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Abstract

In this paper, we introduce the notion of fuzzy (F ,ϕ,β-ψ)-contractive
mappings in fuzzy metric spaces and utilize the same to prove some ex-
istence and uniqueness fuzzy ϕ-fixed point results in both M -complete
and G-complete fuzzy metric spaces. The obtained results extend, gen-
eralize and improve some relevant results of the existing literature. An
illustrative example is utilized to demonstrate the usefulness and effec-
tiveness of our results.
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1. Introduction

The existing literature on fuzzy sets and systems contains several definitions
of fuzzy metric spaces (see more details in [3, 4, 13]). The most popular defi-
nition of fuzzy metric spaces is essentially due to Kramosil and Michalek [14]
in 1975. Afterward, Grabiec [7] defined the notion of a complete fuzzy metric
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space (now known as a G-complete fuzzy metric space) and of a compact fuzzy
metric space, respectively. Moreover, he also proved fuzzy versions of two fa-
mous fixed point results: the Banach fixed point theorem and Edelstein fixed
point theorem. Later, the idea of Cauchy sequences in fuzzy metric spaces was
modified by George and Veeramani [5] because even R is not complete with
the completeness due to Grabiec [7]. Furthermore, they slightly modified the
concept of fuzzy metric spaces initiated by Kramosil and Michalek [14] and
also defined a Hausdorff and first countable topology. This modification al-
lows many natural examples of fuzzy metrics, particularly those constructed
from metrics and fuzzy metrics. In this new sense, fuzzy metrics appear more
appropriate for studying induced topological structures. Note that the fuzzy
metric of two points in a fuzzy metric space is measured by the degree of the
nearness of two points concerning one parameter t > 0. For instance, if we
travel from Thailand (x) to India (y) by aircraft, we can measure the degree
of the nearness of x and y concerning a factor (t) related to this travel, such
as time or fuel consumption with aircraft of different fuel efficiency (see in Fig.
1).

Figure 1. Illustrated example of the degree of nearness of x
and y with respect to t

Like other areas in mathematics, fuzzy metric fixed point theory is also
flourishing and by now there exists a considerable literature on fuzzy metric
fixed point theory (cf. [25, 26, 23, 21, 1, 18, 30, 6]).

Nowadays, the complete fuzzy metric space in the sense of Kramosil and
Michalek is known as an M -complete fuzzy metric space. It is well-known
that the topology induced by a fuzzy metric space in each sense of Kramosil
and Michalek, and in the sense of George and Veeramani, is metrizable and
thus Hausdorff. It brings to the fact that any compact fuzzy metric space is
complete in the sense of George and Veeramani [5]. Based on this fact, the
following natural question arises: is a compact fuzzy metric space complete in
the sense of Grabiec [7]? In 2012, Tirado [28] answered this question in the
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negative. In the same continuation, Gregori and Sapena [9] introduced the
notion of fuzzy contractive mappings and proved a fuzzy version of the Banach
contraction prnciple for such mappings in G-complete fuzzy metric spaces in
the sense of George and Veeramani. Thereafter, Mihet [19] generalized the
concept of fuzzy contractive mappings by introducing the concept of fuzzy ψ-
contractive mappings and proved a fixed point result which in turn generalizes
the Banach contraction principle in M -complete non-Archimedean fuzzy metric
spaces in the sense of Kramosil and Michalek.

On the other hand, the notion of ϕ-fixed points was initiated by Jleli et al.
[12]. The authors in [12] also introduced the notion of (F,ϕ)-contractive and
proved some ϕ-fixed point results in the setting of metric spaces. For more
results, in this direction we refer the reader to [15, 11, 20, 10, 16, 17]. Inspired
by Jleli et al. [12], Sezen et al.[27] introduced the concepts of fuzzy ϕ-fixed
points and (F,ϕ)-fuzzy contractive mappings, and established some existence
and uniqueness fuzzy ϕ-fixed point results in fuzzy metric spaces.

In this paper, we initiate the concept of fuzzy (F ,ϕ,β-ψ)-contractive map-
pings which enlarge and unify some classes of contractive mappings specially,
those introduced in [19, 27]. The introduced notion used to prove some fuzzy
ϕ-fixed point results in the setting of both M -complete and G-complete fuzzy
metric spaces. The presented results extend and improve the corresponding
results obtained in [19, 27].

2. Preliminaries

In order to have a self-contained presentation, we recall the relevant back-
ground material from the theory of fuzzy metric spaces, which are needed to
prove our results.

Definition 2.1 ([24]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to
be a t-norm if, for all r1, r2, r3 ∈ [0, 1], the following assumptions are fulfilled:

(T1) r1 ∗ r2 = r2 ∗ r1;
(T2) r1 ∗ (r2 ∗ r3) = (r1 ∗ r2) ∗ r3;
(T3) r1 ∗ r2 ≤ r3 ∗ r4 whenever r1 ≤ r3 and r2 ≤ r4;
(T4) r1 ∗ 1 = r1.

Three basic examples of t-norms are ∗1, ∗2, ∗3 : [0, 1]× [0, 1]→ [0, 1] defined
by r1 ∗1 r2 = r1 · r2, r1 ∗2 r2 = min{r1, r2} and r1 ∗3 r2 = max{r1 + r2−1, 0} for
all r1, r2 ∈ [0, 1] which known as product, minimum and Lukasiewicz t-norms,
respectively.

Definition 2.2 ([5]). Let X be a non-empty set, ∗ is a continuous t-norm and
M : X2 × (0,∞) → [0, 1] is a fuzzy set. An ordered triple (X,M, ∗) is said to
be a fuzzy metric space (in short, FMS) in the sense of George and Veeramani
if the following assumptions are fulfilled for all x, y, z ∈ X and t, s > 0:

(G1) M(x, y, t) > 0;
(G2) M(x, y, t) = 1 iff x = y;
(G3) M(x, y, t) = M(y, x, t);
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(G4) M(x, z, t) ∗M(z, y, s) ≤M(x, y, t+ s);
(G5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

In Definition 2.2, (G4) is a fuzzy version of the triangle inequality. In addi-
tion, if the condition (G4) is replaced by the following one:

(G4)′ M(x, z, t)∗M(z, y, s) ≤M(x, y,max{t, s}) for all x, y, z ∈ X and s, t >
0,

then the fuzzy metric space (X,M, ∗) is said to be a non-Archimedean FMS.
The example given below shows that a FMS can be constructed by a metric

space.

Example 2.3 ([5]). Let (X, d) be a metric space and ∗ : [0, 1]2 → [0, 1] be a
product t-norm (or a minimum t-norm). Define M : X2 × (0,∞)→ [0, 1] by

M(x, y, t) =
t

t+ d(x, y)

for all x, y ∈ X and t > 0. Then (X,M, ∗) is a FMS, called a standard FMS
induced by the metric d.

Now, we give some examples of FMSs due to Gregori et al. [8].

Example 2.4 ([8]). Let X be a nonempty set, f : X → (0,∞) be a one-to-one
function and g : (0,∞)→ [0,∞) be an increasing continuous function. Define
M : X2 × (0,∞)→ [0, 1] by

M(x, y, t) =

(
(min{f(x), f(y)})α + g(t)

(max{f(x), f(y)})α + g(t)

)β
for all x, y ∈ X and t > 0, where α, β > 0. Then (X,M, ∗) is a FMS, where ∗
is the product t-norm.

Example 2.5 ([8]). Let (X, d) be a metric space and g : (0,∞) → [0,∞) be
an increasing continuous function. Define M : X2 × (0,∞)→ [0, 1] by

M(x, y, t) = e(−
d(x,y)
g(t) )

for all x, y ∈ X and t > 0. Then (X,M, ∗) is a FMS, where ∗ is the product
t-norm.

Example 2.6 ([8]). Let (X, d) be a bounded metric space, i.e. d(x, y) < k for
all x, y ∈ X, where k is a fixed constant in (0,∞), and g : (0,∞)→ (k,∞) be
an increasing continuous function. Define M : X2 × (0,∞)→ [0, 1] by

M(x, y, t) = 1− d(x, y)

g(t)

for all x, y ∈ X and t > 0. Then (X,M, ∗) is a FMS, where ∗ is a Lukasiewicz
t-norm.
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Definition 2.7 ([7, 5]). Let (X,M, ∗) be a FMS.

(1) A sequence {xn} ⊆ X is said to be convergent to x ∈ X if

lim
n→∞

M(xn, x, t) = 1

for all t > 0.
(2) A sequence {xn} ⊆ X is said to be an M -Cauchy sequence if for each

ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that

M(xm, xn, t) > 1− ε

for all m,n ≥ n0.
(3) A sequence {xn} ⊆ X is said to be an G-Cauchy sequence if

M(xn, xn+p, t) = 1

for all p ∈ N and t > 0.
(4) The FMS (X,M, ∗) is said to be M -complete (G-complete) if every

M -Cauchy (G-Cauchy) sequence in X converges to a point of X.

Lemma 2.8 ([7, 5]). Let (X,M, ∗) be a FMS. Then the following assertions
hold:

(1) the mapping M is continuous on X2 × (0,∞);
(2) for each x, y ∈ X, M(x, y, ·) is non-decreasing function on (0,∞);
(3) the limit of a convergent sequence in (X,M, ∗) is unique.

Definition 2.9 ([9]). Let (X,M, ∗) be a FMS. A mapping T : X → X is said
to be a fuzzy contractive mapping if there exists λ ∈ (0, 1) such that

1

M(Tx, Ty, t)
− 1 ≤ λ

(
1

M(x, y, t)
− 1

)
for all x, y ∈ X and t > 0.

Definition 2.10 ([9]). Let (X,M, ∗) be a FMS. A sequence {xn}n∈N is said
to be fuzzy contractive if there exists λ ∈ (0, 1) such that

1

M(xn+1, xn+2, t)
− 1 ≤ λ

(
1

M(xn, xn+1, t)
− 1

)
for all t > 0.

Let Ψ be the family of all functions ψ : (0, 1] → (0, 1] such that ψ is non-
decreasing, left continuous function and ψ(r) > r for all r ∈ (0, 1).

Lemma 2.11 ([29]). If ψ ∈ Ψ, then ψ(1) = 1.

Lemma 2.12 ([29]). If ψ ∈ Ψ, then lim
n→∞

ψn(t) = 1 for all t ∈ (0, 1).

Using the mapping ψ ∈ Ψ, Mihet [19] introduced the following concept of
fuzzy ψ-contractive mappings and proved a fuzzy fixed point theorem in M -
complete non-Archimedean FMSs.
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Definition 2.13 ([19]). Let (X,M, ∗) be a FMS. A mapping T : X → X is
said to be a fuzzy ψ-contractive mapping if there exists ψ ∈ Ψ such that

M(Tx, Ty, t) ≥ ψ(M(x, y, t))

for all x, y ∈ X and t > 0.

Inspired by the appearance of the idea of α-admissble mappings of Samet et
al. [22], Gopal and Vetro [6] employ the following idea in FMSs:

Definition 2.14 ([6]). Let (X,M, ∗) be a FMS and β : X×X×(0,∞)→ (0,∞)
be a given mapping. A mapping T : X → X is said to be β-admissible if the
following condition holds:

x, y ∈ X and t > 0 with β(x, y, t) ≤ 1 =⇒ β(Tx, Ty, t) ≤ 1.

From now on, Fix(T ) denotes the set of all fixed points of a self-mapping
T on a non-empty set X, that is, Fix(T ) = {x ∈ X : x = Tx}, and Uϕ stands
for the set of all ones of the function ϕ : X → (0, 1], that is, Uϕ = {x ∈ X :
ϕ(x) = 1}.

Let F be the set of all functions F : (0, 1]3 → (0, 1] satisfying the following
conditions:

(F1) min{a, b, c} ≥ F (a, b, c) for all a, b, c ∈ (0, 1];
(F2) F (1, 1, 1) = 1;
(F3) F is continuous.

Example 2.15. Let F1, F2 : (0, 1]3 → (0, 1] be functions defined for each
a, b, c ∈ (0, 1] by

• F1(a, b, c) = a · b · c;
• F2(a, b, c) = min{a, b} · c.

Then F1 and F2 belong to F .

Sezen et al.[27] introduced the concepts of fuzzy ϕ-fixed points and (F,ϕ)-
fuzzy contractive mappings as follows:

Definition 2.16 ([27]). Let X be a non-empty set and ϕ : X → (0, 1] be a
given function. An element z ∈ X is said to be a fuzzy ϕ-fixed point of a
mapping T : X → X if and only if it is a fixed point of T and ϕ(z) = 1, that
is, z ∈ Fix(T ) ∩ Uϕ.

Definition 2.17 ([27]). Let (X,M, ∗) be a FMS, F ∈ F and ϕ : X → [0, 1)
be a function. A mapping T : X → X is said to be a (F,ϕ)-fuzzy contractive
mapping if there exists ψ ∈ Ψ such that

F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty)) ≥ ψ(F (M(x, y, t), ϕ(x), ϕ(y))

for all x, y ∈ X and t > 0.

Based on the above definitions, the authors in [27] proved the following
existence and uniqueness result in the setting of G-complete FMSs:

Theorem 2.18 ([27]). Let (X,M, ∗) be a G-complete FMS, F ∈ F and ϕ :
X → (0, 1] be a continuous function. Suppose that T : X → X is a (F,ϕ)-fuzzy
contractive mapping. Then T has a unique fuzzy ϕ-fixed point.
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3. Main result

In this section, we first enlarge the class of functions F by replacing the
condition (F1) by the following one:

(F1)′ min{a, b} ≥ F (a, b, c) for all a, b, c ∈ (0, 1].

Let FH denotes the class of all functions F : (0, 1]3 → (0, 1] satisfying the
conditions (F1)′, (F2) and (F3).

Remark 3.1. Since min{a, b} ≥ min{a, b, c} for all a, b, c ∈ (0, 1], we have
F ⊆ FH, but the converse is not in general true as shown in the next example.

Example 3.2. Let F : (0, 1]3 → (0, 1] be a function defined for each a, b, c ∈
(0, 1] by

• F (a, b, c) = a · b · ec−1.

It is clear that F belong to FH but not to F because the condition (F1) is not
satisfied (for instance, take a = 1, b = 0.9 and c = 0.1).

Next, let us introduce the notion of fuzzy (F ,ϕ,β-ψ)-contractive mappings
as follows:

Definition 3.3. Let (X,M, ∗) be a FMS, F ∈ FH and ϕ : X → (0, 1] be a
function. A mapping T : X → X is said to be a fuzzy (F ,ϕ,β-ψ)-contractive
mapping if there exist two functions β : X ×X × (0,∞) → (0,∞) and ψ ∈ Ψ
such that

(3.1) β(x, y, t)F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty)) ≥ ψ(F (M(x, y, t), ϕ(x), ϕ(y))

for all x, y ∈ X and t > 0.

Remark 3.4. By choosing the essential functions β, F , ψ and ϕ suitably in
Definition 3.3, one can deduce some known contractions as demonstrated under.

(a) Setting β(x, y, t) = 1 for all x, y, z ∈ X and t > 0, we obtain Definition
2.17.

(b) Taking F (a, b, c) = a · b · c for all a, b, c ∈ (0, 1], β(x, y, t) = 1 for all
x, y ∈ X and t > 0, and ϕ(z) = 1 for all z ∈ X, we deduce Definition
2.13.

(c) Putting F (a, b, c) = a · b · c for all a, b, c ∈ (0, 1], β(x, y, t) = 1 for all
x, y ∈ X and t > 0, ϕ(z) = 1 for all z ∈ X, and ψ(r) = r

r+k(1−r) for all

r ∈ (0, 1], where k ∈ (0, 1), we deduce Definition 2.9.

Definition 3.5. Let (X,M, ∗) be a FMS and β : X × X × (0,∞) → (0,∞)
be a mapping. A mapping T : X → X is said to be fuzzy β∗-admissible if the
following conditions hold:

(β∗1) for each x, y ∈ X and t > 0 with β(x, y, t) ≤ 1, we have β(Tx, Ty, t) ≤
1;

(β∗2) for each x ∈ X with x = Tx, we have β(x, x, t) = 1 for all t > 0.
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Example 3.6. Let X = [0,∞). Define two mappings T : X → X and β :
X ×X × (0,∞)→ (0,∞) by

Tx =
√
x for all x ∈ X and β(x, y, t) =

{
e

y−x
t x ≥ y,

2 x < y.

Then the mapping T is β∗-admissible.

Example 3.7. Let X = (0,∞). Define two mappings T : X → X and
β : X ×X × (0,∞)→ (0,∞) by

Tx = lnx for all x ∈ X and β(x, y, t) =

{
1
t if x ≥ y and t ≥ 1,

2 otherwise.

Then the mapping T is β∗-admissible.

Theorem 3.8. Let (X,M, ∗) be a G-complete FMS, F ∈ FH, and ϕ : X →
(0, 1] be a continuous function. Suppose that T : X → X is a fuzzy (F ,ϕ,β-ψ)-
contractive mapping satisfying the following conditions:

(a) T is β∗-admissible;
(b) there exists x0 ∈ X such that β(x0, Tx0, t) ≤ 1 for all t > 0;
(c) either T is continuous or

if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N
and t > 0 and lim

n→∞
xn = x ∈ X, then β(xn, x, t) ≤ 1 for all n ∈ N and

t > 0.

Then Fix(T ) ⊆ Uϕ and T has a fuzzy ϕ-fixed point.

Proof. Let x ∈ Fix(T ), that is, x = Tx. Applying (3.1) with x = y and using
the condition (β∗2), we obtain

(3.2) F (1, ϕ(x), ϕ(x)) = β(x, x, t)F (1, ϕ(x), ϕ(x)) ≥ ψ(F (1, ϕ(x), ϕ(x)).

From (3.2) and taking into account that ψ(t) > t, for all t ∈ (0, 1), we get

(3.3) F (1, ϕ(x), ϕ(x)) = 1.

Using (3.3) and (F1)′, we have

ϕ(x) ≥ F (1, ϕ(x), ϕ(x)) = 1,

which implies that ϕ(x) = 1, and hence Fix(T ) ⊆ Uϕ.
Next, let x0 be an arbitrary point in X such that β(x0, Tx0, t) ≤ 1 for all

t > 0. Define the sequence {xn} in X by xn+1 = Txn for all n ∈ N0 := N∪{0}.
If xn0

= xn0+1 for some n0 ∈ N0, then xn0
is a fixed point of the mapping T ,

and hence a fuzzy ϕ-fixed point (as Fix(T ) ⊆ Uϕ). Assume that xn 6= xn+1

for all n ∈ N0. Since T is β-admissible, we have

β(x0, x1, t) = β(x0, Tx0, t) ≤ 1 =⇒ β(x1, x2, t) = β(Tx0, Tx1, t) ≤ 1.

By induction, we get

(3.4) β(xn, xn+1, t) ≤ 1, for all n ∈ N and t > 0.
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Applying the contractive condition (3.1) with x = xn−1 and y = xn, and using
(3.4), we have

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) ≥ β(xn−1, xn, t)F (M(xn, xn+1, t), ϕ(xn),

ϕ(xn+1))

≥ ψ(F (M(xn−1, xn, t), ϕ(xn−1), ϕ(xn)))

for all n ∈ N and t > 0. By induction, we get

F (M(xn, xn+1, t), ϕ(xn), ϕ(xn+1)) ≥ ψn(F (M(x0, x1, t), ϕ(x0), ϕ(x1)))

for all n ∈ N and t > 0. From the above inequality and (F1)′ we obtain

(3.5) M(xn, xn+1, t) ≥ ψn(F (M(x0, x1, t), ϕ(x0), ϕ(x1)))

and

(3.6) ϕ(xn) ≥ ψn(F (M(x0, x1, t), ϕ(x0), ϕ(x1)))

for all n ∈ N. Now, we will show that {xn} is a G-Cauchy sequence in X. Let
m,n ∈ N such that m > n and on making use of (G4) and (3.5), we get

M(xn, xn+m, t) ≥M

(
xn, xn+1,

t

m

)
∗M

(
xn+1, xn+2,

t

m

)
∗ ...∗

(3.7)

M

(
xn+m−1, xn+m,

t

m

)
≥ ψn(F (M(x0, x1, t), ϕ(x0), ϕ(x1))) ∗ ψn+1(F (M(x0, x1, t),

ϕ(x0), ϕ(x1))) ∗ · · · ∗ ψn+m−1(F (M(x0, x1, t), ϕ(x0), ϕ(x1)))

= ∗i=m−1i=0 ψn+i(F (M(x0, x1, t), ϕ(x0), ϕ(x1))),

which in view of Lemma 2.12 gives rise to

lim
n→∞

M(xn, xn+m, t) = 1

for all m, t > 0, and hence {xn} is a G-Cauchy sequence in X. Therefore, the
G-completeness of the fuzzy metric space (X,M, ∗) insures the existence of a
point z in X such that

(3.8) lim
n→∞

M(xn, z, t) = 1.

Observe that from (3.6) and Lemma 2.12, we have

(3.9) lim
n→∞

ϕ(xn) = 1.

Using (3.8), (3.9) and the upper semi-continuity of ϕ, we get

1 ≥ ϕ(z) ≥ lim
n→∞

supϕ(xn) = 1,

which implies that

(3.10) ϕ(z) = 1.
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Now, assume that (c) holds, that is, the mapping T is continuous. Then it
follows that

lim
n→∞

M(xn+1, T z, t) = lim
n→∞

M(Txn, T z, t) = 1

for all t > 0. By the uniqueness of the limit, we get Tz = z. Therefore, we
conclude that z is a fixed point of T , and hence a fuzzy ϕ-fixed point of T (due
to (3.10)). Otherwise, in view of (3.4) and (3.8), we have

(3.11) β(xn, z, t) ≤ 1 for all n ∈ N and for all t > 0.

Applying (3.1) with x = xn and y = z, and using (3.11), we obtain

F (M(xn+1, T z, t), ϕ(xn+1), ϕ(Tz)) ≥ β(xn, z, t)F (M(xn+1, T z, t), ϕ(xn+1),

ϕ(Tz))

≥ ψ(F (M(xn, z, t), ϕ(xn), ϕ(z)))

for all n ∈ N and t > 0. Taking the limit to the both sides of the above
inequality, and using (3.8), (3.9), (3.10) and the continuity of F and ψ, we get

F (M(z, Tz, t), 1, ϕ(Tz)) ≥ ψ(F (1, 1, 1)) = 1,

which in view of (F1)′ we must have M(z, Tz, t) = 1. Therefore, z is a fuzzy
ϕ-fixed point of T . Thus, the proof is completed. �

In order to examine the uniqueness of the fuzzy ϕ-fixed point, we will take
into account the following condition:

(h) for all x, y ∈ Fix(T ) and t > 0, there exists w ∈ X such that β(x,w, t) ≤
1 and β(y, w, t) ≤ 1.

Theorem 3.9. In addition to the hypotheses of Theorem 3.8, assume that the
condition (h) is satisfied. Then the fuzzy ϕ-fixed point of T exists and is unique.

Proof. Theorem 3.8 insures the existence of a fuzzy ϕ-fixed point of T . Suppose
that z1 and z2 are two fuzzy ϕ-fixed points of T , that is, z1, z2 ∈ Fix(T ) and
ϕ(z1) = ϕ(z2) = 1. From the condition (h), there exists w ∈ X such that

(3.12) β(z1, w, t) ≤ 1 and β(z2, w, t) ≤ 1

for all t > 0. Using the condition (β∗1) (as T is β∗-admissible) and (3.12), we
obtain

(3.13) β(z1, T
nw, t) ≤ 1 and β(z2, T

nw, t) ≤ 1

for all n ∈ N and t > 0. Applying (3.1) with x = z1 and y = Tn−1w, and using
(3.13), we have

F (M(z1, T
nw, t), 1, ϕ(Tnw)) = F (M(Tz1, T (Tn−1w), t), ϕ(Tz1), ϕ(T (Tn−1w)))

≥ β(z1, T
n−1w)F (M(Tz1, T (Tn−1w), t), ϕ(Tz1),

ϕ(T (Tn−1w)))

≥ ψ(F (M(z1, T
n−1w, t), ϕ(z1), ϕ(Tn−1w)))

= ψ(F (M(z1, T
n−1w, t), 1, ϕ(Tn−1w)))
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for all n ∈ N and t > 0. This inductively implies that

F (M(z1, T
nw, t), 1, ϕ(Tnw)) ≥ ψn(F (M(z1, w, t), 1, ϕ(w)))

for all n ∈ N and t > 0. From the above inequality and in view of the condition
(F1)′, we have

M(z1, T
nw, t) ≥ ψn(F (M(z1, w, t), 1, ϕ(w)))

for all n ∈ N and t > 0. Taking the limit to the both sides of the above
inequality, and using (3.13) and Lemma 2.12, we obtain

lim
n→∞

M(z1, T
nw, t) = 1

for all t > 0. Similarly, one can prove that

lim
n→∞

M(z2, T
nw, t) = 1

for all t > 0. Therefore, the uniqueness of the limit insures that z1 = z2 for all
t > 0, and hence the ϕ-fixed point of T is unique. This completes the proof. �

Remark 3.10. Setting β(x, y, t) = 1 for all x, y, z ∈ X and t > 0, Theorem 3.9
reduces to Theorem 2.18.

In the above proved results (Theorems 3.8 and 3.9), the G-completeness
of the fuzzy metric space (X,M, ∗) was assumed, and it is known from the
definitions of G-Cauchy and M -Cauchy that are different.

Moreover, it is well-known that the G-completeness is a too restrictive notion
of the completeness. For instance, the standard FMS is not G-complete for the
usual metric space (see [5] for more details), and there exist compact FMSs
that are not G-complete. Based on the mentioned fact, the obtained results
concerning M -complete FMSs are more interesting than the corresponding ones
for G-complete FMSs. Therefore, the following interesting open question will
arise:

• Do Theorems 3.8 and 3.9 remain true if we replace the G-
completeness of the FMS by the M-completeness?

Next, we are going to answer the above question by proving Theorems 3.8
and 3.9 with M -completeness of the fuzzy metric space (X,M, ∗) under the
following situations:

• replacing FH by FS , which is the class of all functions F : (0, 1]3 →
(0, 1] satisfying (F1)′, (F3) and F (a, 1, 1) = a for all a ∈ (0, 1];

• adding one more condition on the function β (the condition (d) in
Theorem 3.11).

Theorem 3.11. Let (X,M, ∗) be an M -complete FMS, F ∈ FS , and ϕ : X →
(0, 1] be a continuous function. Suppose that T : X → X is a fuzzy (F ,ϕ,β-ψ)-
contractive mapping satisfying the following conditions:

(a) T is β∗-admissible;
(b) there exists x0 ∈ X such that β(x0, Tx0, t) ≤ 1 for all t > 0;
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(c) either T is continuous or
if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N
and t > 0 and lim

n→∞
xn = x ∈ X, then β(xn, x, t) ≤ 1 for all n ∈ N and

t > 0;
(d) for each sequence {xn} in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N

and t > 0, there exists k0 ∈ N such that for all m,n ∈ N with m > n ≥
k0, we have β(xn, xm, t) ≤ 1 for all t > 0.

Then Fix(T ) ⊆ Uϕ and T has a fuzzy ϕ-fixed point.

Proof. The frame of the proof is the same as in Theorem 3.8. So for arbitrary
point x0 ∈ X, it follows from (3.5) and Lemma 2.12 that

(3.14) lim
n→∞

M(xn, xn+1, t) = 1 for all t > 0.

Now, we need to show only that the sequence {xn} is an M -Cauchy sequence,
on contrary, we assume that it is not an M -Cauchy sequence, then by [2,
Proposition] and the condition (d), there exist ε ∈ (0, 1), t0 > 0 and k0 ∈ N
such that for each k ∈ N with k ≥ k0, there exists mk, nk ∈ N such that
mk > nk ≥ k and

(3.15) M(xnk
, xmk

, t0) ≤ 1− ε,

with

(3.16) lim
n→∞

M(xnk
, xmk

,
t0
2

) = 1− ε

and

(3.17) β(xnk
, xmk

,
t0
2

) ≤ 1.

From (F1)′, we have

(3.18) M(xnk+1, xmk+1,
t0
2

) ≥ F (M(xnk+1, xmk+1,
t0
2

), ϕ(xnk+1), ϕ(xmk+1)).
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Making use of the equations (3.1), (3.15), (3.17), (3.18) and (G4), we get

1− ε ≥M(xnk
, xmk

, t0)

≥M(xnk
, xnk+1,

t0
4

) ∗M(xnk+1, xmk+1,
t0
2

) ∗M(xmk+1, xmk
,
t0
4

)

≥M(xnk
, xnk+1,

t0
4

) ∗ F (M(xnk+1, xmk+1,
t0
2

), ϕ(xnk+1), ϕ(xmk+1))∗

M(xmk+1, xmk
,
t0
4

)

≥M(xnk
, xnk+1,

t0
4

) ∗ β(xnk
, xmk

,
t0
2

)F (M(Txnk
, Txmk

,
t0
2

), ϕ(Txnk
),

ϕ(Txmk
)) ∗M(xmk+1, xmk

,
t0
4

)

≥M(xnk
, xnk+1,

t0
4

) ∗ ψ(F (M(xnk
, xmk

,
t0
2

)), ϕ(xnk
), ϕ(xmk

))∗

M(xmk+1, xmk
,
t0
4

).

Taking n → ∞ to the both sides of the above inequality, using (3.14), (3.16)
and the continuity of F and ψ, we obtain

1− ε ≥ 1 ∗ ψ(F (1− ε, 1, 1)) ∗ 1

which in view of (T4) and the fact that ψ(t) > t for all t ∈ (0, 1) and F ∈ FS
gives rise

1− ε ≥ ψ(1− ε) > 1− ε,
which is a contradiction, and hence {xn} is a M -Cauchy sequence in X. The
rest of the proof follows as in the proof of Theorem 3.8. �

The following theorem ensures the uniqueness of the fuzzy ϕ-fixed point.

Theorem 3.12. In addition to the hypotheses of Theorem 3.11. Assume that
the condition (h) is satisfied. Then the fuzzy ϕ-fixed point of T exists and is
unique.

Proof. Theorem 3.11 ensures the existence of a fuzzy ϕ-fixed point of T . The
proof of the uniqueness is the same as in Theorem 3.9, and hence omitted. �

Remark 3.13. Taking F (a, b, c) = a · b · c for all a, b, c ∈ (0, 1], β(x, y, t) = 1 for
all x, y ∈ X and t > 0 and ϕ(z) = 1 for all z ∈ X in Theorem 3.12, we deduce
Theorem 3.1 in [19].

To support our result, we provide an illustrative example. Precisely, we show
that Theorem 3.12 can be used to cover this example, while Theorem 3.1 in
[19] is not applicable.

Example 3.14. Let X = N, the set of all positive integers, ∗ is a minimum

t-norm and M be a fuzzy set on X2 × (0,∞) given by M(x, y, t) = e
−|x−y|

t for
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all x, y ∈ X and all t > 0. Then (X,M, ∗) is an M -complete FMS. Consider
the mapping T : X → X defined by

(3.19) Tx =

{
1 if x ∈ A,

2 if x ∈ B,

where A = {2n−1 | n ∈ N}∪{2} and B = {2n+2 | n ∈ N}. Define two essential
functions F : (0, 1]3 → (0, 1] and ϕ : X → (0, 1] by

F (a, b, c) = a · b · c for all a, b, c ∈ (0, 1] and ϕ(x) = e1−x for all x ∈ X.

It is obvious that F ∈ FS and ϕ is a continuous function. Consider the function:
β : X ×X × (0,∞)→ (0,∞) defined by

β(x, y, t) =

{
1 if x, y ∈ A or x, y ∈ B,
xy + yx otherwise.

Let x, y ∈ X such that β(x, y, t) ≤ 1. Then either x, y ∈ A or x, y ∈ B
and by the definition of T , in both cases, we have Tx = Ty ∈ A, and hence
β(Tx, Ty, t) = 1 for all t > 0. Moreover, the condition (β∗2) holds. Therefore,
T is β∗-admissible mapping. Also, 2 ∈ X and β(2, T2, t) = β(2, 1, t) = 1.
Further, let {xn} be a sequence in X such that lim

n→∞
xn = x with k0 = 1 and

β(xn, xn+1, t) ≤ 1, for all n ∈ N. From the definition of β, it follows that either
xn ∈ A for all n ∈ N or xn ∈ B for all n ∈ N. In the case of xn ∈ A for all
n ∈ N, if we assume that x ∈ B, then we get

M(xn, x, t) = e
−|xn−x|

t ≤ e
−1
t < 1 for all t > 0,

which is a contradiction to the assumption that lim
n→∞

xn = x. Thus, we have

x ∈ A. Therefore, β(xn, x, t) ≤ 1 and β(xn, xm, t) ≤ 1 for all m,n ∈ N and
t > 0. Similarly, we get the same thing in the case of xn ∈ B.

Finally, we will show that T is fuzzy (F ,ϕ,β-ψ)-contractive mapping, where
ψ : (0, 1]→ (0, 1] is defined by ψ(t) =

√
t for all t ∈ (0, 1]. To do so, we consider

three cases.
Case I: If x, y ∈ A, then (as β(x, y, t) = 1) we have

β(x, y, t)[F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty))] = M(1, 1, t)ϕ(1)ϕ(1)

= 1

≥
√
e
−|x−y|

t e1−xe1−y

=
√
F (M(x, y, t), ϕ(x), ϕ(y)).
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Case II: If x, y ∈ B, then (as β(x, y, t) = 1) we have

β(x, y, t)[F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty))] = M(2, 2, t).ϕ(2).ϕ(2)

= e−1e−1

≥
√
e
−|x−y|

t e1−xe1−y

=
√
F (M(x, y, t), ϕ(x), ϕ(y)).

Case III: If x ∈ A and y ∈ B, then (as β(x, y, t) = xy + yx) we have

β(x, y, t)[F (M(Tx, Ty, t), ϕ(Tx), ϕ(Ty))] = (xy + yx)M(1, 2, t)ϕ(1)ϕ(2)

= (xy + yx)e
−1
t e−1

≥
√
e
−|x−y|

t e1−xe1−y

=
√
F (M(x, y, t), ϕ(x), ϕ(y)).

Hence, from all cases, we can conclude that T is a fuzzy (F ,ϕ,β-ψ)-contractive
mapping. Therefore, all the hypotheses of Theorem 3.9 are satisfied. Hence, T
has a unique fuzzy ϕ-fixed point (namely x = 1).

However, T is not a fuzzy ψ-contractive mapping. On contrary, let us assume
that T is a fuzzy ψ-contractive mapping, that is, there exists ψ ∈ Ψ such that

M(Tx, Ty, t) ≥ ψ(M(x, y, t))

for all x, y ∈ X and t > 0. Choosing x = 3, y = 4 and t = 1
4 , we have

e−4 = M

(
T3, T4,

1

4

)
≥ ψ

(
M

(
3, 4,

1

4

))
= ψ(e−4) > e−4,

which is a contradiction, and hence T is not a fuzzy ψ-contractive mapping.
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