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Abstract: Wireless electrophysiology opens important possibilities for neuroscience, especially for
recording brain activity in more natural contexts, where exploration and interaction are not restricted
by the usual tethered devices. The limiting factor is transmission power and, by extension, battery
life required for acquiring large amounts of neural electrophysiological data. We present a digital
compression algorithm capable of reducing electrophysiological data to less than 65.5% of its original
size without distorting the signals, which we tested in vivo in experimental animals. The algorithm
is based on a combination of delta compression and Huffman codes with optimizations for neu-
ral signals, which allow it to run in small, low-power Field-Programmable Gate Arrays (FPGAs),
requiring few hardware resources. With this algorithm, a hardware prototype was created for wire-
less data transmission using commercially available devices. The power required by the algorithm
itself was less than 3 mW, negligible compared to the power saved by reducing the transmission
bandwidth requirements. The compression algorithm and its implementation were designed to be
device-agnostic. These developments can be used to create a variety of wired and wireless neural
electrophysiology acquisition systems with low power and space requirements without the need for
complex or expensive specialized hardware.

Keywords: low power; data compression; wireless; brain; electrophysiology; FPGA

1. Introduction

Electrophysiology, recoding, and analysis of the electrical fields generated by the
electrical cell activity remain one of the key tools used in neuroscience to investigate
cognitive functions. Modern electrophysiology techniques allow the recording of large-
scale cell populations, collecting both single-neuron activity dynamics as well as aggregated
activity [1]. This results in signals which span a large range of frequencies, with useful
information spread through all their spectrum. The nature of this data makes signal
processing tasks a challenge.

Combined with appropriate behavioral tasks, electrophysiological recordings in freely
moving animals have provided invaluable information to understand sensory processing,
spatial navigation, memory formation, and decision making, to mention some examples.
However, electrophysiological studies in behaving animals have been traditionally per-
formed in well-controlled but severely constrained laboratory conditions, in relatively
reduced size arenas or task apparatus, and involving a limited and often artificial (i.e.,
pressing a lever bar) repertoire of behaviors. Therefore, more natural and elaborated
experimental conditions in ecologically meaningful contexts are required [2].

The need for open and meaningful spaces conflicts with the tethered nature of most
electrophysiology systems, as it requires a physical connection between electrodes im-
planted in the experimental subject and the recording equipment. While this does not pose
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an issue for small, enclosed spaces and simple maze topologies [1,3–7], it prevents large
arenas with enriched environments and social experiments with complex interactions with
conspecifics (i.e., [8]). Wiring limits the distance the subjects are able to travel, can become
tangled with environmental objects or damaged by the animals themselves. To solve
these shortcomings, developments have been made towards wireless electrophysiology
systems [9,10].

There are two main approaches to wireless acquisition: Data loggers and radio trans-
mission. Dataloggers are devices running from batteries and able to store all recorded data
into a local non-volatile storage medium. They have been used in a variety of animals,
from fish [11] to birds [12]. However, the main drawbacks of this approach are its limited
storage capacity and the impossibility of performing closed-loop experiments dependent
on real-time data.

Radio transmission can transmit data to a remote receiver in real-time. Multiple
methods exist for encoding and sending data through a radio stream. Analog neural data
can be modulated, with multiple channels merged via time multiplexing and sent over
a carrier frequency [13,14]. While an analog transmitter requires less energy [13], analog
signals are more susceptible to noise than digital signaling, and the absence of an arbitration
protocol prevents multiple devices from sharing the same frequencies.

Digital transmission can use simple one-directional carrier modulation [9], which alone
adds noise resistance to the transmission or through complex protocols. Such protocols
can add extra features such as synchronization, arbitration, or bidirectional control [15].
Some examples of widespread digital protocols are Bluetooth [16], a low power protocol
designed for data rates up to 2 Mbit/s, Bluetooth Low-Energy [17], a slightly slower (up
to 1.37 Mbit/s) version with reduced power needs or WiFi 802.11 b/g [18], a high-speed
protocol with data rates of up to 54 Mbit/s and advanced arbitration capabilities, but with
higher power requirements. Some projects have developed a custom protocol, being able
to fine-tune the power-performance trade-off [19].

Power is the main bottleneck of wireless devices, limiting data rates and device
operating life. Lowering power consumption allows for longer operational time, increased
data rates, and reduced battery weights. As such, minimizing power requirements is a
goal for every wireless device. In the case of radiofrequency systems, the power bottleneck
stems from the power requirements of high-bandwidth data transmission [16]. Different
approaches exist to reduce energy consumption in these devices. For example, developing
the core hardware as a custom-made Application-Specific Integrated Circuit (ASIC) can help
by integrating electronics highly optimized for the task [9,13] at the expense of increased
development and production costs. Another line of improvement, since the bulk of power
requirements stem from the radiofrequency transmission, is the development of specialized
protocols which can yield improvements over generalist, commercial ones [20]. Research is
also being made in fields like antenna optimization [21,22], to reduce the power needs of
radiofrequency signals further, as well as optimize wireless power transmission.

A different approach, compatible with the previous ones and applicable to both data
loggers and radiofrequency transmission, is to reduce the bandwidth needs of the data. A
neural recording including fast activity transients, like spikes, require a sampling rate of at
least 20 KS/s [23,24]. This combined with the multichannel acquisition, typical on modern
high-density electrophysiology recordings, results in bandwidths of tens of megabits per
second [22]. Compression techniques can be used to reduce bandwidth needs which, in
turn, decreases the power consumption of the wireless transmitter.

A wide variety of compression methods can be used for neural signals [25]. One
important parameter when considering a compression algorithm for a wireless implant is
its complexity and power requirements. Some algorithms, such as wavelet compression,
ref. [26] can yield excellent compression ratios but require circuitry capable of handling
advanced mathematical operations. This creates two disadvantages: Extra computational
needs often translate to extra power consumption, which diminishes the overall effect on
power saving. In addition, these circuit requirements limit the number of devices in which
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they can be implemented. It is common that small, ultra-low-power commercial Integrated
Circuits (ICs) do not have these advanced characteristics, making these algorithms only
possible on higher-end devices.

In contrast, algorithms with lesser computational requirements, with lower compres-
sion ratios due to their simplicity, are often used on only a particular part of the signal
spectrum. For example, lower-frequency Local Field Potentials (LFP) tends to have high
inter-channel redundancy, making high compression ratios with simple techniques pos-
sible [27]. High-frequency spikes, in contrast, are sparse events, so it is possible to use
spike-detection algorithms and only perform compression for the discrete, individual
events [28–31]. Both techniques can be combined, compressing and sending both LFPs and
spikes separately by the same device [32,33]. These approaches, however, are not able to
provide a complete, continuous view of the entire acquired signal.

A fundamental characteristic of compression algorithms is the accuracy of the re-
construction of the original signal after it has been compressed. In this sense, lossless
algorithms produce, after decompression, signals identical to the original ones, while lossy
algorithms, which generally have a higher compression performance, introduce, however,
signal distortions [25,34].

An example of a low-resource lossy compression algorithm is compressed sensing [35,36].
This method works by sampling a signal below the Nyquist frequency, thus reducing
data size [37] with negligible requirements on power or resources in the encoder. The
computational burden lies entirely in the decoder, which must reconstruct the signal
through complex mathematical operations [35,36,38,39]. This method is, however, a lossy
algorithm that introduces distortions in the data. Moreover, both its compression efficiency
and signal distortion are affected by acquisition noise [40]. While the simplicity of the
encoder makes it a good candidate for wireless devices [31,33,41], it is limited by the
distortions it introduces.

Here we describe a lossless compression algorithm for brain electrophysiology, able
to reduce bandwidth and, by extension, transmission power requirements, along with a
novel hardware implementation focused on resource minimization. It can compress data
to 40–60% of its original size with no signal distortion and requires little power for its
processing. This algorithm is based on a combination of delta compression and Huffman
coding, both requiring little computational power and thus adding minimal extra power
needs. The algorithm implementation is optimized to minimize hardware resources, not
requiring any specialized hardware, which makes it possible to be used in a wide range of
devices including low-cost or small ultra-low-power ICs. This, coupled with its ability to
be configured for any number of channels and sampling rates, offers great flexibility for
designing a variety of battery-powered wireless acquisition devices suitable for different
experimental needs.

In addition to the algorithm, a low-overhead communications protocol was designed
to allow compressed data to be efficiently shared between components for cases in which
the electronic device for compression is different from the wireless transmitter or storage
controller. Finally, a hardware prototype was created, implementing all the designs, and
tested in vivo to validate the compression ratios and the resulting power consumption
reduction in transmission, which decreased in a similar proportion as the bandwidth.
Figure 1 shows an overview of the developed systems and devices.
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Figure 1. (A) General overview of the system and the built prototype. (B) Differences of power and
bandwidth requirements of the prototype with and without enabling compression.

2. Materials and Methods
2.1. Huffman Coding

Huffman coding is a method to encode information devised in 1952 by David Huff-
man [42]. The basic precept behind Huffman coding is that, in any set of symbols, the
appearance frequency of every different symbol might not be the same. Under that case, a
usual fixed-length coding is highly redundant, as defined by Shannon’s theorems, [43] and,
thus, not optimal. Huffman coding, instead, codes each symbol with a different bit length,
depending on their appearance frequency. This way, symbols that appear more frequently
are coded with fewer bits than less frequent symbols, reducing the overall bit size of the set.
A natural consequence of this encoding is that compression rates are higher when symbols
follow a steep distribution, i.e., a few subset symbols conform to the majority of the set,
while flat symbol distributions result in low compression rates.

To use Huffman coding, a specific dictionary must be created for each different data
set, analyzing symbol appearance frequency and generating the optimal codes for each [44].
This implies prior knowledge of the data to be compressed. For real-time applications, the
dictionary can be made with previously recorded data, with the optimal compression ratio
becoming a mean ratio. For this method to be accurate, the prerecorded set has to be large
enough so its symbol frequency appearance matches the symbol appearance probability on
real-time data.

Due to the variable nature of Huffman coding, dictionary size can vary depending
on the datasets and the resulting codes, with a maximum possible size of 22n bits, for
a collection of n bits symbols [45]. Different algorithms exist to reduce this size. Some
force a maximum code length [46] which reduces the algorithm efficiency. Others work by
rearranging the dictionary after it has been created [45], which requires it to be known in
advance to measure the memory needed.

We have built an algorithm based on [47] that minimizes dictionary size, being solely
dependent on the bit word with the symbols in the dataset, and without limiting code
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length. In this algorithm, a collection of n bit symbols requires 2n+1 bits of memory, as
shown in Figure 2.
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Figure 2. Dictionary size needed by the selected variation of the Huffman algorithm [47] for datasets
of word lengths of 1 to 16 bit.

2.2. Delta Compression

Delta compression, or delta encoding, is a very simple method in which each symbol
is represented with the difference with the preceding one, i.e., yi = xi – xi–1. Decoding can
be done by cumulative addition of the received values xi = xi–1 + yi = ∑i

n=0 yn.
This coding is especially suitable for signals that follow a smooth progression, with

high-frequency components having a low amplitude, such as those of biological origin [48].
For signals with these characteristics, the resulting difference vector y = Δx is composed of
a majority of low values, which can be encoded with fewer bits instead of the more even
symbol distribution that the raw signals have.

2.3. Hardware Prototype

Although the main purpose of this work was to create a device-agnostic compression
and transmission scheme that could be used in any ultra-low power device, a complete
system was designed for testing. It led to producing a fully functional prototype imple-
menting acquisition, compression, and wireless transmission. Figure 3 shows a functional
diagram of the prototype as well as a picture of the built device.

2.3.1. Low-Power FPGA

The central device of the prototype, driving neural acquisition and compression, is an
ultra-low-power FPGA. The chosen device is an AGLN250 IGLOO nano FPGA (Microsemi,
Alto Viejo, CA, USA) [49], featuring both a small footprint and low power operation. The
drawback of this kind of device is its reduced resources, with no hardware multipliers
or Digital Signal Processor (DSP) modules and little available Random Access Memory
(RAM). This showcases the importance of the low-resource approach taken when designing
the algorithms. IP cores were developed in the Verilog language to implement the design.

2.3.2. Acquisition Chip

The device selected for the neural acquisition was an RHD2132 chip (Intan Technolo-
gies, Los Angeles, CA, USA) [50]. This integrated circuit can acquire and digitize up to
32 channels at 30 KS/s, having a 16-bit output with a resolution of 0.195 μV per bit and
2.4 μVrms input noise. Communication with the driver device is done through an SPI bus,
a standard communications protocol in electronics.
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Figure 3. (A) Functional diagram of the developed prototype. (B) Sketch of a complete device. (C)
Picture of the built prototype. For development purposes, the layout differs from what would be
a finished unit, including the addition of debugging headers and the use of bigger versions of the
integrated circuits.

2.3.3. Wireless Device

Wireless communication in the hardware prototype was performed through the WiFi
IEEE 802.11g protocol. Although several studies have demonstrated how custom protocols
can offer very efficient wireless transmission, ref. [19,20] the use of a standard, widely
available protocol allows for an easy way of testing the efficiency of the compression
algorithm implementation independently of any transmission-related factors. While other
off-the-shelf devices exist designed for low-power transmission, they often offer low data
bandwidths. While the objective of this work is to compress neural data so it can fit such
devices, using a higher-bandwidth device allows the design to be characterized without
external bandwidth constraints. Moreover, the wide availability of commercial devices
for both transmission and reception, as well as the interference protection features of the
protocol, makes it a perfect candidate for testing-phase prototype building.

The major downside of the protocol in the context of this work is that it is not natively
designed for low-power applications. However, commercial devices exist that reduce the
power requirements to a minimum and can operate on batteries. While the 802.11g protocol
has little provision for reducing its power levels in relation to the required bandwidth,
these devices can send data in bursts at full speed and power down the transmitter circuitry
when not in use. This means that a reduced data rate, as achieved by compression, still
translates as lower power usage even with a non-optimal protocol.

A transceiver device with an integrated network processor was used, specifically the
CC3320SF IC (Texas Instruments, Dallas, TX, USA) [51].

2.3.4. Development Hardware

For early development and testing stages, the Verilog designs were implemented on
the Open Ephys acquisition hardware (Open Ephys, Cambridge, MA, USA) [52], which
features a mid-range Spartan-6 FPGA (Xilinx, San Jose, CA, USA) and the same RHD2132
chip. This allowed us to verify the compression algorithm with in vivo experiments before
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building the wireless prototype. A plugin for the Open Ephys software was developed
to receive and decompress the signals provided by both the implementation on the Open
Ephys hardware and the wireless prototype.

2.4. Sample Signals

The compression algorithm implementation was designed to be optimized, both in
performance and resource efficiency, for brain electrophysiology signals. The different
development and design stages required the use of sample data sets of electrophysiological
recordings. In particular, 10-min recordings from the hippocampus of two different rats
and a 5-min recording from the visual cortex of a third rat were provided by the Alicante
Neuroscience Institute (San Jose de Alicante, Alicante, Spain) and the Open Ephys project
(Cambridge, MA, USA), respectively. In both cases, the data was acquired using the Open
Ephys hardware.

These sample datasets were used for all measures and decisions leading to the low-
resource design presented. The Huffman dictionary used throughout the design was
created from the combination of these signals after being processed by the modified algo-
rithm developed in this work.

To test algorithm performance on signals not related to dictionary creation, data from
two sets of animals were used. Five-minute recordings from the retrosplenial cortex of five
different mice were provided by Jakob Voigts, from the Harnett lab, at the Massachusetts
Institute of Technology (Cambridge, MA, USA). Canals Lab at Alicante Neuroscience
Institute (San Juan de Alicante, Alicante, Spain) provided data from an independent
experiment involving three Long-Evans rats implanted in the hippocampal region. From
these animals, 30 min of data were recorded daily for four consecutive days. Both these
datasets were processed offline by the algorithm to measure compression ratios.

An in vivo experiment was also performed with three rats in the Alicante Neuroscience
Institute to test the algorithm implementation with online compression. Data from these
animals was recorded with a modified version of the Open Ephys hardware integrating
the complete compression algorithm in its final low-resource, low-power implementation,
obtaining 20-min recordings with data compressed in real-time.

3. Development and Design
3.1. Compression Algorithm

Neural compression is achieved in this work by the combination of both delta and
Huffman encoding. This combination creates a lossless algorithm that can be implemented
with simple hardware, requiring only a small amount of Read-Only Memory (ROM) and
simple logic gates. This enables its implementation in simple devices with few resources,
such as ultra-low power FPGAs. The complexity of the algorithm is dictated by dictionary
size, which, as seen in Figure 2, is directly related to the number of bits on the samples to
be compressed. While execution complexity is O(log2(n)), storage requirements are O(2n),
related to the bit width of the signal. Thus, a significant part of this work is directed toward
reducing storage requirements in the specific case of neural signals.

While neural signals are not optimal for Huffman compression in raw form, this can be
improved by the derivative transformation caused by delta encoding. Figure 4 shows how
delta compression can optimize electrophysiological recordings for its use with Huffman
encoding. It can be seen how, after performing delta compression, the distribution becomes
steep, with low-value symbols being orders of magnitude more frequent than higher-value
ones. Thus, by using delta encoding on a neural signal, it becomes optimal for further
compression using the Huffman method. The Huffman dictionary is thus elaborated from
delta-compressed neural signals. We treat each channel of the multichannel recording
separately to achieve the maximum possible compression while being tolerant to as many
electrode configurations as possible.
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Figure 4. Comparison between a 20 min neural signal in raw form (A1,B1) and after delta-encoding
(A2,B2). (A) 1 second time-domain sample of the raw signal (A1) and the delta-encoded signal (A2).
(B) Symbol probability of the full recording in raw form (B1) and after delta-encoding (B2).

3.2. Low-Memory, Low Resource Compression

While neither delta compression nor Huffman coding requires specialized Digital
Signal Processor (DSP) or multiplier circuitry, which would limit the range of low-power
devices they could be implemented on, Huffman coding requires a ROM memory contain-
ing the symbol dictionary. The algorithm version used in this work is already designed to
minimize memory needs [47]. However, as seen in Figure 2, for 16-bit words, which are
typical in the neural acquisition [23], this results in 2 Mbit of memory, limiting the available
devices able to run this algorithm. A number of ways were devised to reduce the word
width and thus the dictionary size while minimizing the impact on compression ratio and
signal integrity.

Delta encoding, being a binary subtraction, already trims one bit, leaving 15-bit words
to be compressed. To further reduce the number of bits needed by the Huffman dictionaries,
not all bits are coded using that process. The efficiency of the Huffman algorithm relies
on the appearance probability of a small subset of symbols being higher than the rest.
However, as evidenced by Table 1, not all bits of a delta-compressed signal follow the
same distribution, with only higher bits contributing to the steepness of the distribution, as
shown in Figure 5A.
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Table 1. Frequency of each bit of a delta-coded sample signal having a value of ‘0’ or ‘1’ when taken
as an absolute value. Bits 9 to 14 are not shown as their probability being ‘1’ is exponentially reduced
each step. For the Signal bit, only nonzero values were counted, with ‘0’ meaning a positive signal
and ‘1’ negative.

Bit 0 1

0 50% 50%
1 50.72% 49.28%
2 52.19% 47.81%
3 55.15% 44.85%
4 61.36% 38.64%
5 77.18% 22.82%
6 95.51% 3.49%
7 99.81% 0.19%
8 99.99% 0.01%
9 ∼100% <0.01%

Sign 49.76% 50.24%

It is possible then to only use Huffman encoding on the higher bits while appending the
lower bits of the delta-compressed signal without further processing. Figure 5B shows how
compression efficiency is affected by this approach. Moreover, the probability distribution
is symmetrical, which allows one to create a Huffman dictionary for only absolute values
and appending the sign bit unprocessed as well.
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Figure 5. (A) Symbol distribution of a delta-coded sample signal, in absolute value, for a different
amount of masked bits. The lower nBits are kept and the others discarded before plotting the proba-
bility distributions. The X-axis of each plot are the different symbols, from 0 to 2nBits. (B) Degradation,
in percentual points, of the compression efficiency when the different amount of bits are transmitted
without being coded by the Huffman algorithm.
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Two extra steps are being incorporated into the algorithm to improve the compression
ratio even further. As the sign bit has only relevance for nonzero values, it is not transmitted
when the decoded value is zero. Additionally, although analog to digital converters (ADC)
circuits usually have 16 bit outputs, the conversion process produces a lower number of
relevant bits, with the less significant bits being electrical noise. Those can safely be omitted,
as they contain no useful data by design , further reducing bandwidth needs. In the case
of the device used in this work, with 0.195 μV resolution and 2.4 μVrms, it is possible to
calculate that the output contains log2(2.4/0.195) = 3.6 bits of noise. Thus, the three lower
bits can be completely discarded instead of being sent uncompressed reducing the actual
bit width of the signals to 13 bits. This is a conservative amount to ensure trimmed data
is below the noise floor of the amplifier. For other acquisition devices, the number of
discarded bits can be adjusted so they are always below the input noise level, resulting in
small differences in compression ratio.

A complete block diagram deletedof the algorithm can be seenvisible in Figure 6A.
The Huffman dictionary needed for the algorithm is, thus, made from the sample dataset
after it has been treated by this process, considering only the bits that are to be compressed
by the Huffman method.

3.3. Transmission Protocol

Devices for neural compression and wireless transmission data might not be the same.
In addition, many low-power wireless protocols lack mechanisms to ensure reception, thus
being susceptible to packet loss [18]. This is especially problematic for delta coding as
each lost incremental value introduces a permanent error in the signal, which increases
with each consecutive missed value. A protocol was designed to transmit data between
devices, including information enabling the wireless processor to pack the data in a way
able to recover from packet losses. This protocol utilizes few hardware resources, has no
RAM requirements, and adds a low overhead to the transmission, maintaining the reduced
bitrate achieved by the compression.

Data is packed in blocks of N samples, with the first sample for each channel being the
raw, uncompressed values, followed by the remaining compressed samples. If the network
packet aligns with block boundaries, in the case of a packet loss, the receiver could recover
at the start of the next block. Huffman coding introduces an additional challenge due to
the resulting samples having a variable bit length. The network processor must track block
boundaries independently of their actual byte size.

Data from the compressing device to the wireless processor is packed in fixed-length
frames of M words, with the current implementation using 16-bit words. The first M-1
words are comprised of block data. The last word is a block boundary indicator. If the
frame contains the start of a new block, the indicator is an index pointing to the specific
word of the frame in which the new block starts. If the whole frame contains data from the
same block, the indicator is a value greater than M. This transmission protocol allows the
wireless processor to be fully aware of delta-coded block boundaries without requiring the
compressor device to store them in memory. With this information, the wireless protocol
can add simple indexed markers to the data packets, allowing the receiver to detect a packet
loss and wait for the next delta-coded block to start.

Figure 6B shows the frame and block structures and the byte composition of a com-
pressed sample.
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Figure 6. (A) Block diagram of the complete system, detailing the compression algorithm. H stands
for the variable bit count of a Huffman-coded word, while S can be 1 bit for sign coding, or 0 bits for
0-value words. (B) Structure of the different protocols. (B1): Compressed sample. (B2): Compressed
block of N samples for C channels. Total size of B word can vary depending on compression. (B3): A
block spans several frames, while a single frame can include the boundary between two blocks, (B4):
Frame of M words sent to the transmitter, with index to detect block boundaries.

4. Results
4.1. Compression Performance

As a Huffman dictionary provides the optimal compression ratios for the data used
to create it, algorithm performance in real experimental situations was measured using
datasets not related to dictionary creation. From the 385 min of data from eight different
animals available for offline compression through a software model of the algorithm, an
average ratio of 47.94% of the original signal size was achieved (Table 2).

in vivo real-time compression, using the hardware implementation of the algorithm,
yielded a mean ratio of 65.58%. It is worth noting that one of the three experimental
animals, which will be called Rat 3 from now on, they had an uncommonly high amount of
acquisition artifacts. As a result, the performance of the algorithm was slightly affected.
Removing the data from this animal results in a mean compression ratio of 62.64%.

Table 2 shows the detailed ratios for each of the animals and setups.
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Table 2. Compression ratios, in the percentage of the original signal size, for the different datasets
not related to dictionary creation.

Data Compression Ratio Recording Time

Offline compression

Mouse 1 33.86% 5 min

Mouse 2 33.72% 5 min

Mouse 3 33.37% 5 min

Mouse 4 33.25% 5 min

Mouse 5 38.44% 5 min

Rat 1 51.37% 30 min × 4 days

Rat 2 44.60% 30 min × 4 days

Rat 3 59.31% 30 min × 4 days

Mean 47.94% Weighted Average

in vivo online compression

Rat 1 62.99% 20 min

Rat 2 62.29% 20 min

Rat 3 71.45% 20 min

Mean 65.58% Average

4.2. Signal Integrity

The combination of delta compression and Huffman coding in their original forms is
completely lossless, introducing no alteration to the input signal in the process of compres-
sion and decompression. In the implementation described in this work, we alter the input
signal by removing the trailing bits of the input signals, corresponding to the input noise of
the acquisition circuit.

However, the only effect this procedure has on signal integrity is the introduction
of noise below the noise floor of the acquisition chip itself, thus not affecting the actual
acquired data. Figure 7 show a comparison between an original and a processed signal.
The measured error is 0.21 μVrms, while the maximum possible error introduced by the
current implementation of the compression algorithm is 1.56 μVrms, all below the 2.4 μVrms
noise of the neural acquisition chip itself.

To further evaluate the effect, the mice datasets were processed by an automatic spike-
sorting algorithm [53] both in their raw form and after being compressed and decompressed,
with results shown in Table 3. There was a mean event match of 99.98%, with the remaining
0.02% being not spikes but noise-related events close to the detection threshold. On the
spikes, the specific sample that triggered the event matched with an error of 0.308 samples.
Clustering showed identical sets in both cases.

Table 3. Events were detected by spike sorting software in raw and processed signals from five
different mice.

Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

Detected events in original 11,021 139,743 109,759 207,416 148,400

Detected events in processed 109,992 139,709 109,763 207,379 148,374

Matching events (%) 99.9736 99.9757 99.9964 99.9822 99.9825

MAtching events start sample error 0.3572 0.3910 0.3404 0.2755 0.1437
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Figure 7. Effect of compression on signal integrity. (A) Compressed and original signals. The error is
indistinguishable without magnification. (B) Error introduced by the algorithm compared with the
acquisition chip noise floor.

4.3. Effect of Dictionary on Compression

As the Huffman dictionary was created with a sample set of signals, it was of interest
to ascertain whether creating dictionaries using some datasets of the same animals in the
experiment provided any performance variation. This was tested using the 4-day dataset.
Dictionaries were made from the data acquired during the first day. The whole set was
then compressed offline using the base dictionary, the dictionary made from each of the
rats, and combinations of these dictionaries with the original.

Table 4 shows the obtained compression ratio for different combinations. A slight
improvement from the base results can be observed when using dictionaries, including
data from the experimental dataset. As expected, removing the data noisy from Rat 3
improves the results.

Table 4. Mean sizes of the compressed signals relative to the original data for in vivo tests. Columns
for dictionaries using experimental data alone or added to the base dictionary. Rows for base
dictionaries, dictionary from data from all the animals (All), dictionaries from data from each
individual rat (Self), or dictionaries from data from all animals except the one being tested (Others).
Data shown including and excluding the anomalous rat labeled “Rat 3”.

Animal Data Animal + Base

Base
w. Rat 3 51.87% N/A

w/o Rat 3 48.15% N/A

All
w. Rat 3 50.76% 50.59%

w/o Rat 3 47.42% 47.96%

Self
w. Rat 3 48.8% 49.42%

w/o Rat 3 46.42% 47.44%

Others
w. Rat 3 49.37% 51.16%

w/o Rat 3 47.67% 46.39%



Sensors 2022, 22, 3676 14 of 19

4.4. Power Usage

Bandwidth reduction, which compression achieves, can reduce power in two main
ways: by allowing the usage of low-power protocols, which often have a lower bandwidth
associated, or by enabling a higher bandwidth protocol in small bursts, increasing the
time the device is not transmitting. In the case of the CC3220 network device used, it can
be configured, so the wireless circuitry enters a lower-power state between operations.
This way, fewer data to transmit translates to smaller bursts and longer sleep times for the
wireless circuitry, thus reducing transmission power accordingly.

To measure power usage on the prototype, test points were added to independently
measure the current consumption of the FPGA, wireless processor, and acquisition device.
Accurately measuring the specific effect of compression required a known and noise-free
signal to be transmitted both raw and compressed, and transmission power to be measured
in both. To this avail, a 16-channel, 20 KS/s synthetic signals, made using simple arithmetic
progressions but mimicking the post-delta mean symbol distribution, was used. The
signal was generated inside the FPGA and transmitted to the network processor in both
compressed form and raw, bypassing the compression algorithm to compare power usage
between the two cases.

Figure 8 shows the power usage of the wireless prototype. It can be seen how the
amount of extra power used by the compression algorithm, measured at 2.7 mW, is negli-
gible. As the Wi-Fi protocol is not designed specifically for low power, it features a high,
static consumption dedicated to maintaining the link, even when it is not transmitting.
However, even in this non-optimal case, the measurements demonstrate a clear reduction
in transmission power, directly related to the decrement of required bandwidth.

0 50 100 150 200 250 300 350 400

Power usage(mW)

Raw signal

Compressed 
signal

Base FPGA Compression algorithm Acquisition circuit

Wireless processor, static Wireless processor, transmission

Figure 8. Power usage of the sample hardware implementation transmitting the compressed signal
and the raw, uncompressed signal.

4.5. Resource Usage

Minimizing hardware resources was an important objective, as this allows the algo-
rithm to be used in a wider variety of existing devices and makes it more efficient to be
integrated into an ASIC. This includes both memory and logical requirements. In the case
of the former data size of the Huffman dictionary was reduced. Instead of the 2 Mbit a
16-bit dataset would need, only 9 Kbit were required. FPGA logical resource usage was
kept minimal and no DSP blocks or any other specialized hardware modules were required.
Table 5 shows the FPGA cell usage of the different modules for both Xilinx and IGLOO
nano FPGAs, as well as the percentage of the device used in the prototype.

Table 5. Prototype usage percentage measured for the Microsemi AGLN250 device.

Xilinx Cells IGLOO Cells Prototype Usage

Compression 60 585 9.20%

Transmission protocol 22 210 3.42%

Data acquisition 54 495 8.08%
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5. Discussion

Studying complex and ecologically meaningful behaviors in animals is necessary
to move experimental cognitive neuroscience forward [54], but requires experimental
conditions closer to the natural conditions or even experiments in the real world. This
often implies large spaces filled with elements such as obstacles, hiding places or even
burrows, and environments shared by multiple animals. All these elements render devices
tethered to the animals impractical, as the wiring would limit mobility and animal-animal
or animal-context interactions.

Wireless implants can record brain activity during extended periods of time allow
free movement of animals in complex environments, opening the possibility to a new
generation of neurophysiological investigations in behaving animals.

For a wireless device, autonomy is crucial, with power usage being often the most
limiting factor. Wireless data transmission has large power requirements, depending on the
data rate, with higher rates requiring faster and more powerful signal processing. Reducing
data rate lowers the power needs by either using slower, less power-demanding protocols
or allowing the transmitter to be in a powered-up state for only brief periods of time,
sending small bursts, and keeping it in a powered-down, low-power state most of the time.

Compression is an efficient technique to reduce the data rate, but only if the power
needed for compression is lower than the power saved by rate reduction. However,
some compression methods can distort the integrity of the data. A lossless compression
system for brain electrophysiology must be able to faithfully transmit all the information
contained in the wide range of the signals, which spans from 0 Hz to several kHz. This is
the case for the compression algorithm presented here, which has demonstrated both its
low energy footprint and power reduction during wireless transmission. This reduction
was demonstrated on a regular Wi-Fi IEEE 802.11g chip. While useful for testing, this
device is designed for high-bandwidth and not optimized for low power, with high energy
consumption in static link usage. Using custom wireless protocols or specialized low-power
devices, will reduce transmission power needs, further decreasing power needs. Especially
interesting are the recent developments on IoT-related wireless protocols and devices, such
as IEEE 802.11AH [55], designed for low-power transmission while allowing a variety of
different data rates.

Although this compression scheme was originally designed for wireless transmission,
it could easily be adapted for other electrophysiology applications. Data loggers are an
immediate example, as the algorithm would add negligible extra power and resource
requirements while doubling the capacity of storage devices, thus greatly increasing the
system autonomy. Wired acquisition systems can also benefit from compression, as link
bandwidth often limits the maximum possible channel count in headstages. An example
of such an ultra-high channel count system that could benefit from the ability to integrate
more probes per headstage would be Neuropixels, high-density CMOS-based neural
probes [56,57].

This flexibility of usage is reinforced by the low-resource nature of the development.
Being kept with minimal hardware needs makes the algorithm easy to fit in existing
designs, being able to be implemented in a variety of devices. This is also important
for power consumption as, unless highly-optimized custom chips are used, devices with
more hardware resources tend to be bigger and with more power requirements. Being
low-resources makes it possible to be implemented in simple, low-power, commercial chips.

The focus on implementability in a diverse range of low-power, commercially avail-
able devices, including low-end ones, imposes hard limits on the algorithm complexity
and, by extension, performance. Similar algorithms focusing on lossless or near-lossless
compression can achieve ratios of near 20% [58] by separating LFP and single spikes and
compressing them independently. This has one downside of defining a hard frequency
threshold, with the risk of losing data in the middle range. Moreover, band separation
requires the use of digital filter circuitry, which might not be present on all commercial
devices. As a counterpart, similar results to ours of approximately 50% reduction can be
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achieved by exploiting spatial redundancy [59]. Although this approach requires some
extra resources, which are more easily adjusted in a custom-made ASIC, it could also be
used in many existing hardware. Coupling both algorithms could yield increased results
by exploiting both temporal and spatial characteristics. As a comparison, lossy algorithms
can achieve data reductions below 10% of the original size [41] by introducing distortion
to the neural signals or focusing on specific parts, such as compressing and transmitting
Spikes only [39].

The developed transmission protocol further reinforces the flexibility of the algorithm
and its implementation by being able to maintain long-term signal integrity in the cases
where data losses are expected. This might be the case for ultra-low-power wireless
transmission protocols, as the drawback of expending less energy on link maintenance
is the possibility of short interruptions on transmission, with their related packet losses.
Being able to recover from such events makes the complete design suitable for almost
any situation.

Data integrity and compression efficiency are two elements that must always be
balanced. In this work, the compression algorithm was developed with the former in
mind, being virtually lossless, with compression noise being below the noise floor of the
acquisition chip. There are methods in which the compression ratio can be increased while
introducing noise into the signal. One such way is in the delta coding step. As seen in
Figure 4(B2), large delta values are rare and often the result of acquisition artifacts. Those
uncommon, large values could be removed by trimming the most significant bits, further
reducing word width [60]. In this case, any time such a large jump occurred, either naturally
or by an acquisition artifact, the DC offset of the signal would drift from its real value while
maintaining most of its characteristics. In this case, the signal would be corrected at the
start of the following block. Another way to increase compression would be to trim even
more bits before delta coding. This would result in a loss of resolution, with an equivalent
noise of VLSB ∗ 2nRemovedBits. Conversely, if an acquisition chip with a lower noise floor
were used, the number of discarded bits could be lowered, albeit with a slight impact on
compression ratios.

Compression efficiency can also be improved without degrading signal quality by
the optimization of the Huffman dictionary. Section 4.3 shows how creating a customized
dictionary with data previously recorded from the same experimental animals can increase
compression. Understanding the specific factors that lead to these improvements could
help further improve the performance. Current suspicions point to them being related to
the physical properties of the experiment, such as electrode impedance and acquisition
rate, which affect how the signal varies over time and such the result of delta coding. More
research on this topic needs to be done to optimize further the procedure presented here.

6. Conclusions

A low power compression algorithm for brain electrophysiology signals combining
delta compression and an optimized implementation of Huffman coding was developed.
This algorithm can compress neural data to nearly half its original size in a lossless man-
ner without adding any distortion. Compression efficiency can be slightly improved by
customizing the dictionaries using data from the same experimental animals.

This algorithm uses minimal hardware resources, making it possible to be imple-
mented in low-power devices. A protocol for packing the compressed signals with little
overhead and the capability to recover from packet losses was also developed for its use
with wireless transmission. The compression algorithm and the transmission protocol add
negligible extra power usage to the system, favoring the implementation of the algorithm
in a variety of wireless electrophysiology acquisition systems.

Reducing bandwidth naturally reduces the power needed for a wireless transmission
protocol. This was verified in a prototype wireless acquisition system created using com-
mercially available, low resource, and low-footprint devices. Although the transmission
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protocol utilized in this work was not designed for low power, a sizable reduction in power
consumption was achieved due to data compression.

Author Contributions: Conceptualization, A.C.-L., V.J.L.-M., S.C. and D.M.; Data curation, V.J.L.-M.
and D.M.; Formal analysis, A.C.-L., E.P.-M. and V.J.L.-M.; Funding acquisition, S.C.; Investigation,
A.C.-L., E.P.-M. and S.C.; Methodology, A.C.-L. and E.P.-M.; Project administration, S.C. and D.M.;
Resources, A.C.-L., S.C. and D.M.; Software, A.C.-L. and V.J.L.-M.; Supervision, S.C. and D.M.;
Validation, A.C.-L., E. P.-M., S.C. and D.M.; Visualization, A.C.-L. and E. P.-M.; Writing—original
draft, A.C.-L.; Writing—review & editing, S.C. and D.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: All animal experiments were approved by the Animal Care
and Use Committee of the Instituto de Neurociencias de Alicante, Alicante, Spain, and comply with
the Spanish (law 32/2007) and European regulations (EU directive 86/609, EU decree 2001-486, and
EU recommendation 2007/526/EC).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank the Open Ephys organization (Seattle, WA, USA) and
OEPS (Lisbon, Portugal) for providing the hardware fabrication services.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ASIC Application-Specific Integrated Circuit
DSP Digital Signal Processor
FPGA Field-Programmable Gate Array
IC Integrated Circuit
LFP Local Field Potentials
RAM Random Access Memory
ROM Read-Only Memory

References
1. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 2004, 7, 446–451. [CrossRef] [PubMed]
2. Krakauer, J.W.; Ghazanfar, A.A.; Gomez-Marin, A.; MacIver, M.A.; Poeppel, D. Neuroscience Needs Behavior: Correcting a

Reductionist Bias. Neuron 2017, 93, 480–490. [CrossRef] [PubMed]
3. Taube, J.S.; Muller, R.U.; Ranck, J.B. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description

and quantitative analysis. J. Neurosci. 1990, 10, 420–435. [CrossRef] [PubMed]
4. Moser, E.I.; Kropff, E.; Moser, M.B. Place Cells, Grid Cells, and the Brain’s Spatial Representation System. Annu. Rev. Neurosci.

2008, 31, 69–89. [CrossRef]
5. Meyer, A.F.; O’Keefe, J.; Poort, J. Two Distinct Types of Eye-Head Coupling in Freely Moving Mice. Curr. Biol. 2020, 30, 2116–

2130.e6. [CrossRef]
6. Siegle, J.H.; Wilson, M.A. Enhancement of encoding and retrieval functions through theta phase-specific manipulation of

hippocampus. eLife 2014, 3, e03061. [CrossRef]
7. López-Madrona, V.J.; Pérez-Montoyo, E.; Álvarez Salvado, E.; Moratal, D.; Herreras, O.; Pereda, E.; Mirasso, C.R.; Canals, S.

Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. eLife
2020, 9, e57313. [CrossRef]

8. Reinhold, A.S.; Sanguinetti-Scheck, J.I.; Hartmann, K.; Brecht, M. Behavioral and neural correlates of hide-and-seek in rats.
Science 2019, 365, 1180–1183. [CrossRef]

9. Yin, M.; Borton, D.; Komar, J.; Agha, N.; Lu, Y.; Li, H.; Laurens, J.; Lang, Y.; Li, Q.; Bull, C.; et al. Wireless Neurosensor for
Full-Spectrum Electrophysiology Recordings during Free Behavior. Neuron 2014, 84, 1170–1182. [CrossRef]

10. Massot, B.; Arthaud, S.; Barrillot, B.; Roux, J.; Ungurean, G.; Luppi, P.H.; Rattenborg, N.C.; Libourel, P.A. ONEIROS, a new
miniature standalone device for recording sleep electrophysiology, physiology, temperatures and behavior in the lab and field. J.
Neurosci. Methods 2019, 316, 103–116. [CrossRef]

11. Vinepinsky, E.; Donchin, O.; Segev, R. Wireless electrophysiology of the brain of freely swimming goldfish. J. Neurosci. Methods
2017, 278, 76–86. [CrossRef] [PubMed]

http://doi.org/10.1038/nn1233
http://www.ncbi.nlm.nih.gov/pubmed/15114356
http://dx.doi.org/10.1016/j.neuron.2016.12.041
http://www.ncbi.nlm.nih.gov/pubmed/28182904
http://dx.doi.org/10.1523/JNEUROSCI.10-02-00420.1990
http://www.ncbi.nlm.nih.gov/pubmed/2303851
http://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://dx.doi.org/10.1016/j.cub.2020.04.042
http://dx.doi.org/10.7554/eLife.03061
http://dx.doi.org/10.7554/eLife.57313
http://dx.doi.org/10.1126/science.aax4705
http://dx.doi.org/10.1016/j.neuron.2014.11.010
http://dx.doi.org/10.1016/j.jneumeth.2018.08.030
http://dx.doi.org/10.1016/j.jneumeth.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28069391


Sensors 2022, 22, 3676 18 of 19

12. Rattenborg, N.C.; Voirin, B.; Cruz, S.M.; Tisdale, R.; Dell’Omo, G.; Lipp, H.P.; Wikelski, M.; Vyssotski, A.L. Evidence that birds
sleep in mid-flight. Nat. Commun. 2016, 7, 1427. [CrossRef] [PubMed]

13. Borna, A.; Najafi, K. A Low Power Light Weight Wireless Multichannel Microsystem for Reliable Neural Recording. IEEE J.
Solid-State Circuits 2014, 49, 439–451. [CrossRef]

14. Fan, D.; Rich, D.; Holtzman, T.; Ruther, P.; Dalley, J.W.; Lopez, A.; Rossi, M.A.; Barter, J.W.; Salas-Meza, D.; Herwik, S.; et al. A
Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats. PLoS ONE 2011, 6, e22033. [CrossRef] [PubMed]

15. Su, Y.; Routhu, S.; Moon, K.S.; Lee, S.Q.; Youm, W.; Ozturk, Y. A Wireless 32-Channel Implantable Bidirectional Brain Machine
Interface. Sensors 2016, 16, 1582. [CrossRef] [PubMed]

16. Ghomashchi, A.; Zheng, Z.; Majaj, N.; Trumpis, M.; Kiorpes, L.; Viventi, J. A low-cost, open-source, wireless electrophysiology
system. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Chicago, IL, USA, 26–30 August 2014; pp. 3138–3141. [CrossRef]

17. Jia, Y.; Khan, W.; Lee, B.; Fan, B.; Madi, F.; Weber, A.; Li, W.; Ghovanloo, M. Wireless opto-electro neural interface for experiments
with small freely behaving animals. J. Neural Eng. 2018, 15, 046032. [CrossRef]
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