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Abstract

In this paper we introduce notions of digital semicovering and digital
quasicovering maps. We show that these are generalizations of digital
covering maps and investigate their relations. We will also clarify the
relationship between these generalizations and digital path lifting.
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1. Introduction and motivation

There are maps in digital topology that are not coverings, but have some
properties of covering maps such as the path lifting property and unique path
lifting property. As an example, a digital map obtained by restricting the
domain of a digital covering map is not necessarily a digital covering map but
has uniqueness of digital path liftings. This has made it important for us to
generalize the notion digital covering map.

Han [9] has introduced a generalization of digital covering maps, named
digital pseudocovering map, by weakening the local isomorphism condition in
the definition of digital covering maps.

Pakdaman [13] has shown that any digital pseudocovering map (by Han’s
definition) is a digital covering map and changed the definition to achieve a
correct generalization.
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Here, we will introduce two types of generalizations for digital covering maps:
digital semicovering maps and digital quasicovering maps. We define these
concepts by using local properties of digital maps, and then we stabilize them
using the notions of digital path lifting property and digital unique path lifting
property.

Then, we present the conditions when these generalizations are equivalent
to each other and to digital covering maps. Although digital covering theory
seemed to be a special case of graph covering theory, [14] has shown that it is
not. We find that the digital quasicovering introduced here is a special case of
graph covering.

2. Notations and preliminaries

For a positive integer u with 1 ≤ u ≤ n, an adjacency relation of a digital
image in Zn is defined as follows:
Two distinct points p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) in Zn are cu-

adjacent, denoted by p
cu←→ q, [4] if there are at most u distinct indices i such

that |pi − qi| = 1 and for all indices j, pj = qj if |pj − qj | 6= 1. A cu-adjacency
relation on Zn can be denoted by the number of points that are cu-adjacent to
a given point p ∈ Zn. For example,

• The c1-adjacent points of Z are called 2-adjacent.
• The c1-adjacent points of Z2 are called 4-adjacent and the c2-adjacent

points in Z2 are called 8-adjacent.
• The c1-adjacent, c2-adjacent and c3-adjacent points of Z3 are called

6-adjacent, 18-adjacent, and 26-adjacent, respectively.

More general adjacency relations are studied in [10].
Let κ be an adjacency relation defined on Zn and X ⊆ Zn. Then the pair

(X,κ) is said to be a (binary) digital image. A digital image X ⊆ Zn is κ-
connected [16] if and only if for every pair of different points x, y ∈ X, there
is a set x0, x1, ..., xr of points of a digital image X such that x = x0, y = xr
and xi and xi+1 are κ-adjacent where i = 0, 1, ..., r − 1.

Proposition 2.1 ([2, 15]). Let (X,κ) in Zn and (Y, λ) in Zm be digital images.
A function f : X −→ Y is (κ, λ)-continuous if and only if for every κ-adjacent
points x0, x1 ∈ X, either f(x0) = f(x1) or f(x0) and f(x1) are λ-adjacent in
Y .

For a, b ∈ Z with a < b, a digital interval [1] is a set of the form

[a, b]Z = {z ∈ Z|a ≤ z ≤ b}.
Definition 2.2. By a digital κ-path from x to y in a digital image (X,κ),
we mean a (2, κ)-continuous function f : [0,m]Z −→ X such that f(0) = x and
f(m) = y. If f(0) = f(m) then the κ-path is said to be closed, and f is called
a κ-loop.

Let f : [0,m − 1]Z −→ X ⊆ Zn be a (2, κ)-continuous function such that
f(i) and f(j) are κ-adjacent if and only if j = i ± 1 mod m. Then the set
f([0,m−1]Z) is a simple closed κ-curve containing m points, denoted by SCn,mκ .
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If f is a constant function, it is called a trivial loop.
If f : [0,m1]Z −→ X and g : [0,m2]Z −→ X are digital κ-paths with

f(m1) = g(0), then define the product [11] (f ∗ g) : [0,m1 +m2]Z −→ X by

(f ∗ g)(t) =

{
f(t) if t ∈ [0,m1]Z;

g(t−m1) if t ∈ [m1,m1 +m2]Z.

Let (E, κ) be a digital image and let ε ∈ N . The κ-neighborhood [8] of
e0 ∈ E with radius ε is the set Nκ(e0, ε) = {e ∈ E| lκ(e0, e) ≤ ε} ∪ {e0}, where
lκ(e0, e) is the length of a shortest κ-path from e0 to e in E.

By the notations above, the function f : X −→ Y is a (κ, λ)-isomorphism

[3], denoted by X
(κ,λ)
≈ Y , if f is a (κ, λ)-continuous bijection and further

f−1 : Y −→ X is (λ, κ)-continuous. If κ = λ, then f is called a κ-isomorphism.

Definition 2.3 ([8]). For two digital spaces (X,κ) in Zn and (Y, λ) in Zm, a
(κ, λ)-continuous map h : X −→ Y is called a local (κ, λ)-isomorphism if for
every x ∈ X, h|Nκ(x;1) is a (κ, λ)-isomorphism onto Nλ(h(x); 1). If n = m and
κ = λ, then the map h is called a local κ-isomorphism.

Definition 2.4 ([9]). For two digital spaces (X,κ) and (Y, λ), a map h : X −→
Y is called a weakly local (κ, λ)-isomorphism if for every x ∈ X, h maps
(κ, λ)-isomorphically Nκ(x, 1) onto h(Nκ(x, 1)).

In the definition of local isomorphism we can remove the condition of the
continuity of h, because continuity is a local notion and for every x ∈ X,
h|Nκ(x;1) is a (κ, λ)-isomorphism and hence h is continuous. Also, it is notable
that the difference between local isomorphisms and weakly local isomorphisms
is surjectivity of h|Nκ(x;1).

For n ∈ N, the map h is called an n-radius local isomorphism if for every
x ∈ X, the restriction map h|Nκ(x,n) : Nκ(x, n) −→ Nλ(h(x), n) is a (κ, λ)-
isomorphism.

Definition 2.5 ([6]). Let (E, κ) and (B, λ) be digital images and p : E −→ B
be a (κ, λ)-continuous surjection. The map p is called a (κ, λ)-covering map
if there exists an index set M such that for each b ∈ B
(1) p−1(Nλ(b, 1)) =

⊔
i∈M

Nκ(ei, 1) with ei ∈ p−1(b);

(2) if i, j ∈M , i 6= j, then Nκ(ei, 1) ∩Nκ(ej , 1) = ∅; and
(3) the restriction map p|Nκ(ei,1) : Nκ(ei, 1) −→ Nλ(b, 1) is a (κ, λ)-isomorphism
for all i ∈M .

Moreover, (E; p;B) is said to be a (κ, λ)-covering and (E, κ) is called a
digital (κ, λ)-covering space over (B, λ). Also, Nλ(b, 1) is called an elementary
λ-neighborhood of b or a coverable λ-neighborhood of b.

Definition 2.6 ([7]). Let (E, κ), (B, λ), and (X,µ) be digital images, let
p : E −→ B be a (κ, λ)-covering map, and let f : X −→ B be (µ, λ)-continuous.

A lifting of f with respect to p is a (µ, κ)-continuous function f̃ : X −→ E

such that p ◦ f̃ = f .
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Theorem 2.7 ([7]). Let (E, κ) be a digital image and e0 ∈ E. Let (B, λ) be a
digital image and b0 ∈ B. Let p : E −→ B be a (κ, λ)-covering map such that
p(e0) = b0. Then any λ-path α : [0,m]Z −→ B beginning at b0 has a unique
lifting to a path α̃ in E beginning at e0.

Definition 2.8 ([14]). Let p : (E, κ)→ (B, λ) be a (κ, λ)-continuous surjection
map. We say that
(i) p has digital path lifting property if for any digital path α in B and any
e ∈ p−1(α(0)) there is a lifting α̃ of α in E such that α̃(0) = e.
(ii) p has the uniqueness of digital path lifts property if any two paths
α, β : [0,m]Z −→ E are equal if p ◦ α = p ◦ β and α(0) = β(0).
(iii) p has the unique path lifting property (u.p.l, for abbreviation) if it has
both the path lifting property and the uniqueness of path lifts property.

Although every digital covering map is a local isomorphism (by definition)
and the converse is not true ([6]), the author and M.Zakki [14] showed the
counterexample of [6] is incorrect and have proved the inverse as follows.

Theorem 2.9 ([14]). Let p : (E, κ) → (B, λ) be a (κ, λ)-continuous surjec-
tion map. Then p is a digital (κ, λ)-covering map if and only if it is a local
isomorphism.

Definition 2.10 ([14]). Let p : (E, κ)→ (B, λ) be a (κ, λ)-continuous map and
e ∈ E. We say that e is a conciliator point for p if there exist e′, e′′ ∈ Nκ(e, 1)

for which e′
κ= e′′ and p(e′)

λ↔ p(e′′).

Theorem 2.11 ([14]). A (κ, λ)-continuous surjection map p : (E, κ)→ (B, λ)
is a digital (κ, λ)-covering if it has u.p.l and has no conciliator point.

In this paper, all the digital spaces assumed to be connected.

3. Digital pseudocovering maps

A digital pseudocovering map, introduced by Han [9], is a generalization of
digital covering maps, obtained by weakening the local isomorphism condition
in the definition of digital covering maps. Han [9] replaced the local isomor-
phism property by weak local isomorphism and proved some results for digital
pseudocovering maps. The author [13] has shown that Han’s examples of dig-
ital pseudocovering maps were either digital isomorphisms or did not satisfy
the definition of digital pseudocovering map. Also, the author even has found
a gap in the Han’s definition of digital pseudocovering maps and has corrected
it.

Definition 3.1 ([9]). Let (E;κ0) and (B;κ1) be digital spaces in Zn0 and Zn1

, respectively. Let p : (E;κ0) −→ (B;κ1) be a surjection. Suppose that for any
b ∈ B the map p has the following properties:

(1) for some index set M, p−1(Nκ1
(b; 1)) =

⊔
i∈M Nκ0

(ei; 1) with ei ∈
p−1(b),
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(2) if i, j ∈M and i 6= j, then Nκ0
(ei; 1) ∩Nκ0

(ej ; 1) is an empty set; and
(3) the restriction of p on Nκ0(ei; 1) is a weakly local (k0; k1)-isomorphism

for all i ∈M .

Then the map p is called a (k0; k1)-pseudocovering map, (E; p;B) is said to be
a (k0; k1)-pseudocovering and (E; k0) is called a (k0; k1)-pseudocovering space
over (B; k1).

This definition is like the definition of a digital covering map, but p|Nκ0 (ei;1)
is a weakly local (k0; k1)-isomorphism rather than a (k0; k1)-isomorphism.

In [9], Example 4.3(1) it is claimed that the map

f : Z+ −→ SCn,lκ := (si)
l−1
i=0; l ≥ 4,

defined by f(i) = si mod l, where Z+ = {k ∈ Z|k ≥ 0} is a pseudocovering
map. Let l = 6 and consider the point s5. Since s0 ∈ Nκ(s5; 1), we must have
0 ∈ p−1(Nκ(s5; 1)). Also, p−1{s5} = {5k|k ∈ N} and by the condition (1),
p−1(Nκ(s5; 1)) =

⊔
k∈NN2(5k; 1). But for every k ∈ N, 0 /∈ N2(5k; 1). This

contradiction shows that f can not be a pseudocovering map.

Theorem 3.2 ([13]). Every map satisfying the conditions of Han’s pseudocov-
ering map is a covering map.

According to the type of the gap in the definition, the author has corrected
it as follows. Of course, the results that Han had achieved still hold true by
this definition, since his (3) is a weaker condition than we give for (3) in the
following.

Definition 3.3. Let (E;κ0) and (B;κ1) be digital spaces in Zn0 and Zn1 ,
respectively. Let p : (E;κ0) −→ (B;κ1) be a surjection. Suppose that the map
p for each b ∈ B has the following properties:

(1) there exist index set M such that
⊔
i∈M Nκ0

(ei; 1) ⊆ p−1(Nκ1
(b; 1))

with ei ∈ p−1(b),
(2) if i, j ∈M and i 6= j, then Nκ0

(ei; 1) ∩Nκ0
(ej ; 1) is an empty set; and

(3) the restriction map p|Nκ0 (ei;1) : Nκ0
(ei; 1) −→ p

(
Nκ0

(ei; 1)
)

is a (k0; k1)-
isomorphism for all i ∈M .

Then the map p is called a (k0; k1)-pseudocovering map.

Remark 3.4. Note that the index set M is not necessarily same for each b ∈ B.
For example, see Remark 4.7.

By this definition of digital pseudocovering map, the map

f : Z+ −→ SCn,lκ := (si)
l−1
i=0; l ≥ 4,

defined by f(i) = si mod l is a pseudocovering map which is not a digital cover-
ing map and so we can consider digital pseudocovering maps as generalizations
of digital covering maps.
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4. Digital semicovering maps

S. E. Han [9] has used the weak version of local isomorphism instead of
local isomorphism in the definition of digital covering map to define digital
pseudocovering map, and investigated its various properties. For example, he
has proved that a digital pseudocovering map with some hypothesis has the
uniqueness of digital path lifts property. He named the uniqueness of digital
path lifts property as the pseudolifting property, but we use the uniqueness
of digital path lifts property to unify with common naming in general topol-
ogy. We introduce a generalization of digital covering theory and study its
properties.

Definition 4.1. A digital map p : (E;κ) −→ (B;λ) is called locally injective
if for every e ∈ E the restricted map p|Nκ(e,1) is injective.

Definition 4.2. A digitally continuous surjection map p : (E;κ) −→ (B;λ) is
called a digital (κ, λ)-semicovering if it is locally injective.

When κ and λ are understood, we say p is a digital semicovering map.

Example 4.3. The map f : Z+ −→ SCn,lκ := (si)
l−1
i=0 defined by f(i) =

si(mod l) is a (2;κ)-semicovering, for l ≥ 4.

The notion of a semicovering map generalizes that of a covering map. We
see they are not equivalent, as follows.

Theorem 4.4. Every digital covering is a digital semicovering, but the con-
verse does not hold.

Proof. The first assertion follows easily from the definition of digital covering
map and digital semicovering map. For the converse, consider the map f :
Z+ −→ SCn,lκ , discussed in Example 4.3 which is not a digital covering map,
as it shown in Section 3. �

Note that for a digital semicovering p : (E;κ) −→ (B;λ), the map p|Nκ(e,1) :
Nκ(e, 1) −→ p(Nκ(e, 1)) is not necessarily an isomorphism and therefore digital
semicoverings do not satisfiy the third condition of digital pseudocovering maps
(need not be weakly local isomorphisms). The following example shows this.

Example 4.5. Consider the map p : Z+ −→ B by p(i) = si(mod 4), where

B = {s0 = (0, 0), s1 = (0, 1), s2 = (−1, 1), s3 = (−1, 0)} ⊂ Z2

with 8-adjacency. Then for every i ∈ Z, N2(i; 1) = {i − 1, i, i + 1} when
indices are reduced mod 4 and obviously the inverse of p|N2(3;1) : N2(3; 1) −→
p(N2(3; 1)) is not continuous.

Theorem 4.6. A digital semicovering map p : (E;κ) −→ (B;λ) is a weakly
local isomorphism if and only if it has no conciliator point.

Proof. Let p : (E;κ) −→ (B;λ) be a weakly local isomorphism. If for a given

point e ∈ E, there exist e′, e′′ ∈ Nκ(e, 1) for which e′
κ= e′′ and p(e′)

λ↔ p(e′′),

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 52



Digital semicovering and digital quasicovering maps

then the inverse map of p|Nκ(e,1) : Nκ(e, 1) −→ p(Nκ(e, 1)) is not continuous
which is contradiction.
Conversely, assume that p is a digital semicovering map. Hence, for every
e ∈ E, p|Nκ(e,1) : Nκ(e, 1) −→ p(Nκ(e, 1)) is bijective and (κ, λ)-continuous.
Also, p has no conciliator point which implies that the inverse of p|Nκ(e,1) is
continuous. �

Remark 4.7. According to Definition 4.2, the fibers (inverse image of a sin-
gleton) of a digital semicovering need not have the same cardinal number and
also, for e, e′ ∈ p−1(b), Nκ(e, 1) need not be κ-isomorphic to Nκ(e′, 1). For this,
consider the map

h : [0, 5]Z −→ SC2,4
8 := (sj)

3
j=0

given by h(i) = si(mod 4), which is a digital semicovering. Since h has no

conciliator point, it is a digital pseudocovering map. Then h−1(s0) = {0, 4}
and h−1(s2) = {2} do not have the same cardinal number. Also, N2(0, 1) is
not 2-isomorphic to N2(4, 1).

Proposition 4.8. Let p : (E;κ) −→ (B;λ) be locally injective and b ∈ B.
Then

(1) if e 6= e′ and p(e) = p(e′) then lκ(e, e′) > 2.
(2) for every e 6= e′ ∈ p−1(b), Nκ(e; 1) ∩Nκ(e′; 1) = ∅.

Proof. If e 6= e′ and p(e) = p(e′) then local injectivity implies lκ(e, e′) > 2.
Part 2 comes easily from (1). �

Theorem 4.9. Composition of any two digital semicovering map is a digital
semicovering map.

Proof. This comes easily from definitions and the fact that a composition of
digitally continuous functions is digitally continuous [1, 2]. �

Theorem 4.10. Let p : (E;κ) −→ (B;λ) be a digitally continuous surjection
map where E is κ-connected. Then
(i) For digitally λ′-connected space (X;λ′) and two (λ′, κ)-continuous maps
f0, f1 : X −→ E both coinciding at one point x0 ∈ X and satisfying p ◦ f0 =
p ◦ f1, if p is a digital (κ, λ)-semicovering, then f0 = f1.
(ii) p is a (κ, λ)-semicovering if and only if it has the uniqueness of digital path
lifts property.

Proof. (i) Assume that there exists a point x ∈ X such that fo(x) 6= f1(x)
and α : [0, n]Z −→ E is a path from x0 to x. If t0 is the smallest t ∈ [0, n]Z
such that f0(α(t)) 6= f1(α(t)), then f0(α(t0 − 1)) = f1(α(t0 − 1)). Since p ◦
f0 = p ◦ f1, p(f0(α(t0))) = p(f1(α(t0))) which is contradiction to injectivity of
p|Nκ(f0(α(t0−1));1).

(ii) By part (i), every digital semicovering map has the uniqueness of digital
path lifts property. Conversely, for a given e ∈ E, let e′, e′′ ∈ Nκ(e, 1), p(e′) =
p(e′′) = b′ and p(e) = b. Define α : [0, 1]Z −→ B and β, γ : [0, 1]Z −→ E
by α(0) = b, α(1) = b′, β(0) = e, β(1) = e′, γ(0) = e and γ(1) = e′′.
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Then p ◦ β = p ◦ γ = α and β(0) = γ(0). By the uniqueness of digital path
lifts property we have β = γ which implies that e′ = e′′. Hence p|Nκ(e,1) is
injective. �

Although digital semicoverings have the uniqueness of digital path lifts prop-
erty, they need not have digital path lifting property. For, if h is the map in
Remark 4.7, then the map

α : [0, 1]Z −→ SC2,4
8 ; α(0) = s0, α(1) = s3,

is continuous (because s0 and s3 are 8-adjacent) and has no lifting started from
0.

Proposition 4.11. Digital semicovering maps need not have digital path lifts
property.

Restriction of a digital covering map to a subspace of its domain is not
necessarily a digital covering map. For example the map

p : Z −→ SCn,mκ := (si)
m−1
i=0 , p(i) = si (mod m),

is a (2, κ)-covering map but p|Z+ is not a digital covering map. This problem
has been fixed in digital semicoverings.

Theorem 4.12. Let p : (E;κ) −→ (B;λ) be a digital semicovering and (E′;κ)
be a subset of (E;κ) such that p|E′ is onto. Then p|E′ : (E′;κ) −→ (B;λ) is a
(κ, λ)-semicovering.

Proof. It is obvious because continuity and local injectivity are inherited from
p. �

5. Digital quasicovering maps

In this section, another generalization of digital covering maps is provided.
There are some examples of digital semicoverings that have stronger conditions
than local injectivity and consequently, they also have the digital path lifts
property.

Definition 5.1. A digitally continuous surjection map p : (E;κ) −→ (B;λ)
is called digital (κ, λ)-quasicovering if it is locally bijective, i.e. p|Nκ(e,1) :
Nκ(e, 1) −→ Nλ(p(e), 1) is bijective, for every e ∈ E. When κ and λ are
understood, we say p is a digital quasicovering map.

Obviously, every digital quasicovering map is a digital semicovering map,
but the converse is not true. For example, the map p in Example 4.3 is a
digital semicovering which is not a digital quasicovering because p|N2(0,1) is
not surjective. Also, we would like to know the difference between digital
quasicoverings and digital covering maps.

Example 5.2. Consider the map p : Z −→ B by p(i) = si(mod 3), where

B = {s0 = (0, 0), s1 = (0, 1), s2 = (−1, 1)} ⊂ Z2
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Figure 1. A (2,8)-quasicovering that is not (2,8)-covering

with 8-adjacency (see Figure 2). Then p is a (2, 8)-continuous surjection that
is also locally bijective and so a digital quasicovering. But p is not a digital
(2, 8)-covering because p does not satisfy condition (3) of Definition 2.5: For
example, when e = 0 we have that N2(e, 1) = {−1, 0, 1} and so the inverse
of the restriction of p to N2(e, 1) is not (8, 2)-continuous, because it maps two
8-adjacent points s1 and s2 in N8(s0, 1) = B to {−1, 1} that are not 2-adjacent.

Theorem 5.3. A digital semicovering map is a digital quasicovering map if
and only if it has digital path lifting property.

Proof. For a digital semicovering map p : (E;κ) −→ (B;λ), let e ∈ p−1(b).
Then p|Nκ(e,1) is injective. Suppose p has the path lifting property. If b′ ∈
Nλ(b, 1), then the path α : [0, 1]Z −→ B defined by α(0) = b and α(1) = b′

has a lifting path α̃ started from e, by digital path lifting property of p. Since
p ◦ α̃ = α, p(α̃(1)) = α(1) = b′ and hence p : Nκ(e, 1) −→ Nλ(b, 1) is surjective.
Therefore p is a digital quasicovering map.
Now, let p be a digital quasicovering map. We show that it has digital path
lifting property. For a digital path α : [0,m]Z −→ B, let bi = α(i), where
i = 0, 1, . . . ,m. For every e0 ∈ p−1(b0), there exists e1 ∈ Nκ(e0, 1) such
that p(e1) = b1 because p|Nκ(e0,1) is bijective. Similarly, for every i, there exist
ei ∈ Nκ(ei−1, 1) such that p(ei) = bi because p|Nκ(ei−1,1) is bijective. Define
α̃ : [0,m]Z −→ E by α̃(i) = ei. Since ei ∈ Nκ(ei−1, 1), α̃ is continuous and
p ◦ α̃ = α because p(ei) = bi. �

Corollary 5.4. A digitally continuous surjection map p : (E;κ) −→ (B;λ) is
a (κ, λ)-quasicovering if and only if it has unique path lifiting property.

Proof. Let the digitally continuous surjection map p has unique path lifting
property. Since p has uniqueness of digital path lifts property, by Theorem
4.10, p is a digital semicovering map. Also, p has digital path lifting property
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which implies that p is a digital quasicovering by Theorem 5.3.
Conversely, assume p is a digital quasicovering map. Since p is a digital semi-
covering map, p has uniqueness of digital path lifts property, by Theorem 4.10.
By Theorem 5.3, p has the unique path lifiting property. �

Corollary 5.5. Every digital quasicovering map is a digital covering map if it
has no conciliator point.

Proof. This follows from Theorem 2.11 and Corollary 5.4. �

Corollary 5.6. Every digital semicovering is a digital covering map if it has
digital path lifting property and has no conciliator point.

Proof. By Part ii of Theorem 4.10, a digital semicovering p : (E;κ) −→ (B;λ)
has the uniqueness of digital path lifts property and hence by Corollary 5.4,
it is a (κ, λ)-quasicovering. Since we are assuming B has no conciliator point,
Corollary 5.5 implies p is a digital covering map. �

6. Corrections of some past proofs

In [14], Example 3.6, the authors claimed the map h : Z+ −→ SC2,4
8 =:

(si)i∈[0,3]Z given by h(i) = si mod 4 has the uniqueness of digital path lifts
property but does not have the digital path lifting property. The claim is true
but some cases are missing from the proof. To prove that h has the uniqueness
of digital path lifts property, let α, β : [0,m]Z −→ Z+ be two paths in which
h ◦ α = h ◦ β and α(0) = β(0) = d. We show that α = β. If not, then there
is an s ∈ [0,m]Z such that α(s) 6= β(s). We may assume that s is the smallest
t ∈ [0,m]Z such that α(t) 6= β(t). Thus we have the following:

α(s) 6= β(s),

α(t) = β(t), for all t ∈ [0, s− 1]Z,

h ◦ α(t) = h ◦ β(t), for all t ∈ [0,m]Z.

If k := α(s− 1) = β(s− 1), then we have six cases{
α(s) = k,

β(s) = k ± 1.
or

{
α(s) = k ± 1,

β(s) = k.
or

{
α(s) = k + 1,

β(s) = k − 1.
or

{
α(s) = k − 1,

β(s) = k + 1.

Since h◦α(s) = h◦β(s), we must have either h(k) = h(k±1) or h(k−1) = h(k+
1). These are contradictions, because h(j) = h(k) if and only if j = k mod 4.

In [14, Theorem 4.5], also it is claimed that a (κ, λ)-covering map p :
(E, κ) −→ (B, λ) is a radius n covering map (a covering map that is a ra-
dius n local isomorphism) if and only if every lifting of any simple λ-loop with
length at most 2n+ 1 is a simple κ-loop. Although there are some problems in
its proof, no counterexample has been found yet.
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