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ABSTRACT

We introduce the notion of uniformly refinable map for compact, Haus-
dorff spaces, as a generalization of refinable maps originally defined for
metric continua by Jo Ford (Heath) and Jack W. Rogers, Jr., Refinable
maps, Colloq. Math., 39 (1978), 263-269.

2020 MSC: 54B20; 54C60.

KEYWORDS: aposyndetic continuum; compact Hausdorfl space; Hausdorff
continuum; metric continuum; refinable map; uniformity; uni-

formly monotonely refinable map; uniformly refinable map; set
functions T and K.

1. INTRODUCTION

Refinable maps are introduced by Jo Ford (Heath) and Jack W. Rogers, Jr.
in [5] for compact metric spaces. These maps have been studied extensively.
We extend this concept to compact Hasudorff spaces as uniformly refinable
maps using uniformities. Results known for metric compact spaces are stated
and proved for compact Hausdorff spaces, we put the reference of the results
for the metric case. Recently, interest for compact Hausdorff spaces has been
increasing.

The paper has six sections. After this Introduction 1 and the section of
Definitions 2, in Section 3, we introduce uniformly refinable maps for compact
Hausdorff spaces and show the equivalence of both definitions for compact met-
ric spaces (Theorem 3.1). We prove that the composition of uniformly refinable
maps is uniformly refinable (Theorem 3.4). We show that uniformly refinable
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maps are weakly confluent (Corollary 3.7) and they are monotone when the
range space is locally connected (Corollary 3.9). Given Hausdorff continua
X and Y, we prove the equivalence of decomposabilty (Corollary 3.11) and
atriodicity (Theorem 3.13) of X and Y in the presence of uniformly refinable
maps. In Section 4, we show that aposyndesis (Corollary 4.2), semi-aposyndesis
(Theorem 4.7) and mutual aposyndesis (Theorem 4.8) of Hausdorfl continua
are preserved by uniformy refinable maps. Also, we prove results involving F.
Burton Jones’ set funcitons 7 (Theorem 4.1) and K (Theorem 4.5). In Sec-
tion 5, we consider irreducible Hausdorff continua. Given Hausdorff continua
X and Y, we show the equivalence of property (Bs) (Theorem 5.3) and hered-
itary indecomposability (Theorem 5.7) of X and Y. Property (Bs) is used
in [11] to prove the equivalence of irreducibility for metric continua, we were
not able to show the equivalence of property (Bz) and irreducibility for Haus-
dorff continua. We prove that if the range of a uniformly refinable map between
Hausdorff continua is irreducible, then the domain is irreducible (Theorem 5.6).
In Section 6, we show that the induced maps of a uniformly refinable map on
hyperspaces are uniformly refinable maps (Theorem 6.7) and that the induced
maps of a monotonly uniformly refinable map on hyperspaces are monotonly
uniformly refinable maps (Theorem 6.8).

2. DEFINITIONS

A topological space Z is a Hausdorff space, if for each pair of points z; and
zo of Z, there exist two disjoint open subsets W7 and W5 of Z such that z;
is in W7 and 25 belongs to W5. The topological space Z is a compact space
provided that for each family {W,},er of open subsets of Z satisfyaing that
Z C U, er Wy, there exists a finite subfamily {W,,,..., W, } of {W, },er such
that Z C J;_, W,

If Z is a Hausdorff topological space, given a subset A of Z, the interior of A
is denoted by Intz(A), the boundary of A by Bdz(A), and the closure of A by
Clz(A). Let X and Z be topological spaces if f is a surjective function from
X onto Z, we write f: X —» Z; if the function is not necessarily surjective, we
write f: X — Z.

A map is a continuous function. A surjective map f: X —» Y between
topological spaces is monotone provided that f~1(C) is connected for every
connected subset C' of Y. The map f is weakly confluent if for each compact
connected subset @ of Y, there exists a component K of f~1(Q) such that
1K) = Q.

A compactum is a compact Hausdorff space. A subcompactum of a space
Z is a compactum contained in Z. A compactum X is connected im kleinen
at a point p provided that for each open subset A of X, with p € A, there
exists a connected subcompactum K of X such that p € Intx(K) C K C A.
A continuum is a connected compactum. A subcontinuum of a space Z is a
continuum contained in Z. A continuum is decomposable if it is the union
of two of its proper subcontinua. A continuum is indecomposable if it is not
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decomposable. A point x of a continuum X is a weak cut point provided that
there exists two points z; and z5 of X such that for each subcontinuum M of
X with {z1,22} C M, we have that x € M. A point x of a continuum X is a
cut point if X \ {z} is not connected.

Let Z be a Hausdorff space. If V-and W are subsets of Z x Z, then

—V={(2)€ZxZ]|(27)eV}

and

V + W ={(z,2") | there exists 2’ € Z such that
(2,2') €V and (7,2") e W}.

We write 1V =V and for each positive integer n, (n+ 1)V =nV + 1V.

The diagonal of Z is the set Ay = {(2,2) | 2 € Z}. An entourage of Ay
is a subset V of Z x Z such that Az C V and V = —V. The family of all
entourages of the diagonal of Z is denoted by ©z. If V € ® and 2z € Z, then
By (2, V)={s € Z|(z,7) € V}. If Ais anonempty subset of Z and V € D,
then Bz(A,V) =U{Bz(a,V) |a € A}. f V € Dz and (z,7') € V, then we
write pz(z,2") < V. If (2,2') € V, then we write pz(z,2") > V. If Ais a
nonempty subset of Z and pyz(a,a’) < V for each pair of points of A, we write
0z(A) < V. If there exist two points a; and as in A such that pz(ai,a2) >V,
then we write §z(A) > V. We have that if z, 2/ and 2" are points of Z, and V
and W belong to ©z then the following hold [4, p. 426]:

(i) pa(z2) < V.

(1) pz(z,7') <V if and only if pz(/,2z) < V.

(133) If pz(z,2') <V and pz(2,2") < W, then pz(z,2") <V + W.

Let Z be a Tychonoff space. A uniformityon Z is a subfamily l of ® z\{Az}
such that:

(HIUVed WeDzand VC W, then W € 4l

(2) If V and W belong to 4, then VN € 4L

(3) For every V' € il there exists W € 4 such that 2W C V.

@MV Ved)=Az

A uniform space is a pair (Z,4) consisting of a nonempty set Z and a
uniformity on the set Z. For any uniformity 4 on a set Z, the family O =
{G C Z | for every z € G, there exists V € 4l such that B(z,V) C G} is a
topology on the set Z [4, 8.1.1]. The topology O is called the topology induced by

the uniformity . Observe that, if the topology of Z is induced by a uniformity
land V € 4, then, by [4, 8.1.3], Intz(B(z,V)) is a neighbourhood of z.

Notation 2.1. Let Z be a nonempty set Z and let 4 be a uniformity on Z. If
V e, then €4 (V) ={Bz(2,V) | z € Z}.

Remark 2.2. Note that by [4, 8.3.13], for every compactum Z, there exists a
unique uniformity {7 on Z that induces the original topology of Z.
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Notation 2.3. Let X be a compact Hausdorff space and let {x be the unique
uniformity of X that induces its topology. If Y is a subspace of X and U € iy,
then Uly =UN (Y xY).

Notation 2.4. Let X and Y be compacta and let {x and iy be the unique
uniformities that induce the topology of X and Y, respectively (Remark 2.2).
Let

A(X,Y) = {(K U) | Veldx and U € ﬂy}

If (V,U) and (V',U’) are elements of A x y), we say that
(V,U)> (V',U")ifand only if V.C V' and U C U’.
Then (A(x,y),>) is a directed set.

3. UNIFORMLY REFINABLE MAPS

Refinable maps are introduced in [5] for metric compact spaces. We extend
this concept to compacta. We recall the appropriate defintions:

Let X and Y be compact metric spaces, let f: X — Y be a surjective map
and let € > 0. Then f is an e-map if for every y € Y and each pair points
x1 and z9 of f71(y), dx(w1,22) < e. If g: X —» Y is another map, then g
is e-near f provided that for each z € X, dy(f(z),9(x)) < e. Now, f is a
refinable map provided that for each € > 0, there exists an e-map g: X — Y
that is e-near f.

Let X and Y be compacta, let f: X — Y be a surjective map and let
V € Ux. Then f is a V-map if for every y € Y and each pair of points x;
and @9 of f~1(y), px(x1,m2) < V. If g: X — Y is another map and U € ily,
then g is U-near f provided that for each x € X, py (f(x),g(x)) < U. Now,
f is a uniformly refinable map if for each V' € Ux and every U € iy, there
exists a V-map g: X — Y that is U-near f. The map g is called a uniform
(V,U)-refinament of f.

Our first result shows that both definitions coincide for compact metric
spaces.

Theorem 3.1. Let X and Y be compact metric spaces and let f: X — Y be
a surjective map. Then f is refinable if and only if f is uniformly refinable.

Proof. Suppose [ is refinable, let V € Ux and let U € Uy. Let V' €
Ux and U’ € Uy be such that 2V/ C V and 2U’ C U. Note that W, =
{Intx(Bx(z,V")) | « € X} and U, = {Inty(By(y,U’)) | y € Y} are open
covers of X and Y, respectively. Let Ax and Ay be Lebesgue numbers for
W, and U,, respectively, [13, Theorem 1.6.6]. Let A = min{Ax, Ay }. Since
f is refinable, there exists a A-map g: X — Y that is A-near f. Let y € Y
and let x; and 3 be points of g~!(y). Since g is a A-map, dx(z1,z2) < A.
Hence, since A is a Lebesgue number for W,, there exists x € X such that
{z1,22} C Bx(z,V’). Thus, px(z1,2) < V' and px(z,x2) < V’. Since
2V C V, px(x1,22) < V. Therefore, g is a V-map. Now, let z € X. Since g
is A-near f, dy(f(x),g(z)) < A. Hence, since A is a Lebesgue number for U,
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there exists y € Y such that {f(x),g(z)} C By (y,U’). Thus, py (f(x),y) < U’
and py (y,g(y)) < U’. Since 2U’" C U, py(f(z),g(z)) < U. Hence, g is U-near
to f. Therefore, f is a uniformly refinable map.

Next, assume f is uniformly refinable, and let ¢ > 0. Let W. = {Vz () |
r € X} and let U. = {Vs(y) | y € Y}. By [14, Theorem 1.3.6], there exist
V € Ux and U € iy such that €x (V) refines W, and €y (U) refines U..
Since f is a uniformly refinable map, there exists a V-map g: X —» Y that
is U-near f. Let y € Y and let x; and x5 be points of g~ !(y). Since g
is a V-map, px(z1,22) < V. Thus, 9 € Bx(z1,V). Since €x (V) refines
W,, there exists € X such that Bx(xz1,V) C Ve (z). Hence, dx(z1,22) <
dx(z1,2)+dx(x,22) < e. Therefore, g is an e-map. Now, let z € X. Since g is
U-near f, py(f(x),g(x)) < U. Thus, g(z) € By (f(z),U). Since €y (U) refines
U., there exists y € Y such that By (f(z),U) C Vs (y). Hence, dy (f(z),g(z)) <
dy (f(z),y)+dy (y,g(z)) < €. Thus, g is e-near to f. Therefore, f is a refinable
map. (Il

Theorem 3.2. Let X and Y be compacta and let f: X —» Y be a surjective
map. Then f is a uniformly refinable map if and only if for each V € Ux and
every U € Sy, there exists an Intxxx(V)-map g: X — Y that is U-near f.

Proof. Suppose f is uniformly refinable. Let V € Ux and let U € Lly. Let
V' € Ux be such that 2V’ C V. Since f is uniformly refinable, there exists a V'-
map g: X — Y that is U-near f. By [14, Lemma 1.3.10], V' C Intxxx(2V’).
Hence, g is an Intx« x (V)-map that is U-near f. The converse implication is
clear. O

The following lemma is an extension of [13, Lemma 2.4.20] to compacta.

Lemma 3.3. Let X and Y be compacta, let V € Ly and let f: X — Y be
a surjective Intx«x(V)-map. Then there exists U € Ly such that, for each
subset B of Y with 6y (B) < U, we have that 5x(f~1(B)) < Intxxx (V).

Proof. Suppose the result is not true. Hence, for each U € iy, there exists
a subset By of Y with 8y (By) < U such that dx(f~1(By)) > Intxxx(V).
Hence, for each U € iy, there exist zy,z), € f~Y(By) with px(zy,z)) >
Intxxx (V). Then we have two nets {zy}uey, and {z}}vey, in X. Since
X is a compactum, without loss of generality, we assume that these nets con-
verge to the points 2 and 2/ of X, respectively [4, 3.1.23 and 1.6.1]. Note
that px(z,2") > Intxxx (V). Since, by construction, py (f(zv), f(z},)) < U,
for each U € ily, we have, by continuity, that f(xz) = f(a’) [16, 3.38]. A
contradiction to the fact that f is Intx«x(V)-map. O

Theorem 3.4 ([3, Lemma 3.2]). Let X, Y and Z be compacta and let
f: X > Y and h:' Y — Z be maps. If f and h are uniformly refinable,
then ho f is uniformly refinable.

Proof. Let Vx € x, and Wz € Uz. Let W, € 8z be such that 2W,, C Wy.
Since h is uniformly continuous [14, Theorem 1.3.15], there exists Uy € Ly such
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that if y; and ys are points of Y with py (y1,y2) < Uy, then pz(h(y1), h(y2)) <
W7. Let gxy: X — Y be an Intxxx(Vx)-map that is Uy-near f. By
Lemma 3.3, there exists Ui, € $ly such that if B is a nonempty subset of
Y with 8y (B) < U}, then dx (g5 (B)) < Intxxx(Vx). Without loss of gen-
erality, we assume that U, C Uy. Let gyz:Y —» Z be a Uy-map that is
W-near h.

Let  be a point of X. Then py (f(z),gxy(x)) < Uy. Also, we have that
p2(B(F(2)), Mgxy (2)) < Wy and pz(h(gxy (2)), gv 2(gxy () < W. Hence,
p2(h(F(@)): gy 2(gxy (2)) < 2W,. Thus, pz(h(f(2)), gy z(oxv (@) < Wg.
Therefore, gy z 0 gxy is Wz-near ho f. Let z be a point of Z. Since gy is
a Uj-map, we have that dy(gy5(2)) < Uj. Hence, by the choice of U, we
have that 6x (9%y (9y 5(2))) < Intxxx (V). Therefore, by Theorem 3.2, ho f
is uniformly refinable. (|

Theorem 3.5 ([2, Theorem Al). Let X1, X2, Z1 and Zs be compacta. Suppose
X1 is homeomorphic to Xo and Zy is homeomorphic to Zy. If V € Ux,, then
there exists U € Ux, such that for any U-map from Xo onto Zs, there exists
a V-map g1: X1 —» Zy. Moreover, if Zs is a monotone (weakly conflurent,
respectively) image of Xo, then there exists a monotone (weakly confluent, re-
spectively) map from Xy onto Z.

Proof. Let hi: X1 — X5 and ho: Z7 —» Z5 be homeomorphisms and let
V € Ux,. Since hy! is uniformly continuous [14, Theorem 1.3.15], there
exists U € iy, such that for each pair of points xs and x} of X, with
px, (T2, ) < U, px,(hy (x2),hy (x2)) < V. Let ga: Xa — Zo be a U-map
and let g1: X1 —» Z; be given by g1 = h;lOQQOhl. Then g; is a map. We show
that g1 is a V-map. Let z € Z; and let x; and 2} be points of gl_l(z). This
implies that g1 (x1) = g1 (). Hence, hy ' ogaohy(x1) = hy *ogaohy(2}). Since
hg is a homeomorphism, we obtain that gaoh(21) = gaohy(x]). Now, since go
is a U-map, we have that px,(h1(x1), h1(2})) < U. Thus, by the construction
of U, px, (x1,2)) < V. Therefore, g1 is a V-map.

The second part of the theorem follows from the definition of g; and the fact
that h; and ho are homeomorphisms. O

Theorem 3.6 ([5, Theorem 1]). Let X and Y be compacta and let f: X —» Y
be a uniformly refinable map. Then for every subcontinuum @ of Y, there
exists a subcontinuum Kg of X such that f(Kg) = Q and Kg contains

fH Inty (Q))-

Proof. Since f is uniformly refinable, for each V' € {Ux and every U € iy, there
exists a V-map g(v,py: X — Y that is U-near f. By Notation 2.4, (A(x y),>)
is a directed set.

Let @ be a subcontinuum of Y. Then {g(_\/{U)(Q)}(V,U)EA(X,y> is a net of

closed subsets of X. Since 2% is a compactum [14, Theorem 1.6.7], by [4,
3.1.23 and 1.6.1], there exists a cofinal subset A’(ij) of A(x,y) such that

{g(vl,U)(Q)}(VﬁU)GA;X,y) converges to an element Kg of 2X. We prove that
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Kgq is connected. Suppose this is not true. Then there exist two nonempty
proper disjoint closed subsets K and K3 of X such that Ko = K; UK>. Since
X is a normal space, there exist disjoint open subsets A; and Ay of X such
that K3 C Ay and Ko C As. By [4, Lemma 8.2.5], there exist Vya,,Va, € Ux
such that Bx(Ki,Va,) C Ay and Bx(K2,Va,) C Ay. Let Vk = V4, N Va,.
Then Bx(Kl,VK) C BX(Kthl) and Bx(KQ,VK) C Bx(KQ,VAz). Since
{g(_v{U)(Q)}(V}U)eA/ converges to K¢, there exists (Vp,Up) € A’(Xy) such

that i}, (Q) C Intx(Bx (Kv, Vie) U Intx (Bx (K, Vic)), for every (V,U) >
(Vo,Up). Observe that g(}/l’U)(Q) N Intx(Bx(K1,Vk)) # @ and g(fvl’U)(Q) N
Intx (Bx(K2,Vk)) # @, for each (V,U) = (Vo,Up). Let (V,Uo) € Alxy,
be such that (V,Uy) > (Vo,Up) and (V,Up) > (Vi,Us). Then g(fvl’UO)(Q) C
Intx (Bx (K1, Vk)UIntx(Bx (K2, Vk)), g(fvl’UO)(Q) NIntx(Bx(K1,Vk)) # <&
and g(_vl’UO)(Q) N Intx(Bx(K2,Vk)) # @. Since @ is connected, there ex-

ists y € @ such that g(_‘/{UO)(y) N Intx(Bx(K1,Vk)) # @ and g(_‘,{UO)(y) N
Intx(Bx(K2,Vk)) # @. This implies that g(v,y,) is not a V-map, a contra-
diction. Therefore, Kg is connected.

Next, we show that f(Kg) = Q. Let x € Kg. Then, for each (V,U) €

A’(Xy), there exists x(y,y) € g(fvl’U)(Q) such that the net {z(v,v)}(v,v)ea

(X,Y)

converges to x. By continuity, {f(x(V,U))}(V,U)EAQX ,, converges to f(x) [16,

3.38]. Since each gy, is U-near f, py (f(z(v,vy), 9v,v)(xv,py)) < U. Since
A’(ij) is a cofinal subset of A(x y), we have that ({U | (V,U) € A’(Xy)} = Ay.
Since gev,oy(v,y) € Q, for all (V,U) € AEXX)’ and @ is a closed subset of
X, we obtain that f(z) € Q. Therefore, f(Kg) C Q. Now, let y € Q. For each
(V,U) e A’(X’Y), let v,y € g(fvl’U)(Q) be such that giv,v)(zv,vy) = y. With-
out loss of generality, we assume that the net {z(y,r) }(V’U)EAI(X,Y) converges to a
point  of X [4, 3.1.23 and 1.6.1]. Note that, in fact, z € K¢. Since each 9,0
is U-near f, py (f(zwv,v)), 9v,oy(@wv,v))) = py (f(xv,y),y) < U. Hence, the
net {f(m(V,U)}(V,U)eAEXX) converges to y. By continuity, { f(z,u) }(V»U)GA(x,m
converges to f(z). Hence, f(z) =y, and Q C f(K¢g). Therefore, f(Kqg) = Q.

Suppose z is a point of X such that f(x) € Inty(Q). Then there exists
(Vo,Uo) € A(X,Y) such that gy, (z) € Inty(Q), for every (V,U) > (Vo, Up).
Since {Q(V,U)(UU)}(V,U)GA;XM converges to f(x), we have that = € g(*‘,{U)(Q),

for each (V,U) > (Vo,Up). Hence, z € Kg, and f~(Inty(Q)) C Kg. O

Corollary 3.7 ([5, Corollary 1.1]). Let X and Y be compacta and let
f: X =Y be a uniformly refinable map. Then f is weakly confluent.

Theorem 3.8 ([8, Lemma 1]). Let X and Y be compacta, let f: X — Y
be a uniformly refinable map, let @ be a subcontinuum of Y, and let K¢g be
the subcontinuum given by Theorem 3.6. If L is a subcontinuum of Q, then
there exists a subcontinuum M of Kq such that f(M) = L and K contains
(flxo) t(Intg(L)). In particular, f|k,: Ko — Q is weakly confluent.
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Proof. By the proof of Theorem 3.6, there exists a cofinal subset A{y ) of
A(x,y) (Notation 2.4) such that {g(*le)(Q)}(V’U)GA/ converges to Kq. Let

(xv)

L be a subcontinuum of Q. Since 2% is a compactum [14, Theorem 1.6.7],
without loss of generality, we assume that {g(_vl,U)(L)}(V,U)GAQXTm converges to
a subcontinuum M of X ([4, 3.1.23 and 1.6.1] and [19, Theorem 4]). In fact,
M is a subcontinuum of K. By the proof of Theorem 3.6, f(M) = L and
f~tInty(L)) Cc M.

The proof of the fact that (f|x,) '(Intq(L)) C M is similar to the one
given in Theorem 3.6 taking the appropriate intersections. O

Corollary 3.9 ([5, Corollary 1.2]). Let X andY be compacta andlet f: X —Y
be a uniformly refinable map. If Y is connected im kleinen at a point p, then
f~Y(p) is connected. Hence, f is monotone if Y is locally connected.

Proof. Suppose Y is connected im kleinen at p, but f~!(p) is not connected.
Then there exist two disjoint open subsets A and B of X such that f~1(p) C
AUB, f7Y(p)N A # @ and f~!(p) N B # @. The compactness of X implies
that O = Y \ f(X \ (AU B)) is an open subset of Y and p € O. Since Y
is connected im kleinen at p, there exists a subcontinuum ) of Y such that
p € Inty(Q) C O. By Theorem 3.6, there exists a subcontinuum K of X such
that f~1(p) C f~1(Inty(Q)) C K and f(K) = Q. Thus, K C f~4Q) C
f~1(0) Cc AUB, a contradiction to the connectedness of K. Therefore, f~(p)
is connected.

The second part follows form the well-known fact that a compactum is locally
connected if and only if it is connected im kleinen at each of its points and [14,
Lemma 1.4.46]. O

From a similar proof to the one given for Corollary 3.9, we obtain:

Corollary 3.10 ([8, Corollary, p. 2]). Let X andY be compacta, let f: X — Y
be a uniformly refinable map, let Q be a subcontinuum of X of Y, and let Kg
be the subcontinuum given by Theorem 3.6. If QQ is connected im kleinen at
a point p, then (f|ky,) *(p) is connected. Hence, f|k, is monotone if Q is
locally connected.

Corollary 3.11 ([5, Corollary 1.3]). Let X and Y be continua and let
f: X = Y be a uniformly refinable map. Then X is decomposable if and
only if Y is decomposable.

Proof. Suppose Y is decomposable. By [14, Lemma 1.4.34], Y contains a proper
subcontinuum @ with nonempty interior. By Theorem 3.6, there exists a sub-
continnum K of X such that f(K) = Q and f~'(Inty(Q)) C K. Hence,
Intx(K) # &. Therefore, X is decomposable [14, Lemma 1.4.34].

Suppose X decomposable there exist two proper subcontinua K and L of
X such that X = KUL. Let zx € K\ L and let z, € L\ K. Thus,
there exists V' € Ux such that Bx(zx,V) C K\ L and Bx(x,V) C L\ K.
Since f is uniformly refinable, there exists a V-map ¢g: X — Y. Note that
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9 Y9(zk)) C Bx(zk,V) and g~ (g(xr)) C Bx(zr,V). Hence, g(K) is a
proper subcontinuum of Y such that g(zx) € Inty(g(K)). Therefore, Y is a
decomposable continuum [14, Lemma 1.4.34]. O

Corollary 3.12 ([11, Proposition (3.4)-(1)]). Let X and Y be continua and
let f: X =Y be a uniformly refinable map. If X is hereditarily decomposable,
then Y is hereditarily decomposable.

Proof. Let L be a nondegenerate subcontinuum of Y. By Corollary 3.7, f
is weakly confluent. Hence, there exists a subcontinuum K’ of X such that
f(K')y = L. By [12, Theorem 7, p. 171], there exists a subcontinuum K of
K’ such that f(K) = L and f(W) # L, for each proper subcontinuum W of
K. Since K is decomposable, there exist two proper subcontinua K; and Ko
of K such that K = K; U K. Hence, L = f(K1)U f(K32). Since f(K;) # L
and f(K2) # L, we have that L is decomposable. Therefore, Y is hereditarily
decomposable. (I

A triod is a continuum X for which there exist three subcontinua K, L and
M of X such that X = KULUM, KNLNM # @, K\ (LUM) # @,
L\ (KUM) # @ and M\ (KUL) # &. A continuum is atriodic if no
subcontinuum of it is a triod.

Theorem 3.13 ([11, Proposition (3.4)-(3)]). Let X andY be continua and let
f: X =Y be a uniformly refinable map. Then X is atriodic if and only if Y
is atriodic.

Proof. Suppose Y is atriodic and X contains a triod. Let K, L and M be
subcontinua of X such that KNLNM # @, K\ (LUM) # @, L\(KUM) # &
and M \ (K UL) # @. Consider f(K), (L) and f(M). Since Y is atriodic,
without loss of generality, we assume that f(M) C f(K)U f(L). Let zp €
M\ (K UL). Then there exists V' € Ux such that Bx(xp, V)N (KUL) = @.
Since f is uniformly refinable, there exists a V-map g: X — Y. Note that,
on one hand, g (g(zar)) C Bx(wa, V) and, on the other hand, there exists a
point « € (K U L) such that g(x) = g(xar), a contradiction to the fact that g
is a V-map. Therefore, X is atriodic.

Now, assume that Y contains three subcontinua L, L and Lz such that LN
LQﬂLg # @, Ll\(LQULg) # @, LQ\(Ll ULg) 7é @ and Lg\(Ll UL2) # . Let
Y1 € Ll\(LQUL3), Yo € LQ\(L1UL3), Y3 € L3\(L1 ULQ), andy € LiNLsNLs.
Consider the directed set A(x,yy (Notaion 2.4). Since f is uniformly refinable,
for each V' € Ux and every U € ily, there exists a V-map gy uyy: X — Y
that is U-near f. Then we have the nets {g(\/%U)(Lj)}(V,U)EA(x,Y)7 j€{1,2,3},
{g(fvl’U)(yj)}(V,U)eA(X,y) and {g(fvl’U)(y)}(V,U)eA(X’y) of nonempty closed subsets
of X. As in the proof of Theorem 3.6, there exists a cofinal subset A’(X}Y)
of A(xy) such that each of the nets {g(dU)(Lj)}(V,U)GA(X,y) converges to a
subcontinuum Kj;, j € {1,2,3}, of X, with the property that f(K;) = L;,
j €41,2,3}. Also, each of the nets {g(*Vl’U) (yj)}(va)€A£X7y> converges to points
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zj, 7 € {1,2,3} of X and {g(_le) (y)}(vﬂ)e/\f(x ,, converges to a point z of X.
Observe that x € K1NKyNK3 and z; € K;\ (K;UK,,), with 7,1,m € {1, 2,3},

j#1, j# mand [ # m. Therefore, K1 U Ky U K3 is a triod in X. O

Theorem 3.14 ([5, Theorem 2]). Let X andY be continua and let f: X — Y
be a uniformly refinable map. If y is a point of Y that cuts Y, then some point
of f~1(y) is a weak cut point of X.

Proof. Suppose that Y\ {y} = AU B, where A and B are disjoint open subsets
of Y. Let z4 € f~}(A) and let x5 € f~!(B). Consider the directed set
(A(x,v),>) (Notation 2.4). Then for each (V,U) € A(x y), there exists a V-
map gcv,u)y: X — Y that is U-near f. We have the net {g(x/{U)(y)}(V,U)eA<X,y>~
Since X is compact, without loss of generality, we assume that the net converges
to a point z of X [4, 3.1.23 and 1.6.1]. Observe that x € f~1(y).

Now, suppose Z is a subcontinuum of X such that {z4,zp} C Z and = €
X\ Z. Let V € Uy be such that Bx(z,V)NZ = @, and let U € iy be
such that By (f(za),U) C A and By (f(zp),U) C B. Let gyyy: X =Y

be a V-map that is U-near f. Note that for each z’ € g(‘,{U) (y), we have
that px(z’,z) < V. Thus, g(_‘,{U)(y) C Bx(z,V) and g(_V{U)(y) Nz = @.
Since gy, is U-near f, gwv,uy(za) € By (f(za),U) C A and gv,u)(zB) €
By (f(xp),U) C B. Therefore, Z is a subcontinuum of X that intersects both
disjoint open subsets g(}/l’U)(A) and g(‘,{U)(B) and Z C g(‘,{U)(A) U g(‘/{U)(B),
a contradiction. Therefore, x is weak cut point of X. O

Corollary 3.15 ([5, Corollary 2.1]). Let X and Y be metric continua, where
X is locally connected and has no cut points, and let f: X — Y be a uniformly
refinable map. Then for each y € Y, X \ f~(y) is connected. Hence, Y has
no cut points.

Proof. Suppose there exists a point y of Y such that X\ f~!(y) is not connected.
Since f is monotone (Corollary 3.9), Y\ {y} is not connected. By Theorem 3.14,
some point x of f~1(y) is a weak cut point of X. Hence, x is a cut point
[10, p. 143], since X locally connected (and locally connected continua are
aposyndetic). This is a contradiction to our hypothesis. O

Let X be a continuum. A subcontinuum K of X is terminal provided that
for each subcontinuum L of X such that KN L # @, we have that either K C L
or LC K.

Theorem 3.16 ([8, Theorem 4]). Let X and Y be compacta, let f: X —» Y
be a uniformly refinable map, let Q be a subcontinuum of Y with Inty (Q) # &,
and let Kg be the subcontinuum given by Theorem 3.6. If Kqg is a terminal
subcontinuum of X, then Q is a terminal subcontinuum of Y.

Proof. Assume that @ is not a terminal subcontinuum of Y. Then there exists
a subcontinuum L of Y such that LN Q # @, L\ Q # @ and Q \ L # &.
By Corollary 3.7, f is weakly confluent. Hence, there exists a component R of
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YL UQ) such that f(R) = LUQ. Since f~'(Inty(Q)) N R # &, we have
that RN Ko # @ (Theroem 3.6). Hence, Ko C R. Let C be a component of
Clx(R\ Kg). Since Intx(Kq) # @ (Theorem 3.6), we have that Kg \ C # @.
By [14, Theorem 1.4.36], C' N Kg # &. Also, by construction C'\ Kq # .
Thus, K¢ is not a terminal subcontinuum of X. O

Let X and Y be compacta and let f: X — Y be a surjective map. Then
f is uniformly monotonely refinable provided that for each V € x and every
U € iy there exists a monotone uniform (V, U)-refinament of f.

Theorem 3.17 ([6, Lemma 2]). Let X andY be compacta and let f: X — Y
be a uniformly monotonely refinable map. If Y is locally conncted, then X is
locally connected.

Proof. Let x be a point of X and let A be an open subset of X with z € A.
Then there exists V € Uy such that Bx(z,V) C A. Since f is uniformly
monotonely refinable, by Theorem 3.2, there exists a monotone Intxy x(V)-
map ¢g: X — Y. By Lemma 3.3, there exists U € iy such that if B is
a nonempty subset of Y and &y (B) < U, then dx (¢ *(B)) < Intxxx(V).
Since Y is locally connected, there exists an open connected subset B of Y
sucht that g(x) € B and dy(B) < U. Hence, g~'(B) is an open connected
subset of X such that * € ¢g71(B) and dx (¢~ 1(B)) < Intxxx(V). Thus,
g Y(B) C Bx(z,V) C A. Therefore, X is locally connected. O

4. APOSYNDESIS

Let X be a continuum and let p and ¢ be two distinct points of X. Then X is
aposyndetic at p with respecto to q provided that there exists a subcontinuum
K of X such that p € Intx(K) C K C X\ {¢}. X is aposyndetic at p if
X is aposyndetic at p with respect to each point ¢ € X \ {p}. Finally, X is
aposyndetic if it is aposyndetic at each of its points.

F. Burton Jones defined what are now known as the set functions 7 and K.
He used these set functions to study aposyndesis on continua. Both functions
have been used to study continua, mainly 7 [14]. These set functions are
considered “dual” functions. Next, we define these set functions.

Given a continuum X, we define the set function Tx as follows: if A is a
subset of X, then

Tx(A) = X\ {x € X | there exists a subcontinuum K of X
such that xz € Intx(K) C K C X\ A}.

Let us observe that for any subset A of X, Tx(A) is a closed subset of X and
A C Tx(A). Also, if K is a subcontinuum of X, then Tx (K) is a subcontinuum
of X [14, Theorem 2.1.27].

For the continuum X, the set function Kx is defined as follows: if A is a
subset of X, then

Kx(A) = ﬂ{K | K is a subcontinuum of X such that A C Intx (K)}.
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We also have that for any subset A of X, Kx(A) is a closed subset of X and
A C Kx(A). It is not necessarily true that if L is a subcontinuum of X, then
Kx (L) is connected.

Compare the following result with [14, Theorem 2.1.51, (b) and (c)].

Theorem 4.1 ([7, Theorem 1']). Let X and Y be continua and let f: X —» Y
be a uniformly refinable map. Then the following hold:

(1) For each closed subset W of X, fTx(W) C Ty f(W).

(2) For each closed subset Z of Y, there exists a closed subset W of X such
that fTx(W) = Ty (2).

Proof. We show (1). Suppose there exists a point z € Tx (W) such that f(z) €
Y \ Ty f(W). Then there exists a subcontinuum L of Y such that f(x) €
Inty (L) C L C Y\ f(W). By Theorem 3.6, there exists a subcontinuum K of
X such that f(K) = Land f~!'(Inty (L)) C K. Note that z € Intx(K) C K C
X\W. Thus, z € X\ Tx (W), a contradiction. Therefore, fTx (W) C Ty f(W).

To prove (2), consider the directed set Ay y) (Notaion 2.4). Since f is
uniformly refinable, for each V' € {lx and every U € iy, there exists a V-map
gv,uy: X —» Y that is U-near f. Then we have the net {g(_vl,U)(Z)}(V,U)eA(X,Y)
of nonemtpy closed subsets of X. As in the proof of Theorem 3.6, there exists
a cofinal subset Afy - of A(xy) such that the net {9(7\/17U)(Z)}(V,U)€AEX,Y)
converges to a nonempty closed subset W of X, with the property that f(W) =
Z. By part (1), we have that fTx(W) C Ty f(W) = Ty(Z). We show the
reverse inclusion. If 7y (Z) = Z, then f(W) = Z = Ty (Z) C fTx(W) (since
W c Tx(W), f(W) C fTx(W)). Now, suppose there exists a point z €
Ty (Z)\ Z. We have the net {9(_\/1,U)(Z)}(V7U)EA2X,Y)' Since X is compact,
without loss of generality, we assume that this net converges to a point x of X
[4, 3.1.23 and 1.6.1]. Observe that z € f~1(2). Suppose z € X \ Tx(W). Then
there exists a subcontinuum K of X such that x € Intx(K) C K ¢ X\ W.
This implies that W c X \ K. Since {g(}/l,U)(Z)}(V,U)GA/ converges to

(x.Y)

W and {g(_VlU)(z)}(v,U)eA/ converges to x, there exists (V,U) € Axy)

(X.Y)
such that g(‘/{U)(Z) C X\ K and g(‘/{U)(z) C Intx(K). Then g,y (K) is
a subcontinuum of Y such that z € Inty (g9¢v,v)(K)) C gvu)(K) C Y\ Z.
Hence, z € Y \ Ty (Z), a contradiction. Thus, x € Tx (W) and z € fTx(W).
Therefore, Ty (Z) C fTx (W), and fTx(W) = Ty (2). |

Corollary 4.2 ([7, Corollary, p. 368]). Let X and Y be continua and let
f: X = Y be a uniformly refinable map. If X is aposyndetic, then Y is
aposyndetic.

Proof. Let y € Y. By the proof of part (2) of Theorem 4.1, we may find a point
r € X such that f(z) =y and fTx({z}) = Ty ({y}). Since X is aposyndetic,
Tx({x}) = {z} [14, Theorem 2.1.34]. Thus, fTx({z}) = {f(x)} = {y}. Hence,
Ty ({y}) = {y}. Therefore, Y is aposyndetic [14, Theorem 2.1.34]. O
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Let X be a compactum. A nonempty closed subset K of X is a Tx-closed
set if Tx(K) = K. The family of Tx-closed sets of X is denoted by T(X). If
A is a set, then |A| denotes the cardinality of A.

The next result extends [14, Corollary 4.1.26] to uniformly monotonely re-
finable maps.

Theorem 4.3. Let X and Y be continua and let f: X —» Y be a uniformly
monotonely refinable map. Then |T(Y)| < |T(X)].

Proof. Since f is a monotonely refinable map, there exists a monotone map
g: X = Y. Hence, by [14, Corollary 4.1.26], we have that |T(Y)| < |T(X)]. O

Let X and Y be compacta and let f: X — Y be a surjective map. Then f
is atomic if for each subcontinuum K of X such that f(K) is nondegenerate,
we have that K = f~1f(K).

Next, we introduce the family of uniformly atomically refinable maps. Let
X and Y be compacta and let f: X — Y be a surjective map. Then f is
atomically refinable provided that for each V' € iy and every U € Uy there
exists an atomic uniform (V,U)-refinament of f.

The following theorem extends [14, Theorem 4.1.32] to uniformly atomically
refinable maps and gives a partial positive answer to [14, Question 8.1.18].

Theorem 4.4. Let X and Y be continua and let f: X — Y be an atomically
refinable map. Then |T(Y)| = |T(X)].

Proof. Since f is a atomically refinable map, there exists an atomic map
g: X = Y. Hence, by [14, Theorem 4.1.32], we have that |T(Y)| = |T(X)]. O

The following theorem is an extension to closed sets of [7, Theorem 1”]. Its
proof is similar to the one given for Theorem 4.1; we include the details to see
the “duality” of T and K.

Theorem 4.5. Let X and Y be continua and let f: X — Y be a uniformly
refinable map. Then the following hold:

(1) For each closed subset W of X, fKx (W) C Ky f(W).

(2) For each closed subset Z of Y, there exists a closed subset W of X such
that f’C)((W) = ’Cy(Z)

Proof. We show (1). Suppose there exists a point € Kx (W) such that f(z) €
Y\ Ky f(W). Then there exists a subcontinuum L of Y such that f(z) € Y\ L
and f(W) C Inty(L). By Theorem 3.6, there exists a subcontinuum K of
X such that f(K) = L and f~'(Inty(L)) C K. Note that W C Intx(K)
and x € X \ K, a contradiction to the fact that z € Kx(W). Therefore,
fEx(W) C Ky f(W).

To prove (2), consider the directed set A(x yy (Notaion 2.4). Since f is uni-
formly refinable, for each V' € ix and every U € iy, there exists a V-map
gv,uy: X —» Y that is U-near f. Then we have the net {g(_‘,{U)(Z)}(V,U)eA(X)Y)
of nonemtpy closed subsets of X. As in the proof of Theorem 3.6, there exists a
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cofinal subset A/(X,Y) of A(x,y) such that the net {9(_\/1,U)(Z)}(V7U)€A§X,Y) con-
verges to a nonempty closed subset W of X, with the property that f(W) = Z.
By part (1), we have that fKx(W) C Ky f(W) = Ky(Z). We show the
reverse inclusion. If Ky (Z) = Z, then f(W) = Z = Ky(Z) C fKx(W)
(since W C Kx(W), f(W) C fKx(W)). Now, suppose there exists a point
z € Ky (Z) \ Z. We have the net {g(fvl’U) (z)}(uU)EAf(ny). Since X is compact,
without loss of generality, we assume that this net converges to a point x of X
[4, 3.1.23 and 1.6.1]. Observe that z € f~!(z). Suppose z € X \ Kx(W). Then
there exists a subcontinuum K of X such that x € X \ K and W C Intx(K).

Since {g(_vl,U)(Z)}(V,U)GA(X,Y) converges to W and {9(_\/1,U)(Z)}(V,U)€A§X,y) con-

verges to w, there exists (V,U) € A(x ) such that g(‘}U)(Z) C Intx(K)

and g(‘/{U)(z) C X\ K. Then gy,u)(K) is a subcontinuum of Y such that
Z C Inty(gv,uy(K)) and z € Y \ gv,p)(K). Hence, z € Y \ Ky (Z), a contra-
diction. Thus, z € Kx (W) and z € fKx(W). Therefore, Ky (Z) C fKx (W),
and fKx (W) =Ky (2). O

Remark 4.6. A proof of Corollary 4.2 may be given using Theorem 4.5 and
[14, Corollary 7.7.4] which says that, in particular, if X is an aposyndetic
continuum, then Tx ({z}) = Kx({z}), for each z € X.

A continuum X is semi-aposyndetic provided that for each pair of points p
and ¢ of X, there exists a subcontinuum K of X such that {p, ¢}NIntx(K) # @

and {p,q} \ K # @.

Theorem 4.7 ([7, Theorem 2]). Let X and Y be continua and let f: X — Y
be a uniformly refinable map. If X is semi-aposyndetic, then Y is semi-
aposyndetic.

Proof. Let y; and ys be two distinct points of Y. Consider the directed set
Ax,y) (Notaion 2.4). Since f is uniformly refinable, for each V' € Ux and
every U € Uy, there exists a V-map gy,ir): X — Y that is U-near f. Then
we have the nets {g(_‘},U)(yl)}(V,U)EA(XX) and {g&%w (y2)}(v.yen x.y,- Since
X is compact, without loss of generality, we assume that these nets converge
to the points x1 and x9, respectively [4, 3.1.23 and 1.6.1]. Note that x1 # xs.
Since X is semi-aposyndetic, either 1 € X \ Tx({x2}) or 22 € X \ Tx({z2})
[14, Theorem 2.1.32]. Suppose that 1 € X \ Tx({x2}). Then there exists
a subcontinuum K of X such that z; € Intx(K) € K C X \ {x2}. Since
{g(\/{U)(yl)}(V,U)eAw,y) and {Q(QU)(yz)}(V,U)eA(M) converge to x1 and x2,
respectively, there exists (V,U) € A(x,y) such that g(‘/{U)(yl) C Intx(K)
and g(_‘/{U) (y2) € X \ K. Therefore, g(y,)(K) is a subcontinuum of Y such
that y1 € Inty(gv,u)(K)) C gv,oy(]) C Y \ {y2}. Therefore, Y is semi-
aposyndetic. |

A continuum X is mutually aposyndetic, if for each pair of points p and g,
there exist two disjoint subcontinua K and L of X such that p € Intx(K) and
q € Intx(L).
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Let X be a continuum and let n € N. Then X is n-aposyndetic provided
that for each subset F' of X with at most n points and every point z € X \ F,
there exists a subcontinuum K of X such that z € Intx(K) C K C X \ F.
Observe that this is equivalent to have Tx (F') = F.

A similar argument to the one given for Theorem 4.7 shows:

Theorem 4.8 ([7, Theorem 3]). Let X and Y be continua and let f: X —» Y
be a uniformly refinable map. Then the following hold:

(1) If X is mutually aposyndetic, then Y is mutually aposyndetic.
(2) If X is n-aposyndetic, for some n € N, then Y is n-aposyndetic.

5. IRREDUCIBLE CONTINUA

Let X be a decomposable continuum. We say X has property (Bs) if every
time X = KU LU M, where K, L and M are proper subcontinua such that
K\(LUM) # @, L\(KUM) # @ and M \ (K UL) # &, we have that either
KNL=gor KNM=gorLNM=0.

This definition is due to R. H. Sorgenfrey [20]. We present a couple of
consequnces of property (Bsg), which are used in the metric case to prove the
converse implication of Theorem 5.4, [20, Theorem]. Lemmas 5.1 and 5.2 might
be useful to prove the converse of Theorem 5.4.

Lemma 5.1 ([20, Lemma 1 (a), case n = 2]). Let X be a decomposable con-
tinuum with property (Bg). If L and M are proper subcontinua of X such that
X =LUM and then X \ L and X \ M are connected.

Proof. Assume X = L U M, where L and M are proper subcontinua. We
show that X \ L is connected. Suppose that this is not true. Then X \ L =
A U B, where A and B are disjoint open subsets of X. By the Boundary
Bumping Theorem [14, Theorem 1.4.36], if R is a component of Clx (A), then
RNL # @ and if S is a component of Clx(B), then SN L # &. Let T =
(U{R | R is a component of Clx(A)} and let

W= U{S | S is a component of Clx(B)}.

Thus, L, LUT and LUW are proper subcontinua of X such that X = LU (LU
T)U(LUW), L\[(LUT)U(LUW)] # @, (LUT)\(LUW) # &, (LUW)\(LUT) #
g, but LN(LUT) 2@ LN(LUW) # @ and (LUT)N(LUW) £ &, a
contradiction. Therefore, X'\ L is connected. Similarly, X\ M is connected. O

Lemma 5.2 ([20, Lemma 2]). Let X be a decomposable continuum with prop-
erty (Bz). Let L and M be proper subcontinua such that X \ L and X \ M
are connected and LN (X \ M) and M N (X \ L) contain open subsets of X.
If H is a subcontinuum of X such that HNL # @ and H N M # &, then
X\(LUM)CH.

Proof. Let H be a subcontinuum of X such that HNL # @ and H N M # &.
Assume that X \ (LUM) ¢ H. Then HU LU M is a proper subcontinuum
of X. By an argument similar to the one given in the proof of Lemma 5.1, we

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 73



S. Macias

have that C = X \ (H U LU M) is connected. Note that, in this case, either
Clx(C)N(HUL) =& or Clx(C)N(HUM) = @. If Clx(C) N (HUL) £ @
and Clx(C)N (HUM) # o, then Clx(C), HU L and H U M would be
three proper subcontinua of X such that X = Clx(C)U (HUL)U (H U M),
Cix(C)\[(HUL)U(HUM)] # @, (HUL)\ [Cix(C) U (HUM)] # &,
(HUM)\[Clx(C)U(HUL)] # @, (HUL)N(HUM) # @, Clx (C)N(HUL) # @
and Clx(C)N (H U M) # @, a contradiction. Hence, either Clx(C) N (H U
L)y=@ or Clx(C)N (HUM) = @. Without loss of generality, assume that
Clx(C)N(HUL)=@. Then (X \M)NC#@and (X\M)N(HUL) # 2.
Thus, X\ M is not connected, a contradiction. Therefore, X\(LUM) C H. O

A continuum X is irreducible provided that there exist two points z1 and x5
of X such that if K is a subcontinuum of X and {x1,z2} C K, then K = X.

The following result is, essentially, [11, Theorem (3.1)]. In [11], the author
uses case n = 2 of [20, Theorem, p. 667] to change property (Bz) to irreducible
continuum. We have one implication of [11, Theorem (3.1)] in Theorem 5.6.

Theorem 5.3. Let X and Y be continua and let f: X —» Y be a uniformly
refinable map. Then X has property (Bs) if and only if Y has property (Ba).

Proof. Suppose X does not have property (Bz). Then there exist three proper
subcontinua K, L and M of X such that X = KULUM, K\ (LUM) # o,
L\(KUM) # @dand M\ (KUL) # @, KNL # @, KNM # & and
LNM#@. Let 2 € K\ (LUM), z;, € L\ (K UM) and 25y € M\ (K UL).
Let V' € Uy be such that Bx (zx, V)N(LUM) = @, Bx(z1, V)N(KUM) = &
and Bx (zar, V)N (K UL) = @. Since f is a uniformly refinable map, there
exists a V-map g: X — Y. Then g(K), g(L) and g(M) are three subcontinua
of ¥ such that Y = g(K) U g(L) U g(M), g(zx) € g(K) \ [¢9(L) U g(M)],
g(wr) € g(L)\ [g(E) Ug(M)], glzm) € g(M)\ (9(K) Ug(L)), 9(K) Ng(L) #
g(K)Ng(M) # @ and g(L) Ng(M) # @. Therefore, Y does not have property
(B2).

Assume Y does not have property (Bz). Then there exist three proper
subcontinua K, L and M of Y such that Y = KULUM, K\ (LUM) # o,
L\(KUM) # @ and M\ (KUL) # @, KNL # @, KNM # @ and LNM # &.
Let yx € K\ (LUM), y, € L\ (KUM) and yps € K \ (K UL).

Consider the directed set A x y) (Notaion 2.4). Since f is uniformly refin-
able, for each (V,U) € A(x,y), there exists a V-map g(y,yy: X — Y that is U-

near f. Then we have the nets {9(_\/1,U) (K)}(V,U)eA(va), {g(_V{U) (L)}(V,U)GA(X)y)v
0 oy (MY wvineanyys 1900 Wr)Yvineany, 19vo WL} vomeasy,
and {g(_\/},U)(yM)}(V,U)GA(Xﬁy)' As in the proof of Theorem 3.6, there exists
a cofinal subset A’(X,Y) of A(x,y) such that these nets converge to K’, L' and

M', ., o7 and ), respectively, such that K’, L' and M’ are subcontinua
of X with the property that f(K’) = K, f(L') = L and f(M') = M. Since
for each (V,U) € Al y, X = g(‘/%U)(K) U g(_vl,U)(L) U g(_‘,{U)(M), g(_‘/{U)(K) N

g(v%(]) (L) # 2, g(_\},U) (K)ﬂg(_‘,{U)(M) # & and g(_Vl,U) (L)ﬂg(_‘/{U)(M) # 9, also,
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90y WO\ 0y (D Vg 0y D] # D, 900, e \ 90 0y () U g} oy (M)] #
@, and gy ) (yan) \ 9y 1y (K) UG 1y ()] # &, we have that X = K'UL'UM/,
K'NL' # o, K'nM' # @&, L'NM' # @, 2 € [X\(LUM)], 2/, € [X\(KUM)],
and zy; € [X \ (K UL)]. Therefore, X does not have property (Bz). O

Theorem 5.4. If X is a decomposable irreducible continuum X, then X has
property (Ba).

Proof. Suppose X is a decomposable continuum without property (Bs). Then
there exist three proper subcontinua K, L and M of X such that X = KULUM,
K\(LUM)# 2, L\ (KUM)# 2, M\(KUL)# o, KNL# 2, KNM #+ @
and LN M # @. Let 21 and x5 be two points of X. Without loss of generality,
assume that 1 € K. Then o € K UL U M. Suppose x2 € L. Then K U L is
a proper subcontinuum of X such that {z1,22} C K U L. Therefore, X is not
irreducible. O

Question 5.5. Is the converse of Theorem 5.4 true?

Theorem 5.6. Let X and Y be continua and let f: X —» Y be a uniformly
refinable map. If Y is irreducible, then X is irreducible.

Proof. Let y; and y2 be two points of Y such that Y is irreducible about
them. Let 1 € f~!(y1) and let 22 € f~!(y2). Suppose X is not irreducible
about 7 and xo. Then there exists a proper subcontinuum K of X such that
{z1,22} C K. Let z € X \ K and let V € {x be such that Bx(z,V)NK = @.
Since f is uniformly refinable, there exists a V-map g: X — Y. Then g(K)
is a subcontinuum of Y and {y1,y2} C ¢g(K). Since Y is irreducible about y;
and ys, g(K) =Y. This contradicts the fact that g is a V-map. Therefore, X
is irreducible. (]

Theorem 5.7 ([11, Proposition (3.4)-(2)]). Let X and Y be continua and let
f: X =Y be a uniformly refinable map. Then X is hereditarily indecompos-
able if and only if Y is hereditarily indecomposable.

Proof. Suppose X is hereditarily indecomposable and let L be a decomposable
subcontinuum of Y. Then there exist two proper subcontinua L; and Ly of
L such that L = L; U Ly. Consider the directed set A(x y) (Notaion 2.4).
Since f is uniformly refinable, for each V' € Ux and every U € ily, there
exists a V-map gw,p): X — Y that is U-near f. Then we have the nets
{g(fvl’U)(Lj)}(V?U)GA(X",)7 J € {1,2}, of nonemtpy closed subsets of X. As in
the proof of Theorem 3.6, there exists a cofinal subset A’(Xy) of A(x,y) such

that each of the nets {g(fvl’U) (LJ')}(V»U)GAZX,H converges to a subcontinuum K,
Jj € {1,2}, of X, with the property that f(K;) = L;, j € {1,2}. Since X is
hereditarily indecomposable, we have that Ky N Ky = &. Let A; and A be
disjoint open subsets of X such that K; C A;, j € {1,2}. By [4, Lemma 8.2.5],
there exist Vy, and Vy, in Ux such that B(K;,Va;) C Ay, j € {1,2}. Let

V' =Vy, NVy,. Since {g(*Vl’U) (Lj)}(V’U)GAzx,y) converges K, j € {1,2}, there
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exists (V,U) € Afx yy such that gi}(L;) C Intx(Bx(K;,V')). Without
loss of generality, we assume that V' C V'. Let y € Ly N Ly. Then 9(_\/1,U) (y)N
Intx(Bx(K;,V')) # @, j € {1,2}, a contradition to the fact that g is a V-map.
Therefore, L is indecomposable and Y is hereditarily indecomposable.
Suppose that Y is hereditarily indecomposable. By Corollary 3.11, X is
indecomposable. Suppose X contains two subcontinua K and L such that
KNL+#@, K\L+# @and L\ K # &. Since Y is hereditarily indecomposable,
we have that either f(L) C f(K) or f(K) C f(L). Without loss of generality,
we assume that f(L) C f(K). Let x € L\ K. Thus, there exists V € ix
such that Bx(zr,V)NK = @. Since f is uniformly refinable, there exists a
V-map g: X —» Y. Note that, on one hand, g~(g(z1)) C Bx(zr,V) and,
on the other hand, there exists a point zx € K such that g(zx) = g(z1),
a contradiction to the fact that g is a V-map. Therefore, X is hereditarily
indecomposable. O

6. INDUCED MAPS ON HYPERSPACES
Let Z be a compactum. We consider the following hyperspaces of Z:
27 ={A C Z | Ais closed and nonempty};

C.(Z) = {A €27 | A has at most n components},n € N;

Fn(Z) ={A € 27 | A has at most n points},n € N.

We define a uniformity on 27 as follows: If U € i, then let 2V = {(A, A) €
22 x 22 | AC B(A,U) and A’ C B(A,U)}. Let Bz = {2V | U € 4z}. Then
B, is a base for a uniformity, denoted by 242 [4, 8.5.16]. Observe that the
topology generated by 2%# coincides with the Vietoris topology [17, 3.3]. Hence,
27 is compact and Hausdorff [17, 4.9]. Thus, 2'# is unique (Remark 2.2), and

Mz — (Y 2?2 x2? |U=—-UNyzCU
and there exists U € 47 such that 2V C U}.

For the other hyperspaces, we use the restriction of 2%# to the corresponding
hyperspace and we denote such restriction by: C,(iz), and F,(Lz), respec-
tively. In order to avoid confusion, we put a subindex to the expressions:
pz(Z,Z,) < U, pQZ(A, A/) < U, Pc,,(z)(A,A/) < U, and p]:n(Z)(A,A/) < U,
respectively.

Let X and Z be compacta and let f: X — Z be a map. Then the func-
tions: 24, C,(f), and F,,(f), given by 2/(A) = f(A) for all A € 2%, C,(f) =
2/ e (x).and Fr(f) = 2f|].-n(X) are the induced maps of f. By [17, 5.10], all
these induced maps are continuous.

The following result follows from the definition of weakly confluent map.

Theorem 6.1. Let X and Z be compacta and letn € N. If f: X —» Z is a
weakly confluent map, then C,(f) is surjective.
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Theorem 6.2. Let X and Z be continua, let n € N and let f: X — Z be a
map. Then the following are equivalnet:
(1) f is a homeomorphism.
(2) 27 is a homeomorphism.
3) A,
(

4) C,(f) is a homeomorphism.

w(f) is a homeomorphism.

Proof. Suppose f is a homeomorphism. We see that 2/ is a homeomorphism.
Let B be an element of 24. Note that, since f continuous and surjective,
f~1(B) is an element of 2% and f(f~'(B)) = B. Thus, 2/(f~*(B)) = B, and
2/ is surjective. Now, let A; and A, be elements of 2% such that 2(A;) =
2/(Az). Then f(A;) = f(Az). Since f is one-to-one, we have that A; = As.
Hence, 27 is one-to-one. Therefore, 27 is a homeomorphism. Next, assume that
2/ is a homeomorphism. Let z be an element of Z. Thus, {z} belongs to 2.
Since 2/ is surjective, there exists an element A of 2% such that 2f(A) = {z}.
Hence, if a belongs to A, we have that f(a) = z. Thus, f is surjective. Now,
let 7 and x5 be two distinct elements of X. Note that {x1} and {x2} belong
to 2% and, since 27 is one-to-one, 2/ ({z1}) # 2 ({x2}). Hence, f(x1) # f(x2),
and f is one-to-one. Therefore, f is a homeomorphism.

Note that (1) is equivalent to (3) by [1, Theorem 3.3], noting that this result
does not use the metric hypothesis.

The proof of the equivalence between (1) and (4) is similar to the one given
for the equivalence between (1) and (2). We need to use the fact that a home-
omorphism is a weakly confluent map, this implies that C,(f) is surjective
(Theorem 6.1). O

Theorem 6.3. Let X and Z be continua, let n € N and let f: X — Z be a
map. Then the following are equivalnet:

(1
(2
3
(

4) C(f) is monotone.

) [ is monotone.
) 27 is monotone.
) F

w(f) is monotone.

Proof. Suppose f is monotone. We show that 27/ is monotone. By [14, Lemma
1.4.46], we only need to prove that if B € 2Z, then (2/)~1(B) is connected. Let
B € 2B, Since f is monotone, the cardinality of the family of the components
of B and f~!(B) is the same. Let A € (2/)"}(B). Then 2/(4) = A and
A C f~Y(B). Also, each component of f~1(B) intersects A. Hence, by the
proof of [18, Corollary 2.7], there exists an order arc a from A to f~!(B).
Note that 2/ (o) = {B}. Thus, (2f)71(B) is arcwise connected. Therefore, 2/
is monotone. Now, assume that 2/ is monotone. We prove that f is monotone.
Let z be an element of Z. Then {z} belongs to 2. Since 2/ is monotone,
(27)71({z}) is a subcontinuum of 2X. Note that (2/)7'({z}) N Ci(X) # @.
Hence, by [14, Lemma 1.6.8], |J(2/)~*({z}) = f~'(2) is a subcontinuum of X.
Thus, f is monotone.
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Observe that (1) is equivalent to (3) by [1, Theorem 4.1], noting that this
result and [15, Lemma 1] do not use the metric hypothesis.

The proof of the equivalence between (1) and(4) is similar to the one given
for the equivalence between (1) and (2). O

Lemma 6.4. Let X and Z be compacta, let n € N, let V € Ux and let
f: X = Z be a surjective map. Consider the following statements:

(1) f is a V-map.

(2) 2f is a 2V -map.

(3) If f is a weakly confluent, then C,,(f) is a 2V|Cn(X)-map (Notation 2.3).

(4) Fu(f) is a 2| £, (x)-map (Notation 2.3).
Then (1) implies (2), (3) and (4). Also (2) implies (3) and (4).
Proof. Assume (1), we prove (2). Since f is surjective, 2/ is surjective. Let B €
27 and let A; and A be two elements of (2f)~1(B). Hence, 2 (A;) = 2 (Ay) =
B. Thus, for each a1 € Aj, there exists az € A such that f(aq) = f(a2). Since
f is a V-map, we have that px(a1,a2) < V. This implies that A; C B(As, V).
Similarly, Ao C B(A;,V). Hence, pyx (A1, Ay) < 2V. Therefore, 2/ is a 2V-
map.

The proofs of the facts that (1) implies (2) and (3) are done in a similar way,
we need to use Theorem 6.1 to ensure that C,(f) is surjective.

The proofs of (2) implies (3) and (4) follow from the fact that we only
intersect 2V with the appropriate hyperspace. (|

Lemma 6.5. Let X and Z be compacta, let n € N, let V € Ux and let
f: X — Z be a surjective map. If Co(f) is a 2Vc, (x)-map, then F,(f) is a

2V |fn(X) -map

Proof. The lemma follows from the fact that we are only intersecting 2V with
the appropriate hyperspace. O

Lemma 6.6. Let X and Z be compacta, let V € Uy, let n € N, and let
g, f: X = Z be surjective maps. Consider the following statements:

(1) px(f(x),g(x)) < U, for every z € X.

(2) paz (2 (A),29(A)) < 2Y, for each A € 2%,

(3) pc,(2)(Cn(f(A)),Cu(9(A))) < 2YIc,(2), for every A € Cu(X) (Nota-
tion 2.3).

(@) P32 FalF (D), Fal9(A))) < 215,20, for all A € Fo(X) (Nota-
tion 2.3).
Then (1) implies (2), (3) and (4). Also (2) implies (3) and (4); and (3) implies
(4).
Proof. Assume (1), we show (2). Let A € 2% and let a € A. By hypothesis, we
have that pz(f(a),g(a)) < U. Hence, f(A) C B(g(A),U). Similarly, g(4) C
B(f(A),U). Hence, pyz(2f(A),29(A)) < 2V. The proofs of (1) implies (3) and
(4) are done in a similar way.
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The proofs of the other implications follow from the fact that we intersect
2V with the appropriate hyperspace. O

A continuum Z is in Class(W) provided that for each continuum X, every
surjective map f: X —» Z is weakly confluent.

Theorem 6.7. Let X and Z be continua, let n € N and let f: X — Z be a
map. Consider the following statements:

(1) f: X = Z is a uniformly refinable map.

(2) 27 is a uniformly refinable map.

(3) If Z is in Class(W), then Cp(f) is a uniformly refinable map.

(4) Fo(f) is a uniformly refinable map.
Then (1) implies (2), (3) and (4).
Proof. Assume (1), we prove (2). Since f is surjective, 27 is surjective. Let
VY € 24x and let U € 242, Then there exist V € Ux and U € 8z such that
2V c Vand 2V C Y. Since f a uniformly refinable map, there exists a V-map
g: X — Z that is U-near f. By Lemma 6.4, 29 is a 2¥-map. In particular, 29
is a V-map. By Lemma 6.6, 29 is 2U-near 27. In particular, 29 is U-near 27.
Therefore, 2/ is a uniformly refinable map.

The proofs of the facts that (1) implies (2) and (3) are done in a similar way.
We need to use the fact that Z is in Class(W) and Theorem 6.1 to ensure that
Cn(f) and C,(g) are surjective. O

As a consequence of Theorems 6.7 and 6.3, we have that:
Theorem 6.8. Let X and Z be continua, let n € N and let f: X — Z be a
map. Consider the following statements:
(1) f is a monotonly uniformly refinable map.
(2) 2f is a monotonly uniformly refinable map.
(3) If Z is in Class(W), then C,(f) is a monotonly uniformly refinable map.
(4) Fn(f) is a monotonly uniformly refinable map.
Then (1) implies (2), (3) and (4).
Let X and Z be compacta and let f: X — Z be a map. Then f is a near-

homeomorphism provided that for each U € U, there exists a homeomorphism
g: X — Z such that pz(f(x),g(x)) < U for all elements z of X.

Theorem 6.9. Let X and Z be continua, let n € N and let f: X — Z be a
map. Consider the following statements:

(1) f is a near-homeomorphism.

(2) 27 is a near-homeomorphism.

(3) If Z is in Class(W), then C,(f) is a near-homeomorphism.

(4) Fn(f) is a near-homeomorphism.
Then (1) implies (2), (3) and (4).

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 79



S. Macias

Proof. Assume (1), we prove (2). Since f is a near-homeomorphism, f is a
uniformly refinable map. Let & € 242 and let U € 8z be such that 2V C .
Since f is a near-homeomorphism, there exists a homeomorphism g: X —» Z
such that pz(f(x),g(z)) < U for all points x of X. By Theorem 6.2, 29 is a
homeomorphism, and by Lemma 6.7, poz (27 (A),29(A)) < 2V, for each A € 2%
Therefore, 2/ is a near-homeomorphism.

The proofs of (1) implies (3) and (4) are done in a similar way. We need to
use the fact that Z is in Class(W) and Theorem 6.1 to ensure that C,(f) is
surjective. (I

Lemma 6.10. Let X and Z be continua. If X is arcwise connected and
f: X = Z is an atomic map, then f is a homeomorphism.

Proof. Note that the proof of [13, Corollary 8.1.26] may be done using the fact
that continua are normal spaces instead of the metric hypothesis. O

Theorem 6.11. Let X and Z be continua, let n € N and let f: X — Z be a
map.
(1) If 2f is an atomically refinable map, then 2 is a near-homeomorphism.

(2) If Co(f) is an atomically refinable map, then C,(f) is a near-homeo-
morphism.

Proof. We show (1). Suppose 2/ is an atomically refinable map. Then for each
Y € 2%x and U € 297, there exists an atomic V-map G: 2X — 27 that is U-near
2/, By [18, Corollary 2.7], we have that 2% is arcwise connected. Hence, by
Lemma 6.10, G is a homeomorphism. Therefore, 2f is a near-homeomorphism.
Since C,,(X) is arcwise connected, [18, Corollary 2.7], the proof of (2) is done
in a similar way. (]
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