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Abstract

The construction industry is a wide industrial sector ranging from the design and
management of major infrastructures, such as bridges, to civil dwelling construc-
tion. It is worldwide acknowledged as a fundamental driving sector for the Gross
Domestic Product, but it is also among the less performing and delayed ones in
the adoption and exploitation of technological improvements. These limitations are
inducing stakeholders to borrow and integrate many enhancements from other indus-
trial fields into the sector. This digitalization trend is spreading through the entire
life cycle of the construction process and identifying a challenging approach because
of the paradigm shift needed from physical to cyber-physical systems. The Industry
4.0 concept boosted this trend so that both in the academy and in the construction
industry it has been specified as Construction 4.0. It borrows from the Industry 4.0
the adoption of many key enabling technologies such as Internet of Things, Artificial
Intelligence and Additive Manufacturing. This thesis investigates specifically this
technological integration, focusing on the application of such enabling technologies
in the construction field and considering different stages in the life cycle in vary-
ing infrastructure typologies. Starting from a literature investigation on "holistic"
intelligent systems in Intelligent Buildings construction, in a Digital Twin fashion,
the influence and the application of enabling technologies and related operative ICT
tools such as Internet of Things and Big Data are studied, from a perspective of
the whole constructions’ life cycle. The maintenance phase of major infrastruc-
tures is studied concerning structural safety and fault detection, by developing a
method to detect damages in railway steel truss bridges via artificial intelligence.
An innovative additive manufacturing technology for high-rise constructions is then
presented. It consists of an improvement with a custom extruder of standard tower
crane technology, while the whole system is driven by an artificial intelligence agent.

We conclude that Construction 4.0 is still at its embryonic stage. More advanced
results are obtainable for the operation and maintenance management of existing
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infrastructures because of the already mature approach related to sensorization and
data analysis. Innovation in the design/construction phase remains more challenging,
because of the need for a completely new paradigm and industrial innovations in
many different fields.

* * *

L’industria delle costruzioni è un vasto settore produttivo che spazia dalla proget-
tazione e gestione di grandi infrastrutture come i ponti fino alla costruzione di civili
abitazioni. È riconosciuto a livello mondiale come un settore trainante fondamentale
che concorre al Prodotto Interno Lordo, ma è anche tra quelli meno performanti e
restii all’adozione ed allo sfruttamento delle innovazioni tecnologiche.

Queste limitazioni stanno inducendo gli stakeholder coinvolti a mutuare nel
settore molti miglioramenti riscontrabili in altri ambiti industriali. Questa attività di
trasferimento si sostanzia principalmente in una tendenza alla digitalizzazione, si ap-
plica all’intero ciclo di vita del processo di costruzione e rappresenta una grande sfida
a causa del necessario cambio di paradigma nel passaggio dai sistemi fisici a quelli
cyber-fisici. Il concetto di Industria 4.0 ha dato impulso a questa tendenza tanto che
il termine specifico di un termine specifico di Costruzione 4.0 è stato adottato sia
nell’accademia che nell’industria. Questo concetto prende in prestito dall’ Industria
4.0 l’adozione di molte tecnologie abilitanti come l’Internet of Things, l’Intelligenza
Artificiale e la manifattura additiva. Questa tesi indaga in modo specifico questa inte-
grazione tecnologica, concentrandosi sull’applicazione di tali tecnologie abilitanti
nel campo delle costruzioni e considerando le diverse fasi del ciclo di vita in diverse
tipologie di infrastrutture. Partendo da un’indagine di letteratura sui sistemi intelli-
genti "olistici" nella costruzione di edifici intelligenti, in chiave Digital Twin, sono
studiate l’influenza e l’applicazione delle tecnologie abilitanti e dei relativi strumenti
operativi ICT come Internet of Things e Big Data dalla prospettiva dell’intero ciclo di
vita delle costruzioni. Si approfondisce la sicurezza strutturale e del rilevamento dei
guasti nella fase di manutenzione delle grandi infrastrutture, sviluppando un metodo
per rilevare i danni nei ponti ferroviari a traliccio tramite l’intelligenza artificiale.
È quindi presentata un’innovativa tecnologia di produzione additiva per manufatti
di grandi dimensioni: la tecnologia standard delle gru a torre è integrata con un
estrusore custom, mentre l’intero sistema è guidato da un agente intelligente.
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È possibile concludere che la Costruzione 4.0 è ancora al suo stadio embri-
onale. I risultati più avanzati sono ottenibili sulle infrastrutture esistenti in fase di
gestione della manutenzione grazie alla relativa semplicità della sensorizzazione
e alla conseguente analisi dei dati. L’innovazione nella fase integrata di proget-
tazione/costruzione rimane invece più sfidante, per la necessità sia di un paradigma
completamente nuovo che di innovazioni tecnologiche in diversi campi industriali.

* * *

La industria de la construcción es un amplio sector industrial que abarca desde el
diseño y la gestión de grandes infraestructuras como puentes hasta la construcción de
viviendas civiles. Es mundialmente reconocido como un sector impulsor fundamental
del Producto Interno Bruto, pero también se encuentra entre los de menor rendimiento
y retraso en la adopción y explotación de mejoras tecnológicas. Estas limitaciones
están induciendo a las partes interesadas a tomar prestadas e integrar muchas mejoras
de otros campos industriales en el sector. Esta tendencia de digitalización se está
extendiendo a lo largo de todo el ciclo de vida del proceso de construcción e identifica
un enfoque desafiante debido al cambio de paradigma necesario de los sistemas
físicos a los ciberfísicos. El concepto Industria 4.0 impulsó esta tendencia por lo
que tanto en la academia como en la industria de la construcción se ha concretado
como Construcción 4.0. Toma prestada de la Industria 4.0 la adopción de muchas
tecnologías habilitadoras clave como Internet de las Cosas, Inteligencia Artificial y
Fabricación Aditiva. Esta tesis investiga específicamente esta integración tecnológica,
centrándose en la aplicación de tales tecnologías habilitadoras en el campo de la
construcción y considerando diferentes etapas en el ciclo de vida en diferentes
tipologías de infraestructura. A partir de una investigación bibliográfica sobre
sistemas inteligentes "holísticos" en la construcción de Edificios Inteligentes, a la
manera de Gemelos Digitales, se estudia la influencia y la aplicación de tecnologías
habilitadoras y herramientas TIC operativas relacionadas, como Internet de las Cosas
y Big Data, desde una perspectiva de todo el ciclo de vida de las construcciones.
Se estudia la fase de mantenimiento de grandes infraestructuras en materia de
seguridad estructural y detección de fallos, mediante el desarrollo de un método de
detección de daños en puentes ferroviarios de celosía metálica mediante inteligencia
artificial. Luego se presenta una innovadora tecnología de fabricación aditiva para
construcciones de gran altura. Consiste en una mejora de la tecnología de las grúas
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torre estándar con una extrusora personalizada, mientras que todo el sistema está
controlado por un agente de inteligencia artificial.

Concluimos que la Construcción 4.0 aún se encuentra en su etapa embrionaria.
Se pueden obtener resultados más avanzados en la implantación tecnológica sobre
infraestructuras existentes para su gestión de operación y mantenimiento debido al
enfoque relacionado principalmente con la sensorización y análisis de datos. La
innovación en la fase integrada de diseño/construcción sigue siendo más desafi-
ante, debido a la necesidad de un paradigma completamente nuevo e innovaciones
industriales en muchos campos diferentes.

* * *

La indústria de la construcció és un ampli sector industrial que abasta des del dis-
seny i la gestió de grans infraestructures com a ponts fins a la construcció d’habitatges
civils. És mundialment reconegut com un sector impulsor fonamental del Producte
Intern Brut, però també es troba entre els de menor rendiment i retard en l’adopció i
explotació de millores tecnològiques. Aquestes limitacions estan induint a les parts
interessades a amprar i integrar moltes millores d’altres camps industrials en el sector.
Aquesta tendència de digitalització s’està estenent al llarg de tot el cicle de vida
del procés de construcció i identifica un enfocament desafiador a causa del canvi
de paradigma necessari dels sistemes físics als ciberfísics. El concepte Indústria
4.0 va impulsar aquesta tendència pel que tant en l’acadèmia com en la indústria
de la construcció s’ha concretat com a Construcció 4.0. Ampra de la Indústria
4.0 l’adopció de moltes tecnologies habilitants clau com a Internet de les Coses,
Intel·ligència Artificial i Fabricació Additiva. Aquesta tesi investiga específicament
aquesta integració tecnològica, centrant-se en l’aplicació de tals tecnologies habili-
tants en el camp de la construcció i considerant diferents etapes en el cicle de vida
en diferents tipologies d’infraestructura. A partir d’una investigació bibliogràfica
sobre sistemes intel·ligents "holístics" en la construcció d’Edificis Intel·ligents, a
la manera de Bessons Digitals, s’estudia la influència i l’aplicació de tecnologies
habilitants i eines TIC operatives relacionades, com a Internet de les coses i Big Data,
des d’una perspectiva de tot el cicle de vida de les construccions. S’estudia la fase de
manteniment de grans infraestructures en matèria de seguretat estructural i detecció
de fallades, mitjançant el desenvolupament d’un mètode de detecció de danys en
ponts ferroviaris de gelosia metàl·lica mitjançant intel·ligència artificial. Després
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es presenta una innovadora tecnologia de fabricació additiva per a construccions de
gran altura. Consisteix en una millora de la tecnologia de les grues torre estàndard
amb una extrusora personalitzada, mentre que tot el sistema està controlat per un
agent d’intel·ligència artificial.

Concloem que la Construcció 4.0 encara es troba en la seua etapa embrionària. Es
poden obtindre resultats més avançats en la implantació tecnològica sobre infraestruc-
tures existents per a la seua gestió d’operació i manteniment degut a l’enfocament
relacionat principalment amb la sensorització i anàlisi de dades. La innovació en
la fase integrada de disseny/construcció continua sent més desafiadora, a causa de
la necessitat d’un paradigma completament nou i innovacions industrials en molts
camps diferents.
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Chapter 1

Introduction: Construction 4.0

The term Industry 4.0 first appeared at Hannover Messe in 2011 during one of
professor Professor Wolfgang Wahlster’s speechs, the Director and CEO of the
German Research Center for Artificial Intelligence. It was then introduced in [1]
and both the academy and the industry started to provide huge effort in investigating
its potential application in numerous research fields. Some foundation concepts
such as the vision, the basic technologies, the idea aims as well as some selected
scenarios were initially described by the key promoters of the idea, the “Industry
4.0 Working Group” and the “Platform Industry 4.0” [1]. At the base of this new
industrial paradigm there was the concept of Cyber-Physical Systems enhanced by
Internet of Things, in which the digital and physical worlds were strongly bound and
put in communication. It was originally expected that industry, market and economy
would have been affected by production processes and product lifecycle improved,
productivity increased, new business models created and work environment with
labour marked completely renewed and restructured [2]. The expert estimated con-
siderable effects on social life after its conceptualization. In a report prepared by
the World Economic Forum [3] eight hundred experts outlined recommendations
and findings regarding the digital transformation. If the increase in the number of
robots was predicted up to 2.4 million by 2018, on the other hand, technologies
and applications such as wearable electronics, machine-to-machine communication,
intelligent systems and learning machines assumed a realistic perspective of feasibil-
ity. Additive manufacturing started to gain more interest due both to its widespread
diffusion and the high-specialized tasks in which it was involved, such as metal of
biological 3d printing. 1 trillion sensors were expected to be used in human life by
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2025. The related technologies were supposed to enable Smart cities’ progression
and spread with at a high speed all over the world. Global spending on big data was
assumed to be well over 200 billion dollars in 2020. By 2020 %59 US manufacturers
were predicted to be using some sort of robotics technology [3].

Despite the huge potential predicted, the actual implementation and adoption
of Industry 4.0 technology in supporting the digital transformation of European
industry are far from the previsions. In [4] authors state that Despite extensive
discussion on the potential impact of AI and robots, there is almost no systematic
empirical evidence on their economic effects; for Artificial Intelligence, Machine
Learning and smart robots that there is still a gap between the expectation and
implementation possibly due to lack of adequate Technology Readiness Levels (i.e.
the level of applicability of the technology) and of the investments required, that
European companies need to invest around C1.35 trillion into Industry 4.0 over
the next 15 years; they conclude that in general, there is still little awareness about
Industry 4.0 outside a key group of stakeholders. In conclusion, the paradigm is
substantially far from being completely exploited and investigated and its economic
potential.

Industry 4.0 has gained much interest also in the construction industry, even if it
is globally acknowledged to be resistant to technology improvement and generally
delayed in the adoption of upgrades [5]. Despite its resistance to changes, Informa-
tion and Communication Technologies (ICT) deeply pervaded the industry after the
advent of the Industry 4.0 framework [6].

If in [7] the EU refers to the digitization of the construction economic sector
as "Smart Construction", in the academic literature the concept of Industry 4.0 is
usually specified as Construction 4.0, even if there is no wide acceptance of its
specific meaning [6]. Some authors state that Construction 4.0 instantiates the
Industry 4.0 concept in the construction industry [8] [9], while others state that
"the industry specific definition of Industry 4.0 for construction comprises a wide
range of interdisciplinary technologies and concepts which enables the digitisation,
automation and integration of the construction process at different stages" [10].

There are many studies in literature translating concepts from Industry 4.0 to
Construction 4.0 and investigating Construction 4.0-involved technologies. To
summarize the main concepts, it is possible to refer to many review papers already
present in the literature, and Tab.1.1 summarizes the technologies according to
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different researches. In particular, the first column highlights Industry 4.0 technology
listed in eminent literature studies, while the second reports the Construction 4.0
technologies resulting from academic review papers also employing content analysis.

Table 1.1 Industry 4.0 and Construction 4.0-related technologies.

Industry 4.0 technologies [11] [12] [13] Construction 4.0 technologies [10] [6]

Cyber-physical systems (CPS) Cyber-Physical Systems (CPS)/Embedded sys-
tems
Human-Computer-Interaction

Cloud systems Cloud Computing
Mobile Computing

Machine to machine (M2M) communication Product-Lifecycle-Management (PLM)
Smart factories Robotics
Augmented reality and simulation Virtual, Augmented and Mixed Reality
Big Data/Big Data analytics Big Data
Internet Of things Internet of Things

Radio-Frequency Identification (RFID)
Enterprise resource planning (ERP) and busi-
ness intelligence
Virtual Manufacturing/Computer-Aided Design
and Manufacturing (CAD/CAM)

Building Information Modelling

Smart Factory
Modularisation

Intelligent robotics Robotics
Additive Manufacturing 3D Printing / Additive Manufacturing
Artificial Intelligence Artificial Intelligence

A useful indicator of the interest gained by the different technologies is the
numerosity of the investigation in the literature. To this aim, Fig.1.1 and Fig.1.2
show the results of a content analysis of review papers performed by following the
methodology in [14] and [5]: research strings such as "Industry 4.0 construction
review", "industry 4.0 construction survey" and "Construction 4.0 review" have
been searched in major databases such as ScienceDirect, Emerald, Taylor& Francis,
Wiley, ASCE, IEEEXplore. Fig.1.1 and Fig.1.2 highlight technologies consistent
with Tab.1.1, but also show the occurrence of concepts in the literature.
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Figure 1.1 Wordcloud with bi-grams and tri-grams in related review papers

Figure 1.2 Bi-grams and tri-grams occurrency in related review papers

The results in Fig.1.1 and Fig.1.2 are also consistent with [6], in which authors
analyse the evolution of enabling technologies’ occurrences in the related academic
literature with a systematic review. The result is that Big Data (and thus Artificial
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Intelligence), Internet of Things, 3d printing and additive manufacturing show an
increasing interest in the research, while the role played by BIM and simulation
technologies is prominent above all the technologies.

It is widely acknowledged that the construction industry plays a major role in the
economy, which can be addressed by analysing investments amount and contributions
to the GDP of countries. The EU represents an important player in the construction
industry, in which Germany, France, United Kingdom, Italy and Spain are the major
actors: from 2014 to 2016, the total construction investment raised from 1.37 [15]
to 1.43 trillion euros [16]. Despite the huge impact on the GDP of countries, the
investments in research and developments (R& D) result still limited. According to
[17], in which authors ranked industry sectors by their research and development
intensity, the construction industry appears in a low position, with less than 1% of
net sales.

The actual implementation of Construction 4.0 and, thus, its related technologies,
is still at its early stage and there are many reasons for this lag with other industries.
As reported in [10], the construction industry has to face many challenges to reach
an acceptable implementation of Construction 4.0: hesitation to adoption, high
implementation cost, organisational and process changes, need for enhanced skills,
knowledge management, acceptance, lack of standards and reference architectures,
higher requirements for computing equipment, data security and data protection,
enhancement of existing communication networks, regulatory compliance, and legal
and contractual uncertainty.

This perspective justifies the attempt to enlarge the investigation in Construction
4.0 and to further study possible applications and approaches exploiting technologies
resulting from literature and industry state of the art.

1.1 Research Problems

In recent years, the construction industry has undergone numerous attempts to
digitize and innovate the built environment life cycle management with tools and
strategies borrowed from other industrial fields.

Urban buildings (such as residential and commercial ones) play a central role in
terms of numerosity and global energy employed during the life cycle management
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[18]. Despite such importance, the life cycle management process is still conducted
with anachronistic approaches featuring poor automation and real-time control of
the construction process relation, poor inter-relation between automated construc-
tion and constructions technologies, poor data collection of the whole construction
system during its operative condition and consequent comparison with the estimated
behaviour during the design phase, no formalization of the knowledge extractable
from the whole built environment and no consequent reuse [5].

On the other hand, major strategic infrastructures (such as bridges) are of great
importance because of their role in the social and economic development of countries.
If the design and construction phase is affected by the same issues highlighted for
civil constructions and can benefit from modern designing tools, the already built
ones are approaching their estimated end of life so a safety issue is rising all over
Europe [19]. Innovative strategies and technologies could still improve the prevention
and early damage detection capability of state-of-the-art monitoring systems.

To face the limitations highlighted, there is a further need to integrate innovative
approaches and strategies from other industrial fields into the construction industry.
The knowledge gaps presented are discussed and investigated in this document.

1.2 Research Objectives

The research proposed aims at investigating solutions to fill the gaps described
in Section 1.1, and thus develop further innovative strategies to improve the built
environment life cycle management. In particular, it is proposed to integrate the
control theory approach, robotics and artificial intelligence, at the base of the system
and control engineering, into the construction process, both to already existing
constructions and not.

The general objectives of the thesis are further specified in the following specific
objectives:

1. the investigation on the most eligible Industry 4.0 technologies for the con-
struction industry:

• state of the art and analysis of their applications both in the industry and
academic research field;



1.3 Thesis Outlines 7

• identification of the specific gap and the main development directions.

2. The application of artificial intelligence (AI) and machine learning (ML) to the
control and management of the built environment: structural health monitoring
featured by sensors analysis with ML algorithms.

3. Robotics technologies as improvement in the life-cycle construction phase:
design and application of innovative additive manufacturing technologies for
the construction scale.

1.3 Thesis Outlines

This work investigates Construction 4.0 by contributing to the exploitation of many
of the related technologies reported in the literature. It consists of published and
submitted research articles constituting the attempt to fill some gaps in the state of the
art, contributing to the conceptualization of technologies and monitoring strategies
and methodologies. In particular:

• In Chapter 2 introduction notions related to the investigated Construction 4.0
technologies are presented. Big Data and Internet of Things are briefly dis-
cussed in relation to their practical applications and their main operative tools
such as specific technologies. Then, supervised learning and reinforcement
learning paradigms in artificial intelligence are introduced, with a focus on
deep learning basic concepts. In conclusion, additive manufacturing and its
information flow in the construction industry are described.

• In Chapter 3, Big Data, semantic technologies and Internet of Things integra-
tions into BIM environment are studied in relation to Intelligent Buildings.
The literature is reviewed researching for integration approaches of these
technologies, and the specific tools involved are investigated. The aim is the
analysis of the state of the art of intelligent systems supporting intelligent
buildings in the whole lifecycle, the identification of the main approaches, the
specification of technologies used, and the statement of future directions for
its implementation.

• In Chapter 4, artificial intelligence integrated with simulation strategies is
used to develop a methodology for fault detection of structural systems. In
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particular, strain signals from a railway bridge damaged in different portions
are collected through a series of simulations. Without any feature extraction,
the signals are used to train a Convolutional Neural Network classifier able to
assess both the location and the severity of the damages.

• In Chapter 5, an artificial intelligence-based control methodology is inves-
tigated and applied to additive manufacturing at the construction scale and
the conceptualization of a novel additive manufacturing technology is pro-
vided. A tower crane is equipped with an aeropendulum extruder featured
with propellers controlled to stabilize the swinging effect. The whole system
is controlled by a Deep Reinforcement Learning controller that aims at mini-
mizing the extruder swing effect and at maximizing the speed on the trajectory
describing the geometry to 3D print.

• In Chapter 6 the global results of the investigations are presented, highlighting
novelties, limitations and future works.

• Chapter 7 summarizes the conclusions of the work.



Chapter 2

Construction 4.0 technologies

2.1 Introduction

In this section, the research methodology and the main 4.0-related technologies in-
vestigated in the thesis are introduced. Starting from the investigation on Intelligent
Buildings, technologies such as BIM, Big Data, Internet Of Things and Semantic
web are first contextualized. Artificial Intelligence is then described in its basic
concepts, by presenting two different paradigms: supervised learning and reinforce-
ment learning. Some particular examples of algorithms of interest belonging to these
classes are elaborated on. In conclusion, basic concepts regarding the information
flow in additive manufacturing and main features that characterize its use in the
construction industry are presented.

2.2 Methodology

Objective (1) in Section 1.2 is investigated with a literature review of the state of the
art in the application of Industry 4.0 technologies to the construction industry. Since
the wideness of the topic, the review phase uses automated text retrieval procedures
and natural language processing tools to extract resuming statistics from the analysed
literature. This analysis is then used to conform a framework to analyze the searched
papers which are then studied in terms of technological operative tools employed in
the development of the strategies proposed.
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Objective (2) is pursued by studying the application of machine learning and
artificial intelligence algorithms to support built environment management in the
operational phase. Coherently with the research motivation highlighted in Section
1.1, the case of the damage detection of a major strategic infrastructure such as a
bridge is considered. In particular, Deep Learning is used to analyze sensor data from
structures to propose an innovative strategy for structural health monitoring. Finite
elements analyses are used to collect feasible data representative of the damaged
conditions of the bridge studied: due to the large amount of data required, automated
finite element analyses are performed by ad hoc routines. Commercial software is
used in order to verify the usage of the methodology also outside of the academy.

Objective (3) is pursued by investigating robotics applications in the design and
construction life cycle phase of constructions and an innovative conceptualization
of additive manufacturing technologies is proposed. The robotised production
processes and the dynamic behaviour of the machines are mathematically modelled
and simulated in a software environment. An intelligent agent exploits the deep
reinforcement learning paradigm and is then trained to control the machines while
fulfilling accuracy requirements for the additive manufacturing procedure. The
trained agent and the machine behaviour are then validated and the tolerance reached
is assessed.

2.3 ICT Technologies

The evolution of software towards systems integrating artificial intelligence-powered
capabilities is enhancing their capability and their technological developments. In
the specific, their needs for data, communication and processing are highly increas-
ing. In the construction industry, Building Information Modeling (BIM) software
are considered the state-of-the-art environment to upgrade by these ICT-enhanced
capabilities [5]. The National Building Information Model Standard [20] defines
BIMs as a "digital representation of physical and functional characteristics of a
facility. As such it serves as a shared knowledge resource for information about a
facility forming a reliable basis for decisions during its life-cycle from inception
onward." In this case, BIM technology has a wide perspective of usage, and does
not focus only on the first stages of the building process (design and construction
phases), but has a key role also in the management stage.
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BIM is a massive source of information about the construction process during
the life cycle since it allows the collection of data and information regarding geo-
metric description, material composition, but also procedural information for the
construction process. In a cloud-based architecture, BIM can acquire data also from
remote sources and repositories such as weather data, Geographical Information
Systems data and seismic data, as well as from Internet of Things (IoT) infrastructure.
Semantic and ontology technologies (ST) can offer strong support for formalizing
and reusing acquired knowledge about life-cycle processes. Moreover, big data (BD)
infrastructure is improving its support for ST, which is also playing a relevant role
in IoT-driven data semantic enrichment and in BIM platform exchange information
capabilities. Such a perspective induces to investigate and highlight the noticeable
features regarding BD, Iot and ST in the following sections.

2.3.1 Big Data

The introduction of the BD concept is related to the continuous generation of large
data volumes, of different typologies and format, at unprecedented rate [21], and
these multi-source data are considered effective information sources for knowl-
edge extraction. [22] presented the HACE theorem to describe BD features and
the consequent challenge to extract consistently knowledge from it: BD starts with
large-volume, heterogeneous, autonomous sources with distributed and decentral-
ized control, and seeks to explore complex and evolving relationships among data.
Another important model was also specified in the Doug Laney 3V model [23], in
which BD features many specific characteristics such as "Volume", i.e., huge data
size, "Velocity", i.e., data speed of generation and "Variety", i.e., different formats.
A further feature like "Veracity" considers the authenticity and trustworthiness, and
"Value" is the "added-value that the collected data can bring to the intended process"
[24]. The greatest BD-related limitation specified in the literature and industry is the
unsuitability of most of the standard data analytics for knowledge extraction with
these data [25].
BD analytics involves the processes of searching a database, mining, and analyzing
data, also in real-time [26]. More precisely, different BD analytics can be applied
according to the time requirements:
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• Streaming or Real-time analytics is performed on data collected from continu-
ous streams (such as sensors). Due to memory constraints, small data portions
of the stream are stored and examined to determine potential knowledge from
the approximated patterns. Some examples of platforms supporting streaming
analytics [27] are Spark [28], Storm [29], and Kafka [30].

• Batch/off-line analytics is used when a real-time response is not required
[31], and differently from real-time data analytics, it analyzes data after stor-
ing. MapReduce is the most widely used batch processing method [32] and
Hadoop [33], Kafka [30] and Chukwa [34] are examples of off-line analytics
architectures [26].

• Hybrid computation [35] where the combination of batch and real-time pro-
cessing is required. This approach is described as Lambda Architecture [36],
and consists of the combination of queried batch and real-time data.

In Fig.2.1 BD analytics paradigms are represented. In case of batch processing
BD analytics, a standard pipeline consists of : i) a data acquisition phase, ii) a data
storage phase, iii) a data analysis phase and iv) a data exploitation phase. Differently,
in the case of real-time analytics the pipeline can consist of different phases [37]: i)
an ingestion stage, that buffers and optionally pre-process data streams before they
are consumed by the analytics application; ii) a storage phase, where typically pre-
processed and buffered data directly from the ingestion stage or from the processing
stage are stored; iii) a processing stage, that analyses data from the ingestion stage.

Figure 2.1 BD analytics pipelines: a) batch [35] and b) real-time [37].
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BD analytics capabilities are enhanced by the technological stacks composed of
different layers. If we consider a generic stack as in Fig.2.2, the layers highlighted
can be specified by common technologies used in academy and industry [38][35].

Figure 2.2 Generic BD stack [38] and related examples of technology used [38][35]. The list
of technologies is not meant to be exhaustive.

Currently, there is no generic standard architecture available for analytical BD
systems [39]. The most used, depending on the different analytics types mentioned
before, are [27] [40]:

• Apache Hadoop is a framework consisting in a collection of libraries dedicated
to all tasks involved in big data analytics.

• Apache Spark is a general-purpose open-source distributed cluster-computing
framework, supporting both stream data processing and batch processing.
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• Apache Storm allows to build real-time, highly scalable, low latency distributed
processing systems.

• Apache Kafka is defined as a distributed streaming platform, characterized
by the three key capabilities of publish and subscribe streams of records, the
storing in fault-tolerant durable way of streams of records and the processing
of these streams of records.

• Apache Flink is a framework and distributed processing engine for stateful
computations over unbounded and bounded data streams. Flink allows both
stream and batch processing, state management, event-time processing seman-
tics, and consistency guarantees for state.

2.3.2 Internet of Things and enabling technologies

There isn’t a single accepted definition of Internet Of Things [41]. As reported in
[42], "the semantic origin of the expression is composed of two words and concepts:
Internet and Thing, where Internet can be defined as the world-wide network of
interconnected computer networks, based on standard communication protocol, the
Internet suite (TCP/IP), while Thing is an object not precisely identifiable. Therefore
semantically, Internet of Things means the worldwide network of interconnected
objects uniquely addressable, based on standard communication protocols". There
are numerous IoT applications that can be grouped into various domains such as
health, traffic, logistics, retail, agriculture, smart cities, smart metering, remote
monitoring, process automation. IoT is an umbrella concept covering many different
research and industrial fields, and can be specified by considering its influence
in the real implementation of cyber-physical systems. Common architectures to
develop cloud-based intelligent computing systems implements the following layers
(Fig.2.3):
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Figure 2.3 IoT architecture layers [43] [44]

• Physical layer: IoT sensors and devices aiming at collecting data from the
environment. This sensing layer is devoted to the implementation of the
connections between the physical and the digital world [45], in both directions:
data are collected from the physical word, but the systems can also act on it by
actuators.

• Network layer: the configuration of the network infrastructure for data trans-
mission. In particular, data can flow both from and to the sensing/physical
layer. Important requirements regard communication and security issues,
and the main components of this layer consist of communication technical
specification, such as communication protocols and network interfaces.

• Cloud-based Big Data Management layer: internally divided into sub-modules,
is devoted to the Big Data-related tasks, such as data acquisition, integration,
storage and mining [46]. It can be identified by the architectural stack presented
in Sec.2.3.1 and in Fig.2.2.

• Application Layer: it specifies the lower layers architecture to the field investi-
gated, such as intelligent buildings, health, traffic, logistics, retail, agriculture,
etc. It exposes services to the end users, both client and admin.

In such common layer architecture, IoT the enabling technologies are classifiable
depending on the layer in which to apply them, and by the scale of the IoT network
[43]:
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• Low Power Wide Area Network (LPWAN) is a communication scheme that can
achieve the long-range Machine to Machine (M2M) communication by using
low power energy with low data transmission rate [47]. The main enabling
technologies for LPWAN are:

– SigFox is a low power technology used for M2M applications and de-
signed to transfer low data transfer speed (up to 1000 bps).

– Low Range WAN (LoRaWAN) is a supported upper layer of LoRa
physical layer technology.

– LTE-M is a cellular technology standardized for IoT. It is based on
Long Term Evolution (LTE) technology services requiring only a narrow
bandwidth, compared to the bandwidth of a normal LTE carrier.

– NarrowBand IoT (NB-IoT) is also integrated into the LTE technologies
like LTE-M, aiming at minimizing energy consumption and lowering
devices prices[47].

• Short Range Network:

– IPv6 over low-power wireless personal networks (6loWPAN) is among
the most commonly used standards in IoT communication protocols, in
which every device is identified by a unique IPv6 address [48].

– ZigBee is a standard for data communications that works on top of IEEE
802.15.4 network standard.

– Bluetooth Low Energy (BLE), also known as Bluetooth smart, is a signif-
icant protocol for IoT application aiming at minimizing power consump-
tion in low data rate applications differently from previous Bluetooth
Classic.

– Radio-frequency Identification (RFID) is characterized by a variety of
standards, and consists of a reader device and a small radio-frequency
(from 3 to 30 GHz) transponder called RF tag.

– Near Field Communication (NFC) is similar to RFID technology, it
differs for available more elaborated two-way communication between
devices.

– Z-Wave has been developed to support small data packets (up to 100 kbps)
and low speeds up to 30-50 nodes. It is characterized by masters and
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slaves nodes, with slave nodes that cannot initialize the communication
and can only reply and execute commands by masters node.

– Message Queuing Telemetry Transport Protocol (MQTT) is a publish/subscribe,
extremely simple and lightweight messaging protocol, designed for con-
strained devices and low-bandwidth, high-latency or unreliable networks
[49].

– The Constrained Application Protocol (CoAP) is a web transfer pro-
tocol for constrained nodes and networks (e.g., low-power, lossy). It
provides a request/response and also a resource/observe as a variant of
the publish/subscribe and is designed to interface with HTTP [50] [51].

– Advance Message Queuing Protocol (AMQP) supports both request/response
and publish/subscribe architecture [52]. AMQP communication system
requires that either the publisher or consumer creates an “exchange” with
a given name and then broadcasts that name [53].

2.3.3 Semantic Technologies

Ontologies in Construction Industry

The ontology is a fundamental concept in dealing with knowledge usage applica-
tions, together with formalization and representation concepts. In [54] the ontol-
ogy is defined as "a formal, explicit specification of a shared conceptualization",
i.e.,"simplified view of the world to represent". In some cases, the conceptualiza-
tion aims to organize concepts into hierarchical tree structures. The entities of the
structure are characterized by super-classes, sub-classes and relationships, and their
semantic descriptions enable automated query and reasoning.

In the construction-related literature, these concepts are applied mainly in in-
formation extraction by BIM software and in automated flows of data in cloud
computing environment [55]. In particular, Industry Foundation Classes (IFC) is a
data model widely applied in the semantic-oriented description in the construction
industry. IFC data model is defined as "a standardized, digital description of the built
environment, including buildings and civil infrastructure. It is an open, international
standard (ISO 16739-1:2018), meant to be vendor-neutral, or agnostic, and usable
across a wide range of hardware devices, software platforms, and interfaces for



18 Construction 4.0 technologies

many different use cases" [56]. The data model language EXPRESS [57] is formally
used in IFC format and proprietary platform owners are implementing it in BIM
models.

Even if IFC has a prominent role in the BIM model description, it can not be
defined as an ontology in the architecture, engineering and construction industry
domain, due to the problems in its practical applications. In [58] and [59] authors
identify the main limitations of the IFC approach: limited expression range, difficulty
in partitioning information, ambiguity deriving from the multiple possible descrip-
tions of the same information, limited reuse and interoperability. Hence, ST can
be considered a valid tool to integrate and model information in an ontology-based
environment in order to overcome the IFC limitations.

Semantic Web Technologies in constructions

The semantic web is an information space able to integrate different knowledge, ex-
pressed in compatible meanings/forms and expand the isolated source of knowledge
[60]. According to the W3C [61], the "semantic web is a web of data to provide a
common framework that allows data to be shared and reused across applications,
enterprises, and community boundaries".

In particular, Semantic Web Technologies are devoted to the exploitation of
the semantic web potential, and the translation of the ontology-based knowledge
representation paradigm, to allow the reuse of formalized knowledge. The World
Wide Web Consortium identifies [62] some core technologies of the Semantic Web
environment:

• Resource Description Framework (RDF) is "a framework for representing
information in the Web" [63]. In RDF, data and information are expressed
as directed labelled graphs, that allow the description of the information in
Semantic Web as a set of "triple", composed of subject, predicate and object.

• Web Ontology Language (OWL) is a semantic web language designed to
represent ontologies in the web. "It is a computational logic-based language
such that knowledge expressed in OWL can be exploited by computer programs,
e.g., to verify the consistency of that knowledge or to make implicit knowledge
explicit"[62].
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• SPARQL query language for RDF is a language used to query data stored as
RDF graph across different data sources [64].

Other important data web technologies are the linked data, introduced in [65],
defined as "a set of best practices for publishing structured data on the Web" [66]. A
vision that underlines their important role asserts that they are"to spreadsheets and
databases what the Web of hypertext documents is to word processor files [66]."

Semantic Sensor Web

Also for sensor data there is a strong effort to enhance web automation capabili-
ties, by replicating the data approach of configuring a common web information
infrastructure to improve their reachability [67]. The two main organizations that
are leading the standardization process are the Open Geospatial Consortium (OGC)
and the World Wide Web Consortium: the sensor web is described by the OCG as a

“Web-accessible sensor networks and archived sensor data that can be discovered
and accessed using standard protocols and application program interfaces”. Sensor
Web Enablement is acting to reduce the poor standardization aiming at reaching
deeper automated data exploitation by adopting these technologies. There are many
ontologies developed to semantic enrichment and formalization of sensors and sen-
sors data [68]: semantic sensor web ontology from W3C Group [69], IoT-A model
and IoT.est [70], Sensor Model Language [71], Observation and Measurements [72]
and OneM2M [73].

2.4 Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) or Machine Learning (ML) enable achieving many differ-
ent tasks by detecting patterns in data [74]. The concept of "learning" is central, and
it is specified for a computer program by [75]: "a computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improve with experience E". The
tasks to perform are characterized by the final aim of the ML process, i.e. what it
is necessary to achieve by processing the data collected from the event or system
studied. The form of the dataset, i.e. the data collected, depends on the task to
perform.
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It is acknowledged that three different paradigms can be considered in relation to
these tasks T:

• Supervised Learning deals with labelled training data and consists on classifi-
cation or regression tasks;

• Unsupervised Learning deals with unlabelled data as input on which to draw
inferences;

• Reinforcement Learning identifies the agents’ learning process of sequence of
actions in an environment and driven by cumulative reward.

ML builds its potential on the function approximators, that are available in different
types: linear models [76], Support Vector Machines (SVMs) [77], decision tree [78],
Gaussian processes [79], Artificial Neural Network [80]. In recent years, the massive
increase of computational power allowed by GPUs, the availability of powerful open
programming environments such as Tensorflow and methodological breakthroughs
have driven exponential enhancement of ML applications. Also, the construction
industry is benefiting from this disruptive evolution.

As tools adopted in the present study, in the following, supervised and reinforce-
ment learning (SL and RL) are briefly introduced in their main theoretical aspects. SL
gives a perspective and a brief introduction to Deep Learning (DL) basic concepts.

2.4.1 Supervised Learning

By abstracting to some extent the concept of SL, it can be defined as the formalization
of the idea of learning from examples [81]. One famous example of SL is represented
by the Iris dataset [82] in which three different species of iris plant are classified
depending on the measurements of different parts of the plant, such as sepal length,
sepal width, petal length and petal width. A straightforward application of SL on
such a dataset would consist of an algorithm that learns to recognize to which of the
three species an unknown example belongs only depending on the measurements
of the parts of the plant to recognize. This capability is acquired by the algorithm
experiencing and learning from the 150 examples already classified in the dataset.
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In its general form, supervised learning aims at finding a function f : X → Y that
takes as input x ∈ X and gives as output y ∈ Y :

y = f (x) (2.1)

Traditionally, researchers and practitioners refer to SL for tasks such as regression,
classification and structured output problems [80]. In general, in supervised learning
the dataset D is composed of instances consisting of the vector of features xxx (i.e.
the input of the system and quantities measured affecting the process to study) and
a target, i.e. the information to compute as the output of the system, y so that
D = [(xxx,y)]. XXX represents the entire features for all the instances in D, while YYY
the output vector. A usual way to describe a dataset D is with a design matrix,
containing instances in each row and features in columns. Depending on the task
T, dimensions of both XXX and YYY may vary. A supervised learning algorithm is thus a
function mapping D into a model [83].

The ability of the model to represent consistently the data needs to be measured
by the performance P introduced. It differs in the case of different task T, e.g. the
accuracy for a classification task. The generalization capability is the main aim of
ML algorithms, and it consists of good performance on new and previously unseen
inputs. Generally, a dataset D is partitioned so that a portion of data (the training
set) is used during the training phase, while another resulting part is used for testing
the generalization capability (the test set). During the training phase, the training
error measures how good the algorithm is learning on the training data, while, during
the test phase, the test error instead measures how good the algorithm works on new
data. For our model to behave the best, we need to:

• make the training error small, that results in reducing underfitting;

• make the gap between training and test error small, that results in reducing
overfitting;

By controlling its capacity, i.e. informally defined as its ability to fit a wide variety
of function [80], we are able to drive a model’s trend to overfit or underfit: by
modelling complex problems with low capacity models can lead to underfitting, but
too complex models can drive to overfitting.
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Deep Learning

Deep learning relies on a function f : X → Y parameterized with θ ∈ Rnθ with
nθ ∈ N so that:

y = f (x;θ) (2.2)

Artificial Neural Networks (ANN) are the function approximators used to model
f in Eq.2.2. Generally, they consist of computational units called Neurons organized
in layers stacked one after the other. Depending on many features, each layer consists
of a non-linear transformation, allowing learning different levels of abstraction [84].
To briefly highlight how an ANN works, we can analyse a simple feedforward fully
connected neural network made of a single hidden layer (Fig.2.4).

Figure 2.4 Two different representations of a one hidden layer feedforward Neural Network

Given a dataset D = {(xxxi,yi)} with i = 0,1, ...,ni, xxxi is the input vector of features
for the instance i and yi is the "ground truth" target for the instance i. The output of
the hidden layer h is computed by non-linearly transforming xxx following Eq.2.3:

hhh = A(WWW 111 · xxx+bbb111) (2.3)

where WWW 111 is a weight matrix, bbb111 are the bias terms and A is the activation function,
which makes each layer transformation non-linear. The output of the network consists
then in Eq.2.4:

ŷyy = A(WWW 222 ·hhh+bbb222) (2.4)
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with ŷyy the output of the network computed with the available weights and biases. The
training consists in optimizing the weights and biases of all layers that minimizes
a loss function L(y, ŷ) which depends on the task T. The most famous approach for
this optimization task is the gradient descent via the backpropagation algorithm [85]:
the parameters θθθ = (WWW ,bbb) are iteratively update to fit the desired function:

θθθ ← θθθ − γ∇θ L(y, ŷ) (2.5)

where γ is the learning rate.

The design of an ANN strongly depends on task T and the data available. Further
than choosing the loss function and the optimizer to use during the parameters
optimization, there is a massive availability of ANN different architectures. Many
different types of layers appeared since the abrupt development of this technology,
and each one characterizes advantages and features related to specific tasks.

Among many examples, Convolutional Neural Networks (CNN) plays a central
role in image and sequential data processing. Their main feature is the use of the
Convolutional Layer (CL) [86]: for example, for a two-dimensional signal I as an
input, the convolution with a two-dimensional kernel K is given by Eq.2.6 [80]:

S(i, j) = (I ⋆K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n) (2.6)

The layer’s parameters consist of a set of learnable kernels or filters K that allow
focusing locally by scanning the entire input, applying the convolution operation and
then computing the output to the following layer. The output of the CL is usually
referred as features or activations map, with a size that depends on three different
hyperparameters called the depth, stride and zero-padding [87].

Figure 2.5 LeNet-5 Architecture [88].
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The general overall architecture of a CNN is shown in Fig.2.5 by representing
a famous CNN called LeNet-5 [88]. Generally, a CNN does not comprise only the
CL. The input first feeds a CL: six kernels are considered in Fig.2.5 because six
feature maps are obtained as output by passing the output of the CL to a non-linear
activation function (such as ReLU). The subsampling operation is then performed by
feeding a pooling layer (PL) that aims at further modifying the output by replacing
it with summary local statistics of the nearby outputs. The remaining part of the
architecture is obtained by stacking subsequently CLs and PLs, while, for general
classification tasks with CNN, in the end, it is usually found a Fully Connected (FC)
layer.

2.4.2 Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning that deals with sequen-
tial decision-making, considering artificial agents that learn by interacting with their
environment, similarly to biological agents. The artificial agent uses the experience
gathered to optimize objectives given in the form of cumulative rewards. The key
aspects of RL are the agent’s ability to learn good behaviour, modify and acquire
new skills incrementally, and the trial-and-error experience approach. The RL agent
thus does not require complete knowledge or control of the environment, it only
needs to be able to interact with the environment and collect information [83].

Figure 2.6 Agent-environment interaction in RL.

The RL problem is formalized as a discrete time stochastic control process in
which an agent interacts with its environment in a discrete time Markov decision
problem in which the future of the process only depends on the current observation
and not on the full history process. A discrete time Markov process is defined as a
3-tuple (S,A,R) where:
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• S is the agent state space;

• Ω is the observation set;

• A is the set of action space;

• R : S ×A ×S →R is the reward function, where R is set of real positive
numbers in the range [Rmin,Rmax].

The agent starts in an initial state s0 ∈S within its environment, by gathering
an initial observation ω0 ∈ Ω. At each time step t, the agent has to take an action
at ∈ A. As shown in Fig. 2.6, the system behaviour is the following at each time
t [89] [90] [91]: i) the agent is in state st ∈ S; ii) the agent takes an action at ∈A

from the set of available actions; iii) the agent obtains a reward rt ∈R, iv) the agent
updates its state from state st ∈S to st+1 ∈S , v) the agent obtains an observation
ωt+1 ∈ Ω.

The objective of DRL is to find a policy as a function π : S →A that maximizes
the cumulative reward. The cumulative reward is expressed by a Q-value function
Qπ(s,a) : S ×A → R that is defined as follows:

Qπ(s,a) = E[
∞

∑
k=0

γ
krt+k|st = s,at = a,π] (2.7)

representing the expected future cumulative reward by taking action a in state s by
following policy π . In Eq.2.7, γ ∈ [0,1) is the discount factor, which emphasizes the
importance of the nearest rewards over future rewards in the further future, while k
counts the future time steps. The optimal Q−value function Q∗(s,a) maximizes the
Q-value function following policy π and can be defined as:

Q∗(s,a) = max
π∈Π

Qπ(s,a). (2.8)

The Bellman optimality equation allows calculating Q∗(s,a) ([91]):

Q∗(s,a) = E[rt + γ max
a′

Qπ∗(st+1,at+1)|s,a]. (2.9)

In particular, Q∗(s,a) is computed as the sum of the immediate reward rt gained by
the agent in the time step t and the optimal future reward thereafter γmaxa′Qπ∗ (st+1,at+1).
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The possibility of estimating the optimal future reward allows the cumulative reward
at the current time to be calculated [92].

The specification of the optimal Q-value function Q∗ (s,a) allows calculating the
optimal policy π∗:

π
∗ (s) = argmaxa∈A (Q∗ (s,a)) . (2.10)

In DRL, Qπ (s,a) and π (s) are obtained by neural networks which are updated
during the agent’s interaction with the environment.

2.5 Additive Manufacturing

Additive Manufacturing (AM) is defined as “the process of joining materials to make
objects from 3D model data, usually layer upon layer, as opposed to subtractive
manufacturing methodologies, such as traditional machining” [93]. Additive manu-
facturing systems (or 3D printers) are classified into seven categories according to
the ISO/ASTM 52900:2015 [93]: i) binder jetting, ii) directed energy deposition,
iii) material extrusion, iv) material jetting, v) powder bed fusion, vi) sheet lamina-
tion and vii) vat photopolymerization. Originally, AM main use was the formal
prototyping to investigate custom and performative solutions for different types
of products, in many industrial fields; it allowed the formal testing phase without
implying expensive subtractive machining yet during the testing phase. Because of
its enhanced performance in terms of accuracy, available aesthetic possibility and
numerous printable materials, AM used directly in the production phase is highly
increasing [94, 95]. Some fundamental features driving the technological adoption
are resumed in [8]:

• No need for tooling, which significantly reduces production time and costs;

• Possibility to quickly change designs;

• Product optimization for function;

• More economical custom product manufacturing (mass customization and
mass personalization);

• Potential for simpler supply chain, shorter lead times and lower inventories.



2.5 Additive Manufacturing 27

2.5.1 Information flow in AM processes

Each AM process consists of a specific information flow throughout different phases,
e.g. Fig.2.7 describing the case of a bench printed with raw earth material by a
WASP 3MT Industrial Concrete 3D printer.

Figure 2.7 Usual information flow in additive manufacturing processes.

An idea conceptualized needs to be first represented as an informative model us-
ing a Computer Aided Design (CAD) system. In many standard processes, the model
needs to be described as a volume in CAD, then represented as a triangular mesh and
converted into the Standard Tasselation Language (STL) format. A Computer Aided
Manufacturing (CAM) software environment employs the STL as input and outputs
the machining file that depends on the features of the machine used. In AM, within
the CAM, the STL is sliced into a number of layers, and the resulting machining files
(usually called "gcode") consist of a toolpath describing the path the extruder has to
follow, its speed and other printing-related information such as extrusion flow. As the
technologies are not fully developed and widely commercialized in the construction
field, the process is not uniquely addressable.

2.5.2 AM in the construction industry

Of the seven technologies specified in the ISO/ASTM 52900 (2015) [93], the most
popular additive manufacturing category in the construction industry is extrusion-
based 3D printing, in which a viscous material (e.g. cementitious material, clay or
raw earth) is deposited in layers as a continuous filament from a nozzle [96]. The
AM application in the construction industry is challenging because of numerous
issues classified by [97] in three macro-features:



28 Construction 4.0 technologies

• Printable feedstocks: the choice of the material to print and of its characteris-
tics;

• Geometry: the characteristics of the objects to obtain, both in terms of geome-
try, precision and constructive technology;

• Printer: all the issues strictly related to the printing process, considering the
machine technology and, thus, the printing parameters related, such as feedrate
and material flow.

Figure 2.8 AM features in the construction industry [97]

For what concerns the printable feedstocks, the concrete is the printing material of
greatest interest to companies and researchers (extrusion-based 3D concrete printing)
and is still widely studied in recent research projects [98] because of its uses and
lower costs [99, 100]. Sustainability of additive manufacturing with clay and raw
earth material is also investigated in many application because of its great potential
[101–103].
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Freedom in obtainable geometries is the AM main feature in the construction industry.
Examples of hard-to-achieve geometries are already present in the industry, and
examples are shown in Fig.2.9a and Fig.2.9b.
However, this freedom is influenced by technological limitations concerning printing
machines available. Among the most diffused technologies is possible to identify
gantry systems or robotic manipulator, but all of them suffer from limited build
volume, their main concern. Attempts to overcome this issue are done in literature
trying to turn already widespread construction machines into 3D printers [104, 105].
Another attempt is also done in this thesis in Chapter 5.

(a) Apis Cor, Dubai [106] (b) WASP, Tecla [107]

Figure 2.9 Two examples of challenging geometries obtained with AM in the construction
industry

2.6 Conclusions

In this chapter, the main Construction 4.0 technologies investigated during the
next chapters are introduced. Note that the discussion of the topics is not meant
to be exhaustive of all the theoretical aspects involved, since there are plenty of
high-quality books investigating in detail each of them. In this case, only a brief
introduction of the main aspects is given to the reader, and examples of specific
applications are left for the following chapters.



Chapter 3

Information and Communication
Technologies Applied to Intelligent
Buildings

Partially published in Fabio Parisi, Maria Pia Fanti, & Agostino M. Mangini (2021).
Information and Communication Technologies applied to intelligent buildings: a
review. J. Inf. Technol. Constr., 26, 458-488.

3.1 Introduction

The recent development of Information and Communication Technologies (ICT) is
favouring the intelligent modelling and management of many systems engineered.

Also in the architecture, engineering and construction (AEC) industry, the avail-
ability of ICT fosters a deep transformation of the approaches for modelling, design-
ing and managing Intelligent Buildings (IBs) and, generally, constructions.

There is not a single acknowledged definition of IBs. Some first definitions
pointed attention mainly to performance aspects, e.g. the definition of the Intelligent
Building Institute of U.S.: an IB "provides a productive and cost-effective environ-
ment through optimization of its four basic elements including structures, systems,
services and management and the interrelationships between them” [108].
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With the evolution of the IB concept, different topics and factors are taken into
account and the importance of users and environment becomes central. In [109],
the authors identify four Key Performance Indicators (KPIs) to assess and classify
the IB main features considering two levels as shown in Fig. 3.1: i) smartness
and technological-driven awareness, ii) economical and cost efficiency, iii) social
sensitivity, iv) environmental responsiveness. More in detail, the KPI-1 of the top
level focuses on technological aspects that are specified in different contexts at
the bottom level by considering KPIs that evaluate economical and cost efficiency
(KPI-2), social sensitivity (KPI-3) and environmental responsiveness (KPI-4).

Figure 3.1 KPIs in Intelligent Building definition [109].

This paper reviews the ICT tools and strategies presented in the related literature
and implemented in the IBs, by considering the specific applications in the different
building life cycle phases.

The novelty of the presented review is twofold.

First, starting from the specification of the KPIs, this paper performs a IB
literature review on the basis of a defined framework, involving the usage of a
hierarchical two-layer framework for specifying the IB technological contexts. The
first top layer of the considered conceptual framework is constituted by the evaluation
layer inspired by the KPIs reported in Fig. 3.1 and specified in research sub-domains
about IB. The second layer consists of the ICT construction-related technologies and
is divided in two sub-layers: an ICT construction sub-layer and a generic ICT tools
sub-layer.



32 Information and Communication Technologies Applied to Intelligent Buildings

Second, the main operative technological tools to be investigated in the second
layer are not determined a priori but they derive from a text analysis of the IB review
papers. Such text analysis performed on the literature related to the ICT applications
allows identifying the main technological tools employed in the IB paradigm and
not sufficiently discussed.

By Natural Language Processing approach [110], we automatically retrieve and
analyse the review papers from the most important scientific archives. The results of
the analysis point out that in the review papers about the IB field, innovative tech-
nologies such as Big Data (BD), Internet of Things (IoT) and Semantic Technologies
(ST) are worthy of further study.

Hence, on the basis of such an outcome, the paper performs a review analysis
of the application of BD, IoT, ST in the context of the IBs by locating them in the
building life cycle. Moreover, considering the basic importance of the implemen-
tation of Building Information Modeling (BIM) in the IB design and management,
the proposed review also deals with the possible integration of such ICT tools in the
BIM environment.

The chapter is structured as follows: Section 3.2 introduces the IB review frame-
work; Section 3.3 recalls the IB applications; Section 3.4 discusses the results and
3.5 draws the conclusions.

3.2 Intelligent buildings review framework

In this section we specify in detail the framework according to which the review
has been performed, starting by considering the two layers in Fig.3.2, the evaluation
layer and the IB ICT layer.

The evaluation layer includes the technological performance areas reported in
Fig. 3.1 characterizing the different domains of the IB construction and maintenance.

The IB ICT layer describes the specific ICT construction tools devoted to model,
designing and managing IBs during the complete building life cycle. We consider
this layer divided into two sub-layers: the ICT construction sub-layer including the
information tools adopted in the construction industry and the generic ICT tools
sub-layer including the ICT tools that are relevant for supporting the construction
sub-layer tools development.
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Figure 3.2 Intelligent Buildings General Conceptual Framework to specify.

The following sub-sections specify the components of the two technological
sub-layers on basis of the analysis of the contributions in the related literature.

3.2.1 The ICT construction sub-layer components

The description of buildings and in general constructions’ life-cycle, helps to identify
which construction-specific informative tools are considered strategic in the con-
struction industry, and also the specification of related research fields and domains
can contribute. Thus, this helps us in specifying the ICT construction sub-layer in
3.2. Fig. 3.3 shows four phases of the building life-cycle and their relative research
domains according to [111, 112].

In informative-driven-fashion management of constructions, the four phases
of the life cycle are supported by dedicated ICT construction tools that can be
characterized by the following main three systems: Building Management System
(BMS), Facility Management System (FMS) and Building Information Modelling
(BIM).

• The BMS aims at the computerized control and management of buildings,
characterized by a distributed infrastructure [113]. The usual architecture of
this distributed system is structured into three levels: (i) the field level that
includes the interaction with sensors and actuators (field devices); (ii) the au-
tomation level, where processing activities are performed, like measurements
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Figure 3.3 Building life cycle phases and research sub-domains.

processing, control loops execution and alarms activation; (iii) the manage-
ment level where data elaboration activities are performed, such as system
data presentation, forwarding, trending, logging, and archival. As reported in
[114], BMS includes some related systems such as building control systems
and building automation systems.

• FMS is an umbrella term covering many topics ranging from financial manage-
ment to facilities maintenance [115]. In [116] different definitions presented
in the related literature are provided. A definition that is consistent with
this study is in [117] where the author defines FMS as “a supporting tool
to obtain sustainable and operational strategy for an organisation over time
through management of infrastructure resources and services”. Moreover,
an additional system named Energy Management System (EMS) includes
tasks partially shared with the FMS and the BMS. In particular, the EMS
involves strategies and methods aiming at building performance, efficiency
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and energy utilization improvement [118]. This sub-system is focused on key
energy management tasks like the demand-response strategies, energy costs
prediction, energy use anomalies detection, and management of energy use
information [119].

• Depending on the literature and context, BIM can be defined in a narrow sense
or in a broad sense [120].

– BIM in Narrow Sense: it is seen as a "tool" strictly used for the creation
process of a building’s model, i.e., a technology to manage information
related to buildings’ design. The contents’ visualization and representa-
tion capabilities are strong features of the management process, being
the description of construction strongly geometric-driven. In BIM, visu-
alization models are enriched with interdisciplinary design information:
these models become a visual representation and integration of cross-
field time-dependent data [112]. BIM’s historical role allowed a large
interoperability amount different stakeholders involved in the design,
construction and management process [121]. Despite this, there are
still limitations in BIM usage [122]: i) proprietary platforms are strongly
pushing towards the development of further features in their own software
environment, implying high dependency on proprietary data format; ii)
even if information exchange open data format are available (like Indus-
try Foundation Classes), the information flow suffers consequences; iii)
even if official Application Programming Interfaces (API) and scripting
environments are largely diffused, custom features integration remains
tricky.

– BIM in Broad Sense: the National Building Information Model Standard
[20] defines BIMs as a "digital representation of physical and functional
characteristics of a facility. As such it serves as a shared knowledge
resource for information about a facility forming a reliable basis for
decisions during its life-cycle from inception onward." In this case, BIM
technology has a wide perspective of usage, and does not focus only on
the first stages of the building process (design and construction phases),
but has a key role also in the management stage.

The gradual evolution of the BIM concept from the Narrow Sense to the
Broad Sense is observable in the progressive introduction of features and
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functionalities in BIM software. This BIM evolution is also highlighted by the
growing number of "dimensions" considered in the model [123]:

– 2D models: 2D CAD model application;

– 3D models: modelling and visualization of the third dimension, also
with parametric modelling, object oriented approach and automated
digitalization;

– 4D models: scheduling and sequencing of operations to plan project and
construction execution;

– 5D models: cost estimation, i.e., the budget estimation and control of the
construction phase;

– 6D models: sustainability, i.e., impact control of construction and opera-
tion;

– 7D models: facilities management, including operation, maintenance,
planning and execution of building life-cycle.

In these “n-dimensions” BIM applications, the trend to the integration of BIM
with the BMS and the FMS is quite evident.

The new challenge for the future development of the potentialities of the BIM
in the broad sense is represented by the Cloud-BIM. Indeed, as in other indus-
trial fields where the cloud-based software and platforms boost applications’
potential, also BIM environments are being developed toward web services and
cloud-based applications. In [124] some examples of cloud-based applications
and services are highlighted, like GRAPHISOFT BIM Explorer, ONUMA
System, BIMServer.org, Autodesk BIM360, Trimble Connect and xBIM.

3.2.2 Generic ICT sub-layer components identification

In order to identify the technological components of the generic ICT sub-layer, a
preliminary analysis of existing review papers on the topic "Intelligent" and "smart"
"buildings" is performed, following a methodology proposed in [14]. This prelim-
inary study has two objectives: i) determining the research fields already deeply
analyzed, and the most prominent topics already speculated in the field of the IB
literature; ii) identifying the emerging technologies that are applied in the IB research
areas but not still deeply reviewed in the related literature.
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Preliminary review papers analysis methodology

In-depth research of the review papers about the IB and smart building concept is
performed to single out the most reviewed research fields. The database used in this
analysis and the related results are shown in Table 3.1.

Table 3.1 Intelligent and Smart Buildings Review papers

Journal/Database Searching References

Elsevier 15 [125] [126] [127] [128] [129] [130] [131] [132]
[133] [134] [135] [136] [137] [138] [139]

IEEEXplore 10 [140] [141] [142] [143] [144] [145] [146] [147]
[148] [149]

Taylor & Francis
Online

5 [150] [151] [152] [153] [154]

ResearchGate 13 [155] [156] [157] [158] [159] [160] [161] [162]
[163] [164] [165] [166] [167]

Emerald 1 [168]

The research is performed by an automatic procedure consisting of the following
steps:

• Research: both Application Programming Interfaces (APIs) provided by
databases maintainers and Web-Scraping techniques [169] are applied. The
research is performed by searching for all paper titles in which the words
"intelligent" or "smart" together with "buildings" and "review" or "survey" are
present.

APIs allow us to obtain a response from the APIs server directly in form of
analysable text data (JSON or XML format). If APIs are not provided, a
web-scraping approach is used. This methodology implies the analysis and
the parsing of web pages in order to detect automatically desired information.

• Collection: once papers corresponding to the research are identified, full texts
are automatically retrieved and stored locally, in order to create the corpus on
which to perform the preliminary analysis.

By the APIs approach, the full texts are retrieved by Digital Object Identifier
directly as text data and stored locally in the software script in order to be
analysed. By the web-scraping approach, the texts are retrieved in PDF file
format and stored locally. A subsequent phase is necessary to read the content
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of these files, and put them together with the ones obtained by the APIs
approach, obtaining only one "corpus".

• Analysis: raw text data are not directly analysable. The entire corpus obtained
in the previous collection phase is pre-processed and analyzed in Python
development environment. The preliminary pre-process is necessary to put the
corpus in a form usable as input for natural language processing or machine
learning algorithms. In this stage the Python library Natural Language ToolKit
(NLTK) is used. The following steps are applied to the corpus:

– tokenization is the process of dividing the corpus on the elementary
units [170]; in the present study, the used token units are the words.
In particular, the Treebank tokenizer [171] implementation in NLTK is
applied;

– stopwords removal allows removing tokens that bring no informative
content about the text from the corpus. Example of stopwords to delete
are articles and prepositions [172];

– lemmatization aims at expressing tokens into their dictionary form, by
using vocabulary and morphological analysis to remove inflectional
endings. It also helps in matching synonyms by the use of a relational
thesaurus [173];

– the corpus is then re-built in the form of a continuous text composed by
the pre-processed tokens;

– after the text is pre-processed and re-built, analytical methodologies
are applied to extract the frequency (the number of occurrences) of the
concepts the corpus contains. The concept is expressed by an n-gram,
i.e., a sequence of n words that appears with a specific order in the corpus.
The analysis method assumes that important concepts are more often
present in the text [14]. In this investigation, the n-grams composed of
two and three words are analysed.

Results of the review paper analysis

In Fig. 3.4 a graphical visualization of the most important topics and contents
obtained from the presented procedure are shown in a "Word Cloud" representation.
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Figure 3.4 Bigrams and trigrams reviews World Cloud

Figure 3.5 Bigrams and trigrams World Cloud Frequency [first 50]

In the used "BagOfWords" approach bi-grams and tri-grams are considered because
of their capacity to be more consistent in content representation in the text corpus
[174]. The metric that supports the generation of Fig. 3.4 and Fig. 3.5 is the frequency
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distribution of bi-grams and tri-grams in the whole corpus text, defined as the number
of times each bi-grams or tri-grams appears in the considered corpus text.

The first evident outcome is that the most investigated field concerns energy
efficiency and indoor comfort management supported by automatic control systems.
Indeed, in Fig. 3.5 the bi-grams and tri-grams "indoor air quality", "thermal comfort",
"HVAC system", "control system" and "energy management system" are the most
frequent in the corpus text.

After these main topics, the most relevant ICT technologies enlightened by
the analysis are the tools that support such systems: Internet of Things (keywords
highlighted by "smart device", "Internet Of Thing", "Sensor Network" and "IoT
System"), Big Data ("Big Data Analytics", "Big Data") and Artificial Intelligence
("Neural Network, "Artificial Neural Network", "Machine Learning").

Figure 3.6 Intelligent Buildings General Conceptual Framework.

By the presented analysis results, it is possible to specify the generic ICT sub-
layer as it is shown in Fig. 3.6: the new emerging technologies that are changing the
design and management of IBS are BD including the semantic concepts of "Big Data
Analytics", "Big Data Management", "Neural Network, "Artificial Neural Network",
"Machine Learning Model" and "Machine Learning"; IoT including the semantic
concepts of "Sensor network", "IoT system".
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Moreover, considering the basic importance of BIM in the IB applications, in
this chapter we also investigate one of the main ICT strategies recently used in BIM:
the ST.

3.3 Applications of ICT to the Intelligent buildings

In this section, the literature is reviewed by adopting the hierarchical framework
introduced in 3.2. In particular, the ICT technologies adopted for the implementation
of the IB ICT layer inner components are analyzed. The analysis is conducted by
considering the building life cycle phases and the related domains in Fig. 3.3.

The review results are summarized in Tables 3.2, 3.3, 3.4, 3.5, 3.6. In each
table, the following information is reported: the first column shows the reference of
the considered paper; the second column shows the BIM-related technologies that
characterize the ICT construction sub-layer (denoted Middle Layer) of the framework
in Fig. 3.6; the third, fourth and fifth columns describe technologies related to the
generic information sub-layer (denoted Low Level) consisting of BD, IoT and ST;
the last column reports the domain of application in the building life cycle (Fig. 3.3).

3.3.1 Planning / Design

Table 3.2 focuses on the "planning/design" stage and summarizes the ICT technolo-
gies mentioned in the reviewed papers according to the proposed framework.

In [55] the authors propose a framework based on linked data for BIM defects
detection. The system aims to convert defect data to an ontology-based linked
data format to link and search defect data between different data sources. In [175]
a cloud-BIM approach is proposed to achieve an optimized leadership in energy
and environmental design project delivery and certification. In [176] ST have been
applied for building component descriptions by using linked data from different
sources available on the Web. Moreover, the data sources are made available and
accessible in the product catalogue to end-users working with BIM models via
web services. In [177] the authors propose an automated approach to identify and
prevent potential safety hazards by using a rule-based checking system integrated
with BIM. The hazard identification is implemented in the early design stage. In
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[178] an evaluation, analytics and prediction platform is presented for BIM in order
to collect, store, process, and analyze BIM data in integrated approach. BIM is used
as an "entry point" for user information that is automatically converted into ontology,
characterized by web-scale expandability.

Table 3.2 Adoption of analyzed technologies in planning/design stage

Middle Layer Low Layer
Ref. BIM BD IoT ST Sub-areas

[55] Autodesk Re-
vit

- - RDF Con-
verter,
SPARQL,
Protege,
Linked Data

Knowledge
reuse

[175] Autodesk Re-
vit, Stratus

- - - Optimal
design

[176] Revit - - D2RQ Knowledge
reuse

[177] Tekla - - IFC Health and
Safety

[178] WebGL, Gen-
eral BIM

Hadoop,
Spark, MapRe-
duce

- OWL Interoperability

3.3.2 Construction

Table 3.3 focuses on the "Construction" phase and summarizes the ICT technologies
that are mentioned in the reviewed papers.

Table 3.3 Adoption of analyzed technologies in construction stage

Middle Layer Low Layer
Ref. BIM BD IoT ST Sub-areas

[179] Autodesk
Revit, Navis-
works

- - SWRL, OWL ,
Protege

Health &
Safety

[180] WebGL - RFID - Stage monitor-
ing

[181] Autodesk Re-
vit, Dynamo

Azure BLE, RFID BIMtoIFC Indoor local-
ization
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[182] Autodesk Re-
vit

- TelosB - Safety &
Health

[183] General BIM,
Unity

- RFID - Indoor local-
ization

[184] Autodesk Re-
vit, Naviswork,
BIM360

- - - Stage monitor-
ing

[185] Autodesk Re-
vit, Naviswork

SQL Database,
MongoDB

- - Stage Monitor-
ing

In [179] the authors introduce an organized, stored and reusable construction
risk knowledge, by combining the strength of BIM, ontology and semantic web in
an ontology-based methodology. More precisely, a risk map representing this risk
knowledge allows capturing and semantically inferring interdependence between risk
and risk paths. A tool is implemented to allow the reuse of the knowledge. In [180]
a centralized BIM platform powered with IoT applications provides features both for
integrating information from previous construction stages and for real-time locating
prefabricated components by improving decision-making among stakeholders. In
[181] an application of IoT together with the lean and injury-free construction
management approach is presented. Firstly, a framework to integrate into an existing
system the proposed application and then a prototypical example are described with
validation in a field-like work setting. In [182] the authors propose CoSMoS, i.e.,
a system that aims at improving the health and safety of workers on construction
work-site by integrating real-time sensors monitoring in a BIM environment. The
solution is applicable in the construction and maintenance stages. Paper [183]
proposes a solution for monitoring the construction site, based on RFID protocols
by locating construction workers and providing real-time visualization with a cloud
server architecture. The visualization capability is based on BIM technology. In
[184] authors apply BIM360 technology to a real-case scenario to extend BIM
potentiality of the progress monitoring from the design phase to the construction site.
In [185] authors aim at solving the full life cycle data management by implementing
a cloud architecture.
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3.3.3 Operation/Maintenance

Table 3.4 focuses on the "Operation/Maintenance" phase summarizes the ICT tech-
nologies that are mentioned in the reviewed papers. In [186] the authors develop
a tool to reduce building hazards in the facility management stage. BIM technolo-
gies, sensors and Hadoop architecture are integrated to gather real-time data about
temperature, activities in the facilities and water monitoring. The data are then
aggregated and exposed by cloud services. In [187] a platform named Otaniemi3D
is proposed to provide information about energy usage, occupancy and user com-
fort by integrating BIM, IoT devices, IFC and open messaging standards. In [188]
an IoT software infrastructure integrating heterogeneous data from IoT devices
into BIM and geographical information systems are presented. The validation of
the building energy model with real data and the simulation of building energy
behaviour is strengthened by the usage of real weather data from third-party ser-
vices. The system can be employed to check near-real-time bad usage of building
resources. In [189] the integration of information between BIM and sensor data is
obtained by a linked data approach. The work aims at the performance analysis of
the energy demand of the facility manager’s building. In [190] authors integrate a
semantic sensor network with the IFC standard in a prototypical wireless structural
health monitoring system. Paper [191] presents an IoT BD analytics framework
for storing and analyzing real-time data generated by IoT sensors inside the IB. A
real-case analyzing the automatic management of the oxygen level, luminosity and
smoke/hazardous gases in wide areas is conducted. Linked data for implementing
cloud-based data services are proposed in [192]. A real-time energy awareness
system and an audit-style energy tracking system are implemented using the merged
data. A middleware for ambient intelligence systems is presented in [193]. It is
based on the Service-Oriented Architecture, and the work includes a real-scenario
application in a smart university system, a prototype board server, and a sample client
application. In [194] the authors present an architecture named Building Big Data,
i.e., a distributed system for storing and processing building data. In the platform,
ICT tools for data analytics and software applications development are implemented;
also insight on scalability is given to aggregate data from different smart buildings.
The support of intelligent water management is the topic in [195], where sensing,
analytics, services and interfaces are implemented to optimize the water network
at the home scale. An innovation of the work is using a domain ontology on a



3.3 Applications of ICT to the Intelligent buildings 45

web service to integrate heterogeneous data sources and analytics, and visualization
components. An intelligent context-awareness building energy management system
aiming at identifying particular energy waste causes is presented in [196]. In [197] a
foundation study for the development of a cloud-based platform for the integration
of BIM and FMS platforms is presented. A tool is implemented for data analytics,
and complex predictive and classification modelling. Also, data visualization issue
for managers is analyzed. A framework for managing information in the operational
stage of buildings is implemented in [198]. In this BIM-based system, the integra-
tion of different data sources is used to improve building conditions linked to user
behaviours. The authors present a framework based on BIM and IoT technology
for monitoring IB in [199]. BIM is used to manage the 3D data and a prototype is
developed and tested in an office building. In [200] authors integrate sensor data,
BIM and structural analysis. In the paper, they develop a prototypical data transfer
model that integrates modelling, visualization and structural analysis tools. A first
step in using semantic web technologies in building automation systems is presented
in [201]. A reference designation system is integrated into a BIM environment. A
proof-of-concept prototype for embedded real-time information from sensors in
BIM is presented in [202]. In [203] authors develop a fire visualization and warning
system by integrating BIM, fire simulation and IoT technology. In [204] authors
propose an augmented reality-based smart building that focuses on fire emergencies
and integrates different sensors in a cloud-based environment. A software allowing
real-time energy monitoring and simulation and integrating BIM and IoT sensors is
developed in [205]. Implementation of Bluetooth devices for indoor location and
customizable pathfinding solutions for building modelled by BIM technologies is
described in [206]. In [207] authors develop a wireless sensor network by ZigBee
technology to efficiently monitor energy consumption in an integrated BIM environ-
ment. A cloud-based BIM application for visualizing and managing facility tasks is
developed in [208], while an automatic integration of BIM and FMS information is
obtained with ST in [209].
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3.3.4 Improvement / Disposal

Table 3.5 focuses on the "Improvement/Disposal" phase and summarizes the ICT
technologies that are mentioned in the reviewed papers.

Table 3.5 Adoption of analyzed technologies in improvement/disposal stage

Middle Layer Low Layer
Ref. BIM BD IoT ST Sub-areas

[211] Autodesk Re-
vit

- Z-Wave IFC conver-
sion

Energy
Retrofit

[212] Revit Flume, Spark,
HDFS, Neo4J

- - Waste analyt-
ics

[213] Autodesk Re-
vit

Autodesk
Forge

RFID - Predictive
maintenance

[214] Revit API - BACNet IFC Predictive
mainteinance

A "cognitive" concept applied to the building is elaborated in [211], where a
monitoring framework is used for energy retrofit in a real-case application. In [212]
the authors propose a BD architecture for construction waste data analytics based on
a waste analytics life cycle. The authors in [214] focus on BIM and IoT integration
for improving predictive and long-term dynamic maintenance strategies. Finally,
[213] presents an approach to managing and predicting corrosion in mechanical and
electrical plumbing BIM by integrating RFID and cloud-based tools in the Autodesk
environment.

3.3.5 Full Life-Cycle

Table 3.6 summarizes the ICT technologies that share applications in all the IB life
cycle phases.

Table 3.6 Adoption of analyzed technologies in full life-cycle stage

Middle Layer Low Layer
Ref. BIM BD IoT ST Sub-areas
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[112] CloudBIM
(WebGL)

Apache
Hadoop -
HBase

- IFC converter data visualiza-
tion

[215] WebVR Apache Accu-
mulo

- - Data manage-
ment

[216] BIMsurfer BIMServer,
MariaDB,
Apache Tom-
cat

- - Data visualiza-
tion

[217] Autodesk Re-
vit

NoSQL
Apache Cas-
sandra

- IFC Data manage-
ment

[218] BIMTriSer MPI, Spark - IFC Splitter data manage-
ment

[219] Developed Vi-
sualizer

- - IFC data visualiza-
tion

[220] General BIM,
BIMRL

- - IFC Compliance
audit

[221] BIMSurfer BIMServer - IFC Data manage-
ment

In [112], features such as viewing, storing and analyzing massive BIMs are im-
plemented in a cloud-based system by using: i) Apache Hadoop as cloud computing
technology, ii) WebGL 3D as display technology, iii) and HTML5 as web page tech-
nology. The online services provided by the systems allow uploading BIM models
to involve both the project and the visualization capability. In [215] authors propose
a hybrid storage architecture including a NoSQL database, distributed peer-to-peer
storage, and spatial database engine to store remotely BIM geospatial data. An open
source BIM platform based on cloud computing technology to handle geospatial data
is presented in [216]. In [217] a tool named Social BIMCloud facilitates the storage
and partial exchange of integrated BIM to study inefficiency in data transfer speed
and inconsistency in a distributed environment. The result is achieved both by using
IFC technology and a cloud-based NoSQL database. In [218] authors deal with
the visualization of geometrical BIM big data, and propose a novel scalable BIM
triangulation service named BIMTriSer: the service can decompose the original IFC
description into several IFC files. BIMTriSer enables scaling of IFC geometric trian-
gulation thanks to a parallel computing framework. Also in [219] complexity and
challenges involved in visualizing large BIMs are addressed. The main contribution
is the development and validation of a prototypical BIM viewer to handle detailed
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and large building models. In [220], a web service based on the Representation State
Transfer (REST) protocol is used to integrate BIM Rule Language into an automated
compliance audit framework named ARCABIM. In [222] the authors deal with IFC
relationship entities for integration of the federated BIM model. The work focuses on
the modification of BIM tools for supporting references during model splitting into
smaller (federated models) without compromising the integrity of the relationships.
An example of an integrated cloud-based BIM platform for BMS issues is presented
in [221]. The paper focuses on the data management related to a building during its
life cycle.

3.4 Discussions

3.4.1 Research findings

A synthesis of the distributions of the considered technologies in the reviewed papers
is performed in the current subsection.

In particular, Fig. 3.7a shows the number of times ST, IoT and BD are utilized in
the 49 analysed papers employing the BIM in the different life cycle phases. The bar
diagram shows that ST is the most used technology followed by IoT and BD.

(a) (b)

Figure 3.7 ICT IB components and integration in references

Moreover, Fig. 3.7b shows that most of the analyzed papers adopt two (51%) or
three (43%) of the components of the IB ICT layer in Fig. 3.6. Only a few papers
employ one component or all the components. More precisely, Fig. 3.8 specifies Fig.
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3.7b by listing the number of papers that integrate the different technologies. As
expected, the most diffused applications regard the BIM-IoT integrated usage. On
the other hand, few papers consider IoT, BD and SW without integrating them into a
BIM component.

Figure 3.8 Framework components integration in references.

Figure 3.9 BIM-related technologies adoption.



52 Information and Communication Technologies Applied to Intelligent Buildings

In Table 3.7 the specific BIM-related technologies adopted in the researched
papers are reported. In this context, BIM-related technologies refer strictly to
BIM features that characterize proprietary software, but also to all cloud-based
data visualization tools and software libraries. Fig. 3.9 shows the number of times
in which the mentioned BIM technologies are applied in the 49 considered papers.
Autodesk Revit is the most used technology in BIM integration strategies. Also, other
Autodesk-related technologies like Dynamo, Naviswork and Revit API are applied,
because of their flexibility and potential in services and applications customization.
Moreover, libraries for cloud visualization (like WebGL) are also applied in 4 papers.
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Figure 3.10 BD-related technologies adoption.

In Table 3.8 the specific BD-related technologies adopted in the considered pa-
pers are reported by focusing on BD architectures, BD technologies and widespread
standard cloud technologies. Fig. 3.10 enlightens that Apache Spark, Apache Cas-
sandra and Apache Hadoop are the most mentioned technologies. In particular, the
Apache Hadoop environment remains one standard and practically adopted tool
because of its prior release. Relation databases such as MySQL technologies have
valuable applications.
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Figure 3.11 IoT-related technologies adoption.

Table 3.9 reports the specific IoT-related technologies adopted in the considered
papers by referring to communication protocols and hardware devices. Fig. 3.11
shows that ZigBee is the most used technology because of its double nature of
hardware device integrated with specifically implemented communication protocol.
RFID and Z-wave are also widespread.

Figure 3.12 Semantic-related technologies adoption.
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In Table 3.10 the specific ST-related technologies adopted in the reviewed papers
are reported. More precisely, the considered ST applications deal with: i) the con-
version issues from BIM proprietary format to a common IFC interoperable format;
ii) the cloud-exploitation of converted format; iii) the semantic web technologies to
deal with converted data; iv) the ontology-based reasoning basing on the converted
format and semantic web technologies; v) the semantic enrichment of IoT data from
sensors. In addition, Fig. 3.12 highlights that the use of conversion tools from BIM
to IFC format is the most widespread application, but also ontology-based reasoning
has numerous applications due to OWL usage.

The distribution of the reviewed works in the building life-cycle is also an
important aspect to be investigated. To this aim Fig. 3.13 shows the distribution of the
considered papers in the different life cycle domains reported in Fig. 3.3. The analysis
points out that about half of the reviewed works focus on the operation/maintenance
stage. This result was expected since the most investigated topics in IBs-related
literature are Energy Management, Building Automation Systems, etc. as it is
highlighted in the review analysis performed in 3.2.

Figure 3.13 Life cycle classification of applications.
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3.5 Conclusions and future works

This chapter reviews the ICT tools and strategies presented in architecture, engi-
neering and construction literature and implemented in the IBs, by considering the
specific applications in the different building life cycle phases. The review analysis
is performed by using an original framework that consists of a hierarchical two-layer
structure, of which the lowest layer, named IB ICT Layer, contains one construction-
specific sub-layer and one ICT generic sub-layer. The components of the ICT generic
sub-layer are identified by a procedure supported by a technique based on natural
language processing.

The defined methodology can be applied for a review analysis in different re-
search contexts where there is a huge number of aspects and documents to be
considered. Indeed, the specification of the hierarchical framework helps to single
out and rank the aspects to be analysed in the review process. Moreover, the auto-
matic procedure for exploring the papers’ contents allows objectively structuring the
framework and does not need any prior assumptions. The proposed approach should
be supported by critical experts’ supervision to guide the obtained research outcomes.
However, the analysis performed in this work has been useful to determine the most
applied ICT tools in the AEC field and the technologies that are not adequately
exploited and need future consideration.

In particular, two main conclusions can be pointed out. First, the authors in the
considered literature develop their innovative results and integrate new findings in
the BIM environment. This common approach is a limitation for wide knowledge
management and reuse and may hinder or slow the development of new ICT tools for
construction. Indeed, focusing on the BIM implementation of the technical results
may prevent the evolution of more innovative environments such as the digital twin.
Such drawbacks could be overcome by fostering the interoperability of the software
currently employed for BIM systems.

Second, a roadmap for a large application of the analyzed technologies in the
construction process is still far. Indeed, the solutions presented in the literature
deal with very specific construction-related problems and do not propose general
outcomes for wider purposes.

Despite the evidence of a large amount of data generated from the construction
industry during the entire building life cycle, it is possible to conclude that there are
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not yet consistent applications in this field that can effectively represent a general
intelligent system.



Chapter 4

Automated Location of Steel Truss
Bridge Damage Using Machine
Learning and Raw Strain Sensor Data

Partially published in Fabio Parisi, Agostino Marcello Mangini, Maria Pia Fanti,
& José M. Adam. (2022). Automated location of steel truss bridge damage using
machine learning and raw strain sensor data. Automation in Construction, 138,
104249.

4.1 Introduction

Many safety concerns in major transport infrastructure management are due to ageing
and degradation [236]. The deterioration of infrastructure systems contributes to
over 3% of the Gross Domestic Product of industrialized countries [237]. These
issues arise especially when dealing with steel truss railway bridges, most of which
in Europe are more than 50 years old [238, 239] and were built before designs
and guidelines were standardised [240]. Given their number, a re-building strategy
would be extremely costly in terms of resources and time [241]. Structural Health
Monitoring (SHM) is considered valuable support that needs to be further exploited
to face these critical issues. Some serious recent disasters in major infrastructure
management, such as the collapse of the I-35 bridge over the Mississippi River in
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2007 and the Morandi bridge collapse in Genova in August 2018, show that an
efficient structural monitoring strategy is crucial.

Recently, Machine Learning (ML) tools have emerged as effective approaches
for SHM. ML algorithms build models based on sample data, known as training data,
to make predictions or decisions. Thanks to the considerable computational power
available in cloud services and the Information and Communication Technologies
enhancement, a continuous data flow is generated by monitored structures, collecting
and sending data analysed in real-time according to the Internet of Things approach.
Many attempts have been made to extract crucial information about structural condi-
tions from big data generated by sensors on infrastructures, letting damages location
and assessment of structural systems become a central topic in SHM [242].

In [243] the authors propose a Convolutional Neural Network (CNN) classifier
to predict damage location labels, detecting structural damages from numerically
simulated low-level waveform signals. The work [244] describes a CNN followed by
a Long Short-Term Memory (LSTM) for classifying, into different structural damage
classes induced, raw vibrational data collected from a three-story frame structure. In
[245] the authors deal with damage detection and location of offshore wind turbine
blades by training a LSTM network on simulated vibrational data of different damage
scenarios. Four different architectures trained on raw vibrational data, such as Multi
Layer Perceptron, LSTM, one- and two-dimensional CNNs are studied in [246].
The data are collected both from an experimental set-up and finite element (FE)
simulations while uncertainties are taken into account by Monte Carlo simulations.
In [247] the authors propose a Neuro-Fuzzy classifier, based on statistical features
extracted from vibrational signals, for damage states. An autoencoder that maps from
vibrational features (such as modal forms and frequencies) to structural damages
is developed in [248]; the data are collected from an experimental lab set-up and
FE analysis. In [249] the authors use frequencies and modal shapes to train a Deep
Belief Network built with Restricted Boltzmann Machine blocks to detect damages
localisation. A combination of the Hilbert-Huang transform with an optimized
CNN is used in [250] to perform a fault classification task on time series. In [251]
the authors train a sparse autoencoder to map pre-processed vibrational features to
structural stiffness reduced; the data are collected from an experimental laboratory
set-up. In [252], a modified Principal Component Analysis involving autoencoders is
developed and its performance in damage detection is tested on Z-24 benchmark data.
The work [253] studies the damage detection issue by training a CNN-LSTM network
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on data obtained by FE and simulations, while in [254] a CNN classifier operates
on data generated from an updated FE model. In [255] the authors compare three
different models (Principal Component Analysis, Fully-Connected Autoencoder
and Convolutional Autoencoder) by using real data for anomaly detection in bridge
behaviour. A CNN application to the structural dynamics response estimation
is proposed in [256] to predict different signals measured in a full-scale framed
structure. In [257] the authors employ a support vector machine model that first
classifies the state of a structure and then evaluates damages severity. Data are
simulated with a procedure that creates anomalies by removing portions of the solid
structure. In [258] a novel anomaly detection method based on adaptive Mahalanobis-
squared distance and one-class k-Nearest Neighbours (kNN) for SHM is studied
under varying environmental conditions.

Several of the above-cited works deal with damage detection and location prob-
lems in the form of classification tasks [243–246]. Preliminary signal pre-processing
approaches to extract damage sensitive features are widely used in ML models. Most
of the authors base their investigations on accelerometer signals from which they
extract frequency and damage-sensitive modal features [246, 245, 247, 249, 248].
However, there are still limitations for applying these systems to real-life structural
monitoring because of different issues: i) the need for a preliminary consistent
pre-processing phase for damage-sensitive feature extraction; ii) the limited accuracy
of the procedures to detect frequencies and modal forms [259]; iii) the poor damage
representation of the features extracted [243].

This chapter proposes a new method for detecting damages in steel truss railway
bridges by using ML tools to classify raw strain multivariate time series data. In
a future digital twin approach, the method is suitable for real-time monitoring of
infrastructures.

The method consists of several phases. First, a set of damage scenarios is selected.
Second, a series of structural analyses are performed by an FE software driven by
a dedicated routine that applies loads and damages to the FE model. Then the raw
strain signals are collected and subjected to a feature selection phase: a k-nearest
neighbour model highlights the most informative portions of the data. Successively,
the data selected are used to train a CNN for locating damage and assessing its
severity. The method and the tool are validated by testing the classifier accuracy on
test data.
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The approach proposed is applied to a real case scenario of the Quisi bridge in
Valencia (Spain): it is a riveted steel truss railway bridge subjected to moving loads
monitored in a testing phase with strain sensors.

The chapter is structured as follows. Section 4.2 introduces the proposed method-
ology and the ML tools used; Section 4.3 describes the case study and presents the
outputs and the results of the research; Section 4.4 draws the conclusions.

4.2 Methods and Materials

This section introduces the methodology adopted and the ML tools used, highlighting
their application in each phase. The overall method is shown in Fig. 4.1 and specified
as follows: i) Fault Analysis, ii) Control Points Location, iii) Data Generation, iv)
Data Collection, v) Feature Selection, vi) Damage Location and Damage Severity
Assessment.

4.2.1 Fault Analysis: selecting damage scenarios

In line with the existing literature [253, 248, 251], a set of different damages to be
investigated is identified (phase (1) in Fig. 4.1, Faults Analysis). To this aim, the set
of structural elements considered SSS = {s1, ...,ss, ...,sns} is first determined, and we
call damage scenario the generic element ss ∈ SSS with s = 1, ...,ns. Then, for each
ss, different damage levels l ∈ LLL = {0, ..., l, ...,(nl−1)} are investigated, each l ∈ LLL
representing the severity of a selected damage scenario. Now, the set of damage
conditions FFF = { (ss, l) | ss ∈ S, l ∈ L} is defined. Moreover, for the sake of notation
simplicity, a label y j for j = 1, ...,nF with nF = ns ·nd is associated to each couple
(ss, l) specifying: i) the damage location (related to damage scenarios ss) and ii) the
damage severity (related to damage levels l).

4.2.2 Location of Control Points

This phase specifies the locations for the monitoring sensors to measure the deforma-
tion in the considered bridge structural elements (phase (2) in Fig. 4.1, Control Points
Location and in red in FE Model). The set of control points PPP = {p1, ..., pn, ..., pncp}
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Figure 4.1 Research method

represents the selected locations, where ncp is the total number of control points,
while the monitoring collects the strain signals at each point pn ∈ PPP where sensors are
placed. Note that the control points location depends on the studied structure. If the
real structure is already monitored by strain sensors, then the control points location
corresponds to the strain sensors position. If there is no monitoring system on the
real structure, it is necessary to provide an optimized procedure for determining the
control points location.

4.2.3 Data Generation

Once the damage conditions FFF and the control points PPP are determined, a procedure
generates the data (phase (3) in Fig. 4.1, Data Generation). Using a FE software,
each damage condition and random weights and speeds of the moving loads are
applied to the FE model (phase (3.nF .1) in Fig. 4.1). Hence, z different simulations
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for each damage condition (ss, l) ∈ FFF (phase (3.nF .3) in Fig. 4.1) are performed with
a total number of nsim = nF · z.

The strain values in the control points PPP are saved (phase (3.nF .3) in Fig. 4.1) as
the outputs of the simulations (phase (3.nF .2) in Fig. 4.1), so that a monodimensional
time series [260] xxx = (x1, ...,xt , ...,xT ) of strain values is collected for each analysis
in each pn. Since there are ncp control points, for each simulation a multivariate time
series [261] XXXmmm = [xxx111, ...,xxxnnn, ...,xxxncp]

′ is collected (phase (3.nF .3) in Fig. 4.1).

4.2.4 Data Collection

In the proposed methodology, the damage location is set as a classification problem,
hence the related dataset requires data and class labels. The dataset is generated
by running the nsim simulations (phase (4) in Fig. 4.1, Data Collection): for each
damage condition (ss, l) ∈ FFF , the z simulations are performed and the resulting
multivariate strain signal time series generated in PPP are labelled by the correspond-
ing label y j. By running the nsim simulations, a set of multivariate time series
X̄XX = {XXXy1

111 , ...,XXXy1
zzz , ...,XXXy j

111 , ...,XXX
y j
zzz , ...,XXX

ynF
111 , ...,XXX

ynF
zzz } is obtained so that the dataset

of multivariate strain sensors time series and labels is denoted by DDD = {(XXXy j
iii ,y j)}

with i = 1, ...,z and j = 1, ...,nF .

4.2.5 Feature Selection and ML Dataset

Feature selection is a technique that refers to the general process of detecting the
relevant features in the dataset and discarding the irrelevant ones [262]. It is closely
related to the dataset knowledge domain and is based on procedures that measure the
sensitivity of an ML model performance (e.g. accuracy) to data modifications.

A distance-based criterion is introduced in this thesis to perform feature selection
(phase (5) in Fig. 4.1, Feature Selection). Both control points PPP and damage scenarios
SSS are geometrically localized on the structural system so that the PPP distance-based
sensitivity to damage scenarios SSS is investigated to answer the question: Is the
information collected in a pn useful for each ss damage scenario classification?
This sensitivity is studied by measuring the performance (i.e., the accuracy) of a ML
model to modifications of the dataset. In particular, the investigation identifies a
subset PPPsss(((rrr)))⊆ PPP to train a ML classifier on each damage scenario ss, where PPPsss(((rrr)))
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collects the r control points that are the r closest points to the damage scenarios ss,
with r = 1, ...,ncp. More precisely, being XXXy j

iii the multivariate time series obtained by
the i-th simulation corresponding to the damage condition y j (and thus to a damage
scenario ss), the feature selection phase allows considering only the most informative
portion XXXy j

i,s whose components are selected in relation to the PPPs subset. Thus, the
resulting dataset is DDDsss = {(XXX

y j
i,s,y j)} with i = 1, ...,z and j = 1, ...,nF .

The ML model used for this phase is a k-nearest neighbours (kNN) classifier
featured with the Dynamical Time Warping (DTW) [263] as a metric. This algorithm
is widely used in time series classification problems [264–266]. For each possible
cardinality r = 1, ...,ncp of PPPs, a kNN model is fitted on the basis of the DDDsss training
data, and we denote by MMM = {m1, ...,mr, ...,mncp} the set of the obtained fitted
models. The accuracy of mr is evaluated on the DDDsss test set and the model with the
best accuracy identifies the optimum r to be considered in the CNN training and thus
the most informative portion of the dataset.

4.2.6 ML Dataset and CNN Classifier: Damage Severity Assess-
ment and Damage Detection and Location

The dataset DDDsss is split into two parts: one for training the classifier and one to test its
performance in classification (phase (6) in Fig. 4.1, ML Dataset). The usual split of
70% for the training and 30% for the test was used [267, 268]. A CNN is used as
the ML model to classify the multivariate strain signals time series (phase (7) in Fig.
4.1, CNN Classifier) and is trained in two distinct tasks:

• Damage Location: the labels in the dataset are assigned only considering the
damage scenarios PPP as label class;

• Damage Severity Assessment: the labels in the dataset are associated with the
couples belonging to the set FFF so that damage levels are also considered.

After successful training, the CNN represents the ML tool that predicts damage
location by using the multivariate strain signal time series as input. Its performance
is evaluated on the test set, a part of the data collected that have not been provided
to the model during the training phase. The model takes the test set as input and
predicts a class ŷ j for each of the XXXy j

i,s in the test set and its performance is based
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on its capacity to predict the class ŷ j that matches the real class y j. The confusion
matrices (CMs) [269] are used to measure this performance: for each true class in
test data, the CM reports the percentage of times that the model predicts a label. In
addition, the accuracy score [270] is employed as a performance measure.

4.2.7 The ML Tools used

This section describes the ML tools adopted in the procedure and their main theoreti-
cal aspects.

The nearest neighbours algorithm predicts the label of an unlabelled instance
with a predefined number of closest labelled instances. The number of labelled
instances is a user-defined constant k. The distance can be any metric measure,
such as standard Euclidean distance. This algorithm is a type of non-generalizing
learning: it does not attempt to construct a general internal model, but simply stores
and "remembers" instances of the training data. Classification is computed from a
simple majority vote of the k-nearest neighbours of each point [271]. The optimal
choice of the value k is highly data-dependent: in general a larger k suppresses the
effects of noise, helps the generalization but makes the classification boundaries less
distinct.

The DTW distance between two time series is computed by first finding the
best alignment between them: for each point in the time series, a cost matrix
that represents the cost of aligning the two points from the respective time series
is constructed. An alignment between the two time series is represented by a
warping path in the cost matrix. The best alignment is then given by a warping
path through the cost matrix that minimizes the total cost of aligning its points,
and the corresponding minimum total cost is termed as the DTW distance. In this
methodology, the algorithm 1NN-DTW was used for the feature selection phase
since it is recognized as very effective for its performance [272, 273]. A recent
implementation of the DTW applied to time series classification is available in [274].

CNNs are analogous to traditional artificial neural networks: they are composed
of subsequent layers whose neurons parameters are self-optimized during the train-
ing process. They give good performance in applications with multi-dimensional
input data, like images or videos, and their power in such applications comes from
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implementing the convolutional layer as the base layer: it focuses on local portions
of the input data enabling the network to speed up the computations.

In our problem settings, the CNN was applied on time series classification as
a feature extractor with a multivariate time series as input and output a probability
distribution of possible classes y j in the dataset. In this chapter, an architecture
proposed in [266] is implemented, already used for time series classification and as
a baseline in many studies, such as [275].

Fig. 4.2 shows the CNN architecture used. Each basic block is a convolutional
layer followed by a batch normalization layer [276] and a Rectified Linear Unit
(ReLU) activation layer. Convolution is fulfilled by three one dimensional kernels
with sizes {3,3,3}.

Figure 4.2 CNN architecture [266]

The whole network is built by stacking three convolution blocks with the filter
numerosity {64,64,64} in each block. Every pooling operation is excluded, as in
the ResNet [277], to prevent overfitting. Batch normalization is applied to speed up
the convergence and to improve generalization. After the convolution blocks, the
features are fed into a global average pooling layer [278].

Tensorflow framework [279] with its Application Program Interface (API) in
Keras [280] were used for the CNN training and validation.

4.3 The Case Study

In this section, the methodology introduced in Sec. 4.2 is applied and specified in a
real case scenario. All the phases are reported as well as the resulting performances
in both damage location and damage severity assessment.
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4.3.1 The Quisi bridge

The Quisi Bridge (Fig. 4.3) in Valencia is part of the Spanish national railway
network, connecting the towns of Alicante and Denia. It is a steel Pratt truss railway
bridge with riveted connections. The structure is approximately 170 m long and is
composed of 6 spans with lengths varying between 21 and 42 m on five steel truss
columns of different heights. A description of all the geometrical and mechanical
characteristics can be found in [241].

Figure 4.3 Quisi bridge, Benissa, Valencia Region

Since its lateral end spans are isostatics, only the first span was considered to test
the method without any loss of generality: the portion of the infrastructure used is
shown in Fig. 4.4 with a view from the FE model used in the procedure. FRAME
type elements were used to model the trusses, while SHELL elements were used to
model four stiffening plates in the initial and end portion of the span (in black in Fig.
4.4). The boundary conditions applied reproduced the real constraints of the first
span: it has a fixed support on the right external node ends and a mobile one on the
abutment on the left. All the boundaries conditions allow rotations. Elastic linear
behaviour was considered for the steel material with an elastic modulus of 210GPa
and density equal to 78.5kN/m3
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Figure 4.4 Control points location PPP (in red) and damage scenarios SSS (in blue)

4.3.2 Method

Selection of damages scenarios and location of Control Points

A set of ns = 10 bridge structural elements was randomly selected to ensure gen-
erality for the investigation so that the whole span of the bridge was subjected
to damages. Close elements also with different structural hierarchy were con-
sidered to study the method sensitivity. The set of the elements selected SSS =

{286,356,342,450,493,341,312,303,394,422} is shown in blue in Fig. 4.4, where
ss is the element name from the FE model. The faults of these elements were the
damage scenarios investigated and three damage levels LLL = {0,1,2} were defined.
A reduced cross-sectional area As was considered for each element ss to simulate the
damage [281, 282]. In particular, the area As was multiplied by 0.66,0.33,0 for the
corresponding level l = 0,1,2, respectively.

The set of all the damage conditions was FFF = {(286,0), ...,(286,2), ...,(312,2),
...,(422,2)} and the total number of damage conditions was nF = ns ·nl = 30.

The set of the control points PPP= {502,1,504,2,508,3,510,4,514,5,518,6,284}
at which the strain values monitored the damage is show in red in Fig. 4.4, where pn

is the name obtained by the FE model.

Data Generation: train load modelling

In order to perform the simulations, the train weights wt and speeds vt [283] were
selected at random. In particular, the train speed vt was sampled from a normal
distribution N (vmean,σv) with vmean = 8.33m/s and σv = 1 [284]. The train weights
wt were those of a 2500 Series diesel locomotive. The total weight of an empty train
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is 55.8tons, distributed in four bogies and two axles per bogie with a total length of
34.79m. With lw f ull = 70tons the maximum possible weight of a fully loaded train
[285], the train loads wt at each simulation were sampled from a normal distribution
N (wmean,σw) with wmean = 62tons and σw = 5 [286]. The computed load was
uniformly distributed over the axles.

Data Generation: simulations

Strain signal data at control points PPP were generated by analyses in SAP2000
software, used in research applications and commercial activities. It exposes some
Application Program Interfaces that enable its exploitation through code and was
chosen because of the availability of an already calibrated FE model [287, 241]. The
simulation campaign was implemented by Python programming language [288] that
is widely used in the ML field.

In Fig. 4.5 the activity diagram of the procedure implemented is shown. The user
specifies the damage conditions FFF , the train model (wt and vt) to use in the analysis
and the FE model file to the Configuration Handler, and then starts the SAP2000
Manager by setting the total number of simulations nsim = nF ·z = 6000 with z = 200.
The SAP2000 Manager first checks if any instance of SAP2000 software is already
running locally, and it starts one if not present. It then checks if the right FE Model
provided by the user is loaded in the SAP2000 instance, and corrects it if necessary.
The SAP2000 Manager then obtains the user-identified train model (wt and vt) and
the damage condition y j by the Configuration Handler, computes random loads for wt

and vt , communicates the loads and the damages to apply to the model to SAP2000
FEM that finally starts the analysis. The results are stored locally in files that refer to
the damage conditions applied to the FE model. The procedure is repeated until the
last simulation for the final damage condition in FFF is considered.

Direct integration time-history analyses [289] were performed for the nF se-
lected damage conditions. This type of analysis was selected because it enables: i)
considering the dynamical effects induced by moving loads [290], ii) obtaining the
time-dependent strains variations due to passing trains.
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Figure 4.5 Simulations Activity Diagram

Data Collection

A single analysis consisted of one train crossing the bridge. Fig. 4.6 gives two
examples of the strain signals of different simulated damage conditions: Fig. 4.6a
shows the signals generated for damage condition (286,2), while Fig. 4.6b refers
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to damage condition (341,1). The figures give thirteen time series obtained in each
analysis from control points pn in PPP (in legends, and in red in Fig. 4.4).

With nsim simulations the dataset is generated as a collection of pairs {(XXXy j
iii ,y j)}

with i = 1, ...,z and j = 1, ...,nF , where: i) XXXy j
iii is the multivariate strain signals time

series collected in PPP related to the damage condition y j (e.g. the signals in Fig. 4.6a);
ii) y j is the related label from the damage conditions FFF (e.g. the label y j = (286,2)).

(a) Damage condition (286,2) (b) Damage condition (341,1)

Figure 4.6 Two examples of acquisition in all PPP (in legend) for two different damage
conditions: thirteen signals are collected together for each simulation

Feature selection

The feature selection phase aimed at identifying the optimal cardinality r of Ps

that maximizes the accuracy of the ML model used and thus at detecting the most
informative part of the dataset (Sec. 4.2.5).

To assess the crucial role of this phase, the 1NN-DTW model chosen was fitted
with the complete training dataset without feature selection, i.e., XXXy j

iii . Its classification
performance was then tested and the results are shown in the CM [269] in Fig. 4.7.
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Figure 4.7 1NN-DTW CM with all available strain signals for damage location

A scattered CM with many elements far from the diagonal shows poor model
classification performance: the classifier often misclassifies the time series and the
values reported show the percentage of times of these events. The results highlight
that the classifier was limited in classifying the damage scenarios when the signals
from each pn were simultaneously used, showing that was necessary to improve the
procedure as explained in Sec. 4.2.5.

The idea proposed in this study is shown in Fig. 4.8 with an example in which
only s9 = 394 (pink) and s1 = 286 (yellow) were considered: Fig. 4.8a shows r = 1
case in which only the signal from p6 = 3 (in red) was used to train the classifier
for all damages scenario related to s9 = 394 (thus all damage conditions related to
s9 = 394); for all damages scenario related to s1 = 286 instead, only the signal from
p12 = 6 (orange) was used to train the same classifier. In Fig. 4.8b the r = 2 case
is shown, where p6 = 3 and p7 = 510 signals were considered for s9 = 394 and
p11 = 518 and p12 = 6 signals were considered for s1 = 286. Fig. 4.8c and Fig. 4.8d
show respectively r = 3 and r = 4 cases. This analysis was performed for each r.
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(a) r = 1 case: Ps = {3} for s9 = 394 and Ps = {6} for s1 = 286

(b) r = 2 case: Ps = {3,510} for s9 = 394 and Ps = {6,518} for
s1 = 286

(c) r = 3 case: Ps = {506,3,510} for s9 = 394 and Ps =

{6,518,284} for s1 = 286

(d) r = 4 case: Ps = {506,3,510,4} for s9 = 394 and Ps =

{5,6,518,284} for s1 = 286

Figure 4.8 Cardinality r of PPPsss for damage scenarios s9 = 394 and s1 = 286
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(a) m1 (b) m2 (c) m3

(d) m4 (e) m5 (f) m6

(g) m7 (h) m8 (i) m9

(j) m10 (k) m11 (l) m12

Figure 4.9 CMs of 1NN-DTW fitted models for varying r: the accuracy of the models varies
depending on r values

A number of np = 13 1NN-DTW classifiers were fitted to training data, each
one related to a different r value: the subsequent set of fitted model is thus MMM =
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{m1, ...,m13 }. Their performance was then investigated by testing their classification
predictions: Fig. 4.9 shows their CMs for predictions on test data.

The performances are resumed in Tab. 4.1 and Fig. 4.10 where the testing
accuracy (i.e. the percentage of exact predictions [270]) is reported. The best
performances were reached by m3 and m4. This is also evident in Fig. 4.9c and Fig.
4.9d where the CMs referred to m3 and m4 are the least scattered. The performance
deteriorated for classifiers with: i) r < 3 due to insufficient information; ii) r > 4 due
to more non-informative data that spoiled the performance.

Figure 4.10 1NN-DTW testing accuracy in damage location

Table 4.1 1NN-DTW accuracy in damage location

rrr 1 2 3 4 5 6 7 8 9 10 11 12 13

Accuracy 0.75 0.82 0.84 0.84 0.80 0.76 0.66 0.64 0.63 0.55 0.49 0.38 0.31

The result was finding the best m3 and m4 1NN-DTW classifiers that led to
considering only their related Ps cardinalities r = 3 and r = 4 in CNN classifier
training. The reduced dataset DDDsss was determined and split in training and test set.

CNN models training for assessing and locating damage

The CNN selected to perform time series classification was trained in this phase to
locate damage and assess its severity on the test set (see Sec. 4.2.6). Since the two
values r = 3 and r = 4 were found in the previous phase, two CNN models were
trained to locate damage and assess its severity: four CNN models were trained in
total (see Tab. 4.2).
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Table 4.2 CNNs abbreviations

r Damage Location (DL) Damage Severity Assessment (DA)

r = 3 CNN3,DL CNN3,DA

r = 4 CNN4,DL CNN4,DA

The architecture used and the hyper-parameters in the training phase were ob-
tained by the authors in [266] and [275] and are reported in Tab. 5.1.

Table 4.3 Hyperparameters for CNNs training [266][275]

Hyperparameter Specification

Epochs 500
Batch size 16
Optimizer Adam [291]

Learning rate 0.001
Loss function Cross-entropy

Fig. 4.11 shows the training and validation accuracy obtained for CNN3,DL

and CNN4,DL, while Fig. 4.12 refers to CNN3,DA and CNN4,DA. The evidence of
the training curves is the lower accuracy reached by models in Damage Severity
Assessment (CNN3,DA and CNN4,DA) in comparison with the Damage Location
(CNN3,DL and CNN4,DL).

(a) CNN3,DL accuracy (b) CNN4,DL accuracy

Figure 4.11 CNNs training and validation accuracy in Damage Location
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(a) CNN3,DA accuracy (b) CNN4,DA accuracy

Figure 4.12 CNNs training and validation accuracy in Damage Severity Assessment

4.3.3 Results: Damage Location and Damage Severity Assess-
ment test

In this section, the trained CNNs used the test set as input to predict damage location
and severity. The CNNs were compared with the 1NN-DTW in damage location
and severity assessment to evaluate their performance and it was found that they
normally perform better than the 1NN-DTW.

Table 4.4 CNNs and 1NN-DTW models accuracy resume

Damage Location (DL) Damage Severity Assessment (DA)
r CNN 1NN-DTW CNN 1NN-DTW

r = 3 CNN3,DL : 93% m3 : 84% CNN3,DA : 73% m3,DA : 56%
r = 4 CNN4,DL : 91% m4 : 84% CNN4,DA : 75% m4,D4 : 55%

Damage Location

In Damage Location, the trained CNNs took in input the test multivariate strain
sensor time series and predicted a ŷ j ∈ SSS. Tab. 4.4 reports the models overall
accuracy in prediction: despite showing good performance (84% accuracy), m3 and
m4 performed worse than the CNNs and CNN3,DL resulted the most accurate.

Fig. 4.14a and Fig. 4.14b show the CNN3,DL and CNN4,DL CMs obtained by
classifying the test data, while Fig. 4.13a and Fig. 4.13b refer to m3 and m4.



4.3 The Case Study 83

(a) CM for m3 (b) CM for m4

Figure 4.13 1NN-DTW testing performance in damage location

(a) CM for CNN3,DL (b) CM for CNN4,DL

Figure 4.14 CNNs testing performance in damage location

In particular, m3 predictions showed less dispersion than m4 with respect to
the diagonal, but there was a noticeable misclassification of s10 = 422 in s4 = 450.
Moreover, m4 manifested difficulties in classifying s6 = 341 and s9 = 394, while
both classifiers also misclassified s7 = 312 in s2 = 356.
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The CNNs outperformed m3 and m4. CNN3,DL and CNN4,DL shared similar diffi-
culties with m3 and m4 respectively, but the misclassification severity was reduced;
in particular, CNN3,DL misclassified s10 = 422 in s4 = 450 like m3, while CNN4,DL

misclassified s6 = 341 in s9 = 394 like m4. The CNNs accuracy confirmed their
utility in damage location.

Damage Severity Assessment

The trained CNNs took in input the test multivariate strain sensor time series and
predicted a ŷ j ∈ dddccc. The damage severity assessment is more complex than damage
location because different l damage levels of the same ss element are closer in terms
of similarities than two distinct ss. This complexity is shown in the following results.

The overall results are reported in Tab. 4.4, in which 1NN-DTW limitations are
highlighted by the low accuracy in discriminating between different damage levels:
m3,DA accuracy is about 56%, while m4,DA is about 55%. CNNs accuracy is instead
acceptable, even if lower than damage localization.

(a) CM for m3,DA (b) CM for m4,DA

Figure 4.15 1NN-DTW testing performance in damage severity assessment
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(a) CM for CNN3,DA (b) CM for CNN4,DA

Figure 4.16 CNNs testing performance in damage severity assessment

Fig. 4.15 and Fig. 4.16 show respectively the 1NN-DTW and CNNs models
CMs. Both m3,DA and m4,DA manifested similar difficulties respectively to m3 and m4

as in Sec. 4.4, and the majority of the mis-classifications belongs to the same damage
scenario ss. CNN3,DA and CNN4,DA also manifested the same general behaviour
concerning CNN3,DL and CNN4,DL as in Sec. 4.4, with the majority of the misclassi-
fications belonging to the same ss, but they performed better than 1NN-DTW models
in detecting different damage levels.

4.4 Conclusions

This chapter describes a method for damage location and severity assessment of
railway steel truss bridges by raw strain sensor signals, through a CNN classifier
that operates with multivariate strain signals time series as input. More precisely,
different damage scenarios were simulated with FE simulations and strain data
were generated. The CNN was trained on the generated data and performed the
classification: it assigned multivariate strain time series to damage classes.

A real case study was considered to apply the method: the Quisi bridge, a riveted
railway steel bridge located in the Valencia Region in Spain. The method uses
SAP2000 and an external application that manages simulations to collect the data.
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The phases that compose the method are: i) Faults Analysis, ii) Control Points
Location, iii) Data Generation iv) Data Collection, v) Feature Selection, vi) ML
Dataset, vii) Damage location and severity assessment. A 1NN-DTW algorithm
was used in the feature selection phase to select the most informative portion of the
dataset, while the CNN classifier was trained on the resulting data.

The main characteristics of the study are the raw strain sensors signals exploita-
tion, without any prior feature extraction pre-processing phase, and a physical-based
feature selection procedure to select the most informative portion of the dataset
generated. Differently from other approaches, the method presented avoids critical
issues on applications to real case scenarios implied by the explicit damage-sensitive
frequency-domain feature extraction. The trained CNN classifier resulting from
the method achieves high accuracy in damage location and shows good results in
damage severity assessment.

In future research, the method will be improved by using ML models that exploit
an explicit physical and geometrical description of the system.



Chapter 5

A new concept for large additive
manufacturing in construction: Tower
crane-based 3D printing controlled by
deep reinforcement learning

Accepted and partially published in Parisi, F., Sangiorgio, V., Parisi, N., Mangini,
A. M., Fanti, M. P., & Adam, J. M. (2022). A new concept for large additive
manufacturing in construction: Tower crane-based 3D printing controlled by deep
reinforcement learning. Construction Innovation. DOI:10.1108/CI-10-2022-0278

5.1 Introduction

The construction sector tends to fall behind other sectors in adopting technological
innovation [292, 5]. Studies carried out over past ten years pointed out that much
of the innovation in the construction industry goes unnoticed and is not visible to
traditional metrics and measurements [293]. In the last decade, the unprecedented
development and diffusion of novel systems in the building sector have included
the advent of 3D printing and additive manufacturing technologies [294]. Several
companies have developed 3D construction printing systems and are investing in
applied research, while the positive trend toward original research articles and re-
views shows the considerable interest and potential of this revolutionary construction
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process [295].
Additive manufacturing systems (or 3D printers) are classified into seven categories
according to the ISO/ASTM 52900 [93]: i) binder jetting, ii) directed energy depo-
sition, iii) material extrusion, iv) material jetting, v) powder bed fusion, vi) sheet
lamination and vii) vat photopolymerization. Of these seven, the most popular
additive manufacturing category in construction is extrusion-based 3D printing, in
which a viscous material (e.g. cementitious material, clay or raw earth) is deposited
in layers as a continuous filament from a nozzle [96]. Concrete is the printing mate-
rial of greatest interest to companies and researchers (extrusion-based 3D concrete
printing) and has been widely studied in recent research projects [98]. The focus of
additive manufacturing and prototyping in the construction field is on cement and
concrete because of their broader use and lower costs [99, 100]. Even if extrusion-
based 3D concrete printing is the most frequently used method in the building sector
[295, 296], there are still no “better” or “more widely used” systems to make printing
machinery. The printing extruder is typically positioned on a gantry or robotic arm
according to the required precision and building dimensions. Although the system
is being improved thanks to global interest, certain limitations prevent its massive
diffusion. The actual dimensions and performance of 3D printed buildings are very
different from the structures achieved with traditional techniques [297, 298]. One of
the most important limitations is the max dimension of the build volume. The current
machine systems reach heights of about ten meters with typically no more than two
floors. Moreover, the large size of the gantry system or robotic arm would make
the machinery system repositioning from one construction site to another difficult,
implying the impossibility of printing components directly on different floors unless
the printer is moved from floor to floor.
In the traditional construction industry, tower cranes, which have fewer indepen-
dent actuators than the degrees of freedom of the system, are used to construct
high-rise buildings, move heavy objects and cast concrete on higher floors [299].
Compared with fully actuated systems, under-actuated systems have advantages in
energy saving, cost reduction, weight reduction and system flexibility [300], while
being more difficult to control due to the lack of control inputs [301]. The related
literature indicates that these machines are the most widely used systems for high-rise
buildings. The use of tower cranes becomes much more important in large-scale
projects (especially for high-rise buildings) [302], so that recent research interest
has focused on integrating modern methods such as control systems [303, 92, 304]
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and monitoring [305] in tower cranes. A recent review [306] emphasizes that Re-
inforcement Learning (RL) will play a leading role in improving the applicability
and effectiveness of these machines [307]. Of the 129 papers cited in the literature
review [306], only six papers were found dedicated to AI control.
This chapter proposes a new additive manufacturing system including an AI-controlled
TC-based 3D Printing as the first step in developing 3D printing for high-rise build-
ings. It combines one of the most important machines used for constructing high-rise
buildings and 3D printing through an “aero-pendulum extruder”. The extruder is
based on recent studies that showed the effectiveness of aero-pendulum control sys-
tems, consisting of a pendulum arm with a motorized propeller at its free end [308].
This ambitious research was carried out in three stages: firstly, the aero-pendulum
extruder (hooked up to a crane cable) was proposed to correct the extruder toolpath
during the printing process. Secondly, a Deep Reinforcement Learning agent was
trained to control the crane and the extruder toolpath to achieve an effective printing
of large components. Thirdly, according to other works in the literature [309–313],
the proposed system was then validated by simulating the control system dynamics.
This approach overcomes one of the main drawbacks of current large 3D printing
systems, i.e. the extrusion of large components on high floors in multi-story build-
ings.
The chapter aims to introduce this potential new technology, supported by a feasibil-
ity study. This study investigates high-level system control to verify if the accuracy
reached in counteracting the swing effect, even when subjected to external uncertain-
ties, is acceptable for applications in the construction industry.
The novelty of the proposed approach is threefold: i) a tower crane system is used for
the first time for 3D printing in combination with an aero-pendulum extruder; ii) the
novel concept represents an advance on the current systems for high-rise construc-
tions; iii) an AI-based control system is included to control both the Tower-Crane
and the aero-pendulum extruder.
The rest of the chapter is structured as follows. Section 5.2 contains a review of the
literature in the field of large 3D construction printing. Section 5.3 describes the
technological and methodological approach, Section 5.4 gives the validation results
and performances and Section 5.5 contains our conclusions.
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5.2 Literature review

5.2.1 Large 3D construction printing

The growing interest in extrusion-based 3D concrete printing in architecture, engi-
neering and the construction (AEC) industry is principally due to its lower costs,
reduced waste and simple supply chain [314]. According to the classification in
[315], the possible use of additive manufacturing in AEC includes 3D printing el-
ements, prefabricated 3D printing formworks, and monolithic 3D printing on-site.
While the first two applications are usable both on-site and in laboratories, the third
must necessarily be carried out on-site; thus, large and precise 3D printers are re-
quired to create large structures both in laboratories and in situ (even on floors in
elevation). Currently, there are four systems used to achieve large extrusion-based
3D concrete printing (Fig.5.1):

• The gantry system is based on a frame structure to support the printer extruder
and its actuator which control the movements in any direction along the
Cartesian coordinates X, Y and Z [316]. [317] or [318] represent some of the
companies applying this system for two-story buildings;

• The cable-suspended solution arose from the need to obtain large 3D con-
crete printing easy to transport, dismantle and reassemble [319]. The cable-
suspended printer system is composed of an extruder attached to an external
frame by multiple cables. Different types of the frame can be used to make the
printer easily reconfigurable and transportable [320]. Different applications
using cable-suspended 3D have been developed by the WASP company [321]
to construct single-story buildings;

• The robotic arm is a solution in terms of print quality and freeform geometries
generation and has been used to obtain complex shapes [322] and geometries
with non-planar layers to the printing plane [323]. Despite its numerous
advantages, it has high machine costs and difficulty in reaching large printers,
so only a few companies and research groups have applied the system to single-
story buildings [106]. A robotic arm coupled to a modified truck was used
in a recent attempt to convert a commonly used construction system (a truck-
mounted concrete pump) into a 3D printer [296]. This novel concept, named
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CONPrint3D, is still under development and aims to reach a more efficient and
economical advanced construction process that is less resource-consuming and
acceptable to industry practitioners. Recent studies have developed control
systems to reduce the oscillation amplitudes by up to 95% and expand the
extruder toolpath [105].

Figure 5.1 Different systems used to obtain large extrusion-based 3D concrete printing
machines. a) Gantry, b) cable-suspended, c) robotic arm, d) robotic arm coupled to a
modified truck.

A literature review of large 3D construction printings emphasizes the direction of
recent investigations and the companies’ interest in even larger systems, while the
aim is to adapt the existing large construction machines to meet the needs of both
industry and practitioners. This idea is in line with the bibliographical review in
[296] which came to the following conclusion, “The development of new printing
systems for large-scale buildings as well as new composite materials is essential to
provide versatile and viable applications for 3D construction printing in the future.”
According to [105], the current large construction machines (such as tower cranes,
mobile excavators or loaders) are not designed for the precision required in concrete
printing, and their improvement with modifications and modern control systems to
meet the required accuracy is needed.

5.2.2 Artificial intelligence in the control for 3D printing and
tower-crane handling

AI is designed to deal with ill-defined complex problems intentionally, intelligently
and adaptively and can be very effective in AEC to learn inputs such as human per-
ceptions, representing knowledge, reasoning, problem-solving and planning [324].
In synergy with additive manufacturing, it can be used to improve different aspects
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of 3D printing: i) material tuning, ii) process optimization, iii) on-site monitoring,
iv) cloud service, and v) cybersecurity. Some widespread AI applications in additive
manufacturing, such as autonomous anomaly detection [325–328] or 3d-printed
parts inspection [329–332], are based on its strong capability to deal with high-
dimensional data such as images or videos.
DRL implements the control task by the AI (precisely Deep Learning) capability
to manage images and videos. Many successful applications of this potential are
available in autonomous vehicles control [333, 334] and robotics-related [335, 336]
literature. There are also applications in the additive manufacturing literature using
DRL controllers driven by real-time high-dimensional data: in [337] authors use
DRL to learn and control an high-sensitive to parameters process in Robotic Wire
Arc Additive Manufacturing; in [338] authors employ DRL in the field of Laser
Powder Bed Fusion additive manufacturing technology for dynamically altering
process parameters to avoid phenomena that lead to defect occurrences; [339] inves-
tigates the sensor-adaptive 3D printing with a robotic agent by implementing DRL.
While few applications can be found to improve 3D printing control systems for
the construction industry, a recent review [340] pointed out that AI systems have
been developed in a wide spectrum of applications, ranging from the design of 3D
printing, process optimization and in situ monitoring. The reason for this lack of
applications is that there are no publications in the literature to convert complex
handling systems (such as under-actuated machines) into additive manufacturing
systems.
The tower crane control is a topic already deeply investigated in the academic
literature, and many different advanced control approaches have been applied
[309, 341, 310, 92, 342, 311, 312, 343], but there are no applications in which
the control is intended for additive manufacturing applications. Some AI applica-
tions can be used in construction to support tower-crane 3D printing. Most research
studies have been conducted to support decision-making on crane selection, crane
layout and increasing safety in lift path planning. For example, Artificial Neural
Network (ANN) systems are used in [344] to support crane selection, in [345] for
the optimization of transport time and related costs, and in [346] to study safety
aspects and structural monitoring. Some works can also be found in the field of
ANN-based control for tower-crane handling. [309] proposes a hybrid evolution-
ary algorithm using a recurrent neural network to control a 3D tower crane, while
[347] uses an additional neural network-based friction compensator to systematically
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control system complexity. The latest studies in the field investigated the use of
an ANN-based system to control the payload swing of a tower crane [348] and
track a double-pendulum tower crane with non-ideal inputs [343]. There is still no
application in the literature of DRL for tower crane control.
To sum up, even though the potential of AI-based control systems has been demon-
strated, no application is at present available to improve 3D printing control or to
convert current construction systems into large 3D printers.

5.3 Methods and material

5.3.1 Tower-crane based 3D printing controlled by AI

Most of the current 3D printing systems used in AEC do not comply with the
requirement of on-site, large-scale multi-story building systems [105]. The most
widely used 3D printing systems cannot construct higher than two stories and have
to be raised to build the second story. In addition, as increasing the size of the printer
involves higher costs and complex transport problems, the 3D components are printed
off-site (prefabricated 3D printing)[105, 295]. Therefore, the present study proposes
the new TC 3D printing concept, a building system as the first step towards achieving
a multi-story construction process based on additive manufacturing, to reduce time,
costs and resources.
The new concept is presented in Fig.5.2 in which the large curved wall marked in
red is a challenging geometry (extremely common in architecture) to be achieved
by using the proposed tower crane 3D printing. The concept proposed is based
on two synergistic improvements of the classical tower crane to transform it into
a large additive manufacturing machine. The first improvement is the use of an
aero-pendulum extruder mounted on the crane cable, on the basis of studies carried
out at the University of Arizona (Dep. of Aerospace and Mechanical Engineering)
[349–351, 308]. While the geometry to build is obtained by actuating the trolley
and the jib, the controlled propellers of the aero-pendulum extruder counteract the
swing effect induced by the movement during the extrusion and keep the extruder
aligned with the crane trolley, and the cable perpendicular to the crane jib. The
second improvement deals with the control of the whole machine to achieve the
needed accuracy: a DRL controlling agent is proposed to control the tower crane
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actuation and the aero-pendulum extruder propellers.
The concept proposed differs from other approaches in that it is the first time

Figure 5.2 TC-based 3D Printing system concept and aero-pendulum extruder.

a commonly used tower crane system is equipped with a custom extruder and is
controlled with an AI-based control system. New concepts that have not yet been
tested propose the upgrading of existing construction machinery with the goal of
economic sustainability and early deployment in construction. For example, the
system proposed in [105] consists of a modified truck equipped with a robotic arm
and a concrete pump. In the present study, a modern AI-based control system was
developed, trained, tested and validated to obtain an effective extruder path. The
following sections describe the control problem of the tower crane equipped with
the aero-pendulum extruder with DRL.
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5.3.2 DRL control framework for the tower crane and extruder
swing effect

This section describes the DRL tower crane control framework to transform it into
an extrusion-based 3D printing system. The core of the approach is based on an
intelligent DRL agent that dynamically activates the tower’s degrees of freedom to
minimize the extruder swing effect while maximising printing speed (Fig.5.3). The
aero-pendulum is kept aligned with the crane trolley and the crane cable remains
perpendicular to the jib. The AI-based control system was modelled by defining: i)
the environment and its states, ii) the possible actions that the agent can execute, iii)
the reward function and iv) the agent modelling with its learning algorithm.

Figure 5.3 DRL framework specification of the problem.

System model

The system consists of the tower crane structure from which the extruder is suspended.
The jib rotates around the tower axis while the trolley moves along the jib (Fig.5.4).
The trolley position at time t is described by a vector of polar coordinates ct =

[ρt ,θt ]
T , where ρt is the linear coordinate along the jib and θt is the angle around the

tower axis at time t (Fig.5.5).
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Figure 5.4 Tower-crane 3D printing system: a) wall geometry detail: height, number of
layers and layer thickness; b) manufacturing system general view.

Figure 5.5 System configuration: trajectory, jib actuation θt and propeller thrust force Ft .

The trolley is confined to the trajectory, so that ρt = f (θt), where θt is the only
actuated trolley degree of freedom. In related literature [309, 341, 310? , 342, 303,
304, 313], the tower crane’s deformability is typically not considered even if loads
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are heavy. In the presented application, the influence of structural deformations is
negligible since there is not a heavy load. The extruder has to follow a semi-circular
trajectory to build the required object: a 2m high curved wall of radius r = 10m, made
up of 40×5cm layers. This shape was chosen since curved trajectories are the most
complex for the proposed Tower-Crane based 3D Printer because of the variation of
the direction of acceleration (Fig.5.4, Fig.5.5). While the trolley is directly actuated,
it induces a swing effect on the suspended extruder, which is stabilized by the
thrust force generated by the propellers. The swing effect is investigated only in
the direction perpendicular to the trajectory, so that a single thrust force Ft was
considered to act on the extruder (Fig.5.5).

Environment

The environment represents the system with which the agent interacts, applying
actions and observing states. The tower crane structure was modelled together with
the suspended extruder on Simscape Multibody software [352] and by appropriately
modifying the related model in [353]. The tower crane considered has a working
volume defined by a radius of 50m (jib length) and a height of 45m (tower height).
The original Simscape Multibody model included pulleys, cables and belts to control
the trolley’s movements along the jib and to lift the suspended extruder by specifying
the whole range of kinematics. In Fig.5.6 (upper left, with no coloured boxes)
represents the existing tower crane model and its relative components:

• tower, jib, trolley and extruder, as shown in Fig.5.4 and Fig.5.5;

• trolley pulleys, together with the revolute trolley drum and prismatic trolley
are responsible for the trolley’s movements along the jib;

• the hoist pulleys and revolute hoist drum are responsible for raising the ex-
truder.

Other components were included to configure the DRL problem to model the pro-
posed TC-based 3D Printer, represented by colored boxes in Fig.5.6:

• an aero-pendulum extruder substitutes the suspended load and a block is
included to collect and convert the extruder coordinates (yellow box);
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• the trolley is constrained on the trajectory and its position is θt , the actuated
degree of freedom (green box);

• a specific component represents the actions of the agent on the environment
and, in particular, the actuations of the proposed system. The jib revolution
around the tower is actuated by specifying the angle θt , while the thrust force
Ft acts directly on the hanging extruder (blue box);

• a state component collects the fundamental information from the system (such
as extruder and trolley coordinates, red box).

Figure 5.6 Simscape Multibody model of the tower crane (DRL problem environment)
adapted from [353].

Action space

The action space is of basic importance since it allows the intelligent agent to control
the degrees of freedom actuated. In this set up, the agent can act on the polar
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coordinates of the trolley to determine the thrust force on the swinging extruder. As
the action space is continuous, the agent can select all the values between the actions
boundaries. In each time step the actions are identified by the vector aaat = [θa,t ,Ft ]

T ,
where θa,t is the increment of the agent angular actuation of the jib at time t, and
Ft is the thrust force applied by the agent to compensate the extruder swing at time
t. θa,t being an increment, the angular coordinate of the jib at each time step is
θt = ∑

t
t=0 θa,t . The boundaries to the actions value are imposed depending on the

system investigated. Then the action space is the set defined in Eq.5.1:

A = {aaat = [θa,t ,Ft ]
T |Ft ∈ [−300N,300N],θa,t ∈ [0.005,0.2]} (5.1)

More precisely, the thrust force action space represents the feasible thrust obtainable
with the propellers momentum theory [354] and θa,t is selected so that the system is
never stopped and can print at an angular speed of up to 2deg/s limit.

State space

The agent observations represent the information on the environmental states avail-
able to the agent in each time step t. The observations are identified by the vector
ωωω ttt = [pt , ṗt , p̈t ,θa,t ,Ft ,θt ,xtr,t ,ytr,t , ẋtr,t , ẏtr,t , ẍtr,t , ÿtr,t ]

T , where all the values refer to
time step t:

• pt , ṗt , p̈t are respectively the relative positions, speeds and accelerations be-
tween the extruder and the trolley in the direction perpendicular to the trajec-
tory;

• θa,t is the agent angular actuation;

• Ft is the thrust force applied by the agent to compensate the extruder swing;

• θt is the trolley angular coordinate;

• xtr,t ,ytr,t , ẋtr,t , ẏtr,t , ẍtr,t , ÿtr,t are respectively the trolley absolute coordinates,
speeds and accelerations in x and y directions in the global reference system.



100
A new concept for large additive manufacturing in construction: Tower crane-based

3D printing controlled by deep reinforcement learning

Reward

At each time step, the agent executes its actions and receives a reward representing
the effects of the actions on the environment. The reward can be considered the
feedback from the environment and measures the success or failure of the agent’s
actions. In the proposed environment, the agent collects a high (and positive) reward
if the extruder closely follows the imposed trajectory as fast as possible, so that the
agent needs to reduce the swing effect while moving faster. In order to obtain this
result it is necessary to select the right reward function R. In the considered system,
the reward rt provided to the agent at time step t is the following:

rt = θa,t−1 · rp,t = θa,t−1 ·
25

1+108pt
(5.2)

where θa,t−1 is the angular actuation of the agent in the previous time step. The
proposed reward function is justified by two objects:

• rp,t =
25

1+108pt is the reward component that depends on the desired trajectory
in terms of position. The better the extruder follows the trolley the bigger the
agent’s reward. In order to behave correctly, the extruder has to minimize its
distance from the moving trolley and the agent gains a greater reward if it
maintains the extruder close to the desired trajectory.

• θa,t−1 is the reward component that considers the angular jib actuation in
the previous time step. This component encourages the agent to go faster in
following the trajectory.

Agent modelling and learning algorithm

Of the families of RL algorithms, we used the policy gradient method, which
optimizes the performance of the expected cumulative reward by finding a good
parametrized neural network policy. The chosen algorithm is the Twin-Delayed
Deep Deterministic Policy Gradient (TD3) [355, 356], an RL method suitable for
models characterized by continuous action spaces [357]. The TD3 is an actor-critic
architecture that consists of two parts: an actor and a critic. The actor refers to the
policy and the critic estimates a value function such as the Q-value function.
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(a) Critic Neural Network architecture. (b) Actor Neural Network architecture.

Figure 5.7 Actor-Critic architectures.

Both the critic and the actor are represented by neural networks [358]. The critic
network in Fig.5.7a processes both the environment states (observations) and agent’s
actions as input and computes the expectation of the long-term reward Q(s,a). It
is composed of fully-connected layers (FC) with ReLU activation functions, and
its output is used to update the policy. The actor network in Fig.5.7b processes
the environment states and outputs the actions that maximize the long-term reward.
It is composed of a single path of subsequent FC layers, while the output layer
is featured with a Tanh activation function [359]. An extensive description of the
learning algorithm used is given in [360].

5.4 Results and validation

5.4.1 Training and simulation

The training phase aims at training both the actor and the critic networks to make the
agent behave as desired. The agent’s iterative interaction with the environment, as
schematized in Fig.5.3, thus updates the neural network weights and biases to match
the correct behavior. The iterative interaction is performed through simulations in the
software environment, with discrete time steps t = 0.1s, while the total simulation
time is T = 60s. The agent acts on the environment by applying the actions specified
in each time step, gets the reward and the observations on the environment state, and
updates the actor and critic parameters. Tab. 5.1 shows the network parameters used
in the training phase: the Adam algorithm [291] was used to minimize the loss with
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learning rate µa = 0.0001 for the actor and µc = 0.001 for the critic; the experience
buffer length was set to 106 and the discount factor to γ = 0.99 .

Table 5.1 Parameter in the RL networks

Parameter Values

Minibatch size size 512

Experience Buffer Length 1 ·106

Optimizer Adam [291]

Actor Learning rate 0.0001

Critic Learning rate 0.001

Discount Factor 0.99

Fig.5.8 provides the plot of the total accumulated rewards during the training
phase. The cumulative reward of each episode is shown in light blue, while the
cumulative average reward of the whole training phase is highlighted in red. It can
be seen that the agent needed roughly 5000 simulation episodes to explore the action
space, before starting to consistently gain growing accumulated rewards. After 5000
episodes, the agent gradually improved its behavior, reaching its best performance
in the final part of the training in which it stabilized around an average cumulative
reward of approximately 750. After training, the agent was ready for testing in the
3D printing procedure, i.e., a test of its ability to follow the trajectory in comparison
with the non-controlled configuration.

5.4.2 Testing and validation

The agent’s performance was compared with the non-controlled configuration by
simulating the printing process of the full-scale testing geometry and the accuracy
achieved was compared with permissible tolerance allowed by the Eurocode 6 EN
1996-2:2006 [361].
The test considered external disturbances, modelled as forces acting on the ex-
truder during the whole printing process. The disturbances d(t) to the system are
modelled by the following function: d (t) = A · sin( f · t +φ)+ b, where A, f , φ

and b are respectively the disturbance amplitude, frequency, phase and bias sam-
pled from uniform distributions, respectively, in the open intervals (−200,200)N,
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Figure 5.8 Training phase: episode reward and average reward of the agent.

(6.28,62.8)rad/s, (0,0.35)rad and (0,30)N.
Both the uncontrolled and controlled systems were simulated applying a different
disturbance function in each layer and the global coordinates of the extruder were
collected, after which a trajectory was obtained for each printed layer for both con-
figurations.
Fig.5.9 depicts the plan of the geometries printed in both system configurations.
The trajectories of the 40 layers of the 2m high curved wall are overlapped and
their envelopes were obtained to emphazise the minimum and maximum distances
reached from the base trajectory. Fig.5.9 shows the following curves in more detail:
i) the black dotted curve represents the target trajectory, i.e. the ideal trajectory
required to print the planned wall; ii) the red continuous curves show the envelope
obtained in the non-controlled configuration with the maximum deviations of the
extruder from the target trajectory by showing the poor performance obtained with
no control; iii) the blue continuous curves represent the envelope of the controlled
trajectories, which are extremely close to the ideal target trajectory. The uncontrolled
trajectory was obtained by requiring the extruder to realize a single layer in T = 60s
at a constant angular speed of θ̇ = 0.72deg/s. The resulting swing effect of the
uncontrolled extruder compromises the geometry, highlighting that the full-scale 3D
printing can not correctly work without a suitable control. On the other hand, the
RL controlled configuration shows great potential: in Fig.5.9 the target trajectory
and the controlled trajectory are effectively overlapping, with very narrow envelope,
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Figure 5.9 Trajectoriy envelopes in controlled and un-controlled configurations.

showing that the layers are aligned with each other in height (fundamental principle
for effective printing) and the RL agent’s ability to consistently react to varying
external conditions while performing accurately.
Fig.5.10 depicts the trajectories of the whole geometry printed in both configurations
in a three-dimensional visualization (with and without control). The layer trajec-
tories are represented and colored according to the absolute error value measured
in meters. Fig.5.10a shows the not correct behaviour of the non-controlled system:
the geometry of the printed element exhibits an absolute error that reaches a value
of 0.99 m in relation to the base geometry (black dashed curve). Fig.5.10b shows
instead graphically the good performance of the RL-controlled approach, reporting
an absolute error always less than 0.1 meters.
The accuracy of the proposed system was further analyzed by investigating the
absolute error of the printed geometry in relation to the base geometry. Fig.5.11
gives the numerical information contained in Fig.5.10, representing the absolute
error envelopes in both configurations. This additional investigation emphasizes the
envelope of the maximum and minimum values of the absolute error during the entire
printing process containing the absolute error variation in each layer (curves depicted
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Figure 5.10 Absolute Error: a) non-controlled configuration, b) controlled configuration.

inside the envelopes). The uncontrolled behavior reaches 0.99 m of the absolute error
with respect to the deviation from the task trajectory. The RL-controlled approach
shows a good performance, with the maximum absolute error of 0.08 m in the worst
case (at the end of the printing process) and an average absolute error of 0.045m
during the process. As shown in Fig.5.11, the widths of the different envelopes,
especially the limited width in the RL-controlled configuration, highlight the agent’s
ability to react successfully to the varying external conditions acting on the extruder.
The RL-controlled approach also shows a better performance in terms of process
duration: the RL-controlled configuration accomplishes the entire control task in
each layer in about 52s instead of the 60s required by the uncontrolled system (see
Fig.5.11).
The performance in terms of accuracy can be compared with the permissible tol-
erance allowed by Eurocode 6 EN 1996-2:2006 [361], which allows admissible
values of deviation from the intended line (straightness) [362] respectively for each
1 meter and 10 meters masonry’s portions. In this study it is applied to the curved
wall application. Tab.5.2 reports the worst performance measures specified for both
the RL-controlled and uncontrolled systems and shows that the former’s accuracy
results in line with the admissible tolerances of the EN 1996-2:2006. These results
highlight the good performance of this preliminary feasibility and conceptual stage
of the technological development.
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Figure 5.11 Comparison of absolute error between controlled and uncontrolled trajectories.

Table 5.2 Worst performance measures in RL-controlled and non-controlled systems for the
first layer.

System Deviation from intended line EN 1996-2:2006 tolerance limit

RL-controlled
10mm ±10mm in any 1 meter
49mm ±50mm in 10 meters

Non-controlled
493mm ±10mm in any 1 meter
706mm ±50mm in 10 meters

5.5 Conclusions

This chapter proposes for the first time the concept of a TC-based 3D Printer. This
new additive manufacturing system combines the tower crane (one of the most
important machines used in high-rise building construction) with an “aero-pendulum
extruder” consisting of a hanging extruder equipped with propellers controlled to
counteract the swing effect. The principal challenge of such a new concept is the
control system to produce an effective extruding toolpath for the 3D printer. This
ambitious goal is reached by proposing an DRL-based control system. The simulated
results show the feasibility of the concept by analyzing the training, simulation
and validation of a Deep Reinforcement Learning based control of the TC extruder.
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The DRL control system can obtain a tolerance for masonries building in line with
Eurocode 6 with respect to the ideal trajectory compared with the case of the system
without stabilization.
To sum up, the three main novelties of the new concept are as follows:

• the idea of upgrading a tower crane with an aero-pendulum extruder is pro-
posed for the first time in the technical and scientific literature;

• the TC-based 3D printer represents the upgrading of the largest and most
widely used building machine for high rise buildings to enhance additive
manufacturing in construction;

• for the first time a DRL-based control system was modelled, trained and
validated for the control of a tower crane machine equipped with an aero-
pendulum extruder to support obtain a large 3D printer.

Proving the feasibility of the proposed system is the first step in the development
of a new additive manufacturing system for multi-story constructions by large
TC-based 3D Printing. The research work opens up new possibilities to activate
experimental research for companies and research centers and lays the foundation
to overcome the most relevant limitation of the additive manufacturing application
in the construction industry, i.e. the build volume. The outcomes of this study
will allow researchers to develop new easy-to-access technology for enterprises and
manufacturers, and engineers to reach both freedom in geometry and build volume,
features impossible to combine in the present state of the art. The results presented
will allow working on the construction of a scaled-down prototype of the 3D Printer
and its control system. Such work will be able to investigate practical aspects of the
implementation and test the proposed system. Moreover, studies of the most effective
printing material, concrete pumping system and extruder nozzle to obtain a practical
building system can be performed together with the integration of a real-time image
processing-driven control in the proposed DRL approach.



Chapter 6

General results discussion

In this chapter, the main results reached in the application of the 4.0-related tech-
nologies investigated in the thesis are presented. The literature findings about the
application of technologies such as Big Data and Internet Of Things are presented in
the IB context, considering also BIM and ST. The findings of AI and ML application
in fault detection of structural systems and in robotics for additive manufacturing are
then resumed.

6.1 ICT technologies for intelligent systems in life cy-
cle management of constructions

The implementation strategies of ICT technologies in IBs and smart constructions
aim to optimize the management of life cycle domains. IBs were investigated as an
intelligent systems supporting the optimization of the whole building construction
process. Such systems need specific features like: i) cloud-based architecture, ii)
powerful data visualization, iii) real-time sensing and acting, iv) analytics on het-
erogeneous data, in order to build a consistent reusable and transferable knowledge.
A technological framework in which to build such a system is proposed in Section
3.2.2 and is composed by the inner components in Fig. 3.6.

In the results discussion, we need to consider that the construction process
during the whole life cycle is a complex process, due to the countless technical
and management aspects involved. Mainly, this process is still conducted with an
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anachronistic approach if compared to other engineering research fields: operative
tools allow for simulating many mandatory aspects in the design phase such as
structural design, technological sub-system design and legal constraints in urban
planning. After the design, the construction phase needs to follow strictly the design
specifications; after the construction, a single time-defined testing step assures the
correspondence between design and construction; the future development during
operational stages is not usually investigated and monitored, and it is not usually and
systematically compared with the pre-construction design simulations.

These observations lead to point out the following two challenges:

• engineers take decisions on the basis of simulations and their own personal
experience, that are not formalized knowledge; being not formalized, it is
difficult to reuse or transfer;

• the real construction performance during building life cycle is not matched with
the pre-construction designed one, so that there is no evaluation of effectiveness
of design decisions.

Regarding the first item above, the key to solving this drawback is the availability
of systems capable of collecting data and enriching formalized and reusable knowl-
edge. Their application to multiple buildings would allow the collection and the
enrichment of unified, shared and usable knowledge.

Examples of this kind of system, providing automatic generation of knowledge
bases from data, are available in the literature, such as [363–365]. These systems
are presently introduced in general terms and applied in other research fields. Their
application to the IB area and construction industry in general would provide the pos-
sibility of automatically creating and formalising real-time, up-to-date and reusable
knowledge on which to build software and services to support building life cycle
management.

Regarding the second item above, it is important to consider that the starting
point in the performance evaluation of the construction life cycle is the collection
of effective heterogeneous data. The actual flows and real-time event processing
feature activities of all emerging intelligent systems in other research field areas. In a
construction system, data are referred to as BIM general data, IoT sensors data, and
third part service data from remote repositories, e.g. weather data. Each of these data
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types shows its features, like different granularity, semantic enrichment, and typical
big data characteristic reported in Chapter 6: the big data paradigm is the most
suitable one for this kind of application. In the state-of-the-art, IFC format is the de
facto standard to represent the BIM model and is largely used also in cloud-based
visualization applications. The distributed storage and retrieving best technological
strategy is still to be investigated.

About the collection of heterogeneous data, a specific issue is related to inter-
operability and data format. The most used format for interoperability is still the
IFC format, used to migrate from proprietary-specific platforms to common usable
formats. Despite its effectiveness, the necessity of conversion between data formats
creates issues in data management in the life cycle and between stakeholders. A
change of paradigm of a global unified environment in which to completely manage
data ranging from BIM to IoT sensors data should be investigated, to understand
how to organically integrate the independent proprietary platforms in this ecosystem.
To this aim, semantic web technologies may enhance the potential of construc-
tion systems, e.g. by improving non-technical stakeholders’ involvement in data
management and monitoring.

6.2 ML in fault detection of structural systems

In Chapter 4 a methodology to localize damages of a truss railway bridge was
presented. This particular method features many characteristics: i) it does not need
preliminary damage-sensitive feature extraction to prepare the data to feed the ML
models; ii) differently from most of the approaches in the related literature [246, 245,
247, 249, 248], it uses raw strain sensor signals and not vibrational signals; iii) it
introduces a distance-based criterion to investigate the most informative portion of the
dataset and consequently to allow the CNN training with high-dimensional data. The
dataset investigation is based on physical and geometrical observation of the system
structure and has a crucial role because the dimensionality of multivariate strain
sensor signals, without the investigation, makes effective CNN training difficult.

It features also some limitations. First, a proper updated FE model to generate
data representative of the real infrastructure is necessary. To perform data-driven
analysis on damaged conditions of infrastructures, data that refer to the damage
conditions are needed. However, a real infrastructure in its operative condition cannot
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have “experienced” the totality of the damages that produce the needed amount of
data. Hence, “real” data of damage conditions are usually not available. Therefore,
the FE model is necessary because it represents the source to generate data to train
the ML monitoring algorithms on scenarios of interest. An accurate FE model is
requested by many other works in the related literature [243–246, 248, 251], thus
the method proposed is in line with the studies on the use of ML methodology in
SHM. A model updating phase is thus needed before performing damage scenarios
simulations and data generations. The concept is the base of a digital twin approach,
a challenging and emerging technology for maintenance and fault detection in main
infrastructures.

Despite assessing its generality by randomly selecting structural elements, the
proposed method can be generalized on different damage scenarios and the use
of commercial software contributes to this generalization capability. A different
rationale can be used to focus on peculiar damage scenarios of the structure consid-
ered in the investigation, e.g the fatigue propagation into riveted steel truss bridges
[366, 239, 367]. A different rationale can also involve a large number of damage
scenarios, and thus the effect of the classes numerosity has to be further investigated,
e.g., the method scalability to large multi-class classification problems. However,
as the authors state in [368], the classes numerosity is generally not considered as a
limitation, since studies of large multi-class problems are present in ML research
field, e.g., in [369] the trained classifier deals with about one thousand classes.
In such cases, where a large number of damage scenarios are considered, the use
of a “normal state” as a reference can be considered in the evaluation of better
classification performance.

The method can be enhanced in future research by improving: i) the informative
content of the collected data; ii) the adopted ML model architectures. Both these
aspects are related to the physical structure of the investigated system. Informative
content improvements can be obtained by focusing on control points location on
the infrastructure. In this study two misclassified damage scenarios represent two
structural elements physically close to each other (Fig. 4.4), and an optimal control
points location strategy could thus maximize the sensitivity to different damages. In
addition, the ML model architectures can be improved by feeding the algorithms with
the physical important features of the system. A solution comes from ML models
that perform computations with different data structures: the ML models can perform
additional evaluations by employing further knowledge levels. To this aim future
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works will consider and utilize ML models working on different data structures, such
as Graph Neural Networks [370, 371] that allow following the evolution in terms of
geometry and relations between parts of the physical system.

6.3 AI in additive manufacturing for the construction
industry

There is still much space for AM application in the construction industry, and
many challenging problems still need to be solved. The TC-based 3D Printer
system proposed in Chapter 5 represents a new concept for on-site large additive
manufacturing applications, exploiting the extrusion-based material deposition with
viscous material, as in most of the existing approaches.

6.3.1 Positive aspects

The basic idea was to avoid conceptualizing new machines and exploit the best
existing technology, currently used in the construction industry.
In the academic and technical world, the only other attempt to convert one of the
widespread construction machines into a 3D printer is the CONPrint3D [296], a new
3D printing system to convert truck-mounted concrete pumps into additive manu-
facturing machines. The similarities and differences between the present proposal
and CONPrint3D highlight the novelties and positive aspects of the proposed system.
Both these new concepts aim to adapt 3D-printing concrete technology to today’s ar-
chitecture and structural design, with a truck-mounted concrete pump or tower crane
in the case of CONPrint3D. While CONPrint3D investigates the concrete composi-
tion and properties and printhead design to support quality and precision/tolerances,
the current work focuses on the control feasibility of a tower crane customized with
a controlled aero-pendulum extruder to configure a 3D printer capable of providing
large build volumes with sufficient precision. Therefore, CONPrint3D main issue
is not the control system but the improvement of printing precision with a novel
printhead (experimenting with different nozzles).
In TC-based 3D printing, the first objective concerns the high-level intelligent con-
trol of the whole system, to manage the extruder path in synergy with the crane
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movements. To counteract the inevitable swing effect of the suspended extruder,
the system is equipped with an aero-pendulum extruder with propellers that directly
react to the swing. The principal advantage and novelty of the proposed concept
concern the use of large and widely used building machinery for high-rise buildings:
tower cranes are the most used machines because of their reach, which is turned
into printing volume within the system proposed; in this way, the main existing 3d
printers’ limitation, the build volume, is overcome without designing or inventing
any completely new technology from scratch. From a practical point of view, the
concept proposes an easy-to-access technology for construction enterprises: the
upgrade of already existing tower cranes with the custom aero-pendulum extruder is
only needed to potentially perform additive manufacturing.
Apart from the dimensions, the other difference regards the approach to control the
machine based on a DRL system, which was modelled, trained and validated. The
flexible Tower Crane-based 3D printing can be located internally to construct high
rise buildings or externally to a building (being able to reach about 40 - 45 m high)
and can include a “climbing section” to increase its height as the building work
advances.
It is possible to compare the potential of the technology with already existing 3D
printed buildings. Indeed, the larger 3D printed building [372] has a floor area of 640
square meters only and is achieved by moving a small 3D printer based on a robotic
arm. Curved walls built with this technique can achieve 8 meters of diameter. The
proposed technology instead shows how the tower crane 3D printed can effectively
reach a curved wall of 20 m of diameter and higher.
DRL features many important aspects that lead the authors to choose such an ap-
proach for TC-based 3D printing control. Indeed, DRL can provide optimal control
solutions like the other control techniques [373]. Moreover, an important peculiarity
of the DRL is that it does not strictly need any formal and mathematical system
model but may exploit strongly detailed system simulation environments (also con-
sidering uncertainties) or directly the real system outputs to train the controlling
agent [374–376]. Hence, the DRL is particularly effective in the case of complex
and non-linear systems. In addition, the DRL is an effective tool to include real-time
image processing-driven control, because of its capability of processing images or
videos by the Deep Learning architectures. For example, in autonomous vehicle
control and in the robotics area, there are many successful applications in this direc-
tion: in paper [334] a DRL control agent is developed using real-time semantically
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segmented RGB camera images; the work [335] deals with object picking with a
robotic manipulator learning a closed-loop policies mapping depth camera inputs to
motion commands. In [333] authors employ high dimensional data to train a speed
DRL control, including road information processed from the video data and the low
dimensional data processed from the sensors. Furthermore, [336] presents a DRL
based method to solve the problem of robotic grasping using visio-motor feedback.
Summing up, in this work, the DRL is chosen for two reasons: i) the DRL provides
optimal results for managing such a complex 3D printer; ii) it allows future research
to integrate real-time image processing-driven control. Indeed, a DRL-based con-
troller exhibits the important feature of determining the control actions also based on
the graphical information about the printing procedure. For instance, the printing
parameters can be automatically tuned, such as the material flow tuning by consid-
ering the printing speed and quality perceived by images. Many examples already
presented in the literature review and dealing with such approaches [337–339], high-
lighting the importance of such technique for future mandatory integration in the
control strategy.

6.3.2 Limitations and recommendation for future researches

The present study represents a technological conceptualization and feasibility inves-
tigation: it demonstrates the consistency of the integration of tower cranes and the
aero-pendulum extruder to obtain the biggest possible 3D printer for the construction
industry. Its outcome opens up the possibility for researchers and practitioners to de-
velop it based on already wide technological knowledge of the process. In particular,
tower cranes are already wide-used machines and their technological readiness is
noticeable. On the other hand, the aero-pendulum extruder design involves studies
about the aerodynamic evaluation of the propeller system, the low-level control of
the electric motors driving the propellers, and the sensitivity requirements of the
extruder-mounted sensors to promptly react to any swing: its development can largely
benefit from the UAV-related literature and the enhanced technologies available for
drones. The aero-pendulum extruder design also includes the identification of a
suitable printhead and nozzle to comply with the printing behavior.
Other aspects to consider are the material supply strategy to feed the extruder during
the printing phase (concrete pumps and power supply), and printing material re-
quirements and specifications. The material supply strategy development can benefit
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from specific applied research, such as the CONPrint3D and other systems already
available.

6.3.3 Comparison with classic 3D printing approaches

In Chapter 5, we trained an intelligent agent to supervise the entire printing process
by activating jib rotation and the propellers to counteract the swing and minimize the
extruder deviation from the designed trajectory. Because of the stated problem and
the system features, the classic concept of a “toolpath” from standard 3D printing
does not apply to the present system. In fact, in a standard 3D printing task the
geometry is first “sliced” by deciding the extruder speed in advance, so that it is
already set as a parameter. The trajectory (toolpath) is then generated, which the
machine follows with high precision since it is completely controllable. During
the printing process, there is no control matching between the designed and the
actual trajectory: the toolpath is a prescription that the machine is not aware of
accomplishing properly. In the presented application, the jib rotation speed is not
considered as a pre-determined parameter but is an output of the intelligent agent’s
control task together with the thrust force on the extruder. This further degree of
freedom adds flexibility to the agent’s control and allows it to manage the whole
process to deal with the external conditions sensed. On the other hand, the agent is
trained in a specific circular trajectory, chosen because of the challenging continuous
variations of acceleration involved, and is able to perform the control task only in
that specific trajectory. This means that each specific control task, and each specific
trajectory needs specific training, although each already trained agent can be used as
a starting point for the following training requirement, so reducing the computational
effort and speeding up the printing process.



Chapter 7

Conclusions

In this Thesis, Industry 4.0 technologies application and potential in the construction
industry are investigated (i.e. Construction 4.0), with a focus on the ones more
involved in the digitization of the sector. A brief analysis of the literature reported in
the introduction highlighted the importance of such topics both in the academy and
the industry.

An introductory description of the technologies investigated was given in Chapter
2. First, Information and Communication technologies such as Internet of Things,
Big Data and Semantic Technologies employed in specific construction-related
software environments were introduced focusing on their main operative tools, i.e.
technologies adopted in the literature. A focus on Artificial Intelligence and Machine
Learning was then presented, dealing with the basic concepts of Artificial Intelligence
and contextualizing the paradigms of supervised learning and reinforcement learning.
Finally, an overview of additive manufacturing in the construction industry was
introduced.

Big Data, Internet of Things and Semantic technologies are being integrated
into BIM environment in an intelligent system-fashion approach, enhancing services
availability and potential. In Chapter 3 a review of this kind of integration was
presented, and the main specific technologies involved in detailed implementation
were investigated. It was shown that complete integration of these technologies is
not yet reached in an available commercial application, mainly due to the trend of
proprietary software developing in a closed and low-interoperable environment.
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In Chapter 4 a methodology for locating and assessing the severity of damages
in railway steel truss bridges using artificial intelligence and raw strain sensor data
was presented. A preliminary feature selection phase allowed us to identify the
most informative portion of data to train a CNN classifier. The results showed the
feasibility of the methodology and good potential for real-time application in similar
infrastructures.

In Chapter 5, the concept of a new technology to employ in additive manufac-
turing in construction was presented. It modifies tower crane technologies with a
custom extruder and features an intelligent control strategy based on Deep Rein-
forcement Learning. This preliminary analysis fulfils the requirements in terms of
the accuracy of the technology and identifies the first effective step for a low-level
feasibility investigation.

The thesis work highlighted that there is still space and need for investigation in
Construction 4.0. It represents a research field that could largely benefit from strongly
oriented academic investigations that however remain detached from real-world
applications. The study carried out outlines different fields of investigation focusing
on applications in construction life cycle phases: i) whole life cycle management, ii)
operation & maintenance and iii) integrated design with construction.

Concerning the whole life cycle management i), intelligent systems for knowl-
edge extraction and reuse are only theorized in many research papers, and BIM-
centred architectures featured by IoT and BD are mainly described and identified
in their components. Industry-standard software is instead pushing towards adding
more features and services to their proprietary platform, and the main attempt to
enrich the capability of these platforms is described by the increasing number of
"dimensions" of BIM software (e.g. n-dimensional BIM). Due to the lack of effort
towards a unique integrated knowledge collection and reuse through these platforms,
to the best of the author’s knowledge there is still no example of consistent applica-
tion of BD-based architecture supporting IoT data in construction. Despite being
driven by proprietary services and development environments exposed to users, the
customization of leading proprietary platforms remains currently the most practical
way to aim for such systems.

Artificial Intelligence-driven Big Data processing in the operation and mainte-
nance stage ii) of strategic infrastructure is a massively investigated research field
because of safety concerns-related and shows high potential in terms of achievement
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in short time. It benefits from the sensorization trend enhanced by the IoT approach
and the massive development and appeal of data analysis techniques in the academic
literature. The methodology proposed in Chapter 4 is fully integrable with current ap-
proaches employing vibrational signals from accelerometers that apply data analysis
on dynamic features extracted. Despite enhancing the possibility of successful fault
detection of structural systems in comparison with other methodologies, it shares the
necessity of a high-accuracy updated FEM model in order to properly simulate the
damage scenarios of interest for the particular system analyzed.

The integrated design/construction phase iii) is investigated with additive man-
ufacturing for the construction industry, one of the most studied Construction 4.0-
related technology. The main trend in research and industry is to design new tech-
nologies, borrowing expertise from small-scale additive manufacturing, that have
some limitations in terms of build volume, movability and costs. On the contrary, the
conceptualization proposed is important to overcome the state-of-the-art limitation in
additive manufacturing in the construction industry, i.e., the build volume. There are
many different applications of 3D printed geometries difficult to achieve with stan-
dard constructive technologies. All these updated case studies are characterized by
limited dimensions because of technological limitations. The complete development
of the technology conceptualized in Chapter 5 will allow reaching both freedoms
in geometry and build volume, features impossible to combine in the present state
of the art. From a practical point of view, the technology will be an easy-to-access
technology for construction enterprises. They will only need to upgrade their already
existing tower cranes with the custom aero-pendulum extruder to potentially perform
additive manufacturing.

The investigations presented can be read as an approach to cross the gap between
the academy and the construction industry on the topic of Construction 4.0. They
look towards challenges currently detectable and suggest practical directions for their
solutions. The complete and successful engineering and development of the proposed
studies can contribute effectively to specifying the Construction 4.0 concept and to
the construction industry’s performance.
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