10 cm of the water column, there is no evident trend in 

the LDR’s resistance values for concentrations from 0 to 0.08 mLoil/cm2. Instead, we detect 

continuous growth at 15 cm and 20 cm until reaching an upper limit, approximately 161 kΩ. 

When the yellow light is used, we observe few dispersion data. The maximum standard deviation 

is 2.38 kΩ, with an average of 0.48 kΩ, and a relative standard deviation of 0.31%. 

Figure 5.11 represents the LDR resistance values for the red light using the oil of the gasoline 

engine. The absolute (and relative) difference in resistances values are 26.3 kΩ (9.5%) at 10 cm, 

36.1 kΩ (13.2%) at 15 cm, and 56.5 kΩ (56.5%) at 20 cm between the water without oil and the 

maximum concentration of oil. For 5 cm of the water column, the resistance values do not have a 

defined trend. We observe that the values measured at 10 cm, 15 cm, and 20 cm tend to grow 

when oil concentration increases. The maximum standard deviation is found for the height of 5 

cm. The standard deviation is generally low, with an average standard deviation of 0.67 kΩ with 

all data gathered. Since data follow a homogeneous trend (except for the last two samples) and 

the standard deviation is low, we can use these values for calibration. 

 
Figure 5.10. Resistance of the LDR at 0° in gasoline oil in the yellow LED. 
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Figure 5.11. Resistance of the LDR at 0° in gasoline oil in red LED. 

The calibration models, including the confidence and prediction limits obtained for the red 

light at 10, 15, and 20 cm, are presented in Figure 5.12, Figure 5.13, and Figure 5.14. Note that 

the data gathered with the two samples with the highest concentrations are not used for the 

calibration since they do not follow the same trend as the rest of the data. Mathematical models 

for the heights at 10 cm, 15 cm, and 20 cm are calculated with Statgraphics Centurion XVI, 

obtaining the following correlations R2 0.9138, 0.9560, and 0.9784. The mathematical models are 

presented in Equations 5.1, 5.2 and 5.3 for 10 cm, 15 cm, and 20 cm. The average AEs are 0.0074 

mLoil/cm2 for 10 cm, 0.0031 mLoil/cm2 for 15 cm and 0.0023 mLoil/cm2 for 20 cm. The REs (REs) 

are 25.9% for 10 cm, 15.8 % for 15 cm and 10.2% for 20 cm. 

 

𝑂𝑖𝑙 (
𝑚𝐿𝑜𝑖𝑙  

𝑐𝑚2
) = (−2.78924 +  0.0101666 × Resistance (kΩ))2 (5.1) 

𝑂𝑖𝑙 (
𝑚𝐿𝑜𝑖𝑙

𝑐𝑚2
) = (−1.88586 +  0.00698826 × Resistance (kΩ))2 (5.2) 

𝑂𝑖𝑙 (
𝑚𝐿𝑜𝑖𝑙

𝑐𝑚2
) = (−1.26118 +  0.00497868 × Resistance (kΩ))

2
 (5.3) 

 

 

 

 
Figure 5.12 The mathematical model for the red light at 10 cm to oil using the gasoline engine. 
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Figure 5.13. The mathematical model for the red LED at 15 cm to oil using the gasoline engine. 

 

 

 
Figure 5.14. The mathematical model for the red LED at 20 cm to oil using the gasoline engine. 

In the following, we present in Figure 5.15 the measured resistances in the LDR using blue 

light. The absolute (and relative) differences in resistances between the samples are 1.1 kΩ (1.4 

%) at 10 cm, 1.0 kΩ (1.3 %) at 15 cm, and 1.0 kΩ (4.6%) at 20 cm. These low differences preclude 

using this LED to monitor the presence of oil in a gasoline engine. As in the previous cases for 

oil used by a gasoline engine, the height of 5 cm does not have a defined tendency. The rest of 

the water column heights present an increase of the resistance values between 0 to 0.01 mLoil/cm2. 

From this point, a general reduction of resistance is produced. The resistance values at 10 cm are 

lower than at 15 cm and 20 cm of water column heights. The average standard deviation is 0.25 

kΩ. 
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Figure 5.15. Resistance in LDR at 0° in gasoline oil in blue LED. 

Figure 5.16 represents the results of the LDR using the green light. The absolute (and 

relative) differences in resistance values are 6.9 kΩ (12.3 %) at 10 cm, 7.9 kΩ (14.1 %) at 15 cm, 

and 10.6 kΩ (19.7 %) at 20 cm. In this case, the values tend to grow between 0 and 0.04 mLoil/cm2. 

From this concentration, resistance values are close to an upper limit. The average deviation 

standard is 0.19 kΩ with a maximum value of 1.20 kΩ. 

 
Figure 5.16. Resistance in LDR at 0° in gasoline oil in green LED. 

Finally, Figure 5.17 displays the resistance values of the LDR obtained using white light. In 

this case, we identify a similar trend than in the blue LED with the diesel oil. The tendency, 

opposed to the observed ones in the rest of the LEDs, is a decreasing resistance when the 

concentration increases. The absolute (and relative resistances) differences in resistances between 

the samples are 6.9 kΩ (38.6%), 7.9 kΩ (38.9%), and 10.6 kΩ (38.5%) at 10 cm, 15 cm, and 20 

cm respectively. The change in the resistance occurs between the concentrations of 0 and             
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0.01 mLoil/cm2. However, at 0.03 mLoil/cm2, there is a slight increase in resistance values. At      

0.04 mLoil/cm2, there is a decrease in the LDR resistance at all the measured heights. Then from 

0.05 mLoil/cm2, there is a gradual decrease in resistance values. The average standard deviation is 

0.06 kΩ. This deviation is the lowest one among all the LEDs used for monitoring the presence 

of oil used by a gasoline engine. 

We apply a multifactorial ANOVA to analyze if the observed differences between resistance 

values at different concentrations and different heights are significant or not, as in the previous 

subsection. The results for the analyses are outlined in Table 5.2. The results indicate that both 

the height and oil concentration have statistically significant effects on the value of LDR 

resistance. There is an exception in the case of the yellow LED, for which the concentration of 

oil has no effect. 

 
Figure 5.17. Resistance in LDR at 0° in gasoline oil in white LED. 

Table 5.2. Multivariate analysis of variance for the height and concentration of gasoline oil. 

Significance levels: *** p < 0.05. 

 p-Value for Height p-Value for Concentration 

Yellow <0.0001 *** 0.0977 

Red 0.0003 *** <0.0001 *** 

Blue <0.0001 *** <0.0001 *** 

Green <0.0001 *** <0.0001 *** 

White <0.0001 *** <0.0001 *** 

5.3.3 Verification. 

In this subsection, we verify the function of our prototype by measuring four samples, the 

concentrations of which are different to the ones used in the calibration. 

As we said before, concerning the oil from diesel engines, we can differentiate between the 

presence or absence of an oil layer but not quantify it. Thus, a verification of a proper 

mathematical model is not possible. 

Concerning oil used in a gasoline engine, the red light is the one that presents an optimal 

behaviour to determine the concentration of oil used by a gasoline engine. Previously, in the red 

light, we discarded the height of 5 cm of the water column due to its high dispersion of data and 

its non-regular trend. We verify the mathematical models of the heights 10, 15, and 20 cm 

(Equations 5.1, 5.2, and 5.3). The results obtained are shown in Table 5.3. Previously, we decided 
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to use 4 verification points. Nonetheless, the concentration of 0.18 mLoil/cm2 was discarded 

because this concentration was higher than the ones used for the calibration of the mathematical 

model. Moreover, the point 0.12 mLoil/cm2 is a higher oil concentration than the calibration points. 

However, it is a value close to those used to calibrate the model and is included. 

Table 5.3. Verification for the red LED. 

Height 

(cm) 

Concentration 

(mLoil/cm2) 

Calculated Concentration 

(mLoil/cm2) 

AE 

(mLoil/cm2) 
RE (%) 

10 0.02 0.025 0.005 27.1 

10 0.06 0.073 0.013 21.1 

10 0.12 0.134 0.014 11.5 

15 0.02 0.020 0.000 2.3 

15 0.06 0.079 0.019 30.9 

15 0.12 0.111 0.009 7.9 

20 0.02 0.019 0.001 2.7 

20 0.06 0.073 0.013 22.0 

20 0.12 0.110 0.010 8.5 

Regarding the verification results, the average RE is 19.9 % at 10 cm, 13.7 % at 15 cm and 

11.1 % at 20 cm. At the 15 cm and 20 cm heights, the maximum RE is found in the concentration 

of 0.06 mLoil/cm2 with values of 30.9% at 15 cm and 21.3 % at 20 cm. Regarding the verification, 

at 10 cm, the maximum RE is 27.1% at 0.02 mLoil/cm2. 

5.3.4 Discussion. 

This section discusses the obtained results. First, we analyze the results obtained for the two 

sources of pollution. Next, we present the algorithm to calculate oil concentration in water. 

Finally, we discuss the lessons learned and the limitations of our study. Finally, the relevance of 

this sensor for smart irrigation is argued for. 

5.3.4.1 Differences among Oils. 

In this subsection, we analyze the differences among the obtained results with the different 

pollutants. Table 5.4 outlines the minimum and maximum resistance values gathered with the two 

oils (gasoline and diesel engine). LDR combined with green and white lights present similar 

minimum and maximum resistance values. Meanwhile, when combined with yellow, red, and 

blue lights, they present higher resistance differences with the two tested oils. 

Table 5.4. Maximum and minimum resistance measured when the two oils. 

Colour 
Gasoline Diesel 

Minimum (kΩ) Maximum (kΩ) Minimum (kΩ) Maximum (kΩ) 

Yellow 138.68 160.91 150.01 178.81 

Red 239.50 318.83 256.97 359.19 
Blue 70.56 80.66 57.09 76.94 

Green 50.88 65.57 51.44 63.85 

White 10.35 19.29 11.98 19.29 

Summarizing the obtained values of the two experiments, we can identify some differences, 

which can be used to create our sensor. For example, the red LED can be used as a light source 

to quantify the volume of contamination in the oil used by gasoline engines, while no one LED 

can be used to quantify the oil used by diesel engines. We observe an important difference in the 
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trends by comparing the resistance values with oil from a gasoline engine with the same oil from 

a diesel engine using the blue LED. There is a rapid reduction of the resistance values in diesel 

oil, which is not identified with the oil used by a gasoline engine. This fact can be used for 

determining the presence of oil used by gasoline or diesel engines. Thus, we can affirm that there 

is an option to combine different LEDs to create a sensor for industrial oil detection and 

quantification in certain cases. 

5.3.4.2 Selection of LEDs. 

In this subsection, we present in detail the best configuration of LEDs and the operation 

algorithm for the developed sensor. 

After checking the results, we can affirm that quantifying the oil concentration used in diesel 

engines in water is not possible with our prototype. Nonetheless, it is possible to determine the 

presence or absence of oil used in diesel engines. The green, white, and blue LEDs can be used 

for that purpose. They all present a great difference of resistance between the concentration of 0 

to 0.01 mLoil/cm2, and have similar resistance values in concentrations higher than 0.01 mLoil/cm2. 

Since the white LED has the highest relative difference between water with and without oil, it is 

the best option to determine the presence of oil. To determine the source of oil, we use the blue 

LED. The resistance value of the LDR is different according to the origin of the oil present in the 

water. If the oil is from a gasoline engine, the red LED can be used to determine the concentration. 

Next, we are going to detail the steps followed to determine the presence of oil in water followed 

by our prototype. 

The first step in our operational algorithm is to determine if there is oil in the water and to 

identify if the oil comes from a diesel or gasoline engine. We use the white LED to determine the 

presence or absence of oil in water. The minimum resistance of the LDR with the white LED 

when there is no oil is 18.2 kΩ. Meanwhile, when oil concentration is 0.01 mLoil/cm2 or higher, 

the resistance value decreases to 12 kΩ or 11 kΩ, according to the origin of the oil, diesel, or 

gasoline engine. Therefore, if the measured resistance value on the LDR is lower than 18 kΩ, we 

can assume that there is oil pollution in the water. Once the presence of oil in the water has been 

determined, the next step is to ascertain whether the oil comes from a diesel or gasoline engine. 

We use the blue LED to recognize the origin of the oil. In gasoline oil, the resistance of the LDR 

increases with the concentration of oil. On the contrary, if the oil was used by a diesel engine, the 

resistance decreases with the concentration of oil. On the one hand, with the blue light, the 

resistance values of LDR when the origin of oil is a diesel engine are below 60 kΩ. On the other 

hand, the resistance values are close to 75 kΩ (or higher) when the oil was used by a gasoline 

engine. Thus, we set a threshold of 70 kΩ to determine the origin of the oil. 

Regarding the oil of a gasoline engine, it is possible to quantify its concentration using the 

red LED. Nevertheless, in this case, the height has a significant impact on the gathered data. 

Therefore, the water height must be measured in order to select which calibration model must be 

applied (see Equations 5.1, 5.2, and 5.3). If the water column height is lower than 7.5 cm, we 

cannot apply any of the equations since we are reaching the scenario with a water column equal 

to 5 cm and our results indicate that it is not possible to have a calibration. If the water column is 

higher than 22.5 cm, we cannot use any equation because the height of the water is far away from 

the highest tested water height and no information about the expected results is obtained. In these 

two cases, the algorithm can indicate the origin of the oil but not its concentration. For water 

column heights between 7.5 and 22.5 cm, interpolation will be carried out between Equations 5.1, 

5.2, and 5.3, depending on the case. 

To sum up, we use a combination of LEDs in our prototype. The white LED is for 

determining the presence of oil, and the blue LED is for identifying the source of the oil. The red 

LED is used to quantify the oil concentration if it comes from a gasoline engine in water heights 

between 10 to 22.5 cm. The whole process with the thresholds can be seen in Figure 5.18. 
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Figure 5.18. Algorithm of the function of our sensor. 

5.3.4.3 Lessons Learned and Limitations of the Present Study. 

Along with this study, we have identified some interesting issues which must be considered 

for future sensors for water quality designs. First and foremost, the irregular dispersion of oils in 

the water surface causes a series of shadows and irregularities in the light distribution, which 

precludes the use of the light receptor at 180° from the light source. Moreover, this dispersion 

also causes many difficulties when the sensor (at 0° from the light source) is placed too close to 

the water surface, at 5 cm or less. Thus, in future designs and test benches, we will establish the 

sensors farther from the water surface. We tested the sensor in static conditions. In the future, we 

will test in a real irrigation channel. Sloshing from the oil and water interface can lead to problems 

for oil determination. To solve this problem, the sensor will be located in areas with a laminar 

water regime. Moreover, the inclusion and the most appropriate orientation and materials for 

measuring conduct to avoid bubbles, voluminous suspended solids, and fouling will be studied.  

Regarding some possible interferences with other pollution sources, the combination of the 

turbidity sensor with the proposed prototype reduces the range of pollutants, which can produce 

a false negative. Despite this, other organic compounds with density values lower than the water 

might interfere with our sensor. Some examples are gasoline and diesel. The water velocity might 

also reduce the accuracy of our sensor. If the water current is too high, it will move and disperse 

the pollution very fast, which will make reading the resistance of the LRD or precluding the 

competition of the entire operational algorithm before the water characteristics change difficult. 

5.3.4.4 Relevance of the Present Study for Smart Irrigation and SMARTWATIR Project. 

Although the pollution of industrial oil from irrigation channels is a relatively controlled 

issue in developed countries, it is not a controlled issue in developing countries. As far as we 

know, there is no evidence in papers or reports that reviews the periodicity of pollution events 

linked to industrial oil of agricultural machinery. Nonetheless, the impact of this pollution is very 

high, affecting the soils, the aquifers and even the yield, as set out in the introduction. One of the 

principal reasons for this lack of information is the fast dispersion and local incidence jointly to 

the vast surface of irrigation channels, which causes difficulties data sampling and monitoring. 
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Therefore, the inclusion of this low-cost sensor will be crucial in monitoring pollution in irrigation 

channels. This is particularly important in scenarios where smart irrigation is being applied since 

the industrial oil can produce interferences in other sensors (such as conductivity sensors) or foul 

other optical sensors placed on the water surface. 

Focusing on the SMARTWATIR project and the phytodepuration, the detection of pollutants 

such as industrial oil must be accomplished before the phytodepuration in order to determine if 

the water can be regenerated or not. Moreover, some pollutants might be toxic to the plants, 

jeopardizing the entire ecosystem. 

In this subchapter, we evaluated the application of an optical sensor to measure industrial oil 

concentration in irrigation water. For this purpose, we used an assay which included two types of 

industrial oil (from a diesel engine and a gasoline engine). We evaluated the sensor’s performance 

at four different water heights (5, 10, 15, and 20 cm). As a light source, we used yellow, red, blue, 

green, and white LEDs. 

5.4 Conclusions. 

We evaluated the application of an optical sensor to measure industrial oil concentration in 

irrigation water. For this purpose, we used an assay which included two types of industrial oil 

(from a diesel engine and a gasoline engine). We evaluated the sensor’s performance at four 

different water heights (5, 10, 15, and 20 cm). As a light source, we used yellow, red, blue, green, 

and white LEDs. 

The white LED can be used to detect the absence or presence of industrial oil. Meanwhile, 

the blue LED can determine the source of this industrial oil. For pollution coming from the oil 

used by a diesel engine, at all light sources and water column heights, the LDR resistance has an 

abrupt change between 0 to 0.01 mLoil/cm2, allowing the detection of pollution. At higher 

concentrations, the values approached an upper limit or decreased slightly, precluding the 

determination of oil concentration. For the oil used by a gasoline engine, the red light is the unique 

one that presents homogeneous changes in the LDR’s resistance values at all tested 

concentrations, allowing us to measure the concentration of the industrial oil. The calibration 

verification provided an average RE of 19.9%, 13.7%, and 11.1% for 10, 15, and 20 cm, 

respectively. Thus, our prototype will combine different light sources for monitoring oil in 

irrigation water. 

Finally, the work presented in this chapter has been published in the following reference 

(Basterrechea et al., 2020c) and (Basterrechea et al., 2021a).
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In this chapter, we analyze the use of sensors in a pipeline. First, we study the different 

scenarios that can occur in storm sewerage according to the water level and rain. Then, we test 

the oil and conductivity sensor in a pipeline to check its operation. In addition, we use simulation 

software to determine if it is possible to detect blockages and illicit discharges in the sewerage. 

6.1 Scenarios in storm sewerage. 

In this subchapter, we propose a system based on level sensors and rain sensors for 

monitoring the water level in separated sewerage. First, we present the algorithm that uses our 

proposal and after the results. 

6.1.1 Algorithm. 

In this section, we show the algorithm of decision of our system. 

The algorithm is represented in Figure 6.1. In the first place, the water level sensor measures 

the level of water in the sewerage. The system compares the water level now (Wn) with a water 

level critical (Wc). The Wc is a level defined by the user for indicating from which point the water 

level is not in a normal situation. After, the system checks if it is raining or not. Finally, the system 

compares the water level in a point (Wu) with the water level of the next control point downstream 

(Wd). This algorithm is used when the pipes have the same diameter. In the case of different 

diameters between two points, it must compare the volume of water in the two points with the use 

of the mathematical equation to calculate the volume in a cylinder. With this information can be 

calculated the water level which corresponds to the pipe diameter. 

 

 
 

Figure 6.1. Algorithm for data processing 

 

The definition of a Wc is important for discharged false positives. The value of Wc should 

be determined by the person responsible in order to prevent small amounts of water arising from 

the irrigation of gardens, private vehicles, etc., and setting of alarms that are not related to the 

illicit dumping.  

6.1.2 Results. 

In this section, we study the different scenarios that can be analyzed in section 6.1.1. These 

different scenarios presented are simulated. We simulate the behaviour of a stretch of sewerage 

that has two acoustic sensors at its ends when the rain starts and when it finishes. 

The first scenario is the normal condition. This condition happens in two situations. When it 

is not raining, and the sewerage does not transport water. The other normal situation is when it is 

raining and the sewerage has water. This situation is represented in Figure 6.2. In this situation, 
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the rain starts at 25 minutes and finishes at 150 minutes. The two water level sensors are located 

upstream and downstream. The downstream will register a value of water level higher because at 

this point, more water will accumulate. If we subtract the height value of the two sensors, we will 

obtain a difference that will be less than what we will obtain in the other cases. 

 
Figure 6.2. Normal scenario. 

 

Another scenario is when the pipe is stuck. In this situation, the rainwater is accumulated in 

the sewerage during the rain before the blockage. When this happens there is much more water in 

the upper area compared to the lower area because of this the drainage will occur very slowly. 

This situation is represented in the Figure 6.3. In this case, an unlocking device should be sent to 

the pipe in order to eliminate the jam. 

Figure 6.3. Blockage scenario  

When a problem in the drainage of the runoff occurs, we can observe that the value of the 

water level upstream is much smaller than the value of the water level downstream. This occurs 

because upstream water is not entering the sewer while downstream will be entering. In this case 

the system generates an alarm so that drains are monitored at street level. If the problem is not 

solved in a short space of time floods can occur in lower areas of the city. Figure 6.4, it is 

represented this situation. 
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Figure 6.4. Low drainage 

Finally, in the case, we detect there is no rain, and the water level is larger than the critical 

water level this is a sign of illicit discharge. In this case, we assume that the discharge is made 

somewhere between the two measurement points. The critical water level is defined by the user, 

and it is used to discard possible positives due to the irrigation of parks, washing of private 

vehicles, etc., that use water and could end up in the sewer system. This situation is represented 

in Figure 6.5. 

 

Figure 6.5. Illicit discharge 

6.2 Water level, conductivity, and oil sensor. 

One time the different scenarios were studied. We analyze the use of conductivity, distance 

and oil sensors to detect the presence of illicit spills and blockages in the storm sewerage in this 

subsection. Our proposal uses rain, water level, oil, turbidity, and conductivity sensors to 

determine the presence of illicit spills in the sewerage and blockages in the storm sewerage 

networks. We use the rain sensor to control the presence and amount of rain in the monitoring 

area and the level sensor to monitor the presence of water in the pipes. We establish 4 different 

scenarios according to the rain and water level in the sewer. The perfect scenario for an illicit 

discharge is when it is raining and there is water in the storm pipes. In this scenario, the rain and 

level sensors cannot monitor the presence of illicit spills. We use turbidity, oil, and conductivity 

sensors to solve this problem.  

 

 



Study and design of a sensor system for the detection of illicit discharges in sewers and water bodies 

 

 
116 

6.2.1 Test bench. 

In this section, we explain the methodology used. First, we explain the methodology used to 

calibrate oil and conductivity sensors. After, we show the methodology used to check the use of 

level sensors in sewerage. 

6.2.1.1 Conductivity and oil sensor. 

In this subsection, we explain the methodology used to obtain the data of the oil and 

conductivity sensors. 

We performed a closed hydraulic circuit with PVC pipes represented in Figure 6.6. The 

circuit starts in a water tank with a pump for pumping water. The pump has a power of 400 W, 

providing a flow of 1.7 L/s. The pumped water is impulsed to the circuit through an impulse pipe. 

The pump pumps the water from the base of the water tank to the circuit through an impulse pipe. 

The impulsion pipe has a height of 25 cm. Next, an elbow connects the impulse pipe and the 

transport pipe. The transport pipe has a length of 2 m. Then, two elbows are connected from the 

transport pipe to the return pipe. The return pipe returns the water to the tank. The return pipe has 

a slope of 2 %. The conductivity and oil sensors are placed in the middle of this pipe. The pipes 

used have an external diameter of 50 mm, and a thickness of 3 mm. In the two tests, we used 20 

litres of freshwater, and each measurement is performed by triplicate. 

 
Figure 6.6. Hydraulic circuit. 

Conductivity and oil sensor calibration are carried out separately. First, we perform the 

conductivity test, adding table salt to the water to perform the different samples. The 

concentration of samples used for the calibration and verification is represented in Table 6.1. We 

use a conductivity sensor presented previously in (Parra, 2015). We add an epoxy layer to the 

sensor to increase its protection. On the one hand, the epoxy layer protects the insulating layer of 

copper from the chemicals that can be present in the storm sewerage. On the other hand, the epoxy 

helps keep the spires in the same position by keeping them glued together. The conductivity 

sensor is based on 2 coils with 40 and 80 spires of copper with a diameter of 0.4 mm. The PC is 

the coil with 40 spires and the other is the IC. The function generator model AFG1022 (Tektronix, 

2022a) is used to power the coil. We use an oscilloscope model TBS1104 (Tektronix, 2022b) to 

measure the voltage induced. The PC has a current of 3.3 V peak to peak with a series resistance 

of 47 ohms. We use a metalized polyester film capacitor of 10 nF parallel to the coil in the IC. 

We test the frequencies between 150 to 180 kHz, each 1 kHz. We select these frequencies due to 

the frequency peak is between 160 to 170 kHz, and we want to know the behaviour of the sensor 

in the frequencies nearby to select the best WF. 

  



Chapter 6. Practical deployment analysis 

 

 
117 

Table 6.1. Salt concentration used in calibration and verification. 

Calibration 

Salt (g/L) 0.0 1.0 3.0 4.0 5.0 7.0 10.0 12.0 

Conductivity (mS/cm) 0.53 2.66 6.68 8.59 10.64 14.34 19.7 23.2 

Salt (g/L) 15.0 18.0 20.0 22.0 25.0 28.0 35.0  

Conductivity (mS/cm) 28.2 32.9 36.2 39.6 44.2 48.8 58.4  

Verification 
Salt (g/L) 2.0 4.5 8.0 13.0 19.0 23.0 30.0  

Conductivity (mS/cm) 4.73 9.58 16.1 24.9 34.5 41.1 51.9  

About the oil sensor, it is presented in (Basterrechea, 2021) and in chapter 5. However, we 

added an infrared LED and photodiode to improve the prototype. We use the same hydraulic 

circuit explained previously. As the sensor can be affected by the external light, we cover it with 

an opaque bag. When we start the measurements for each concentration, we clean the sensor. We 

use a multimeter model Tenma 72-2600 (TENMA, 2022) to measure the resistance of the LDR 

and the output voltage (Vout) of the photodiode. In our design, we use a voltage divider formed 

by a fixed resistance and, after the circuit, the photodiode or LDR. 

A power supply model FAC-662B is used to power the LEDs and photodiode. The LEDs are 

powered sequentially with a voltage of 5 V, and each is powered for 20 seconds. We want the 

intensity current for the colour LEDs to be close to 15 mA. We select this value because the colour 

LEDs are not recommended to have an intensity current higher than 20 mA. However, as we use 

standard resistance, the real intensity of the colour LEDs are 13.48, 13, 12.33, 13.6, and 12.39 

mA to yellow, red, blue, green, and white, respectively. In the infrared LED, we test with different 

intensities. These are 13.2, 17.4, 23.2, 34.4, 49.6 and 90 mA. The maximum intensity 

recommended in the infrared LED by the manufacturer is 150 mA.  

The values of resistance of the LDR must be changed to voltage to allow the microcontroller 

to read it. We use a voltage divider for signal conditioning. To select a fixed resistance value, we 

find a value to maximise the difference between the water without oil and the maximum 

concentration of oil tested. In the case of the photodiode, we measure the Vout directly. For this, 

we need to determine previously the resistance that we will be using. To determine it, we tested 

with different current intensities in the infrared LED and changed the fixed resistance. In the fixed 

resistance, we test with different resistances between 1 kΩ to 8.2 MΩ. To perform this test, we 

used the pipe with water and a black object that simulated the presence of oil. We do not use oil 

to determine the fixed resistance to prevent water pollution. 

For elaborating the different oil samples, we use the same water to reduce the quantity of 

polluted water. In the water, we add different volumes of oil to elaborate the sample. Once the 

sample is elaborated, we measure with the sensor and repeat the process for each sample. The 

concentrations used in the calibration and verification are represented in Table 6.2. We use used 

oil provided by a local car workshop in Valencia (Spain). The oil was used by a gasoline car for 

31,000 km and 15,526 km.  

Table 6.2. Oil concentration used in calibration and verification. 

 

  

Calibration (mLoil/ Lwater) 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

2.4 2.6 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0  

             
Verification (mLoil/ Lwater) 0.1 0.7 1.3 1.9 2.5 17.0 32.0 47.0     
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6.2.1.2 Blockage detection in sewerage. 

In this subsection, we explain how the simulations are performed to determine the possibility 

of using level sensors to monitor the sewerage. 

The software used to perform the simulation is the EPA Storm Water Management Model 

SWMM 5.1 (EPA, 2014) to simulate a subsection of a storm sewerage network. The software 

offers different models for simulating storm sewerage. We select the dynamic wave model 

because this model calculates the water that accumulates in the sewer in the case of excess water. 

The model needs the rain values to calculate the water entering the sewerage. We create artificial 

rain represented in Table 6.3. 

Table 6.3. Values of the artificial rain. 

Time simulation (h) 1 2 3 4 5 6 7 8 9  

Rain (mm) 0 7 6 8 20 7 5 2 0  

The measurements of the basins and pipes used in the simulation have been obtained 

following an industrial park's typical distribution. This distribution is large plots occupied by 

industrial buildings and streets for access. The storm sewerage is distributed in accordance to the 

streets, and the different buildings dump the pluvial water into the street. In our simulation, we 

have 4 plots of 4.5 ha each. Each plot is subdivided into 6 parts (sub-basins) that dump the 

stormwater into a node. We estimate that 90 % of the area is impervious as it is an industrial zone. 

The rest of the parameters are the default values of the program. The pipe diameter used is 0.5 m 

diameter for all pipes with a pending of 2 %. These are the minimum values recommended in the 

storm sewerage. The simulation concept is represented in Figure 6.7, and Table 6.4 shows the 

values of length and heights of the different pipes. 

 

Figure 6.7. Map of the simulation section. 



Chapter 6. Practical deployment analysis 

 

 
119 

Table 6.4. Values of length and heights of the different pipes. 

Pipe 

Length 

(m) 

Start Height 

(m) 

Finish 

Height (m) Pipe 

Length 

(m) 

Start 

Height (m) 

Finish 

height (m) 

NC1-NC2 93.3 11.4 9.5 N22-N23 93.3 12.7 10.9 

NC2-NC3 93.3 9.5 7.7 N23-N24 93.3 10.9 9.0 
NC3-NC4 93.3 7.7 5.8 N24-N41 5.0 9.0 8.9 

NC4-NC5 5.0 5.8 5.7 N24-NC4 160.0 9.0 5.8 

NC5-NC6 93.3 5.7 3.8 N31-N32 93.3 8.9 7.0 
NC6-NC7 93.3 3.8 2.0 N32-N33 93.3 7.0 5.2 

NC7-NC8 93.3 2.0 0.1 N33-N34 93.3 5.2 3.3 

NC8-Exit 5.0 0.1 0.0 N34_Exit34 5.0 3.3 3.2 
N11-N12 93.3 14.6 12.7 N34-NC8 160.0 3.3 0.1 

N12-N13 93.3 12.7 10.9 N41-N42 93.3 8.9 7.0 

N13-N14 93.3 10.9 9.0 N42-N43 93.3 7.0 5.2 

N14-NC4 160.0 9.0 5.8 N43-N44 93.3 5.2 3.3 
N14_N41 5.0 9.0 8.9 N44-NC8 160.0 3.3 0.1 

N21-N22 93.3 14.6 12.7 N44-Exit44 5.0 3.3 3.2 

6.2.2 Results. 

 

In this section, first, we analyse the results obtained in the oil sensor. Then, we present the 

results obtained in the water level simulation. Finally, we show the results of the conductivity 

sensor. 

6.2.2.1 Oil sensor. 

In this section, we show the results obtained with the oil sensor. First, we need to determine 

the fixed resistance in the photodiode circuit and the current intensity of the infrared LED. After, 

we analyse the results obtained by the photodiode of the prototype. Finally, we study the results 

obtained with the LDR. 

Concerning photodiode, we test with the intensity current of the infrared LED and the fixed 

resistance of the voltage divider. The Vout difference between water and the black object is 

represented in Figure 6.8. In this figure, we observe that the Vout difference is near 0 V in the 

lower fixed resistances in all intensities tested. The Vout difference between the water and the 

black object increases with the increase in resistance up until a maximum. To the intensities of 

49.6 and 90 mA, the maximum difference occurs at 2.2 MΩ. With the increase of the fixed 

resistance, we observe a reduction of the Vout difference in these two current intensities. Which 

would indicate a parabolic behaviour with the increase of fixed resistance. In the other intensities 

tested, we do not observe a maximum. We think that these intensities, with the increase of the 

resistance in the circuit, probably have the same behaviour as the intensities 49.6 and 90 mA. 

However, we did not test higher resistance values because these are not standard values, and we 

discarded the idea to use more than one resistance to facilitate the use of the sensor. In the 

resistance of 2.2 MΩ, the Vout difference is 0.21, 0.39, 0.43, 0.39, 0.87 and 0.89 V to an infrared 

intensity current of 13.2, 17.4, 23.2, 34.4, 49.6 and 90 mA respectively. In the same intensity 

currents and the change to fixed resistance to 8.2 MΩ, the difference of Vout is 0.52, 1.03, 1.06, 

0.98, 0.76, and 0.00 V, respectively. The maximum difference is produced at the infrared LED 

intensity of 23.2 mA with a resistance of 8.2 MΩ. We determine that is the best option because it 

is the option with a greater Vout difference and the intensity current is not high. 

With the intensity of the infrared LED and the fixed resistance determined in the photodiode's 

voltage divider, we start the test in the different oil samples. In Figure 6.9, we can observe the 

Vout obtained in the different lights used with a photodiode as photoreceptor. The Vout obtained 
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is low in the green, blue, yellow, and red lights. We discard these lights to monitor the oil in the 

sewerage with the configuration tested. In the case of white light, we observe a few increases of 

the Vout with the increase of oil concentration. This increase is 0.29 V between 0 to                           

45 mLoil/Lwater. The increase of Vout is produced mainly between the concentration of 0 to      

2.6 mLoil/Lwater. In this range, the difference of Vout is 0.13 V. This difference is too little, and 

we must rule out white light with the photodiode as photoreceptor. Finally, there is a difference 

of Vout of 2.17 V in the use of infrared light between the water without oil and the maximum mix 

of water and oil tested. With the use of the infrared LED, we observe three trends. The first trend, 

the Vout increase in the range of 0 to 1 mLoil/Lwater. The second trend is detected in 1 to 5 

mLoil/Lwater, where the Vout is constant. Finally, there is another trend in 5 to 45 mLoil/Lwater, 

where the Vout increases. The infrared LED is the only one that we can use to monitor the 

presence of oil with a photodiode in our prototype. 

 
Figure 6.8. Effect of the intensity and fixed resistance in the voltage divider in Vout differentiate. 
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Figure 6.9. Vout with the use of photodiode in the different oil concentrations. 

Now, we analyse the mathematical models that relate the Vout with the oil concentration. 

We use Statgraphics software (Statgraphics, 2022) to calculate the models. We use one model for 

all oil concentrations tested represented in Equation 6.1, and two models for the low oil 

concentration and the other for the high oil concentrations represented in Equations 6.2 and 6.3. 

The values of R2, AE and RE of these models can be observed in Table 6.5. Using one model for 

all the oil concentrations, the AE is 1.5 mLoil/Lwater with a RE of 47.7%. In this model (equation 

6.1), the maximum REs are produced in the range of 0 to 10 mLoil/Lwater. In this range, the mean 

of RE is 66.73%. We consider these REs too high for our sensor. For this motive, we decided to 

use two models. On the one hand, a model in the concentrations between 0 to 2.6 mLoil/Lwater. 

The AE of this model is 0.3 mLoil/Lwater, and the RE is 31.3%. On the other hand, the second 

model (5 to 45 mLoil/Lwater) has an AE of 2.1 mLoil/Lwater and a 9.8% of RE. The use of two 

models reduces the errors. However, the errors in the low oil concentrations are too elevated. In 

Figure 6.10, we represented the observed versus predicted values using the model in the range of 

0 to 2.6 and 5 to 45 mLoil/Lwater. In Figure 6.10 a), we observe the low concentration of oil 

values. In general, we confirm that the mathematical model is ineffective in predicting oil 

concentration. Nevertheless, in the high concentration of oil tested (Figure 6.10 b)), we can regard 

that the model predicted well the concentration of oil. 

 𝑂𝑖𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐿 𝑜𝑖𝑙

𝐿 𝑤𝑎𝑡𝑒𝑟
) = (−4.20311 +  0.400849 ∗ 𝑉𝑜𝑢𝑡2)2 (6.1) 

 𝑂𝑖𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐿 𝑜𝑖𝑙

𝐿 𝑤𝑎𝑡𝑒𝑟
) = (−1.62013 +  0.198401 ∗ 𝑉𝑜𝑢𝑡2)2 (6.2) 

 𝑂𝑖𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐿 𝑜𝑖𝑙

𝐿 𝑤𝑎𝑡𝑒𝑟
) = (−3.18522 +  0.3644 ∗ 𝑉𝑜𝑢𝑡2)2 (6.3) 

 

Table 6.5 Values of R2, errors and range of the different equations. 

Equation Range R2 AE (mLoil/Lwater) RE (%) 

2 0-45 0.9549 1.5 47.7 

3 0-2.6 0.8353 0.3 31.3 

4 5-45 0.9643 2.1 9.8 
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a) b) 

Figure 6.10 Two models. 

Finally, we perform a verification of the sensor. In the range of 0 to 2.6 mLoil/Lwater, the 

AE is 0.77 mLoil/Lwater, and the RE is 63.39%. With the errors observed in the calibration and 

verification, we can affirm that the sensor cannot be used to determine the oil concentration in 

this range. However, we think that the sensor can be used to determine the presence of oil. In the 

range of 5 to 45 mL oil / L water, the average AE is 3.16 mLoil/Lwater, and the RE is 11.23%. 

The RE is 12.84, 16.77, and 4.08 % in the concentration of 17, 32, and 47 mLoil/Lwater, 

respectively. In this case, we can affirm that the sensor can be used to monitor the oil 

concentration in the range of 5 to 45 mLoil/Lwater. Thus, we can use infrared light with a 

photodiode as photoreceptor to detect the presence of oil in low concentrations and quantify the 

concentration in higher concentrations. Now, we study the values obtained with the LDR. The 

resistance values of the LDR in the use of the different lights are transformed to voltage using 

Equation (4.20. First, we search for the fixed resistance value that maximises the difference 

between the minimum and maximum Vout values. Usually, the resistance values obtained with 

this method are not standard. Thus, we select the standard resistance value nearest to it. Table 6.6 

represents the calculated resistance value and the standard resistance value used. 

Table 6.6. Values of resistance in the fixed resistance. 

Colour Yellow Red Blue Green White Infrared 

Model resistance (kΩ) 81.55 21.57 94.03 7.87 5.52 9716.02 

Standard resistance (kΩ) 82.0 22.0 100.0 8.2 5.6 10,000 

Once the resistance values are transformed to Vout, we obtained Figure 6.11 and Figure 6.12. 

Figure 6.11 represents the values of Vout with the use of the light colours yellow, red and blue. 

With the use of yellow and red lights, there is a decrease in the Vout with the increase of the oil 

concentration. The decrease of Vout with the yellow light is 0.36 V between the minimum and 

maximum oil concentration tested. The decrease is produced between 0 to 1.8 mLoil/Lwater. In 

the higher concentration tested, the Vout has similar values with a trend to a limit inferior of 1.46 

V. With red light, the Vout decrease is 0.3 V between the water without oil and the water with the 

maximum oil concentration. In this light, the Vout decrease is produced mostly in the 

concentration between 0.6 to 0.8 mLoil /Lwater. Thus, we discard the use of this light to monitor 

oil concentration. However, this light can be used to differentiate between water with oil and 

water without oil. Another light tested is the blue light. The evolution of Vout with the oil 

concentration is not consistent. First, there is a Vout reduction up until 1.4 mLoil/Lwater 

concentration. From this concentration up until the concentration of 15 mLoil/Lwater, there is an 

increase of the Vout with the increase of oil concentration. In higher concentrations than 15 
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mLoil/mLwater, the Vout trends to an upper limit of 1.73 V. The other lights tested (green, white 

and infrared) are represented in Figure 12. About these lights, we discard the use of green and 

white lights. Because the difference of Vout is little when considering the increase of oil. In the 

use of green light, the Vout has values between 1.58 V to 1.65 V. With the use of white light, the 

Vout without oil is 1.55 V, and the Vout with the maximum tested oil is 1.73 V. This is a decrease 

of 0.28 V that is produced mainly between the concentrations of 0 to 0.8 mLoil/mLwater. In 

higher concentrations, we observe a low limit of 1.55 V. Finally, we analyse the use of infrared 

light. With this light, there is a decrease of the Vout of 1.03 V between the water without oil and 

the maximum oil concentration tested. As in the previous cases, the values of Vout have a lower 

limit of 1.12 V as of 20 mLoil/Lwater. The reduction of the Vout is indicative of the increase of 

light that hits the LDR. This can increase the light reflected by the water of oil or fluorescence 

produced by one or more substances present in the oil.  

Given the previous results, white and red light can be used to detect the presence of oil but 

not for monitoring. The yellow and infrared light are useful for monitoring the oil concentration 

in different ranges. The yellow light can be used in 0 to 2.2 mLoil/Lwater, and infrared light in 

the range of 0 to 20 mLoil/Lwater. First, we analysed the results obtained with the yellow LED. 

Equation 6.4 represents the mathematical model that related the oil concentration with the Vout 

in this light. The value of R2 of the model is 0.97293, and in Figure 6.13, the predicted values 

versus the observed values of the model are represented. In general, the values obtained from the 

model predicted the observed values well. We do not observe an important difference between 

the observed and predicted oil concentrations. 

 
Figure 6.11 Vout in the different oil concentrations whit the use of yellow, red, and blue lights. 
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Figure 6.12 Vout in the different oil concentrations whit the use of green, white, and infrared 

lights. 

  𝑂𝑖𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐿𝑜𝑖𝑙

𝐿𝑤𝑎𝑡𝑒𝑟
) =  (4.23337 − 1.24727 ∗ 𝑉𝑜𝑢𝑡𝑦𝑒𝑙𝑙𝑜𝑤2)2 (6.4) 

 
Figure 6.13. Observed versus predicted concentration of oil in yellow light. 

 

Now, we analyse the models of Vout with infrared light. First, we calculate the mathematical 

model with Statgraphics (Statgraphics, 2022) with the Vout values between 0 to 20 mLoil/Lwater. 

We obtain Equation 6.5, which has an R2 value of 0.8665. This low value of R2 implies a short 

ability to predict the values of oil concentration. This is observed in Figure 6.14 a) and b), we can 

see that the predicted values are far from the observed. It can be seen that the predicted value 

except in 0.2 and 5 mLoil/Lwater concentrations are far from the observed. In addition, in Table 

6.7, the errors in the calibration and verification of that model are represented. The AE in the 

calibration is 1.2 mLoil/Lwater, and the RE is 42.3 %. In the verification, the RE is similar, with 

45.95 %. These errors are not good for our sensor to know the oil concentration. Thus, we test 

with the elimination of values of the calibration. By eliminating the calibration of the value 

without oil, we obtained an R2 value of 0.8764. This is still a low value of R2. With which we 

continue to eliminate the next value of the calibration. In this case, we obtain Equation 6.6 with 

an R2 value of 0.9710 in the range of 0.4 to 20 mLoil/Lwater a. We obtained a reduction in the 

errors. The absolute and REs are 0.54 mLoil/Lwater and 21.25 %, respectively, in the calibration 

and the verification are 1.75 mLoil/Lwater and 18.41 %. 

In summary, the use of a photodiode is only effective with the use of infrared light to detect 

the oil concentration in the range of 5 to 45 mLoil/Lwater. With the use of a LDR as 
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photoreceptor, red light can be used to determine the presence of oil, but not to determine the 

concentration. Regarding the yellow and infrared light, these can be used for monitoring the oil 

concentration. Yellow light can be used in the range of 0 to 2.2 mLoil/Lwater and infrared light 

in the range of 0.4 to 20 mLoil/Lwater. Infrared light is also used in the determination of turbidity. 

We determine that the maximum concentration that our sensor can measure is 20 mL oil/Water, 

using infrared light 

 

 
  

a) b) 

Figure 6.14. Observed versus predicted concentration of oil in infrared light in the two models. 

 𝑂𝑖𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐿𝑜𝑖𝑙

𝐿𝑤𝑎𝑡𝑒𝑟
) = (−5.58178 +

10.605

𝑉𝑜𝑢𝑡𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑
)
2

 
(6.5) 

 𝑂𝑖𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑚𝐿𝑜𝑖𝑙

𝐿𝑤𝑎𝑡𝑒𝑟
) = (−8.27867 +

14.3223

𝑉𝑜𝑢𝑡𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑
)
2

 
(6.6) 

 

 

 

Table 6.7. Range and errors. 

  Calibration Verification 

Colour light 

Range 

(mL oil / L water) 

AE 

(mLoil/Lwater) RE (%) 

AE 

(mLoil/Lwater) RE (%) 

Yellow 0-2.2 0.09 12.42 0.21 28.65 

Infrared 0-20 1.20 42.30 0.68 45.95 

Infrared 0.4-20 0.54 21.25 1.75 18.41 

6.2.2.2 Level sensor. 

In this subsection, we analyse the effect of the presence of a blockage or illegal spills on the 

water level of storm sewerage.  

First, we check if it is possible to detect the presence of dumping with the use of the level 

sensor. Nevertheless, we do not observe a significant difference in the sewerage between the rain 

with a spill and no spill. This is because if we calculated the water that enters the sewerage with 

the first value of rain (7 mm), we obtained 52.5 m3/h in each node. We consider that such high 
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volumes would not be reached in the event of an illegal discharge. Therefore, it is impossible to 

detect a spill with the use of level sensors at the time that rain occurs. 

Now, we analyse the use of the level sensors to detect blockage in the pipes. Figure 6.15 

represents the pipes that presented differences between a blockage and no blockage with the 

different percentages of blockage levels. In Figure 6.15 a), we represent a blockage effect between 

one of the lateral pipes and the central pipes. If the blockage is located in the lateral pipe, we 

obtain the results observed in Figure 6.15 b). We show similar pipes affected (except pipe N34 to 

NC8). Figure 6.15 c) and Figure 6.15 d) represent what occurs if the blockage is located at the 

end of the simulated section. In the case of the blockage located in the lateral pipe, we observe 

that the pipes near the blockage are affected. However, many pipes are affected if the blockage is 

in the central pipe. We can affirm that the use of a level sensor can be a tool to detect the presence 

of a blockage.  

In sewerage, the blockage can be produced by the deposit of solids (wet wipes, rocks, trash, 

branches, etc.). The presence of these elements will affect the velocity of the water. Therefore, 

there will be an increase in water level upstream and a decrease downstream. However, a water 

level sensor could not detect the damage to the pipes at the top of it by the roots of trees. 

6.2.2.3 Conductivity sensor. 

In this section, we analyse the results obtained with the conductivity sensor. 

We observe that the frequency peak changes with the increase of conductivity. The peak 

frequency in freshwater is 164 kHz, and the conductivity of 58.4 mS/cm is at 162 kHz. In Figure 

6.16, Figure 6.17, , and Figure 6.19, the values of induced voltage are represented in the different 

frequencies tested. We identify 4 types of trends that are represented in the different figures. The 

first trend is represented in Figure 6.16. This trend is produced between the frequencies of 150 to 

158 kHz. First, with the increase of the conductivity, there is an increase of the induced voltage 

until a certain conductivity. After this conductivity, the value of induced voltage is reduced with 

the increase of the conductivity. In addition, we observe that the conductivity value where the 

change occurs between the increase and decrease of the induced voltage is reduced. Until the 

frequency of 159 kHz, where the voltage increases between the first and second concentration 

tested and then decreases with the increase in conductivity. We can see this trend in the 

frequencies 159 to 165 kHz, and the induced voltage of these frequencies is shown in Figure 6.17. 

In these frequencies, some induced voltage values can be associated with two conductivity values 

of water. For this reason, we discard the use of frequencies between 150 to 165 kHz.  represents 

the frequencies between 166 to 176 kHz. In these frequencies, we observe an induced voltage 

decrease with increasing conductivity. These frequencies can be used to monitor the conductivity 

of the water. Finally, in Figure 6.19, there is a decrease in induced voltage with the conductivity 

increase. Except in the case of 2.66 to 6.68 mS/cm, where there is an increase in the induced 

voltage. 
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Figure 6.15. Pipes affected by the different % of blockages and blockage positions. 

  
Figure 6.16. Induced voltage in the different conductivities in the frequencies between 150 to 158 kHz. 
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Figure 6.17. Induced voltage in the different conductivities in the frequencies between 159 to 165 kHz. 

 
 

Figure 6.18. Induced voltage in the different conductivities in the frequencies between 166 to 176 kHz  

 

Figure 6.19. Induced voltage in the different conductivities in the frequencies between 177 to 180 kHz. 
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The frequencies between 166 to 176 kHz are utilised to perform a calibration model. The 

other frequencies present changes in the trend of the induced voltage with the conductivity. This 

creates difficulty in the implementation of the system. Since an induced voltage value would be 

associated with more than one conductivity value. In addition, we discard the use of the 

frequencies 174, 175, and 176 kHz due to presenting a low induced voltage difference with the 

increase of conductivity.  

With the data gathered of the induced voltage of the frequencies between 166 to 173 kHz, 

we perform mathematical models that relate the induced voltage and the water conductivity. First, 

we obtained the values of R2 for all models that statgraphics (Statgraphics, 2022) calculated. 

Second, we calculate the mean of R2 for the different models in the different frequencies. Finally, 

we use the six models with the higher R2 mean value to relate the induced voltage with the 

conductivity. The models used are Square Root-Y Log-X, Square Root of Y, Inverse Y-Square 

Root of X, In-verse of X, Square Root-X Square-Y, and Logarithm of X. Of the six models used, 

the minimum error in calibration, verification or mean of calibration and verification are produced 

in the three first models for the RE. The model with the least absolutive error is Square Root-Y 

Log-X in all cases. In Figure 6.20, we represent the RE with the use of the mathematical models 

obtained with Statgraphics software (Statgraphics, 2022). In general, we observe that the increase 

of frequency reduces the REs (except in the case of 173 kHz). 

In Figure 6.21, we represent the distribution of the REs for the different conductivity tests 

and frequencies selected. The model used in each frequency has fewer REs for that frequency. In 

general, the maximum REs are in the lower concentrations tested. The minimum RE in the 

concentration of 0.526 mS/cm is in the frequency of 172 kHz with a RE of 2.1%. The maximum 

error in this concentration is in the frequency of 127.3 mS/cm. In the 2.66 mS/cm concentration, 

the mean RE is 22.6%, with a minimum value of 0.3 % to the concentration of 171 kHz. In Figure 

6.22, the RE of the verification in the frequencies between 166 to 170 kHz, the REs are higher 

than the 13.1% in the other frequencies, the REs are less than 5.3% are represented. In the other 

concentrations, the values are less than 9.1 % of REs. 

 
Figure 6.20. REs of models 
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Figure 6.21. Summary of the % of RE in the calibration. 

 
Figure 6.22. Summary of the % of RE in the verification. 

 

As we saw previously, the absolute Voltage difference and the total RE are reduced with the 

increase of frequency. In our case, the best option is the frequency of 171 kHz. Because it is the 

frequency with smaller REs at lower conductivity concentrations. Which will be the most typical 

concentrations in a sewer. At higher concentrations, the errors will be higher than at other 

frequencies, but our goal is to detect the presence of a spill. The thing that would be fulfilled in 

that frequency. Equation 6.7 related the value of voltage with the oil concentration of the 

frequency 171 kHz. 

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑆/𝑐𝑚 = (10.1752 −  13.6081 ∗ LN(Vout))2 (6.7) 

6.2.3 Conclusions. 

We presented a system to monitor the storm sewerage to prevent illicit discharges and detect 

blockages. With rain and water level sensors, we established 4 scenarios possible. There are two 

options when there is water in the sewerage, but it is not raining. (I) A stormwater tank is being 

emptied, or (II) There has been a spill in the sewerage. In this scenario, our system checks if the 

stormwater tank is emptying. If the answer is negative, the sensors are used to detect who is 

responsible. Another scenario is when it is raining, but there is no water in the sewerage. This is 

a signal of the presence of a blockage in the sewer manhole. The third scenario is when there is 

no water in the storm sewerage and it is not raining. That is a normal situation. Finally, if it is 

raining and there is water in the sewerage, a spill is produced. However, only using a level sensor 

will not be enough to detect it. For this reason, the use of oil, turbidity, and conductivity sensors 

is needed. In addition, the use of the level sensor can help detect blockage in the sewerage. We 

tested that there are significant differences in the water level in one sewerage depending on the 

presence or not of a blockage. 

We improve the design of two sensors previously developed. The conductivity sensor and 

the oil sensor. In this last one, we include infrared light and a photodiode in the design previously 

developed. On the one hand, we obtained that infrared light and the use of a photodiode present 

an AE of 2.1 mLoil/Lwater in the range of 5 to 45 mLoil/Lwater and a RE of 9.8%. The RE is 

11.23 % in this range and 0.77 mLoil/Lwater of AE. With the use of the photodiode, the other 

colours of light are not useful for detecting the oil. On the other hand, with the use of an LDR as 

a photoreceptor. Red light can differentiate between water with oil and without. Regarding the 

yellow light, it can be used in the range of 0 to 2.2 mLoil/Lwater with an AE of 0.09 

mLoil/Lwater. With this photoreceptor, the infrared light presents an AE of 0.54 mLoil/Lwater in 

the range of 0.4 to 20 mLoil/Lwater. 
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Also, we improve the design of the conductivity sensor previously developed. We detect 4 

different trends of induced voltage with the increase of conductivity. The frequencies that are 

utilized for monitoring the conductivity are included in the range of 166 to 173 kHz. In general, 

we detect that the REs decrease with the increase of conductivity. In addition, the REs decrease 

with the increase of the frequency. We select 171 kHz as the better option of measurement in this 

sensor. Due to presenting an absolute difference of 0.81 V in (alternative current), a 0.57 V in a 

continuous current. In this, the RE is 3.9%. 

Finally, work presented in this chapter has been published in the following references 

(Rocher et al. 2019b), (Rocher et al. 2022).
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In this chapter, we develop our proposal. First, we select the technology used to the 

communication of the different nodes and topology network. 

7.1 Selection and Definition of Communication Technology. 

One of the most critical capabilities that must be considered when selecting and 

implementing sensor nodes is the communication system or protocol that will be used to transmit 

the monitored information through the nodes. The nodes will be installed in irrigation ponds, as 

these ponds are generally located at a great distance from the points from which it is possible to 

connect to Internet Service Providers. Therefore, this connection becomes very complicated, and 

to solve it, it will be necessary to use communication through wireless technologies. 

Among the wireless technologies most used in IoT are viewer by (García et al. 2018).We can 

high light the following ones (I) Wi-Fi (IEEE 802.11) (IEEE, 2014), (II) Radio-frequency 

identification (RFID) (ISO, 2011), (III) Bluetooth Low Energy (BLE) (IEEE 802.15) (IEEE, 

2020), (IV) ZigBee (IEEE 802.1.4) (IEEE, 2018), (V) Sigfox (Sigfox, 2017), (VI) LoRa (Lora-

alliance, 2019), and (VII) mobile technologies, such as WiMAX (IEEE802.16) (IEEE, 2001), 

LTE Cat-M1 (3GPP, 2016) or NB-IoT (5G) (GSMA, 2019).  

In our case, we can discard technologies with a more limited scope, such as RFID, BLE, or 

Zigbee. Moreover, we can discard those with a higher maintenance cost since, although they can 

operate at a greater distance, which has an additional cost of connection to an Internet Service 

Providers, such as WiMAX, LTE Cat-M1, or NB-IoT. For all the reasons previously described, 

the most appropriate technologies to carry out our implementation are LoRa.  

7.2 Topology. 

The topology of a network is the design as the different nodes are connected. Different 

topologies exist (I) Ring, (II) Mesh, (III) Star, (IV) Fully connected, (V) Line, cascading (VI) 

Tree and (VII) Bus (Mamat, Ibrahim and Sulong, 2020). These topologies are represented in 

Figure 7.1. The star and tree topologies are the most reliable and stable in the context of smart 

cities (Mamat, Ibrahim and Sulong, 2020).  

In the ring topology, the different nodes are connected to other 2 nodes forming a circle. 

Therefore, communication can be produced in two ways. Thus, the data is sent from one node to 

another until reaching the destination node. We obtained a mesh topology if we increased the 

number of nodes so that one node could be connected directly. It is a fully connected topology if 

all nodes are connected with all nodes. In another topology, the different nodes are connected to 

a cable (bus). In Star topology, the different nodes are connected to a central node. Any 

communication you want to carry out between the different nodes must go through the central 

node. If different stars connect between them, we get a tree network. The different topologies can 

be combined to form other topologies. 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.1. Network topologies. 
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To develop our proposal, we have three scenarios, water bodies, separate sewerage and 

combined sewerage. The topology of the three scenarios is similar. Different sensor nodes are 

located in the sewerage or water body. The number of motes will depend on the size of the area 

to control, the presence of the possibilities of PIs or overflows occurring, and the budget available 

for the system. The different sensor nodes will connect to a Cluster Head (CH). The CH will send 

the data to a central computer through the internet. The connection of the sensor nodes and CH 

will occur through Wi-Fi or LoRa technology. As in the urban areas, there are buildings that can 

avoid the connection of the motes with the CH; we will use signal repeaters, and wireless sensors 

self-location systems (Garcia, 2009).  

7.3 Algorithms. 

In our system, we must differentiate between the nodes in a storm sewer and those in a 

wastewater sewer, combined or in a body of water. 

In storm sewerage, we analyse the 4 scenarios that may happen in the combination of rain 

and level sensors.  

(I) The first scenario is when it rains and there is water in the pipe. In this condition, we use 

the level sensors to detect blockages in the pipes. In addition, we use turbidity, conductivity, and 

oil sensor to detect the presence of possible spills.(II) The second scenario is produced when it is 

raining and there is no water in the pipes. This is an indication that the rainwater is not entering 

the sewerage. This can occur by a blockage in the storm drain. (III) The third scenario is when it 

is not raining, but there is water in the pipes. The presence of water in the storm sewerage can be 

produced by an illicit spill or due to a discharge of a stormwater tank.(IV) Finally, the last scenario 

is when it is not raining and there is no water in the pipes. In this situation, there are no more 

things to analyse. 

The process of measurement is constantly executed every fixed period of time, and it starts 

reading the level of the water. When the level is higher than a threshold, the node should start 

checking possible spills. This threshold could be fixed but, to allow the proposal to adapt to 

different pipes and scenario conditions, is statistically calculated using a p-value of 0.9. When the 

node starts checking the spills, the turbidity, conductivity, and oil sensors will start measuring to 

detect problems. In addition, the water level will be used to check if there are any clogs in the 

sewerage. Finally, if there is a high level in some of the measurements, these measurements will 

be sent to the MH along with the level measurement.  

Figure 7.2 shows the process of the CH. The first action is to check the level of the water. If 

the node has sent a level that is lower than a specific threshold, the value of the raining sensor 

should be checked. A positive value of that sensor shows that there is a clog, since the level of 

water should be higher. Otherwise, there is no mismatch. If the level is higher than the threshold, 

the state of the water tank must be checked. If it is open or if it is closed, but it is raining, it could 

be a normal situation. However, if it is not, there is an illicit discharge. That could be possible 

even if the tank is open or if it is raining. That is the reason why the measurements are also 

checked in that case. When one of these problems is detected, the MH sends a message to the 

user. After all the checking, the MH awaits for the next message to be received.  

 



Chapter 7. Application in sewerage 

 

 
135 

 

Figure 7.2. Master Head algorithm. 

 Figure 7.3. In our system, the maximum and minimum threshold values for contaminant 

concentration must be defined first. These thresholds are defined in Table 7.1. Once the thresholds 

have been defined, the measure of the different sensors is performed. The value of the different 

sensors is compared whit the TH maximum and minimum for each parameter. In the case that a 

parameter measured is outside the thresholds, a tag different to 00 is generated. As a parameter's 

value can only be at a low or a high level, we use the same tag for the same pollutant, changing 

the value. With this, we reduced the amount of data that needed to be sent. The different tags are 

represented in Table 7.1. When all the sensors have been checked, the information is sent from 

the sensor node to the CH. Once the information is sent, the values of the different tags are 

converted to 00.  

 

 Figure 7.3. Algorithm to wastewater sewerage. 
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Table 7.1. Parameter algorithm is represented in  Figure 7.3. 

Thresholds Meaning Tag number 

TH C+ High conductivity Tag1=01 

TH C- Low conductivity Tag1=10 

TH T+ High Turbidity Tag2=01 

TH T- Low Conductivity Tag2=10 

TH O+ High Oil Tag3=01 

TH O- Low Oil Tag3=10 

TH te+ High temperature Tag4=01 

TH te- Low temperature Tag4=10 

TH L High Level Tag5=01 

TH L Normal Level Tag5=10 

7.4 Cost of a sensor node. 

The cost of our sensor node is represented in Table 7.2. As a microcontroller, we select node 

B-L072Z-LRWAN1. This node has enough analogue and digital inputs and outputs for our 

sensors and LoRa communication. This device must connect an SD card reader and an SD card 

to save the data. We use a power bank with a solar panel to power the system. However, as the 

sensor node is in smart cities in some cases, it will be possible to connect to public lighting. In 

turbidity and oil sensors, we use a RGB LED for visible lights. This allows the generation of 

visible light waves, saving on the number of LEDs to use and, therefore, the number of outputs 

to power them from the microcontroller .current. Since microcontrollers are generally incapable 

of generating this type of current (except for the PMW output), we will use a 555 integrated 

circuit. To read the sensor's response, it is necessary to go from alternating current to direct 

current. For that, we will use a diode bridge circuit. Finally, we use the temperature sensor 

DS18B20 and distance sensor HC-SR04 to monitor the water level and temperature of the water. 

The cost of the system is 120 euros, which can be reduced when making a purchase of more than 

one component. 
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Table 7.2. Cost of our sensor node. 

Purpose Item 
Unitary 
cost (€) Units Cost 

Turbidity 

RGB LED L-154A4SUREQBFZGEW 1.43 1 1.43 

LDR NSL- 19M51 1.88 3 5.64 

IR LED TSUS5400 0.73 1 0.73 

Photodiode SFH 203 1.08 1 1.08 

Resistances 0.27 6 1.62 

Oil 

RGB LED L-154A4SUREQBFZGEW 1.43 1 1.43 

LDR NSL- 19M51 1.88 3 5.64 

Resistances 0.27 6 1.62 

Conductivity 

Copper Copper 0.4 mm 0.5 1 0.5 

555 timer IC TLC555IP 1.05 1 1.05 

Discrete components (Resistors, Capacitors, 

Transistors) 
3.00 1 3.00 

Water level 
Ultrasonic distance 

sensor 
HC-SR04 2.93 1 2.93 

Temperature Temperature DS18B20 6.15 1 6.15 

Node 

Node LoRa B-L072Z-LRWAN1 61.34 1 61.34 

Micro SD Card reader 2.19 1 2.19 

Micro SD Card 4Gb 0.82 1 0.82 

Energy 

system 

Power bank 20,000 mAh 20.99 1 20.99 

Solar panel CN3163 2.07 1 2.07 

    
Total 120.23 
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8.1 Design and Calibration of Moisture Sensor-based on Electro-

magnetic Field Measurement for Irrigation Monitoring. 

Soil moisture control is crucial to assess irrigation efficiency in green areas and agriculture. 

We propose the design and calibration of a sensor based on inductive coils and EFs. The proposed 

prototypes should meet a series of requirements such as low power consumption, low RE, and a 

high voltage difference between the minimum and maximum moisture. The aim of this work is 

to design and calibrate an moisture sensor based on EFs, which identifies the water scarcity and 

can be applied in gardens, urban lawns, agriculture fields, etc. We can estimate soil moisture 

based on the induced voltage. The sensor's signal is affected by the variation of the generated EF; 

the changes in water content modifies the dielectric constant of the environment. The final sensor 

might consist of one or several prototypes in one housing to cover the widest possible range of 

soil moisture. Although the use of solenoid coils have been proved for monitoring other 

environments, their use to monitor soil moisture is yet to be tested to its full potential.  

8.1.1 Test bench 

In a previous job, Parra Boronat (2019) tested 15 prototypes based on coils to monitor the 

soil's moisture. They determined that the better prototype is composed by 5 spires in PC and 10 

spires in IC. These sensors (NP1 to NP4) exploited the best windings ratio. All of the new sensors 

had their spires in one layer. Furthermore, to minimize the error when connecting the sensors, 

they had all the elements necessary for the circuit already connected to the sensor, turning them 

into a fully functional sensor. Their characteristics can be seen in Table 8.1. 

Table 8.1. Features of the prototypes NP1 to NP4. 

Prototype ØW (mm) ØPC & ØIC (mm) NS PC NS IC Windings Ratio 

NP1 0.4 25 5 10 1:2 

NP2 0.4 50 5 10 1:2 

NP3 0.4 25 15 10 1:0.67 

NP4 0.4 50 15 10 1:0.67 

 

A power generator was the source of the power for the PC (a sinus-wave), the AFG1022 

from Tektronix was selected. The range of frequencies it can generate, and it is user-friendly 

handling fostered the selection of this generator. The voltage chosen was 3.3 V. This is the 

standard voltage at which Arduino works. For both sets of tests, the selected oscilloscope to 

register the Vout was the TBS1104 from Tektronix. Furthermore, a resistance of 47 Ω on the 

positive wire of the PC was added to protect the oscilloscope and reduce peaks, as well as a 

capacitor of 10nF, which was connected to both wires on the IC.  

It is to be noted that each datum for this experiment in the results section corresponds to the 

mean of three repetitions. The Vout reading was taken in triplicate, thus making the results more 

rigorous. To simplify the analyses, standard deviation data will only be presented when calibration 

tests were performed.  

Next, the measurement protocols for each set of tests are described. The frequencies used for 

this set of tests were those close to the peak. The peak frequencies are determined in the different 

samples when the soil has the maximum moisture tested. In these conditions we search the peak 

frequency in the range of 0 to 1 MHz. Once the peak frequency is found, we measure at the 

frequencies of ±10, 20, 30 and 40 kHz of peak frequency. This range was chosen because it 

represents the frequencies where the sensor shows a higher sensitivity to changes in the 

environment and displays a higher output voltage. These experiences allowed us to check the 

effectiveness of the sensors for a different soil type. 
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The sensors were left inside the pots along the entire experiment. Measurements were taken 

daily for as long as the tests were conducted. The objective of these experiments was to prove the 

usefulness of keeping the sensors buried, to minimize the errors from extracting and inserting 

them. Furthermore, since the soil was different, these experiments wanted to test the efficiency of 

the prototypes for a crop during harvest. 

The different soils have been obtained in summer in the La Safor region (Valencia, Spain). 

The soils are a representation of typical farmer soils of this region. Considering that collected 

cannot be classified as unaltered samples since they are sifted and water was added to the soil, the 

specific ambient conditions in which samples are collected are not relevant. The soil screening 

was carried out to avoid creating preferential water channels that could affect the measurements 

and homogenize the samples. A sole type of soil was used. Nevertheless, it was different from the 

previous types, and four repetitions were used (C1 to C4). The soil was a sandy type extracted 

from an orchard field. The pots used for these tests were smaller, with a maximum radius of 6.65 

cm. A total of 1 kg of each soil was inserted in each pot. A sample was taken from the original 

soil and dried in order to obtain the moisture percentage to calculate the dry soil. In Figure 8.1, 

the pots of soils C1, C2, C3, and C4 are depicted. Regarding the procedure of soil moisturizing, 

we followed the aforementioned moisturizing process, which consists of adding small quantities 

of soil and let water saturate all the gaps of soil. 

 
Figure 8.1. Soils C1 to C4 

The soil weight characteristics, the original % of dry soil, and the derived weight values for 

the soil moisture estimation by weight are presented in Table 4. The measures of the pots, as well 

as their volume, are presented in Table 5. Furthermore, the results for the soil moisture measures 

are presented in Table 6; this information will help understand the results. It presents the soil 

volume, the initial and final water volume and their variation.  

Table 4. Soil characteristics. 
 C1-4 

% Dry soil 97.6 

Total weight of the dry soil (g) 976 

Weight of the pot and filter paper (g) 87 

Weight of dry soil+pot+filter paper (g) 1063 

Sand (%) 80 

Silt (%) 15 

Clay (%) 5 

 

 

 



Chapter 8. Application to other environments. 

 

 
141 

Table 5. Pots characteristics.  
C1-4 

Minor radius (cm) 4.55 

Major radius (cm) 6.65 

Height (cm) 7.04 

Volume (cm3) 697.7 

Table 6. Summary of the soil moisture variations. 

  C1 C2 C3 C4 

Initial water percentage (%) 57.2 56.6 63.1 59.3 

Final water percentage (%) 7.0 6.4 8.5 7.5 

Soil moisture variation (%) 50.2 50.2 54.6 51.8 

The behaviour of C1-4 is similar since they come from the same lot. All of them started at 

around 55-65 % soil moisture and ended close to 6-9 %. The target range was studied because 

sandy soils have their FC at around 24 % and their WP at around 7 % (Datta, Taghvaeian and 

Stivers, 2017). 

8.1.2 Results. 

The results of the 4 prototypes are analyzed in this subsection. Furthermore, the values of 

Vout for the different soil moisture and prototypes are shown.  

In the representation of data gathered in prototypes NP1, NP2, NP3, and NP4, we include 

only 1/3 of the obtained values to ensure a proper visualization of data and trends; in the 

calibration, we will use the whole dataset. In general, we can observe that increasing the diameter 

of coils reduces the peak frequency. A reduction of peak frequency entails a more reliable circuit. 

Except in NP3, the higher voltage differences are in the frequencies beyond the peak frequency. 

In Figure 8.2, we show the results of the different frequencies tested for NP1. In this 

prototype, the peak frequency is displaced when the soil moisture decreases, as seen in previous 

tests. In the frequencies of 700 kHz, 710 kHz, 720 kHz, and 730 kHz, the first values of Vout 

decrease from 57.2 % to 39.1 %, from which Vout remains almost constant. In agriculture, these 

high soil moisture values are unusual, too high. Meanwhile, in urban lawns, these values are more 

typical. However, the low difference of Vout discards the use of these frequencies in NP1. In the 

frequency of 740 kHz, there is a low difference in the Vout with soil moisture change (except for 

anomaly values). We observe absolute (and relative) differences between the maximum and 

minimum Vout of 0.6 V (16.63 %) at 750 kHz, 0.8 V (26.67 %) at 760 kHz, 0.7 V (27.66 %) at 

770 kHz, and 0.5 V (23.97 %) at 780 kHz. If we study the change of Vout with the soil moisture 

in this prototype, the only frequency useful is 750 kHz.  

The values of the Vout for frequency 750 kHz are shown in Figure 8.3. The Vout of prototype 

NP1 frequency 750 kHz.. In this case, we observe that there are not a great dispersion of the values 

(except abnormal values). We use Statgraphics Centurion XVI (Statgraphics, 2022) to calculate 

mathematical models, which are presented in Table 8.2 (Equation (8.1) and (8.2)). The value of 

Vout for the 7.3 % of soil moisture is eliminated since the model cannot calculate the soil moisture 

with the values of Vout observed. For the first, we use all data obtained, and the model has an R2 

of 0.8093 and a RE of 6.23 %. We observe 4 atypical residuals (difference between the observed 

value and predicted value). These are the data for 48.9 %, 39.1 %, 29.1 %, and 15.6 % soil 

moisture. We eliminated these values and obtained a new mathematical model, see it in Table 8.2. 

Soil moisture (%)  =  √41296.7 −  20667.9 ∗ √𝑉𝑜𝑢𝑡 (𝑉) 
(8.1) 
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Soil moisture (%)  = √12472.5 −  786.904 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2 (8.2) 

Table 8.2. Mathematical models to prototype NP1 frequency 750 kHz. 

Equation 

number 

Atypical 

residuals 

RE (%) R2 

8.1 Yes  6.23 0.8092 

8.2 No 3.63 0.9443 

 

Figure 8.2. The Vout in the different frequencies tested in the prototype NP1. 

 

 

Figure 8.3. The Vout of prototype NP1 frequency 750 kHz. 

 

The results for NP2 are presented in Figure 8.4. The Vout in the different frequencies tested 

in prototype NP2.. Like the previous case, the frequency peak is displaced from 480 kHz to 490 

kHz. Although in this case, the change occurs in the last measurement of soil moisture. In 

frequencies before the peak, the differences of Vout are minimal. In these frequencies, the highest 

difference is 0.33 V in 460 kHz, and we discard the use of them. The more significant differences 

of Vout are in the peak frequency and the subsequent tested frequencies. These frequencies are 

480 kHz, 490 kHz, 500 kHz, 510 kHz, and 520 kHz, and the absolute (and relative) differences 

between the maximum and minimum Vout are 1.4 V (29.36 %), 2.2 V (52.69 %), 1.8 V (52.38 

%), 1.1 V (41.26 %), and 0.7 V (31.59 %) respectively. The Vout decreases rapidly in the first 

and last datum obtained concerning the evolution of Vout with the soil moisture in those 

frequencies.  

We use Statgraphics to compare the value of the R2 with a unique model for each frequency 

and all collected data. The values of R2 are 0.8458, 0.9291, 0.9309, 0.9303, and 0.9381 for 480 
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kHz, 490 kHz, 500 kHz, 510 kHz and 520 kHz respectively. Despite these values of R2, we 

observe graphically that the models do not represent well enough the values we have obtained. 

We test two possibilities: (I) We eliminate the initial moisture values before the trend reversal 

occurs (until 45.3 % of soil moisture); and (II) we use two models. Table 8.3 represents the 

equation of the models (Equations 8-3 to 8-7), the values of R2 and RE for (I). Meanwhile, Table 

8.4 presents the same information for (II) (Equations 8-8 to 8-17). In (I), the values of R2 are 

slightly lower than the second model of the previous case. In (II), we observe that the first model 

has a reduction in the value of R2, and the second model has an increase of R2. In (I), we lose the 

upper values in the range of use. However, we will get minor errors, and the loosed values are in 

conditions where irrigation should not be managed in most agricultural fields. If we observe the 

values of the REs in Tables Table 8.3 and Table 8.4, the highest is in 480 kHz for the two cases, 

(I) and (II). In (II), the RE is similar between the two models, with values over 5 % higher between 

one model and the other. However, in (I), the lowest REs are in frequencies 490 kHz and 500 

kHz. As the absolute difference and relative difference of Vout are in the frequencies of 490 kHz 

and 500 kHz, we will use these frequencies in the verification test. The mathematical models (I) 

and (II) of the frequencies 490 kHz and 500 kHz are shown in Figures 26 to 29.Figure 8.5, Figure 

8.6, Figure 8.7, and Figure 8.8 

 

Figure 8.4. The Vout in the different frequencies tested in prototype NP2. 

 

  

 
 

Figure 8.5. Vout NP2, 490 kHz, two models (II) 

Equation 8.11 and 8.12 as the mathematical model 

I and II, respectively. 

Figure 8.6. Vout NP2, 490 kHz, one model (I) Equation 8.4. 

 

Soil moisture (%)  = 𝑒10.3148 − 0.214189∗𝑉𝑜𝑢𝑡 (𝑉)2  (8.3) 

= Mathematical model (II) (I) 



Study and design of a sensor system for the detection of illicit discharges in sewers and water bodies  

 

 
144 

Soil moisture (%)  =
1

−0.181988 +  0.00814101 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2
 (8.4) 

Soil moisture (%)  =
1

−0.176427 +  0.0126477 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2
 (8.5) 

Soil moisture (%)  =
1

−0.200654 +  0.0232309 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2
 (8.6) 

Soil moisture (%)  =
1

−0.263374 +  0.0445901 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2
 (8.7) 

  
  

  
Figure 8.7. Vout NP2, 500 kHz, two models 

(II) Equation 8.13 and 8.14 as the 

mathematical models I and II, respectively. 

Figure 8.8. Vout NP2, 500 kHz one model (I) Equation 8.5. 
 

 

 

Table 8.3. Values of R2 and REs in NP2 (I) Without the first values before the trend reversal 

occurs. 

Frequency (kHz) 480 490 500 510 520 

Equation number 8-3 8-4 8-5 8-6 8-7 

R2 0.862 0.98 0.984 0.974 0.969 

RE (%) 13.1 7.5 7.1 8.0 9.3 

 

Soil moisture (%)  = √7901.29 −  202.249 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2 (8.8) 

Soil moisture (%)  =
1

−0.63484 +  0.0200203 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2
 (8.9) 

Soil moisture (%)  = √7202.71 −  225.536 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2 (8.10) 

Soil moisture (%) =
1

−0.467387 +  0.0967319 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2
 (8.11) 

Soil moisture (%)  = √7545.65 −  380.326 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2 (8.12) 

Soil moisture (%)  =
1

−0.445713 +  0.117128 ∗ 𝑉𝑜𝑢𝑡 (𝑉)
 (8.13) 

Soil moisture (%)  = √8957.26 −  764.546 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2 (8.14) 
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Soil moisture (%)  =
1

−0.646451 +  0.585493 ∗ ln (𝑉𝑜𝑢𝑡 (𝑉))
 (8.15) 

Soil moisture (%)  = √10373.8 −  1368.73 ∗  𝑉𝑜𝑢𝑡 (𝑉)2 (8.16) 

Soil moisture (%) =
1

−0.276662 +  0.0463475 ∗ 𝑉𝑜𝑢𝑡 (𝑉)2
 (8.17) 

Table 8.4. Values of R2 and REs in NP2 (II) Using two models. 

Frequency (kHz) 480 490 500 500 510 

Equation 

number 
8-8 8-9 8-10 8-11 8-12 8-13 8-14 8-15 8-16 8-17 

R2 0.7797 0.9493 0.9112 0.9112 0.9907 0.9908 0.9308 0.9811 0.9327 0.9867 

RE model (%) 10.8 11.2 6.4 6.4 4.8 4.2 5.2 4.7 5.3 4.6 

Mean RE (%) 10.8 4.8 5.4 5.2 5.1 

Now, we analyze the values of the NP3, and we show them in Figure 8.9. This prototype 

presents in all tested frequencies significant differences between the maximum and minimum soil 

moisture tested. The absolute (and relative) differences between the maximum and minimum 

Vout are 1.0 V (19.83 %) at 750 kHz, 1.1 V (21.6 %) at 760 kHz, and 1.0 V (19.83 %) at 770 

kHz. The frequency peak is changing between 760 kHz and 770 kHz in the different soil moisture. 

According to the values, except in 760 kHz, the rest of the frequencies present great dispersions 

of the Vout values for similar soil moisture measures. The frequency of 760 kHz is the only 

frequency for which our prototype can be used. 

Figure 8.9. The Vout in the different frequencies tested in prototype NP3. 

Figure 8.10 shows the Vout in the frequency of 760 kHz. If we use all data to develop the 

model, we obtained an R2 of 0.6916. However, we consider that values of the Vout in the points 

of 33.0 % and 45.6 % soil moisture (5.16 V and 5.49 V, respectively) are aberrant. In the case 

that we build our model without these values, the value of R2 is 0.8471. We consider that R2 is 

lower than the previous prototypes. In addition, the frequency with which the prototype works is 

high, and the voltage difference is less than for prototype NP2. For these reasons, we discard the 

use of this prototype for monitoring the presence of water in the soil. 

Finally, Figure 8.11 represents the values of NP4. In this prototype, the peak frequency is 

490 kHz when the soil is wet and 500 kHz when the soil is dry. The change of peak frequency 

happens at 38.0 % soil moisture. As in the previous prototypes (except NP3), the greater 

differences are in frequencies higher to the frequency peak (490 kHz). The absolute (and relative) 

differences between the maximum and minimum Vout are 0.5 V (7.8 %), 1.0 V (15.43 %), 1.2 V 

(20.17 %), 1.3 V (23.89 %), and 1.1 V (23.53 %) for 490 kHz, 500 kHz, 510 kHz, 520 kHz, and 

530 kHz, respectively. However, these differences (except in the case of 490 kHz) mean that the 
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voltage difference is higher at very low moisture. For this reason, NP4 is not suitable for 

monitoring irrigation; it might have other uses when very low soil moistures (less than 10 %) 

must be measured.  
 

Figure 8.10. The Vout in the frequency of 760 kHz in prototype NP3. 
 

Figure 8.11. The Vout in the different frequencies tested in the prototype NP4. 

8.1.3 Verification. 

In this subsection, we analyze the values of the verification test for NP1 and NP2. In Table 

8.5, the results of the verification of NP1 for the frequency of 750 kHz are shown. We can see as 

the maximum RE is 48.0 % when the soil moisture is at 13.2 %. With this high error, the sensor 

cannot work in a low concentration of soil moisture. For the other moisture levels used in the 

verification, the errors are lower. For the central values, the errors are 13.8 %, 17.0 %, and 9.3 % 

for the moistures of 23.4 %, 33.8 %, and 43.9 %, respectively. Finally, the RE is minimal (0.6 %) 

in the moisture value of 53.9 %. 

In Table 8.6, we show the verification of prototype NP2 and one model. In this case, we do 

not use the value of 51.7 % soil moisture because it is outside the model range. In general, with a 

frequency of 500 kHz, the REs are lower than the REs at 490 kHz. The higher errors are in soil 

moisture levels of 31.8 % and 42.3 %. The maximum RE is 25.5 % in soil moisture and 31.8 % 

at 490 kHz. In Table 8.7, we show the values of verification of the prototype NP2 using two 

models. In this case, we can observe that the maximum error occurs with the soil moisture of   

31.8 %, as it happened with a single model. Regarding the other RE values, these are small. In 

the two frequencies, the mean of the RE is 6.5 % for 490 kHz and 6.2 % for 500 kHz. 
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Table 8.5. Verification NP1, 750 kHz. 

Moisture (%) Vout (V) Estimed moisture (%) AE (%) RE (%) 

53.9 3.49 53.6 0.3 0.6 

43.9 3.72 39.8 4.1 9.3 

33.8 3.85 28.1 5.7 17.0 

23.4 3.87 26.6 3.2 13.8 

13.2 3.92 19.5 6.3 48.0 

Average   3.9 17.7 

 

Table 8.6 Verification NP2, 490 kHz, and 500 kHz one model. 

 490 kHz 500 kHz 

Moisture 

(%) 

Vout 

(V) 

Estimed 

moisture (%) 

AE 

(%) 

RE 

(%) 

Vout 

(V) 

Estimed 

moisture (%) 

AE  

(%) 

RE 

(%) 

42.3 4.97 49.2 7.0 16.4 3.95 47.4 5.1 12.0 

31.8 5.24 23.7 8.1 25.5 4.13 25.0 6.8 21.5 

22.1 5.29 21.4 0.7 3.0 4.19 21.9 0.1 0.7 

12.3 5.68 12.4 0.0 0.4 4.52 12.2 0.1 1.1 

Average   3.9 11.3   3.1 8.8 

 

Table 8.7. Verification NP2, 490 kHz, and 500 kHz two models. 

 490 kHz 500 kHz 

Moisture (%) Vout (V) 

Estimed 

moisture (%) AE (%) RE (%) Vout (V) 

Estimed 

moisture (%) 

AE  

(%) RE (%) 

51.7 4.35 54.2 2.5 4.8 3.51 53.6 1.8 3.5 

42.3 4.97 40.3 2.0 4.7 3.95 40.3 2.0 4.8 

31.8 5.24 25.3 6.5 20.4 4.13 26.0 5.8 18.2 

22.1 5.29 22.4 0.3 1.5 4.19 22.4 0.3 1.4 

12.3 5.68 12.2 0.1 1.1 4.52 11.9 0.4 3.1 

Average   2.3 6.5   2.1 6.2 

 

8.1.4 Overview and general discussion. 

NP2 and NP1 exhibit good results. The main reason behind the erratic trends observed in 

several cases is that soil is a more complex substratum than water. It has a higher heterogeneity, 

and within the soil, different environments coexist (such as organic matter, soil particles of 

different granulation, air, water, etc.). Therefore, the behaviour of the EF is modified by the 

different environments it crosses. This fact causes slight variations in the location of the sensor, 

can involve changes in the Vout, and can cause difficulting in the correct calibration of the 

prototypes.  

To monitor the crops, mainly citrus with soils similar to the one used in the last set of tests, 

we select the prototype NP2 with a powering frequency of 500 kHz, with two models. Due to it 

accomplishing all the features that we determined previously. The NP2 presents greater voltage 

differences between the minimum and the maximum Vout values than the other prototypes. 

Furthermore, its REs and AEs are lower when two models are used.  
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During these tests, we have confirmed some of the observed trends in (Basterrechea, 2020a). 

We confirm that the peak frequency, the frequency at which the IC presents the highest Vout, is 

modified by the properties of the environment in coreless inductive coils. Moreover, the 

modification in the decreasing/increasing trend before and after the peak frequency, reported in 

(Basterrechea, 2020a) is confirmed for inductive coils with a soil core.  

Regarding the results of keeping the sensor buried during the tests or using the sensor as a 

probe (introducing it every time that a measure must be done), we can conclude that less abnormal 

data is gathered when the sensor is kept buried.  

Even though some sensors are buried over one month, more test which durations reaches 12 

months should be conducted to verify this issue. Notwithstanding the aforementioned 

information, some of the prototypes shown in this chapter, have been used in previous 

experiments in different conditions of temperature, conductivity and are immersed in water for 

several days without noticing any fault in their operation (Kleinberg, Chew and Griffin, 1989). 

Considering that the sensing element, the copper wire, is isolated from the environment by a thin 

layer of enamel, it prevents many damages caused by the environment. Nonetheless, a test to 

evaluate the degradation of enamel must be planned before the final deployment of these 

prototypes. 

8.2 IoT Sensor to Detect Fraudulent use of Dyed Fuels in Smart Cities. 

Currently, fossil fuels are the main source of energy for vehicles, which have associated with 

different taxes. Certain activities use fuels with lower taxes and have a different colour. There is 

the possibility of commit fraud by using the low taxes fuel for private vehicles. In this subchapter, 

we present an IoT system to detect the presence of low-taxed fuels in the deposit of cars. 

Moreover, the system can send a message to the police to proceed with the denunciation if it is 

required. The sensor is based on the differences in light absorption by the different fuels, the 

normal fuel, and the low-taxed fuel. As a light source, we use seven LEDs: white, green, yellow, 

orange, blue, red and infrared. We measure the changes in the resistance values with different 

LEDs with non-dyed diesel and dyed diesel. 

8.2.1 System description. 

In this section, we present the description of our proposal. First, the structure of the system 

is detailed. Then, the operation algorithm is shown. Finally, we describe the message flow 

protocol.  

8.2.1.1 Structure of the system. 

The general structure of the system includes an IoT device, which is used by the police. In 

addition, it is able to send data to the police server, as shown in Figure 8.12. The IoT device is 

composed of the physical sensor and the node that process the data gathered by the sensor and 

forwards the data to the main server. The sensor is based on light absorption and it has a LED that 

emits a certain wavelength and a detector that measures the light absorption where the sensor is 

introduced in the fuel deposit. The sensor connects to a wireless device, which can be a mobile 

device, a LoRa, etc. The device is able to transmit the alert message to the main server. Hint, the 

alert message is sent to the server when it is necessary. Thus, the system can automate showing 

the results to the police and forward the data to the server. The police can use the information to 

inform of the fraud or proceed to report the owner of the vehicle. 
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Figure 8.12. General structure of the system. 

8.2.1.2 Proposed algorithm.  

In this subsection, we show the proposed algorithm to detect the fraudulent use of low-taxed 

fuel. In order to detect a measurement of the regularity and irregularity of combustibles, we 

propose an algorithm. The operation algorithm of the IoT devices is shown in Figure 8.13. The 

IoT device gathers data from the LEDs sensor, the measurement results specifies the type of the 

fuel and all information is extracted. Two parameters are considered in the algorithm, a parameter 

for the regular case when the system detects normal value and other for the irregular case the 

sensor reads abnormal value.  

Whether the system detects regular fuel, it means there is no issue in the gasoline and the car 

can continue. Otherwise, when the sensor depicts irregularities in the measurement of fuel, the 

system shows the irregularity in the IoT device (identity by code 1). Then the police can report to 

the driver. In addition, the data is wirelessly sent to the police station in order to save the 

information. Moreover, when the IoT device is not sent information to the police server the device 

provides code 2, which means that there is no connection between the two devices. 

8.2.1.3 Message flow protocol.  

In this subsection, we present the message flow protocol between the IoT device and the 

police server. The message flow topology between IoT device and Police server is presented in 

Figure 8.14. Flow message conversation.. At first, the IoT device, which collects data from the 

connected LED sensor, connects to the police server by establishing a connection on the Internet 

using HTTP protocol. In the scheme, the IoT device initiates the conversation that includes: the 

source host identity, the measure of fuel from the LED sensor, and destination server. The server 

is a police server that holds information. After the establishment is done, the police server asks 

for authentication for both device and the user in the system. Then the server asks for registering 

plate of car and query driver information such as full name and license number. The policy server 

has SQL database, which contains registered information of fuel measurement, car, and driver. 

The system will check the information and it will reply to the IoT device. Furthermore, all 

messages are based on HTTP/TCP in order to reliable delivery of the data between IoT devices. 

After the process of conversation is finished, the IoT device sends a terminate message to the 

police server to close the session. 
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8.2.1.4 System description. 

In this subsection, we are going to describe the system of the sensor. 

To develop the measurements, we use a glass tube with a diameter of 18 mm and a thickness 

of 1 mm. The tube is completely covered with an opaque material. Thus, the exterior light does 

not interfere with the measurements, only the light from the LEDs reaches the inner part of the 

tube. The LEDs are placed on the outside part of the tube. We use seven LEDs with different  

coloration including red, blue, yellow, orange, green, white and infrared LEDs. 

  

Figure 8.13. Proposed algorithm. 
Figure 8.14. Flow message conversation. 

The coloured LEDs are 3 mm of diameter while the infrared LED is 5mm of diameter. To 

measure the absorbance of the fuel to the different lights, we measure the incident light on the 

opposite side of the tube (see Figure 8.15). This sensor is based on the one presented in (Parra, 

(2018), (Sendra et al. 2013). We measure the incident light as the resistance of an LDR and a 

photodiode in the case of the infrared LED. The resistance of LDR and photodiode change when 

the light strikes it. More light less the resistance. The environment that is between the LED and 

the LDR/photodiode, the non-dyed fuel or the dyed fuel, absorb more or less light depending on 

the wavelength of the emitted light. 

The resistance measurements were done in a tester (model Fluke 110). The LEDs are 

powered by a power supply (model FAC-662B) with a voltage of 5 V and an intensity of 300 

milliamps. At the positive pole of the power supply, there is a resistance with a value of 470 Ω.  
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Figure 8.15. Light absorption by the samples. 

  

Figure 8.16. Experimental test. 

8.2.2 Measurement and Results. 

In this section, we describe the experiments performed and the obtained results that show 

how the sensor is able to differentiate between normal dyed and non-dyed fuel. 

For the measurements, the LEDs are powered sequentially. The measurement of the incident 

light is taken as the resistance of the LDR or the photodiode. Once the measurement has been 

recorded, the LED is turned off and turned on to take the measurement again. This is done to 

obtain three replicas of each measurement. In Fig 5 we can see the assembly in the laboratory to 

measure the light abortion. 

We measure the resistance of the LDR/photodiode with the empty tube, the tube full of dye 

diesel and normal and premium diesel of four gas stations from four different brands. The petrol 

stations are located in Valencia (Spain). The St1 sample was taken from a small town gas station, 

the St2 was taken from a gas station associated with a supermarket, the St3 from a large oil 

company, and finally, the St4 was taken from a low-cost gas station. The dyed diesel was only 

taken from the St1 because the other gas stations did not sell dyed diesel. 

Once we have described how the measurements are obtained, we are going to analyze the 

obtained data. In Figure 8.17,  

Figure 8.18. The resistance of LDR with white light. 

, and Figure 8.19 can be seed the resistance of the LDR/photodiode in the tubes with the 

different diesel testing. We can be observed that there is not a high difference between the values 

of resistance with the normal and premium diesel of the different gas stations. These small 

differences can be explained by the presence of additives that gas stations put to their fuels. In the 

dyed diesel, the differences are observed in the white, green, blue and yellow LEDs. 

In Figure 8.17, shows the value of resistance with different colour LEDs. The resistance 

values with the green LED are much higher than with the other LEDs. In contrast, the orange 

LED has lower values of resistance. The green LED has a mean value of 7.05 kΩ in normal and 

premium diesel while the orange has values of 0.87 kΩ. The Yellow and Red LEDs have very 

similar values with an average value of 2.10 kΩ and 2.11 kΩ respectively for normal and premium 

diesel. Finally, the red LED has an average value of 1.56 kΩ. 

In  

Figure 8.18. The resistance of LDR with white light. 

, we can be observed values of resistance much lower than those observed in the other LEDs. 

We can see how the average of the resistance values is 335.5 Ω for normal and premium diesel. 

The normal and premium diesel has an important difference with empty tube and dyed diesel. 

In Figure 8.19, we observe the highest Resistance values we have observed. The average 

value for non- coloured diesel is 3.80 MΩ. The value of St1 normal is the highest resistance with 

a value of 3.9 MΩ. The values of St1_premium, St2_normal and dyed diesel have similar values 

(close to 3.83 MΩ). The St2_normal, St3 normal, and premium fuel present different values. The 

St4 normal and the premium fuels presents are similar values. 

Now, we are going to compare the differences between the values of normal and premium 

diesel with the dyed diesel. The observed difference are 188.93 Ω in white, 3.11 kΩ in blue, 0.76 

kΩ in the yellow and 1.72 kΩ in the green, which supposes a variation on the resistance of 36% 
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for the white light, 59.7% for the blue light, 26.3% for the yellow light, and 32.3% for the green 

light. For the other LEDs, the variations of the resistance are 6.2% for red light, 4.4% for orange 

light, and 0.1% for infrared light. Thus, we are going to analyze in detail the response of the sensor 

for the aforementioned lights.  

Figure 8.17. The resistance of LDR with different lights. 

 

Figure 8.18. The resistance of LDR with white light. 
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Figure 8.19. The resistance of a photodiode with infrared light. 

 In Figure 8.20, Figure 8.21, Figure 8.22, and Figure 8.23, we observe the box plot of the 

resistance of the LDR/photodiode in the 3 replicas. As previously mentioned, in these graphs can 

be observed that there are differences between the normal and premium diesel according to the 

gas station from which the sample is obtained. These differences are due to the different additives 

that are added by the manufacturer. It is possible to observe that the values of dispersion are low 

and that in no case these come close to the values of the coloured diesel. 

In Figure 8.20, it can be seen the values of resistance when the blue LED is used. The values 

for the normal and premium diesel are in the range of 2.00 kΩ to 2.30 kΩ. The lowest value is 

St1_normal and the highest is St2_normal. Regarding to the dispersion of the measurements, we 

can see that in all cases the values are not dispersed among them. There is a big difference between 

the dyed diesel, the empty tube, and the normal and Premium diesel. 

The resistance values for the green LED can be seen in Figure 8.21. In this case, we can note 

that there is a greater dispersion in the data of the coloured diesel and the St2_Normal in regard 

to the other values. In St2_normal the values are from 6.81 kΩ to 7.00 kΩ and in the coloured 

diesel are in a range of 5.43 kΩ to 5.21 kΩ. 

In Figure 8.22, we observe that the dispersion between the values is small. The resistance 

values in the different types of normal and premium diesel are different. Therefore, it is possible 

that the sensor can identify the type of diesel with the yellow LED.. 

In Figure 8.23, it can be observed the resistance values for the white LED. The values of 

St1_premium, St2_premium, St3 normal and premium, and St4_Normal have very similar values, 

around 330 Ω. The other values of non-dyed diesel are in a range between 325 Ω. and 345 Ω. The 

values of the non-the dyed diesel are much lower than dyed diesel. In addition, it is observed that 

the values of the different replicas are not dispersed. 
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Figure 8.20. Box plot resistance of LDR with blue light. 

 

 

 

 

 

Figure 8.21.Box plot resistance of LDR with a green light. 

Figure 8.22. Box plot resistance of LDR with yellow light. 
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Figure 8.23. Box plot resistance of LDR with white light. 

We selected the blue, green and yellow LEDs because they produce the highest difference 

between non-dyed diesel and dyed diesel in the resistance of the photodetectors. We used three 

LEDs in order to augment the security of the detection. If only two LEDs detect a dyed diesel the 

test will be repeated. If a solely LED detects a dyed diesel will is considered a false positive. 

 

8.3. Sensors and Biosorption for Better Reuse of Wastewater  

One of the objectives of the project SMARTWATIR is the use of WSN to ensure the quality 

of water in irrigation. In the event that the quality of the water is not sufficient, bioadsorption 

technology will be used. Bioadsortion process is based on physical and chemical processes by 

adsorption, where the particles come together and precipitate. Biosorption can be used in all types 

of sources of pollutants, from non-point sources such as runoff caused by heavy rains through 

localized focus such as industrial wastewater (Gupta and Rastogi, 2008). Likewise, biosorption is 

a technique with great aptitude to eliminate the heavy metals of these waters, considering 

themselves sustainable with the environment and differentiated from the others by their minimum 

cost of investment (Vieira and Volesky, 2000).  

In the current research, we are going to highlight the possibility of using biosorption for 

water reuse. Different sensor after and before biosorption process are supposed to be used to check 

its operation and whether we find optimal water. 

In Mediterranean region especially, the design and operation of competitive and cost 

effective wastewater treatment systems for irrigation is a real challenge. Within this context an 

innovative system of wastewater treatment has been proposed that is based on biosorption 

technology and sensors. The biosorption system that we are going to develop could be used for 

augmenting the reuse of wastewater. It comprises sensors for monitoring water quality in the entry 

and exit. Sensors in the entry are used for detecting if the water needs treatment. Sensors in the 

exit are used to assess released water quality and to explore the efficiency of biosorption system. 

Biosorption technique is used for eliminating wastewater pollutants that are not removed by both 

primary and secondary WWTP. In Figure 8.24, we show the scheme of the proposed system.  
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Figure 8.24. Scheme of the proposed wastewater treatment system. 

For our proposal, the sensors need to comply with different characteristics: (I) Low cost, 

because the sensors will be used in many areas especially developing countries. (II) Physical 

sensors. The use of chemical sensors caused an increase in maintaining cost. (III) Low electrical 

demand. The sensors are located in the countryside when the supply can be are a problem. (IV) 

The sensors should be able to detect values in long periods. (V) The sensors should not need a 

daily calibration.  

In the wastewater, the main pollutants are: (I) Heavy metals. (II) Nitrogen, (III) Phosphorus, 

and (IV) microorganisms. Microorganisms are relatively easy to eliminate by means of 

disinfection processes that usually occur in conventional WWTPs. In addition, pollutants can be 

removed in wastewater if the way of operating the plant is changed. Finally, heavy metals are a 

group of chemical elements. The main are Mercury, Nickel, Copper, Lead, and Chromium. These 

pollutants can be eliminated in WWTP with chemical precipitation, carbon adsorption, ion 

exchange, evaporation and membrane processes. However, the typical concentration is low and 

does not compensate economically. Also, these techniques have certain disadvantages such as 

incomplete metal removal, high reagent and energy consumption and generation of toxic sludge 

that require disposal. Another problem is the high conductivity. This is usually due to marine 

intrusion and represents a huge cost for its purification. That is why in the presence of high 

concentrations of salinity is advisable not to use that water for irrigation.  

Our system can be defined with equation (8.18). Win are the concentration of the different 

pollutants that we measure with our sensors before the biosorption. Won is the same pollutants of 

Win but after the biosorption. Finally, Abnn is the % of absorption of the pollutant by the 

biosorption material. So each output value can be expressed as given by equation 8.19:  
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(8.18) 

 

8.4. Development of Optical Sensor to detect Industrial Oil in 

Agricultural Irrigation System. 

Nonetheless, the incorporation of new types of machinery can cause problems in the 

environment. One of these problems is the use of oil for their operation. Due to accidents or 

negligence, the oil from the engine can reach the irrigation channel. The industry is another source 

𝑊𝑊𝑜𝑜𝑜𝑜 = ∑𝑜𝑜1 𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜 · 𝑊𝑊𝑖𝑖𝑜𝑜 (8.19) 
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of pollution; some industries can incorporate used oil into the water by illegal dumping. These 

discharges often end up in different water bodies, such as channels or ditches, whose water can 

be used for irrigation purposes. The polluted water used for irrigation can infiltrate and pollute 

the soil, the crops, or the groundwater or can be diluted into larger water bodies (rivers, reservoirs, 

sea, etc.) The most common water sources used in irrigation are groundwater and irrigation 

ditches (Wu et al. 2016). 

 

8.4.1. Proposal 

In this section, we show the proposed sensor and the microcontroller that we propose to use 

to control its operation. In addition, we outline a possible scheme to locate the sensor into the 

irrigation channels, and an operation algorithm if the sensor is integrated into a WSN for precision 

agriculture. The sensor is based on different LEDs to measure oil presence in irrigation water. 

The objective of this prototype is to detect the presence of oils in the water and send alarms to the 

different water agents to inform them about detected illegal dumping. Furthermore, this 

information can be used to avoid irrigating the fields with polluted water. 

This sensor will be part of the Smart WSN to detect and purification water salinity and 

pollution for agriculture irrigation (SMARTWATIR) final monitoring system.  

8.4.1.1. WiFi node. 

In this subsection, we show the wireless node that we propose to use with the prototype in 

the future deployments. The functions of the node will be read the Vout of LDR and photodiode, 

sent data, and powered the LEDs.  

We propose to use a microcontroller ATmega328p with a module ESP8266 to WiFi. 

ATmega328p is a low-cost and easy to program node, compatible with Arduino IDE. This node 

has outputs of 5V and 3.3 V. We can use the 5 V output to power the LEDs and the 3.3 V output 

for feed the LDRs and photodiodes in the future. The antenna and microcontroller are located in 

a waterproof box out of the water due to the WiFi is attenuated in the water. 

8.4.1.2. Future deployment. 

In this subsection, we show a proposal for the future deployment of the tested prototype in 

the environment. 

The prototype must be encapsulated for preventing damage from animals, obstructions due 

to solids in water, etc. The encapsulation might decrease the light input and can affect the 

measurement. The prototype has openings at the top of the encapsulation to allow the entrance of 

the water with oil. Our prototype can be hooked on the wall of the channel. The microcontroller, 

batteries, and WiFi antennas are in a waterproof box above the water level to ensure the WiFi 

connectivity. In Figure 8.25, we can observe the proposed scheme for the deployment of our 

prototype in the irrigation channel.  

8.4.1.3. Algorithm. 

In this subsection, we explain the function of the algorithm of our sensor. 

The algorithm is summarised in Figure 8.26. First, the threshold values of used industrial oil 

and turbidity are set (THx). Next, the sensor determines the presence of oil in the water (on the 

LEDs and read the LDR/photodiode). If the value of oil is lower than THx, the sensor waits a 

specified period (t1) to get back into operation. On the other hand, if the presence of oil is higher 

than the THx, turbidity sensor started working. The turbidity sensor is starting to prevent false 

positive of oil presence. If the turbidity level is below the set value, it indicates the presence of 
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oil in monitored water. If the systems determine the presence of oil, the node sends an alarm using 

the WiFi antenna, and stores the data in its memory. Instead, if the value of turbidity is higher 

than the value set, it can indicate a false positive and data is stored. We have established the limit 

of 3600 record stores in the node. When data is stored, the system adds +1 to a variable (clock). 

If the variable clock is 3600, the system sent data and removes internal memory. Finally, the 

system waits for a time (t2) for starting a new measure. 

 
Figure 8.25. Deployment of the sensors in 

the Irrigation channels for agriculture. 

 
Figure 8.26. Developed Algorithm. 

 

8.4.2. Test Bench. 

In this section, we show the used methodology to obtain the data required to evaluate the 

performance and calibrate our prototype. In addition, we display the characteristics and 

functioning of the proposed prototype. 

We use an AC power supply model FAC-662B to power the LEDs with a current of 5 V and 

0.3 A. Each LED has a resistance of 470Ω with a tolerance of 5% between the power supply and 

the LED. We carry out the measurements by turning the LEDs sequentially. The sequential order 

to light the LEDs is yellow, red, blue, green, white, and infrared. As the LDRs have a delay, we 

wait 5 seconds to take the measurement. The measurements are taken in triplicate. Once we have 

already gathered the resistance values, we turn off the LED. Then, we turn on the following LED. 

We measure the resistance of the LDRs and photodiodes with a tester (Tenma 72-2600 

(TENMA, 2022)). The resistance of the LDR decreases when the light exposure increases and the 

resistance increases when the light intensity decrease. Otherwise, the photodiode works 

oppositely to LDR. The industrial oil used has been obtained from a mechanical workshop. The 

oil is a 0W-30 used for a fuel car during 10.000 km, which can be one of the possible oil sources 

in the farms. We use this sample to recreate a similar scenario of dumping in an agricultural 

irrigation system. Notably, the oils, which have remained for a long time in vehicles, are the more 

pollutant ones. 

The samples are introduced in a glass cylinder with a diameter of 8 cm and 16 cm in height. 

We introduce the water sample up to a height of 12 cm (approximately 600 ml). After each 

measurement, we add a small amount of oil to the sample of water. We test with a volume of 1, 

2.5, 5, 7.5, and 10 ml of oil in the sample of water. Since the oil is not mixed with the water in 

the irrigation channels, due to the different densities and polarities, these volumes correspond to 

the concentration of 0.02, 0.05, 0.1, 0.15, and 0.2 ml oil/cm2 on the surface of the water. 
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8.4.3. Results. 

In this section, we analyse the results of our prototype for detecting the presence of industrial 

oil in water. 

After gathering data and analysing the results, we observe that the values of the resistance in 

the LDR and photodiode placed at 180º of the light source are not constant. Since we recreate the 

water movement expected in the irrigation channel, the oil stains do not remain quiet over the 

surface water. Due to this movement, oil spots cover the light of the LDR and the photodiode 

intermittently. Due to this effect, the resistance values are not constant.  

Furthermore, in the case of infrared LED, the value of the resistance of the photodiode at 

360º varies from 7980 to 7907 kΩ in the concentrations of 0 and 0.2 ml Oil/cm2 respectively (in 

the rest samples, the resistance is between these two values). With these resistance values, the 

voltage difference after the voltage divider is almost null. For this reason, we discard the use of 

infrared LED. 

Therefore, we are going to focus on the values of resistance in the LDR at 0º for the different 

colour lights. With the values of resistance of LDR and Eq. 1, we can obtain the most appropriate 

resistances to be used for the voltage divider (Table 8.8).  

The calculated values of Vout for the different LEDs can be observed in Figure 8.27. The 

obtained Vout with the 5 LEDs included in Figure 8.27 presents a similar behaviour linked to the 

changes in the pollution presence. When the pollution level increases, the Vout of the LDR rises. 

It is caused by the higher light reflection on the oil surface compared with the water surface. If 

we study the different LEDs independently, we can see that the white LED has the lowest Vout 

difference between maximum and minimum oil quantity (0.025 V). This reduced voltage 

difference implies a low resolution of the future sensor. The difference with the white LED is 

much lower than with the other light sources. The yellow and blue LEDs present a difference in 

the Vout between the most and the less polluted samples of 0.089 and 0.075 V, respectively. On 

the other hand, the green and red LEDs have a higher difference with 0.29 and 0.39 V.  

As the red and green LEDs have the highest voltage difference, and they can differentiate 

between 0 to 0.1 ml oil/cm of industry oil, we select them. Now, we detail the mathematical 

equations that model the concentration of oil (cm2/l) and Vout. The mathematical model between 

the Vout and the presence of industry oil is presented in 8.20 and 8.21. Equation 8.21 is the 

mathematical model for the red LED, and 8.21 is the mathematical model for the green LED. The 

value of R2 (Coefficient of determination) is 0.9604 for 8.20 and 0.8647 for 8.21.  

 𝑉𝑜𝑢𝑡 𝑅𝑒𝑑 𝐿𝐸𝐷(𝑉) = 1/(0.553557 +  0.357183 ∗ √(𝑂𝑖𝑙 ((𝑐𝑚)^2/𝑙)))  (8.20) 

 𝑉𝑜𝑢𝑡 𝐺𝑟𝑒𝑒𝑛 𝐿𝐸𝐷(𝑉) = 1/(0.574694 +  0.245706 ∗ √(𝑂𝑖𝑙 ((𝑐𝑚)^2/𝑙)))  (8.21) 

To obtain more reliable data from our prototype, we applied a Single ANOVA statistical 

procedure to the gathered data. Moreover, we reach two indicators: Reason-F and Value- P. The 

first one is used to determine whether from among a group of independent variables, at least one 

ability to explain a significant part of the variation of the dependent variable. Otherwise, Value- 

P is required to know if the obtained results are produced by random sampling, or they are 

statistically significant. When the Value-P is lower than 0.05, we can affirm that the observed 

differences are caused by differences in the samples and not to the randomness of the data. In this 

context, Table 8.9 presented the results of these two indicators for the five different wavelengths. 

Basing on the results shown in Table 8.9, we can confirm that all the tested light are capable of 

distinguishing and quantifying the amount of oil. Nevertheless, further analyses are required to 

evaluate if it is possible to distinguish between all tested concentrations of pollutant. 
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Table 8.8. Value of selected resistance for the different LEDs. 

LED Yellow Red Blue Green White 

Resistance (kΩ) 75.5 429.6 49.6 70.8 11.1 

 

Table 8.9. Results of statistical ANOVA tests to analyse measured values. 

LED Yellow Red Blue Green White 

Reason- F 354.28 1745975.11 5732.62 175727.47 7110.87 

Value-P 0.0000 0.0000 0.0000 0.0000 0.0000 

We performed a multirange analysis with the values of the different LEDs. In Figure 8.28, 

we classify the different range of industrial oil according to the different groups with an interval 

of confidence of 95%. The value of the blue bar is the average of the three measurements taken. 

The values of the black lines are the standard deviation for each sample. Finally, the letter 

indicates the group in which they are classifying with a 95% confidence interval. The groups are 

performed according to the Least significant difference of Fisher. With the obtained data of Vout 

with the yellow LED, it is possible to differentiate all the tested oil concentrations. Nevertheless, 

we can see that the value of Vout in 0.15 ml oil/cm2 does not follow the same trend that the other 

gathered data (this value increases instead of decreasing). This trend is also observed in the other 

series of data. In addition, the yellow LED has lower voltage changes between the different 

concentrations than the red and green LEDs. In the case of the blue and white LEDs, the gathered 

Vout cannot be used to differentiate in concentrations higher than 5 ml of industry oil. With 

regards to the data gathered with the blue light only 0.1 and 0.2 ml oil cm2 are in the same group. 

With respect to the white light except for the 0.1 and 0.15 ml oil cm2, all concentrations are in 

different groups. Finally, in the case of the data obtained with the red and green light, all 

concentrations tested are classified as different groups. Nonetheless, in concentrations higher than 

0.1 ml oil/cm2, the Vout values remain similar for the green and red LEDs. The Vout obtained 

with the red and green LEDs have a difference between the maximum and minimum tested 

pollution levels up to 0.27 V. Though, the red light has a higher correlation than green light. 

Moreover, with the data gathered with the red LED can difference between 1 and 2.5 ml of 

industry oil, while the data from the green LED cannot do it. 

 
Figure 8.27. Values of Vout of the LDR in the different LED colours. 
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Figure 8.28. Voltage out of the different LEDs, groups classification with a confidence interval 

of 95% and standard deviation. (a) Yellow (b) Red (c) Blue (d) Green (e) White. 

8.5. Conclusions 

We have studied the use of inductive sensors to monitor the soil moisture, the use of optical 

sensor to detect dyed fuels in vehicles, the use of biosoption and sensors to control the irrigation 

water, and the use of oil sensor in an irrigation channel. 

The use of inductive sensor is an option to monitor the soil moisture. The need for soil 

moisture monitoring is crucial in achieving sustainability in water usage. Many systems were 

developed for minimizing the water waste in irrigation. However, the high cost of the commercial 

sensors is curbing their implementation in the urban lawns and agriculture fields. Those smart 

irrigation systems are only used nowadays in some greenhouses and other specific places where 

precision agriculture is applied. We presented a solution based on the use of EFs generated by 

inductive coils to measure the water content of the soil. The sensor is based on the mutual 

inductance effect and is composed of two solenoids. A total of 15 different prototypes were tested 

in the first test to find a prototype with a high Vout, high Δ of Vout between different moisture 

levels, different Vout for all the tested moisture samples, and a low WF. The prototypes chosen 

for enhancement were P5, P8, and P9. Then, we tested prototypes P5, P8, and P9 in 5 types of 

soils. P5 exhibited good results for S1 and S2. However, it was not suitable for the other soil 

types. P8 was the optimal one for S3, S4, and S5. Unfortunately, P9 seemed to perform well only 

for S1. Finally, based on P8, we developed four new prototypes (NP1-NP4) used in the second 

set of tests. The best prototypes were NP1 (at frequency 750 kHz) and NP2 (at frequencies 490 

kHz and 500 kHz). Therefore, we performed the verification with these prototypes. The 

verification tests indicate a minimal error in the moisture value of 53.9 %, with a RE of 0.6 % for 

NP1. In the case of NP2, two verifications were carried out, one using a single model and the 

second with two models. In the first case, the maximum error is 25.5 % and 21.5 % in soil moisture 

in 490 kHz, 500 kHz, respectively. In the two frequencies, the mean of the RE is 6.5 % for 490 

kHz and 6.2 % for 500 kHz. The results indicate that NP2 with the two mathematical models is 

the most suitable one for monitoring irrigation.  
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The use of dyed fuels in particular vehicles is a crime. Nowadays,the hydrocarbons are the 

main source of energy for the transport of freight and people. These have taxes associated. Though 

some activities are exempt from paying these taxes or these are not so high. For these activities, 

there are dyed fuels with low taxes. The use of these fuels in an illegitimate way supposes a cost 

for the governments. Therefore, in this paper, we showed an IoT sensor for use in smart cities to 

avoid the fraudulent use of coloured diesel. The sensor proposed in this paper is based on a new 

methodology to detect dyed fuels. The main advantages of the proposed sensors are its low cost 

and the ease of use of the sensor. The main disadvantage is that the sensor is only tested with the 

dyed used in Europe. Thus, the sensor can be used only in Europe. The sensor is based on light 

absorption effect with different colours (green, white, yellow and blue). This sensor is inserted 

into the tank of the car to check if the gasoline contains this coloured or nop. If it is a message is 

sent to the server of the police to take the appropriate measures.  

The irrigation channels can receive the wastewater and treated wastewater with insufficient 

quality for use in agriculture. Therefore, the use of tertiary treatments such as bioabsorption is a 

solution to reduce the load of pollutants. To prevent overuse of bioabsorption, a system is 

proposed that, through the use of WSN, is capable of monitoring the load of contaminants and 

thus subjecting that water to tertiary treatment. 

The detection and quantification of oil pollution in water of irrigation channels is vital to 

ensure proper water quality in PA. The physical sensors based on the optical phenomenon (such 

as light absorption, reflection, refraction, etc.) are the most appropriated method for water 

monitoring. In this paper, we developed and calibrated a sensor for monitoring the presence of 

industrial oil in the irrigation system. Our prototype is based on LEDs as a light source and LDRs 

and photodiode as light detectors. We discard the use of LDR at 180º to the light source. The 

presence of oil stains on the surface causes considerable changes in the light that affects the light 

detectors at 180º. Nonetheless, the data gathered with light detectors placed at 360º from the light 

source offers reliable information. The infrared light sources were discarded due to its low 

interaction with the tested samples. Among the different LEDs tested, the bests results are 

gathered with the red LED. 

Finally, work presented in this chapter has been published in the following references 

(Basterrechea, 2021), (Rocher, 2018), (Rocher, 2018).
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9.1 Conclusions. 
 

Throughout this dissertation, we have presented the development of a WSN to monitor 

sewerage and water bodies to detect the presence of illicit discharges. 

First, we analyse WSN systems that are now used in sewerage. We determined that the 

parameters easier to monitor are turbidity, conductivity, presence of oil, and temperature. In 

addition, we use a rain sensor and distance sensor (determine water level) to detect the presence 

of rain to determine the different scenarios of storm sewerage and the presence of overflow or 

blockage. Nowadays, there are low cost sensors to monitor temperature, rain and distance. For 

this reason, these sensors are not developed. However, the other parameters do not have a 

commercial low cost solution that can be applied to our system. 

First, we study the effect of solids and water level in the inductive sensors used to determine 

the conductivity. Our results show that the two parameters studied affect the induced voltage in 

the IC. However, in the case of solids, this effect is low because, in the prototype with more 

difference between the concentration of 0 mg/L and 5000 mg/L, the increase of induced voltage 

is approximately 0.078 V/gram. It is not expected to find concentrations of solids that significantly 

change the induced voltage. Secondly, the water level presents an important change in the induced 

voltage of the IC. For this reason, this type of sensor must permanently be submerged in water to 

obtain reliable conductivity values. 

Another studied sensor is the turbidimeter. We developed two turbidimeters, one for water 

bodies and another for sewerage. On the one hand, turbidimeters developed for water bodies can 

quantify the % of algae or sediment in the sample. On the other hand, we studied a turbidimeter 

with the photoreceptor at 0º. Our results suggest that the water height does not significantly affect 

the sensor. 

For the oil sensor, we developed an optical sensor. We located the sensor down the sample 

with water. We test with different colour LEDs and observe that depending on the oil source, we 

can quantify it. In the case of oil used in a diesel engine, we cannot quantify the concentration. 

However, the oil concentration can be quantified in the case of used oil in a gasoline engine. In 

addition, we can differentiate between the used oil by a gasoline engine and the diesel engine. 

We test the conductivity and oil sensor in a pipe. In addition, we simulated the water levels 

in sewerage. Our results suggested that we can monitor the presence of oil and conductivity in the 

pipe. In the case of water levels, the presence of PIs cannot be detected by the quantity of water 

in the pipe. However, the presence of blockage can be detected. 

Finally, we presented the characteristics of our proposal. We used a star topology with a CH 

with a LoRa as technology for communication. The cost of our proposal is 120 euros per sensor 

node. 

In the time that I developed this dissertation, I developed other works with the use of sensors. 

The first one was to monitor the moisture in soil using inductive sensors, the second one allowed 

to detect the presence of dyed diesel in the cars and the last one was used jointly with 

bioabsorption to control the irrigation water. 

9.2 Future Work. 

In this PhD thesis, we developed a proposal to monitor the sewerage and water bodies to 

detect PIs in sewerage. The main future work will test the different sensors and the proposal in 

real conditions. The idea is to increase the Technology Readiness Level (TRL) from level 4 to 

level 7. A TRL 4 implies that the technology is validated at the laboratory, TRL 5 is that they are 
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tested in a relevant environment, TRL 6 means that it is the demonstrated in relevant 

environments, and TRL 7 implies that technology is demonstrated in an operational environment. 

We want to improve the turbidity sensor so that it responds better to the NTU, for this, we 

will test other positions of the photoreceptor and other configurations of resistances, distance, etc. 

Some of the sensors developed in this dissertation can be applied in other environments. It 

is the case of the inductive sensors to monitor the concentration of solids in mechanical 

dehydration. In the dehydration, there are two effluents, one with a high solid concentration 

(between 15 to 30% of solid concentration), and another with a low solid concentration. The value 

of induction is in the function of the solid concentration and conductivity. Probably, we can 

determine the solid concentration in the sludge. 

Another future work is in the secondary clarifier in WWTP. In secondary clarifiers, the 

sludge sedimented as hindered settling. Therefore, there is an interface between water with a low 

concentration of solids and water with a high concentration of solids. With the use of low-cost 

turbidity sensors, such as the one developed, a sensor can be developed that determines if the 

sludge has reached a certain level to control internal recirculation from the clarifier and to detect 

sedimentation problems in the sludge. 

9.3 Problems Faced and Personal Contributions. 

In the development of this PhD thesis, I have encountered a series of problems. The first is 

the global pandemic. It forced me to be locked up in my home without being able to develop my 

PhD thesis. Another problem was my background. I studied environmental science and a master 

in environmental engineering. Before starting the dissertation, my background in electronics or 

computer networks was non-existent. 

Another problem is developing a sensor to detect leaks in a pipe. We used an accelerometer 

to detect the presence of leaks, but our results were unsuccessful, so I wasted much time on it. 

9.4 Publications derived from the PhD. 
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