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Abstract

We introduce the notion of uniformly refinable map for compact, Haus-
dorff spaces, as a generalization of refinable maps originally defined for
metric continua by Jo Ford (Heath) and Jack W. Rogers, Jr., Refinable
maps, Colloq. Math., 39 (1978), 263-269.
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1. Introduction

Refinable maps are introduced by Jo Ford (Heath) and Jack W. Rogers, Jr.
in [5] for compact metric spaces. These maps have been studied extensively.
We extend this concept to compact Hasudorff spaces as uniformly refinable
maps using uniformities. Results known for metric compact spaces are stated
and proved for compact Hausdorff spaces, we put the reference of the results
for the metric case. Recently, interest for compact Hausdorff spaces has been
increasing.

The paper has six sections. After this Introduction 1 and the section of
Definitions 2, in Section 3, we introduce uniformly refinable maps for compact
Hausdorff spaces and show the equivalence of both definitions for compact met-
ric spaces (Theorem 3.1). We prove that the composition of uniformly refinable
maps is uniformly refinable (Theorem 3.4). We show that uniformly refinable
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maps are weakly confluent (Corollary 3.7) and they are monotone when the
range space is locally connected (Corollary 3.9). Given Hausdorff continua
X and Y , we prove the equivalence of decomposabilty (Corollary 3.11) and
atriodicity (Theorem 3.13) of X and Y in the presence of uniformly refinable
maps. In Section 4, we show that aposyndesis (Corollary 4.2), semi-aposyndesis
(Theorem 4.7) and mutual aposyndesis (Theorem 4.8) of Hausdorff continua
are preserved by uniformy refinable maps. Also, we prove results involving F.
Burton Jones’ set funcitons T (Theorem 4.1) and K (Theorem 4.5). In Sec-
tion 5, we consider irreducible Hausdorff continua. Given Hausdorff continua
X and Y , we show the equivalence of property (B2) (Theorem 5.3) and hered-
itary indecomposability (Theorem 5.7) of X and Y . Property (B2) is used
in [11] to prove the equivalence of irreducibility for metric continua, we were
not able to show the equivalence of property (B2) and irreducibility for Haus-
dorff continua. We prove that if the range of a uniformly refinable map between
Hausdorff continua is irreducible, then the domain is irreducible (Theorem 5.6).
In Section 6, we show that the induced maps of a uniformly refinable map on
hyperspaces are uniformly refinable maps (Theorem 6.7) and that the induced
maps of a monotonly uniformly refinable map on hyperspaces are monotonly
uniformly refinable maps (Theorem 6.8).

2. Definitions

A topological space Z is a Hausdorff space, if for each pair of points z1 and
z2 of Z, there exist two disjoint open subsets W1 and W2 of Z such that z1

is in W1 and z2 belongs to W2. The topological space Z is a compact space
provided that for each family {Wγ}γ∈Γ of open subsets of Z satisfyaing that
Z ⊂

⋃
γ∈ΓWγ , there exists a finite subfamily {Wγ1 , . . . ,Wγn} of {Wγ}γ∈Γ such

that Z ⊂
⋃n
j=1Wγj .

If Z is a Hausdorff topological space, given a subset A of Z, the interior of A
is denoted by IntZ(A), the boundary of A by BdZ(A), and the closure of A by
ClZ(A). Let X and Z be topological spaces if f is a surjective function from
X onto Z, we write f : X →→ Z; if the function is not necessarily surjective, we
write f : X → Z.

A map is a continuous function. A surjective map f : X →→ Y between
topological spaces is monotone provided that f−1(C) is connected for every
connected subset C of Y . The map f is weakly confluent if for each compact
connected subset Q of Y , there exists a component K of f−1(Q) such that
f(K) = Q.

A compactum is a compact Hausdorff space. A subcompactum of a space
Z is a compactum contained in Z. A compactum X is connected im kleinen
at a point p provided that for each open subset A of X, with p ∈ A, there
exists a connected subcompactum K of X such that p ∈ IntX(K) ⊂ K ⊂ A.
A continuum is a connected compactum. A subcontinuum of a space Z is a
continuum contained in Z. A continuum is decomposable if it is the union
of two of its proper subcontinua. A continuum is indecomposable if it is not
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decomposable. A point x of a continuum X is a weak cut point provided that
there exists two points z1 and z2 of X such that for each subcontinuum M of
X with {z1, z2} ⊂ M , we have that x ∈ M . A point x of a continuum X is a
cut point if X \ {x} is not connected.

Let Z be a Hausdorff space. If V and W are subsets of Z × Z, then

−V = {(z′, z) ∈ Z × Z | (z, z′) ∈ V }

and

V +W = {(z, z′′) | there exists z′ ∈ Z such that

(z, z′) ∈ V and (z′, z′′) ∈W}.

We write 1V = V and for each positive integer n, (n+ 1)V = nV + 1V .
The diagonal of Z is the set ∆Z = {(z, z) | z ∈ Z}. An entourage of ∆Z

is a subset V of Z × Z such that ∆Z ⊂ V and V = −V . The family of all
entourages of the diagonal of Z is denoted by DZ . If V ∈ DZ and z ∈ Z, then
BZ(z, V ) = {z′ ∈ Z | (z, z′) ∈ V }. If A is a nonempty subset of Z and V ∈ DZ ,
then BZ(A, V ) =

⋃
{BZ(a, V ) | a ∈ A}. If V ∈ DZ and (z, z′) ∈ V , then we

write ρZ(z, z′) < V . If (z, z′) 6∈ V , then we write ρZ(z, z′) ≥ V . If A is a
nonempty subset of Z and ρZ(a, a′) < V for each pair of points of A, we write
δZ(A) < V . If there exist two points a1 and a2 in A such that ρZ(a1, a2) ≥ V ,
then we write δZ(A) ≥ V . We have that if z, z′ and z′′ are points of Z, and V
and W belong to DZ then the following hold [4, p. 426]:

(i) ρZ(z, z) < V .

(ii) ρZ(z, z′) < V if and only if ρZ(z′, z) < V .

(iii) If ρZ(z, z′) < V and ρZ(z′, z′′) < W , then ρZ(z, z′′) < V +W .

Let Z be a Tychonoff space. A uniformity on Z is a subfamily U of DZ\{∆Z}
such that:

(1) If V ∈ U, W ∈ DZ and V ⊂W , then W ∈ U.

(2) If V and W belong to U, then V ∩W ∈ U.

(3) For every V ∈ U, there exists W ∈ U such that 2W ⊂ V .

(4)
⋂
{V | V ∈ U} = ∆Z .

A uniform space is a pair (Z,U) consisting of a nonempty set Z and a
uniformity on the set Z. For any uniformity U on a set Z, the family O =
{G ⊂ Z | for every z ∈ G, there exists V ∈ U such that B(z, V ) ⊂ G} is a
topology on the set Z [4, 8.1.1]. The topology O is called the topology induced by
the uniformity U. Observe that, if the topology of Z is induced by a uniformity
U and V ∈ U, then, by [4, 8.1.3], IntZ(B(z, V )) is a neighbourhood of z.

Notation 2.1. Let Z be a nonempty set Z and let U be a uniformity on Z. If
V ∈ U, then CZ(V ) = {BZ(z, V ) | z ∈ Z}.

Remark 2.2. Note that by [4, 8.3.13], for every compactum Z, there exists a
unique uniformity UZ on Z that induces the original topology of Z.
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Notation 2.3. Let X be a compact Hausdorff space and let UX be the unique
uniformity of X that induces its topology. If Y is a subspace of X and U ∈ UX ,
then U |Y = U ∩ (Y × Y ).

Notation 2.4. Let X and Y be compacta and let UX and UY be the unique
uniformities that induce the topology of X and Y , respectively (Remark 2.2).
Let

Λ(X,Y ) = {(V,U) | V ∈ UX and U ∈ UY }.
If (V,U) and (V ′, U ′) are elements of Λ(X,Y ), we say that

(V,U) ≥ (V ′, U ′) if and only if V ⊂ V ′ and U ⊂ U ′.
Then (Λ(X,Y ),≥) is a directed set.

3. Uniformly Refinable Maps

Refinable maps are introduced in [5] for metric compact spaces. We extend
this concept to compacta. We recall the appropriate defintions:

Let X and Y be compact metric spaces, let f : X →→ Y be a surjective map
and let ε > 0. Then f is an ε-map if for every y ∈ Y and each pair points
x1 and x2 of f−1(y), dX(x1, x2) < ε. If g : X →→ Y is another map, then g
is ε-near f provided that for each x ∈ X, dY (f(x), g(x)) < ε. Now, f is a
refinable map provided that for each ε > 0, there exists an ε-map g : X →→ Y
that is ε-near f .

Let X and Y be compacta, let f : X →→ Y be a surjective map and let
V ∈ UX . Then f is a V -map if for every y ∈ Y and each pair of points x1

and x2 of f−1(y), ρX(x1, x2) < V . If g : X →→ Y is another map and U ∈ UY ,
then g is U -near f provided that for each x ∈ X, ρY (f(x), g(x)) < U . Now,
f is a uniformly refinable map if for each V ∈ UX and every U ∈ UY , there
exists a V -map g : X →→ Y that is U -near f . The map g is called a uniform
(V,U)-refinament of f .

Our first result shows that both definitions coincide for compact metric
spaces.

Theorem 3.1. Let X and Y be compact metric spaces and let f : X →→ Y be
a surjective map. Then f is refinable if and only if f is uniformly refinable.

Proof. Suppose f is refinable, let V ∈ UX and let U ∈ UY . Let V ′ ∈
UX and U ′ ∈ UY be such that 2V ′ ⊂ V and 2U ′ ⊂ U . Note that Wc =
{IntX(BX(x, V ′)) | x ∈ X} and Uc = {IntY (BY (y, U ′)) | y ∈ Y } are open
covers of X and Y , respectively. Let λX and λY be Lebesgue numbers for
Wc and Uc, respectively, [13, Theorem 1.6.6]. Let λ = min{λX , λY }. Since
f is refinable, there exists a λ-map g : X →→ Y that is λ-near f . Let y ∈ Y
and let x1 and x2 be points of g−1(y). Since g is a λ-map, dX(x1, x2) < λ.
Hence, since λ is a Lebesgue number for Wc, there exists x ∈ X such that
{x1, x2} ⊂ BX(x, V ′). Thus, ρX(x1, x) < V ′ and ρX(x, x2) < V ′. Since
2V ′ ⊂ V , ρX(x1, x2) < V . Therefore, g is a V -map. Now, let x ∈ X. Since g
is λ-near f , dY (f(x), g(x)) < λ. Hence, since λ is a Lebesgue number for Uc,
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there exists y ∈ Y such that {f(x), g(x)} ⊂ BY (y, U ′). Thus, ρY (f(x), y) < U ′

and ρY (y, g(y)) < U ′. Since 2U ′ ⊂ U , ρY (f(x), g(x)) < U . Hence, g is U -near
to f . Therefore, f is a uniformly refinable map.

Next, assume f is uniformly refinable, and let ε > 0. Let Wc = {V ε
2
(x) |

x ∈ X} and let Uc = {V ε
2
(y) | y ∈ Y }. By [14, Theorem 1.3.6], there exist

V ∈ UX and U ∈ UY such that CX(V ) refines Wc and CY (U) refines Uc.
Since f is a uniformly refinable map, there exists a V -map g : X →→ Y that
is U -near f . Let y ∈ Y and let x1 and x2 be points of g−1(y). Since g
is a V -map, ρX(x1, x2) < V . Thus, x2 ∈ BX(x1, V ). Since CX(V ) refines
Wc, there exists x ∈ X such that BX(x1, V ) ⊂ V ε

2
(x). Hence, dX(x1, x2) ≤

dX(x1, x)+dX(x, x2) < ε. Therefore, g is an ε-map. Now, let x ∈ X. Since g is
U -near f , ρY (f(x), g(x)) < U . Thus, g(x) ∈ BY (f(x), U). Since CY (U) refines
Uc, there exists y ∈ Y such that BY (f(x), U) ⊂ V ε

2
(y). Hence, dY (f(x), g(x)) ≤

dY (f(x), y)+dY (y, g(x)) < ε. Thus, g is ε-near to f . Therefore, f is a refinable
map. �

Theorem 3.2. Let X and Y be compacta and let f : X →→ Y be a surjective
map. Then f is a uniformly refinable map if and only if for each V ∈ UX and
every U ∈ UY , there exists an IntX×X(V )-map g : X →→ Y that is U -near f .

Proof. Suppose f is uniformly refinable. Let V ∈ UX and let U ∈ UY . Let
V ′ ∈ UX be such that 2V ′ ⊂ V . Since f is uniformly refinable, there exists a V ′-
map g : X →→ Y that is U -near f . By [14, Lemma 1.3.10], V ′ ⊂ IntX×X(2V ′).
Hence, g is an IntX×X(V )-map that is U -near f . The converse implication is
clear. �

The following lemma is an extension of [13, Lemma 2.4.20] to compacta.

Lemma 3.3. Let X and Y be compacta, let V ∈ UX and let f : X →→ Y be
a surjective IntX×X(V )-map. Then there exists U ∈ UY such that, for each
subset B of Y with δY (B) < U , we have that δX(f−1(B)) < IntX×X(V ).

Proof. Suppose the result is not true. Hence, for each U ∈ UY , there exists
a subset BU of Y with δY (BU ) < U such that δX(f−1(BU )) ≥ IntX×X(V ).
Hence, for each U ∈ UY , there exist xU , x

′
U ∈ f−1(BU ) with ρX(xU , x

′
U ) ≥

IntX×X(V ). Then we have two nets {xU}U∈UY
and {x′U}U∈UY

in X. Since
X is a compactum, without loss of generality, we assume that these nets con-
verge to the points x and x′ of X, respectively [4, 3.1.23 and 1.6.1]. Note
that ρX(x, x′) ≥ IntX×X(V ). Since, by construction, ρY (f(xU ), f(x′U )) < U ,
for each U ∈ UY , we have, by continuity, that f(x) = f(x′) [16, 3.38]. A
contradiction to the fact that f is IntX×X(V )-map. �

Theorem 3.4 ([3, Lemma 3.2]). Let X, Y and Z be compacta and let
f : X →→ Y and h : Y →→ Z be maps. If f and h are uniformly refinable,
then h ◦ f is uniformly refinable.

Proof. Let VX ∈ UX , and WZ ∈ UZ . Let W ′Z ∈ UZ be such that 2W ′Z ⊂ WZ .
Since h is uniformly continuous [14, Theorem 1.3.15], there exists UY ∈ UY such
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that if y1 and y2 are points of Y with ρY (y1, y2) < UY , then ρZ(h(y1), h(y2)) <
W ′Z . Let gXY : X →→ Y be an IntX×X(VX)-map that is UY -near f . By
Lemma 3.3, there exists U ′Y ∈ UY such that if B is a nonempty subset of

Y with δY (B) < U ′Y , then δX(g−1
XY (B)) < IntX×X(VX). Without loss of gen-

erality, we assume that U ′Y ⊂ UY . Let gY Z : Y →→ Z be a U ′Y -map that is
W ′Z-near h.

Let x be a point of X. Then ρY (f(x), gXY (x)) < UY . Also, we have that
ρZ(h(f(x)), h(gXY (x)) < W ′Z and ρZ(h(gXY (x)), gY Z(gXY (x)) < W ′Z . Hence,
ρZ(h(f(x)), gY Z(gXY (x))) < 2W ′Z . Thus, ρZ(h(f(x)), gY Z(gXY (x))) < WZ .
Therefore, gY Z ◦ gXY is WZ-near h ◦ f . Let z be a point of Z. Since gY Z is
a U ′Y -map, we have that δY (g−1

Y Z(z)) < U ′Y . Hence, by the choice of U ′Y , we

have that δX(g−1
XY (g−1

Y Z(z))) < IntX×X(V ). Therefore, by Theorem 3.2, h ◦ f
is uniformly refinable. �

Theorem 3.5 ([2, Theorem A]). Let X1, X2, Z1 and Z2 be compacta. Suppose
X1 is homeomorphic to X2 and Z1 is homeomorphic to Z2. If V ∈ UX1 , then
there exists U ∈ UX2

such that for any U -map from X2 onto Z2, there exists
a V -map g1 : X1 →→ Z1. Moreover, if Z2 is a monotone (weakly conflurent,
respectively) image of X2, then there exists a monotone (weakly confluent, re-
spectively) map from X1 onto Z1.

Proof. Let h1 : X1 →→ X2 and h2 : Z1 →→ Z2 be homeomorphisms and let
V ∈ UX1

. Since h−1
1 is uniformly continuous [14, Theorem 1.3.15], there

exists U ∈ UX2
such that for each pair of points x2 and x′2 of X2 with

ρX2
(x2, x

′
2) < U , ρX1

(h−1
1 (x2), h−1

1 (x2)) < V . Let g2 : X2 →→ Z2 be a U -map
and let g1 : X1 →→ Z1 be given by g1 = h−1

2 ◦g2◦h1. Then g1 is a map. We show
that g1 is a V -map. Let z ∈ Z1 and let x1 and x′1 be points of g−1

1 (z). This
implies that g1(x1) = g1(x′1). Hence, h−1

2 ◦g2 ◦h1(x1) = h−1
2 ◦g2 ◦h1(x′1). Since

h2 is a homeomorphism, we obtain that g2 ◦h1(x1) = g2 ◦h1(x′1). Now, since g2

is a U -map, we have that ρX2(h1(x1), h1(x′1)) < U . Thus, by the construction
of U , ρX1(x1, x

′
1) < V . Therefore, g1 is a V -map.

The second part of the theorem follows from the definition of g1 and the fact
that h1 and h2 are homeomorphisms. �

Theorem 3.6 ([5, Theorem 1]). Let X and Y be compacta and let f : X →→ Y
be a uniformly refinable map. Then for every subcontinuum Q of Y , there
exists a subcontinuum KQ of X such that f(KQ) = Q and KQ contains
f−1(IntY (Q)).

Proof. Since f is uniformly refinable, for each V ∈ UX and every U ∈ UY , there
exists a V -map g(V,U) : X →→ Y that is U -near f . By Notation 2.4, (Λ(X,Y ),≥)
is a directed set.

Let Q be a subcontinuum of Y . Then {g−1
(V,U)(Q)}(V,U)∈Λ(X,Y )

is a net of

closed subsets of X. Since 2X is a compactum [14, Theorem 1.6.7], by [4,
3.1.23 and 1.6.1], there exists a cofinal subset Λ′(X,Y ) of Λ(X,Y ) such that

{g−1
(V,U)(Q)}(V,U)∈Λ′

(X,Y )
converges to an element KQ of 2X . We prove that
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KQ is connected. Suppose this is not true. Then there exist two nonempty
proper disjoint closed subsets K1 and K2 of X such that KQ = K1∪K2. Since
X is a normal space, there exist disjoint open subsets A1 and A2 of X such
that K1 ⊂ A1 and K2 ⊂ A2. By [4, Lemma 8.2.5], there exist VA1

, VA2
∈ UX

such that BX(K1, VA1
) ⊂ A1 and BX(K2, VA2

) ⊂ A2. Let VK = VA1
∩ VA2

.
Then BX(K1, VK) ⊂ BX(K1, VA1

) and BX(K2, VK) ⊂ BX(K2, VA2
). Since

{g−1
(V,U)(Q)}(V,U)∈Λ′

(X,Y )
converges to KQ, there exists (V0, U0) ∈ Λ′(X,Y ) such

that g−1
(V,U)(Q) ⊂ IntX(BX(K1, VK) ∪ IntX(BX(K2, VK)), for every (V,U) ≥

(V0, U0). Observe that g−1
(V,U)(Q) ∩ IntX(BX(K1, VK)) 6= ∅ and g−1

(V,U)(Q) ∩
IntX(BX(K2, VK)) 6= ∅, for each (V,U) ≥ (V0, U0). Let (V,U0) ∈ Λ′(X,Y )

be such that (V,U0) ≥ (V0, U0) and (V,U0) ≥ (VK , U0). Then g−1
(V,U0)(Q) ⊂

IntX(BX(K1, VK) ∪ IntX(BX(K2, VK)), g−1
(V,U0)(Q) ∩ IntX(BX(K1, VK)) 6= ∅

and g−1
(V,U0)(Q) ∩ IntX(BX(K2, VK)) 6= ∅. Since Q is connected, there ex-

ists y ∈ Q such that g−1
(V,U0)(y) ∩ IntX(BX(K1, VK)) 6= ∅ and g−1

(V,U0)(y) ∩
IntX(BX(K2, VK)) 6= ∅. This implies that g(V,U0) is not a V -map, a contra-
diction. Therefore, KQ is connected.

Next, we show that f(KQ) = Q. Let x ∈ KQ. Then, for each (V,U) ∈
Λ′(X,Y ), there exists x(V,U) ∈ g−1

(V,U)(Q) such that the net {x(V,U)}(V,U)∈Λ′
(X,Y )

converges to x. By continuity, {f(x(V,U))}(V,U)∈Λ′
(X,Y )

converges to f(x) [16,

3.38]. Since each g(V,U) is U -near f , ρY (f(x(V,U)), g(V,U)(x(V,U))) < U . Since
Λ′(X,Y ) is a cofinal subset of Λ(X,Y ), we have that

⋂
{U | (V,U) ∈ Λ′(X,Y )} = ∆Y .

Since g(V,U)(x(V,U)) ∈ Q, for all (V,U) ∈ Λ′(X,Y ), and Q is a closed subset of

X, we obtain that f(x) ∈ Q. Therefore, f(KQ) ⊂ Q. Now, let y ∈ Q. For each

(V,U) ∈ Λ′(X,Y ), let x(V,U) ∈ g−1
(V,U)(Q) be such that g(V,U)(x(V,U)) = y. With-

out loss of generality, we assume that the net {x(V,U)}(V,U)∈Λ′
(X,Y )

converges to a

point x of X [4, 3.1.23 and 1.6.1]. Note that, in fact, x ∈ KQ. Since each g(V,U)

is U -near f , ρY (f(x(V,U)), g(V,U)(x(V,U))) = ρY (f(x(V,U)), y) < U . Hence, the
net {f(x(V,U)}(V,U)∈Λ′

(X,Y )
converges to y. By continuity, {f(x(V,U)}(V,U)∈Λ′

(X,Y )

converges to f(x). Hence, f(x) = y, and Q ⊂ f(KQ). Therefore, f(KQ) = Q.
Suppose x is a point of X such that f(x) ∈ IntY (Q). Then there exists

(V0, U0) ∈ Λ(X,Y )
′
such that g(V,U)(x) ∈ IntY (Q), for every (V,U) ≥ (V0, U0).

Since {g(V,U)(x)}(V,U)∈Λ′
(X,Y )

converges to f(x), we have that x ∈ g−1
(V,U)(Q),

for each (V,U) ≥ (V0, U0). Hence, x ∈ KQ, and f−1(IntY (Q)) ⊂ KQ. �

Corollary 3.7 ([5, Corollary 1.1]). Let X and Y be compacta and let
f : X →→ Y be a uniformly refinable map. Then f is weakly confluent.

Theorem 3.8 ([8, Lemma 1]). Let X and Y be compacta, let f : X →→ Y
be a uniformly refinable map, let Q be a subcontinuum of Y , and let KQ be
the subcontinuum given by Theorem 3.6. If L is a subcontinuum of Q, then
there exists a subcontinuum M of KQ such that f(M) = L and K contains
(f |KQ

)−1(IntQ(L)). In particular, f |KQ
: KQ →→ Q is weakly confluent.
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Proof. By the proof of Theorem 3.6, there exists a cofinal subset Λ′(X,Y ) of

Λ(X,Y ) (Notation 2.4) such that {g−1
(V,U)(Q)}(V,U)∈Λ′

(X,Y )
converges to KQ. Let

L be a subcontinuum of Q. Since 2X is a compactum [14, Theorem 1.6.7],
without loss of generality, we assume that {g−1

(V,U)(L)}(V,U)∈Λ′
(X,Y )

converges to

a subcontinuum M of X ([4, 3.1.23 and 1.6.1] and [19, Theorem 4]). In fact,
M is a subcontinuum of KQ. By the proof of Theorem 3.6, f(M) = L and
f−1(IntY (L)) ⊂M .

The proof of the fact that (f |KQ
)−1(IntQ(L)) ⊂ M is similar to the one

given in Theorem 3.6 taking the appropriate intersections. �

Corollary 3.9 ([5, Corollary 1.2]). Let X and Y be compacta and let f : X →→ Y
be a uniformly refinable map. If Y is connected im kleinen at a point p, then
f−1(p) is connected. Hence, f is monotone if Y is locally connected.

Proof. Suppose Y is connected im kleinen at p, but f−1(p) is not connected.
Then there exist two disjoint open subsets A and B of X such that f−1(p) ⊂
A ∪ B, f−1(p) ∩ A 6= ∅ and f−1(p) ∩ B 6= ∅. The compactness of X implies
that O = Y \ f(X \ (A ∪ B)) is an open subset of Y and p ∈ O. Since Y
is connected im kleinen at p, there exists a subcontinuum Q of Y such that
p ∈ IntY (Q) ⊂ O. By Theorem 3.6, there exists a subcontinuum K of X such
that f−1(p) ⊂ f−1(IntY (Q)) ⊂ K and f(K) = Q. Thus, K ⊂ f−1(Q) ⊂
f−1(O) ⊂ A∪B, a contradiction to the connectedness of K. Therefore, f−1(p)
is connected.

The second part follows form the well-known fact that a compactum is locally
connected if and only if it is connected im kleinen at each of its points and [14,
Lemma 1.4.46]. �

From a similar proof to the one given for Corollary 3.9, we obtain:

Corollary 3.10 ([8, Corollary, p. 2]). Let X and Y be compacta, let f : X →→ Y
be a uniformly refinable map, let Q be a subcontinuum of X of Y , and let KQ

be the subcontinuum given by Theorem 3.6. If Q is connected im kleinen at
a point p, then (f |KQ

)−1(p) is connected. Hence, f |KQ
is monotone if Q is

locally connected.

Corollary 3.11 ([5, Corollary 1.3]). Let X and Y be continua and let
f : X →→ Y be a uniformly refinable map. Then X is decomposable if and
only if Y is decomposable.

Proof. Suppose Y is decomposable. By [14, Lemma 1.4.34], Y contains a proper
subcontinuum Q with nonempty interior. By Theorem 3.6, there exists a sub-
continuum K of X such that f(K) = Q and f−1(IntY (Q)) ⊂ K. Hence,
IntX(K) 6= ∅. Therefore, X is decomposable [14, Lemma 1.4.34].

Suppose X decomposable there exist two proper subcontinua K and L of
X such that X = K ∪ L. Let xK ∈ K \ L and let xL ∈ L \ K. Thus,
there exists V ∈ UX such that BX(xK , V ) ⊂ K \ L and BX(xL, V ) ⊂ L \K.
Since f is uniformly refinable, there exists a V -map g : X →→ Y . Note that
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g−1(g(xK)) ⊂ BX(xK , V ) and g−1(g(xL)) ⊂ BX(xL, V ). Hence, g(K) is a
proper subcontinuum of Y such that g(xK) ∈ IntY (g(K)). Therefore, Y is a
decomposable continuum [14, Lemma 1.4.34]. �

Corollary 3.12 ([11, Proposition (3.4)-(1)]). Let X and Y be continua and
let f : X →→ Y be a uniformly refinable map. If X is hereditarily decomposable,
then Y is hereditarily decomposable.

Proof. Let L be a nondegenerate subcontinuum of Y . By Corollary 3.7, f
is weakly confluent. Hence, there exists a subcontinuum K ′ of X such that
f(K ′) = L. By [12, Theorem 7, p. 171], there exists a subcontinuum K of
K ′ such that f(K) = L and f(W ) 6= L, for each proper subcontinuum W of
K. Since K is decomposable, there exist two proper subcontinua K1 and K2

of K such that K = K1 ∪K2. Hence, L = f(K1) ∪ f(K2). Since f(K1) 6= L
and f(K2) 6= L, we have that L is decomposable. Therefore, Y is hereditarily
decomposable. �

A triod is a continuum X for which there exist three subcontinua K, L and
M of X such that X = K ∪ L ∪ M , K ∩ L ∩ M 6= ∅, K \ (L ∪ M) 6= ∅,
L \ (K ∪ M) 6= ∅ and M \ (K ∪ L) 6= ∅. A continuum is atriodic if no
subcontinuum of it is a triod.

Theorem 3.13 ([11, Proposition (3.4)-(3)]). Let X and Y be continua and let
f : X →→ Y be a uniformly refinable map. Then X is atriodic if and only if Y
is atriodic.

Proof. Suppose Y is atriodic and X contains a triod. Let K, L and M be
subcontinua of X such that K∩L∩M 6= ∅, K \(L∪M) 6= ∅, L\(K∪M) 6= ∅
and M \ (K ∪ L) 6= ∅. Consider f(K), (L) and f(M). Since Y is atriodic,
without loss of generality, we assume that f(M) ⊂ f(K) ∪ f(L). Let xM ∈
M \ (K ∪L). Then there exists V ∈ UX such that BX(xM , V ) ∩ (K ∪L) = ∅.
Since f is uniformly refinable, there exists a V -map g : X →→ Y . Note that,
on one hand, g−1(g(xM )) ⊂ BX(xM , V ) and, on the other hand, there exists a
point x ∈ (K ∪ L) such that g(x) = g(xM ), a contradiction to the fact that g
is a V -map. Therefore, X is atriodic.

Now, assume that Y contains three subcontinua L1, L2 and L3 such that L1∩
L2∩L3 6= ∅, L1\(L2∪L3) 6= ∅, L2\(L1∪L3) 6= ∅ and L3\(L1∪L2) 6= ∅. Let
y1 ∈ L1\(L2∪L3), y2 ∈ L2\(L1∪L3), y3 ∈ L3\(L1∪L2), and y ∈ L1∩L2∩L3.
Consider the directed set Λ(X,Y ) (Notaion 2.4). Since f is uniformly refinable,
for each V ∈ UX and every U ∈ UY , there exists a V -map g(V,U) : X →→ Y

that is U -near f . Then we have the nets {g−1
(V,U)(Lj)}(V,U)∈Λ(X,Y )

, j ∈ {1, 2, 3},
{g−1

(V,U)(yj)}(V,U)∈Λ(X,Y )
and {g−1

(V,U)(y)}(V,U)∈Λ(X,Y )
of nonempty closed subsets

of X. As in the proof of Theorem 3.6, there exists a cofinal subset Λ′(X,Y )

of Λ(X,Y ) such that each of the nets {g−1
(V,U)(Lj)}(V,U)∈Λ′

(X,Y )
converges to a

subcontinuum Kj , j ∈ {1, 2, 3}, of X, with the property that f(Kj) = Lj ,

j ∈ {1, 2, 3}. Also, each of the nets {g−1
(V,U)(yj)}(V,U)∈Λ′

(X,Y )
converges to points
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xj , j ∈ {1, 2, 3} of X and {g−1
(V,U)(y)}(V,U)∈Λ′

(X,Y )
converges to a point x of X.

Observe that x ∈ K1∩K2∩K3 and xj ∈ Kj \(Kl∪Km), with j, l,m ∈ {1, 2, 3},
j 6= l, j 6= m and l 6= m. Therefore, K1 ∪K2 ∪K3 is a triod in X. �

Theorem 3.14 ([5, Theorem 2]). Let X and Y be continua and let f : X →→ Y
be a uniformly refinable map. If y is a point of Y that cuts Y , then some point
of f−1(y) is a weak cut point of X.

Proof. Suppose that Y \{y} = A∪B, where A and B are disjoint open subsets
of Y . Let xA ∈ f−1(A) and let xB ∈ f−1(B). Consider the directed set
(Λ(X,Y ),≥) (Notation 2.4). Then for each (V,U) ∈ Λ(X,Y ), there exists a V -

map g(V,U) : X →→ Y that is U -near f . We have the net {g−1
(V,U)(y)}(V,U)∈Λ(X,Y )

.

Since X is compact, without loss of generality, we assume that the net converges
to a point x of X [4, 3.1.23 and 1.6.1]. Observe that x ∈ f−1(y).

Now, suppose Z is a subcontinuum of X such that {xA, xB} ⊂ Z and x ∈
X \ Z. Let V ∈ UX be such that BX(x, V ) ∩ Z = ∅, and let U ∈ UY be
such that BY (f(xA), U) ⊂ A and BY (f(xB), U) ⊂ B. Let g(V,U) : X →→ Y

be a V -map that is U -near f . Note that for each x′ ∈ g−1
(V,U)(y), we have

that ρX(x′, x) < V . Thus, g−1
(V,U)(y) ⊂ BX(x, V ) and g−1

(V,U)(y) ∩ Z = ∅.

Since g(V,U) is U -near f , g(V,U)(xA) ∈ BY (f(xA), U) ⊂ A and g(V,U)(xB) ∈
BY (f(xB), U) ⊂ B. Therefore, Z is a subcontinuum of X that intersects both
disjoint open subsets g−1

(V,U)(A) and g−1
(V,U)(B) and Z ⊂ g−1

(V,U)(A) ∪ g−1
(V,U)(B),

a contradiction. Therefore, x is weak cut point of X. �

Corollary 3.15 ([5, Corollary 2.1]). Let X and Y be metric continua, where
X is locally connected and has no cut points, and let f : X →→ Y be a uniformly
refinable map. Then for each y ∈ Y , X \ f−1(y) is connected. Hence, Y has
no cut points.

Proof. Suppose there exists a point y of Y such thatX\f−1(y) is not connected.
Since f is monotone (Corollary 3.9), Y \{y} is not connected. By Theorem 3.14,
some point x of f−1(y) is a weak cut point of X. Hence, x is a cut point
[10, p. 143], since X locally connected (and locally connected continua are
aposyndetic). This is a contradiction to our hypothesis. �

Let X be a continuum. A subcontinuum K of X is terminal provided that
for each subcontinuum L of X such that K∩L 6= ∅, we have that either K ⊂ L
or L ⊂ K.

Theorem 3.16 ([8, Theorem 4]). Let X and Y be compacta, let f : X →→ Y
be a uniformly refinable map, let Q be a subcontinuum of Y with IntY (Q) 6= ∅,
and let KQ be the subcontinuum given by Theorem 3.6. If KQ is a terminal
subcontinuum of X, then Q is a terminal subcontinuum of Y .

Proof. Assume that Q is not a terminal subcontinuum of Y . Then there exists
a subcontinuum L of Y such that L ∩ Q 6= ∅, L \ Q 6= ∅ and Q \ L 6= ∅.
By Corollary 3.7, f is weakly confluent. Hence, there exists a component R of
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f−1(L ∪ Q) such that f(R) = L ∪ Q. Since f−1(IntY (Q)) ∩ R 6= ∅, we have
that R ∩KQ 6= ∅ (Theroem 3.6). Hence, KQ ⊂ R. Let C be a component of
ClX(R \KQ). Since IntX(KQ) 6= ∅ (Theorem 3.6), we have that KQ \C 6= ∅.
By [14, Theorem 1.4.36], C ∩ KQ 6= ∅. Also, by construction C \ KQ 6= ∅.
Thus, KQ is not a terminal subcontinuum of X. �

Let X and Y be compacta and let f : X →→ Y be a surjective map. Then
f is uniformly monotonely refinable provided that for each V ∈ UX and every
U ∈ UY there exists a monotone uniform (V,U)-refinament of f .

Theorem 3.17 ([6, Lemma 2]). Let X and Y be compacta and let f : X →→ Y
be a uniformly monotonely refinable map. If Y is locally conncted, then X is
locally connected.

Proof. Let x be a point of X and let A be an open subset of X with x ∈ A.
Then there exists V ∈ UX such that BX(x, V ) ⊂ A. Since f is uniformly
monotonely refinable, by Theorem 3.2, there exists a monotone IntX×X(V )-
map g : X →→ Y . By Lemma 3.3, there exists U ∈ UY such that if B is
a nonempty subset of Y and δY (B) < U , then δX(g−1(B)) < IntX×X(V ).
Since Y is locally connected, there exists an open connected subset B of Y
sucht that g(x) ∈ B and δY (B) < U . Hence, g−1(B) is an open connected
subset of X such that x ∈ g−1(B) and δX(g−1(B)) < IntX×X(V ). Thus,
g−1(B) ⊂ BX(x, V ) ⊂ A. Therefore, X is locally connected. �

4. Aposyndesis

Let X be a continuum and let p and q be two distinct points of X. Then X is
aposyndetic at p with respecto to q provided that there exists a subcontinuum
K of X such that p ∈ IntX(K) ⊂ K ⊂ X \ {q}. X is aposyndetic at p if
X is aposyndetic at p with respect to each point q ∈ X \ {p}. Finally, X is
aposyndetic if it is aposyndetic at each of its points.

F. Burton Jones defined what are now known as the set functions T and K.
He used these set functions to study aposyndesis on continua. Both functions
have been used to study continua, mainly T [14]. These set functions are
considered “dual” functions. Next, we define these set functions.

Given a continuum X, we define the set function TX as follows: if A is a
subset of X, then

TX(A) = X \ {x ∈ X | there exists a subcontinuum K of X

such that x ∈ IntX(K) ⊂ K ⊂ X \A}.

Let us observe that for any subset A of X, TX(A) is a closed subset of X and
A ⊂ TX(A). Also, if K is a subcontinuum of X, then TX(K) is a subcontinuum
of X [14, Theorem 2.1.27].

For the continuum X, the set function KX is defined as follows: if A is a
subset of X, then

KX(A) =
⋂
{K | K is a subcontinuum of X such that A ⊂ IntX(K)}.
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We also have that for any subset A of X, KX(A) is a closed subset of X and
A ⊂ KX(A). It is not necessarily true that if L is a subcontinuum of X, then
KX(L) is connected.

Compare the following result with [14, Theorem 2.1.51, (b) and (c)].

Theorem 4.1 ([7, Theorem 1′]). Let X and Y be continua and let f : X →→ Y
be a uniformly refinable map. Then the following hold:

(1) For each closed subset W of X, fTX(W ) ⊂ TY f(W ).

(2) For each closed subset Z of Y , there exists a closed subset W of X such
that fTX(W ) = TY (Z).

Proof. We show (1). Suppose there exists a point x ∈ TX(W ) such that f(x) ∈
Y \ TY f(W ). Then there exists a subcontinuum L of Y such that f(x) ∈
IntY (L) ⊂ L ⊂ Y \ f(W ). By Theorem 3.6, there exists a subcontinuum K of
X such that f(K) = L and f−1(IntY (L)) ⊂ K. Note that x ∈ IntX(K) ⊂ K ⊂
X\W . Thus, x ∈ X\TX(W ), a contradiction. Therefore, fTX(W ) ⊂ TY f(W ).

To prove (2), consider the directed set Λ(X,Y ) (Notaion 2.4). Since f is
uniformly refinable, for each V ∈ UX and every U ∈ UY , there exists a V -map
g(V,U) : X →→ Y that is U -near f . Then we have the net {g−1

(V,U)(Z)}(V,U)∈Λ(X,Y )

of nonemtpy closed subsets of X. As in the proof of Theorem 3.6, there exists
a cofinal subset Λ′(X,Y ) of Λ(X,Y ) such that the net {g−1

(V,U)(Z)}(V,U)∈Λ′
(X,Y )

converges to a nonempty closed subset W of X, with the property that f(W ) =
Z. By part (1), we have that fTX(W ) ⊂ TY f(W ) = TY (Z). We show the
reverse inclusion. If TY (Z) = Z, then f(W ) = Z = TY (Z) ⊂ fTX(W ) (since
W ⊂ TX(W ), f(W ) ⊂ fTX(W )). Now, suppose there exists a point z ∈
TY (Z) \ Z. We have the net {g−1

(V,U)(z)}(V,U)∈Λ′
(X,Y )

. Since X is compact,

without loss of generality, we assume that this net converges to a point x of X
[4, 3.1.23 and 1.6.1]. Observe that x ∈ f−1(z). Suppose x ∈ X \ TX(W ). Then
there exists a subcontinuum K of X such that x ∈ IntX(K) ⊂ K ⊂ X \W .
This implies that W ⊂ X \ K. Since {g−1

(V,U)(Z)}(V,U)∈Λ′
(X,Y )

converges to

W and {g−1
(V,U)(z)}(V,U)∈Λ′

(X,Y )
converges to x, there exists (V,U) ∈ Λ(X,Y )

such that g−1
(V,U)(Z) ⊂ X \ K and g−1

(V,U)(z) ⊂ IntX(K). Then g(V,U)(K) is

a subcontinuum of Y such that z ∈ IntY (g(V,U)(K)) ⊂ g(V,U)(K) ⊂ Y \ Z.
Hence, z ∈ Y \ TY (Z), a contradiction. Thus, x ∈ TX(W ) and z ∈ fTX(W ).
Therefore, TY (Z) ⊂ fTX(W ), and fTX(W ) = TY (Z). �

Corollary 4.2 ([7, Corollary, p. 368]). Let X and Y be continua and let
f : X →→ Y be a uniformly refinable map. If X is aposyndetic, then Y is
aposyndetic.

Proof. Let y ∈ Y . By the proof of part (2) of Theorem 4.1, we may find a point
x ∈ X such that f(x) = y and fTX({x}) = TY ({y}). Since X is aposyndetic,
TX({x}) = {x} [14, Theorem 2.1.34]. Thus, fTX({x}) = {f(x)} = {y}. Hence,
TY ({y}) = {y}. Therefore, Y is aposyndetic [14, Theorem 2.1.34]. �
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Let X be a compactum. A nonempty closed subset K of X is a TX -closed
set if TX(K) = K. The family of TX -closed sets of X is denoted by T(X). If
A is a set, then |A| denotes the cardinality of A.

The next result extends [14, Corollary 4.1.26] to uniformly monotonely re-
finable maps.

Theorem 4.3. Let X and Y be continua and let f : X →→ Y be a uniformly
monotonely refinable map. Then |T(Y )| ≤ |T(X)|.

Proof. Since f is a monotonely refinable map, there exists a monotone map
g : X →→ Y . Hence, by [14, Corollary 4.1.26], we have that |T(Y )| ≤ |T(X)|. �

Let X and Y be compacta and let f : X →→ Y be a surjective map. Then f
is atomic if for each subcontinuum K of X such that f(K) is nondegenerate,
we have that K = f−1f(K).

Next, we introduce the family of uniformly atomically refinable maps. Let
X and Y be compacta and let f : X →→ Y be a surjective map. Then f is
atomically refinable provided that for each V ∈ UX and every U ∈ UY there
exists an atomic uniform (V,U)-refinament of f .

The following theorem extends [14, Theorem 4.1.32] to uniformly atomically
refinable maps and gives a partial positive answer to [14, Question 8.1.18].

Theorem 4.4. Let X and Y be continua and let f : X →→ Y be an atomically
refinable map. Then |T(Y )| = |T(X)|.

Proof. Since f is a atomically refinable map, there exists an atomic map
g : X →→ Y . Hence, by [14, Theorem 4.1.32], we have that |T(Y )| = |T(X)|. �

The following theorem is an extension to closed sets of [7, Theorem 1′′]. Its
proof is similar to the one given for Theorem 4.1; we include the details to see
the “duality” of T and K.

Theorem 4.5. Let X and Y be continua and let f : X →→ Y be a uniformly
refinable map. Then the following hold:

(1) For each closed subset W of X, fKX(W ) ⊂ KY f(W ).

(2) For each closed subset Z of Y , there exists a closed subset W of X such
that fKX(W ) = KY (Z).

Proof. We show (1). Suppose there exists a point x ∈ KX(W ) such that f(x) ∈
Y \KY f(W ). Then there exists a subcontinuum L of Y such that f(x) ∈ Y \L
and f(W ) ⊂ IntY (L). By Theorem 3.6, there exists a subcontinuum K of
X such that f(K) = L and f−1(IntY (L)) ⊂ K. Note that W ⊂ IntX(K)
and x ∈ X \ K, a contradiction to the fact that x ∈ KX(W ). Therefore,
fKX(W ) ⊂ KY f(W ).

To prove (2), consider the directed set Λ(X,Y ) (Notaion 2.4). Since f is uni-
formly refinable, for each V ∈ UX and every U ∈ UY , there exists a V -map
g(V,U) : X →→ Y that is U -near f . Then we have the net {g−1

(V,U)(Z)}(V,U)∈Λ(X,Y )

of nonemtpy closed subsets of X. As in the proof of Theorem 3.6, there exists a
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cofinal subset Λ′(X,Y ) of Λ(X,Y ) such that the net {g−1
(V,U)(Z)}(V,U)∈Λ′

(X,Y )
con-

verges to a nonempty closed subset W of X, with the property that f(W ) = Z.
By part (1), we have that fKX(W ) ⊂ KY f(W ) = KY (Z). We show the
reverse inclusion. If KY (Z) = Z, then f(W ) = Z = KY (Z) ⊂ fKX(W )
(since W ⊂ KX(W ), f(W ) ⊂ fKX(W )). Now, suppose there exists a point
z ∈ KY (Z) \ Z. We have the net {g−1

(V,U)(z)}(V,U)∈Λ′
(X,Y )

. Since X is compact,

without loss of generality, we assume that this net converges to a point x of X
[4, 3.1.23 and 1.6.1]. Observe that x ∈ f−1(z). Suppose x ∈ X \KX(W ). Then
there exists a subcontinuum K of X such that x ∈ X \K and W ⊂ IntX(K).
Since {g−1

(V,U)(Z)}(V,U)∈Λ′
(X,Y )

converges to W and {g−1
(V,U)(z)}(V,U)∈Λ′

(X,Y )
con-

verges to x, there exists (V,U) ∈ Λ(X,Y ) such that g−1
(V,U)(Z) ⊂ IntX(K)

and g−1
(V,U)(z) ⊂ X \ K. Then g(V,U)(K) is a subcontinuum of Y such that

Z ⊂ IntY (g(V,U)(K)) and z ∈ Y \ g(V,U)(K). Hence, z ∈ Y \ KY (Z), a contra-
diction. Thus, x ∈ KX(W ) and z ∈ fKX(W ). Therefore, KY (Z) ⊂ fKX(W ),
and fKX(W ) = KY (Z). �

Remark 4.6. A proof of Corollary 4.2 may be given using Theorem 4.5 and
[14, Corollary 7.7.4] which says that, in particular, if X is an aposyndetic
continuum, then TX({x}) = KX({x}), for each x ∈ X.

A continuum X is semi-aposyndetic provided that for each pair of points p
and q of X, there exists a subcontinuum K of X such that {p, q}∩IntX(K) 6= ∅
and {p, q} \K 6= ∅.

Theorem 4.7 ([7, Theorem 2]). Let X and Y be continua and let f : X →→ Y
be a uniformly refinable map. If X is semi-aposyndetic, then Y is semi-
aposyndetic.

Proof. Let y1 and y2 be two distinct points of Y . Consider the directed set
Λ(X,Y ) (Notaion 2.4). Since f is uniformly refinable, for each V ∈ UX and
every U ∈ UY , there exists a V -map g(V,U) : X →→ Y that is U -near f . Then

we have the nets {g−1
(V,U)(y1)}(V,U)∈Λ(X,Y )

and {g−1
(V,U)(y2)}(V,U)∈Λ(X,Y )

. Since

X is compact, without loss of generality, we assume that these nets converge
to the points x1 and x2, respectively [4, 3.1.23 and 1.6.1]. Note that x1 6= x2.
Since X is semi-aposyndetic, either x1 ∈ X \ TX({x2}) or x2 ∈ X \ TX({x2})
[14, Theorem 2.1.32]. Suppose that x1 ∈ X \ TX({x2}). Then there exists
a subcontinuum K of X such that x1 ∈ IntX(K) ⊂ K ⊂ X \ {x2}. Since
{g−1

(V,U)(y1)}(V,U)∈Λ(X,Y )
and {g−1

(V,U)(y2)}(V,U)∈Λ(X,Y )
converge to x1 and x2,

respectively, there exists (V,U) ∈ Λ(X,Y ) such that g−1
(V,U)(y1) ⊂ IntX(K)

and g−1
(V,U)(y2) ⊂ X \ K. Therefore, g(V,U)(K) is a subcontinuum of Y such

that y1 ∈ IntY (g(V,U)(K)) ⊂ g(V,U)(K) ⊂ Y \ {y2}. Therefore, Y is semi-
aposyndetic. �

A continuum X is mutually aposyndetic, if for each pair of points p and q,
there exist two disjoint subcontinua K and L of X such that p ∈ IntX(K) and
q ∈ IntX(L).
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Let X be a continuum and let n ∈ N. Then X is n-aposyndetic provided
that for each subset F of X with at most n points and every point x ∈ X \ F ,
there exists a subcontinuum K of X such that x ∈ IntX(K) ⊂ K ⊂ X \ F .
Observe that this is equivalent to have TX(F ) = F .

A similar argument to the one given for Theorem 4.7 shows:

Theorem 4.8 ([7, Theorem 3]). Let X and Y be continua and let f : X →→ Y
be a uniformly refinable map. Then the following hold:

(1) If X is mutually aposyndetic, then Y is mutually aposyndetic.

(2) If X is n-aposyndetic, for some n ∈ N, then Y is n-aposyndetic.

5. Irreducible Continua

Let X be a decomposable continuum. We say X has property (B2) if every
time X = K ∪ L ∪M , where K, L and M are proper subcontinua such that
K \ (L∪M) 6= ∅, L \ (K ∪M) 6= ∅ and M \ (K ∪L) 6= ∅, we have that either
K ∩ L = ∅ or K ∩M = ∅ or L ∩M = ∅.

This definition is due to R. H. Sorgenfrey [20]. We present a couple of
consequnces of property (B2), which are used in the metric case to prove the
converse implication of Theorem 5.4, [20, Theorem]. Lemmas 5.1 and 5.2 might
be useful to prove the converse of Theorem 5.4.

Lemma 5.1 ([20, Lemma 1 (a), case n = 2]). Let X be a decomposable con-
tinuum with property (B2). If L and M are proper subcontinua of X such that
X = L ∪M and then X \ L and X \M are connected.

Proof. Assume X = L ∪ M , where L and M are proper subcontinua. We
show that X \ L is connected. Suppose that this is not true. Then X \ L =
A ∪ B, where A and B are disjoint open subsets of X. By the Boundary
Bumping Theorem [14, Theorem 1.4.36], if R is a component of ClX(A), then
R ∩ L 6= ∅ and if S is a component of ClX(B), then S ∩ L 6= ∅. Let T =⋃
{R | R is a component of ClX(A)} and let

W =
⋃
{S | S is a component of ClX(B)}.

Thus, L, L∪T and L∪W are proper subcontinua of X such that X = L∪ (L∪
T )∪(L∪W ), L\[(L∪T )∪(L∪W )] 6= ∅, (L∪T )\(L∪W ) 6= ∅, (L∪W )\(L∪T ) 6=
∅, but L ∩ (L ∪ T ) 6= ∅ L ∩ (L ∪W ) 6= ∅ and (L ∪ T ) ∩ (L ∪W ) 6= ∅, a
contradiction. Therefore, X\L is connected. Similarly, X\M is connected. �

Lemma 5.2 ([20, Lemma 2]). Let X be a decomposable continuum with prop-
erty (B2). Let L and M be proper subcontinua such that X \ L and X \M
are connected and L ∩ (X \M) and M ∩ (X \ L) contain open subsets of X.
If H is a subcontinuum of X such that H ∩ L 6= ∅ and H ∩M 6= ∅, then
X \ (L ∪M) ⊂ H.

Proof. Let H be a subcontinuum of X such that H ∩ L 6= ∅ and H ∩M 6= ∅.
Assume that X \ (L ∪M) 6⊂ H. Then H ∪ L ∪M is a proper subcontinuum
of X. By an argument similar to the one given in the proof of Lemma 5.1, we
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have that C = X \ (H ∪ L ∪M) is connected. Note that, in this case, either
ClX(C) ∩ (H ∪ L) = ∅ or ClX(C) ∩ (H ∪M) = ∅. If ClX(C) ∩ (H ∪ L) 6= ∅
and ClX(C) ∩ (H ∪ M) 6= ∅, then ClX(C), H ∪ L and H ∪ M would be
three proper subcontinua of X such that X = ClX(C) ∪ (H ∪ L) ∪ (H ∪M),
ClX(C) \ [(H ∪ L) ∪ (H ∪ M)] 6= ∅, (H ∪ L) \ [ClX(C) ∪ (H ∪ M)] 6= ∅,
(H∪M)\[ClX(C)∪(H∪L)] 6= ∅, (H∪L)∩(H∪M) 6= ∅, ClX(C)∩(H∪L) 6= ∅
and ClX(C) ∩ (H ∪M) 6= ∅, a contradiction. Hence, either ClX(C) ∩ (H ∪
L) = ∅ or ClX(C) ∩ (H ∪M) = ∅. Without loss of generality, assume that
ClX(C) ∩ (H ∪ L) = ∅. Then (X \M) ∩ C 6= ∅ and (X \M) ∩ (H ∪ L) 6= ∅.
Thus, X\M is not connected, a contradiction. Therefore, X\(L∪M) ⊂ H. �

A continuum X is irreducible provided that there exist two points x1 and x2

of X such that if K is a subcontinuum of X and {x1, x2} ⊂ K, then K = X.
The following result is, essentially, [11, Theorem (3.1)]. In [11], the author

uses case n = 2 of [20, Theorem, p. 667] to change property (B2) to irreducible
continuum. We have one implication of [11, Theorem (3.1)] in Theorem 5.6.

Theorem 5.3. Let X and Y be continua and let f : X →→ Y be a uniformly
refinable map. Then X has property (B2) if and only if Y has property (B2).

Proof. Suppose X does not have property (B2). Then there exist three proper
subcontinua K, L and M of X such that X = K ∪ L ∪M , K \ (L ∪M) 6= ∅,
L \ (K ∪ M) 6= ∅ and M \ (K ∪ L) 6= ∅, K ∩ L 6= ∅, K ∩ M 6= ∅ and
L∩M 6= ∅. Let xK ∈ K \ (L∪M), xL ∈ L \ (K ∪M) and xM ∈M \ (K ∪L).
Let V ∈ UX be such that BX(xK , V )∩(L∪M) = ∅, BX(xL, V )∩(K∪M) = ∅
and BX(xM , V ) ∩ (K ∪ L) = ∅. Since f is a uniformly refinable map, there
exists a V -map g : X →→ Y . Then g(K), g(L) and g(M) are three subcontinua
of Y such that Y = g(K) ∪ g(L) ∪ g(M), g(xK) ∈ g(K) \ [g(L) ∪ g(M)],
g(xL) ∈ g(L)\ [g(K)∪ g(M)], g(xm) ∈ g(M)\ (g(K)∪ g(L)), g(K)∩ g(L) 6= ∅,
g(K)∩ g(M) 6= ∅ and g(L)∩ g(M) 6= ∅. Therefore, Y does not have property
(B2).

Assume Y does not have property (B2). Then there exist three proper
subcontinua K, L and M of Y such that Y = K ∪ L ∪M , K \ (L ∪M) 6= ∅,
L\(K∪M) 6= ∅ and M \(K∪L) 6= ∅, K∩L 6= ∅, K∩M 6= ∅ and L∩M 6= ∅.
Let yK ∈ K \ (L ∪M), yL ∈ L \ (K ∪M) and yM ∈ K \ (K ∪ L).

Consider the directed set Λ(X,Y ) (Notaion 2.4). Since f is uniformly refin-
able, for each (V,U) ∈ Λ(X,Y ), there exists a V -map g(V,U) : X →→ Y that is U -

near f . Then we have the nets {g−1
(V,U)(K)}(V,U)∈Λ(X,Y )

, {g−1
(V,U)(L)}(V,U)∈Λ(X,Y )

,

{g−1
(V,U)(M)}(V,U)∈Λ(X,Y )

, {g−1
(V,U)(yK)}(V,U)∈Λ(X,Y )

, {g−1
(V,U)(yL)}(V,U)∈Λ(X,Y )

,

and {g−1
(V,U)(yM )}(V,U)∈Λ(X,Y )

. As in the proof of Theorem 3.6, there exists

a cofinal subset Λ′(X,Y ) of Λ(X,Y ) such that these nets converge to K ′, L′ and

M ′, x′K , x′L and x′M , respectively, such that K ′, L′ and M ′ are subcontinua
of X with the property that f(K ′) = K, f(L′) = L and f(M ′) = M . Since
for each (V,U) ∈ Λ′(X,Y ), X = g−1

(V,U)(K) ∪ g−1
(V,U)(L) ∪ g−1

(V,U)(M), g−1
(V,U)(K) ∩

g−1
(V,U)(L) 6= ∅, g−1

(V,U)(K)∩g−1
(V,U)(M) 6= ∅ and g−1

(V,U)(L)∩g−1
(V,U)(M) 6= ∅, also,
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g−1
(V,U)(yK)\ [g−1

(V,U)(L)∪g−1
(V,U)(M)] 6= ∅, g−1

(V,U)(yL)\ [g−1
(V,U)(K)∪g−1

(V,U)(M)] 6=
∅, and g−1

(V,U)(yM )\[g−1
(V,U)(K)∪g−1

(V,U)(L)] 6= ∅, we have that X = K ′∪L′∪M ′,
K ′∩L′ 6= ∅, K ′∩M ′ 6= ∅, L′∩M ′ 6= ∅, x′K ∈ [X\(L∪M)], x′L ∈ [X\(K∪M)],
and x′M ∈ [X \ (K ∪ L)]. Therefore, X does not have property (B2). �

Theorem 5.4. If X is a decomposable irreducible continuum X, then X has
property (B2).

Proof. Suppose X is a decomposable continuum without property (B2). Then
there exist three proper subcontinuaK, L andM ofX such thatX = K∪L∪M ,
K \ (L∪M) 6= ∅, L \ (K ∪M) 6= ∅, M \ (K ∪L) 6= ∅, K ∩L 6= ∅, K ∩M 6= ∅
and L∩M 6= ∅. Let x1 and x2 be two points of X. Without loss of generality,
assume that x1 ∈ K. Then x2 ∈ K ∪ L ∪M . Suppose x2 ∈ L. Then K ∪ L is
a proper subcontinuum of X such that {x1, x2} ⊂ K ∪ L. Therefore, X is not
irreducible. �

Question 5.5. Is the converse of Theorem 5.4 true?

Theorem 5.6. Let X and Y be continua and let f : X →→ Y be a uniformly
refinable map. If Y is irreducible, then X is irreducible.

Proof. Let y1 and y2 be two points of Y such that Y is irreducible about
them. Let x1 ∈ f−1(y1) and let x2 ∈ f−1(y2). Suppose X is not irreducible
about x1 and x2. Then there exists a proper subcontinuum K of X such that
{x1, x2} ⊂ K. Let x ∈ X \K and let V ∈ UX be such that BX(x, V )∩K = ∅.
Since f is uniformly refinable, there exists a V -map g : X →→ Y . Then g(K)
is a subcontinuum of Y and {y1, y2} ⊂ g(K). Since Y is irreducible about y1

and y2, g(K) = Y . This contradicts the fact that g is a V -map. Therefore, X
is irreducible. �

Theorem 5.7 ([11, Proposition (3.4)-(2)]). Let X and Y be continua and let
f : X →→ Y be a uniformly refinable map. Then X is hereditarily indecompos-
able if and only if Y is hereditarily indecomposable.

Proof. Suppose X is hereditarily indecomposable and let L be a decomposable
subcontinuum of Y . Then there exist two proper subcontinua L1 and L2 of
L such that L = L1 ∪ L2. Consider the directed set Λ(X,Y ) (Notaion 2.4).
Since f is uniformly refinable, for each V ∈ UX and every U ∈ UY , there
exists a V -map g(V,U) : X →→ Y that is U -near f . Then we have the nets

{g−1
(V,U)(Lj)}(V,U)∈Λ(X,Y )

, j ∈ {1, 2}, of nonemtpy closed subsets of X. As in

the proof of Theorem 3.6, there exists a cofinal subset Λ′(X,Y ) of Λ(X,Y ) such

that each of the nets {g−1
(V,U)(Lj)}(V,U)∈Λ′

(X,Y )
converges to a subcontinuum Kj ,

j ∈ {1, 2}, of X, with the property that f(Kj) = Lj , j ∈ {1, 2}. Since X is
hereditarily indecomposable, we have that K1 ∩ K2 = ∅. Let A1 and A2 be
disjoint open subsets of X such that Kj ⊂ Aj , j ∈ {1, 2}. By [4, Lemma 8.2.5],
there exist VA1

and VA2
in UX such that B(Kj , VAj

) ⊂ Aj , j ∈ {1, 2}. Let

V ′ = VA1
∩ VA2

. Since {g−1
(V,U)(Lj)}(V,U)∈Λ′

(X,Y )
converges Kj , j ∈ {1, 2}, there
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exists (V,U) ∈ Λ′(X,Y ) such that g−1
(V,U)(Lj) ⊂ IntX(BX(Kj , V

′)). Without

loss of generality, we assume that V ⊂ V ′. Let y ∈ L1 ∩ L2. Then g−1
(V,U)(y) ∩

IntX(BX(Kj , V
′)) 6= ∅, j ∈ {1, 2}, a contradition to the fact that g is a V -map.

Therefore, L is indecomposable and Y is hereditarily indecomposable.
Suppose that Y is hereditarily indecomposable. By Corollary 3.11, X is

indecomposable. Suppose X contains two subcontinua K and L such that
K ∩L 6= ∅, K \L 6= ∅ and L\K 6= ∅. Since Y is hereditarily indecomposable,
we have that either f(L) ⊂ f(K) or f(K) ⊂ f(L). Without loss of generality,
we assume that f(L) ⊂ f(K). Let xL ∈ L \ K. Thus, there exists V ∈ UX
such that BX(xL, V ) ∩ K = ∅. Since f is uniformly refinable, there exists a
V -map g : X →→ Y . Note that, on one hand, g−1(g(xL)) ⊂ BX(xL, V ) and,
on the other hand, there exists a point xK ∈ K such that g(xK) = g(xL),
a contradiction to the fact that g is a V -map. Therefore, X is hereditarily
indecomposable. �

6. Induced Maps on Hyperspaces

Let Z be a compactum. We consider the following hyperspaces of Z:

2Z = {A ⊂ Z | A is closed and nonempty};

Cn(Z) = {A ∈ 2Z | A has at most n components}, n ∈ N;

Fn(Z) = {A ∈ 2Z | A has at most n points}, n ∈ N.
We define a uniformity on 2Z as follows: If U ∈ UZ , then let 2U = {(A,A′) ∈

2Z × 2Z | A ⊂ B(A′, U) and A′ ⊂ B(A,U)}. Let BZ = {2U | U ∈ UZ}. Then
BZ is a base for a uniformity, denoted by 2UZ [4, 8.5.16]. Observe that the
topology generated by 2UZ coincides with the Vietoris topology [17, 3.3]. Hence,
2Z is compact and Hausdorff [17, 4.9]. Thus, 2UZ is unique (Remark 2.2), and

2UZ = {U ⊂ 2Z × 2Z | U = −U ,∆2Z ⊂ U
and there exists U ∈ UZ such that 2U ⊂ U}.

For the other hyperspaces, we use the restriction of 2UZ to the corresponding
hyperspace and we denote such restriction by: Cn(UZ), and Fn(UZ), respec-
tively. In order to avoid confusion, we put a subindex to the expressions:
ρZ(z, z′) < U , ρ2Z (A,A′) < U , ρCn(Z)(A,A

′) < U , and ρFn(Z)(A,A
′) < U ,

respectively.
Let X and Z be compacta and let f : X → Z be a map. Then the func-

tions: 2f , Cn(f), and Fn(f), given by 2f (A) = f(A) for all A ∈ 2X , Cn(f) =
2f |Cn(X),and Fn(f) = 2f |Fn(X) are the induced maps of f . By [17, 5.10], all
these induced maps are continuous.

The following result follows from the definition of weakly confluent map.

Theorem 6.1. Let X and Z be compacta and let n ∈ N. If f : X →→ Z is a
weakly confluent map, then Cn(f) is surjective.
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Theorem 6.2. Let X and Z be continua, let n ∈ N and let f : X →→ Z be a
map. Then the following are equivalnet:

(1) f is a homeomorphism.
(2) 2f is a homeomorphism.

(3) Fn(f) is a homeomorphism.

(4) Cn(f) is a homeomorphism.

Proof. Suppose f is a homeomorphism. We see that 2f is a homeomorphism.
Let B be an element of 2Z . Note that, since f continuous and surjective,
f−1(B) is an element of 2X and f(f−1(B)) = B. Thus, 2f (f−1(B)) = B, and
2f is surjective. Now, let A1 and A2 be elements of 2X such that 2f (A1) =
2f (A2). Then f(A1) = f(A2). Since f is one-to-one, we have that A1 = A2.
Hence, 2f is one-to-one. Therefore, 2f is a homeomorphism. Next, assume that
2f is a homeomorphism. Let z be an element of Z. Thus, {z} belongs to 2Z .
Since 2f is surjective, there exists an element A of 2X such that 2f (A) = {z}.
Hence, if a belongs to A, we have that f(a) = z. Thus, f is surjective. Now,
let x1 and x2 be two distinct elements of X. Note that {x1} and {x2} belong
to 2X and, since 2f is one-to-one, 2f ({x1}) 6= 2f ({x2}). Hence, f(x1) 6= f(x2),
and f is one-to-one. Therefore, f is a homeomorphism.

Note that (1) is equivalent to (3) by [1, Theorem 3.3], noting that this result
does not use the metric hypothesis.

The proof of the equivalence between (1) and (4) is similar to the one given
for the equivalence between (1) and (2). We need to use the fact that a home-
omorphism is a weakly confluent map, this implies that Cn(f) is surjective
(Theorem 6.1). �

Theorem 6.3. Let X and Z be continua, let n ∈ N and let f : X →→ Z be a
map. Then the following are equivalnet:

(1) f is monotone.
(2) 2f is monotone.

(3) Fn(f) is monotone.

(4) Cn(f) is monotone.

Proof. Suppose f is monotone. We show that 2f is monotone. By [14, Lemma
1.4.46], we only need to prove that if B ∈ 2Z , then (2f )−1(B) is connected. Let
B ∈ 2B . Since f is monotone, the cardinality of the family of the components
of B and f−1(B) is the same. Let A ∈ (2f )−1(B). Then 2f (A) = A and
A ⊂ f−1(B). Also, each component of f−1(B) intersects A. Hence, by the
proof of [18, Corollary 2.7], there exists an order arc α from A to f−1(B).
Note that 2f (α) = {B}. Thus, (2f )−1(B) is arcwise connected. Therefore, 2f

is monotone. Now, assume that 2f is monotone. We prove that f is monotone.
Let z be an element of Z. Then {z} belongs to 2Z . Since 2f is monotone,
(2f )−1({z}) is a subcontinuum of 2X . Note that (2f )−1({z}) ∩ C1(X) 6= ∅.
Hence, by [14, Lemma 1.6.8],

⋃
(2f )−1({z}) = f−1(z) is a subcontinuum of X.

Thus, f is monotone.
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Observe that (1) is equivalent to (3) by [1, Theorem 4.1], noting that this
result and [15, Lemma 1] do not use the metric hypothesis.

The proof of the equivalence between (1) and(4) is similar to the one given
for the equivalence between (1) and (2). �

Lemma 6.4. Let X and Z be compacta, let n ∈ N, let V ∈ UX and let
f : X →→ Z be a surjective map. Consider the following statements:

(1) f is a V -map.

(2) 2f is a 2V -map.

(3) If f is a weakly confluent, then Cn(f) is a 2V |Cn(X)-map (Notation 2.3).

(4) Fn(f) is a 2V |Fn(X)-map (Notation 2.3).

Then (1) implies (2), (3) and (4). Also (2) implies (3) and (4).

Proof. Assume (1), we prove (2). Since f is surjective, 2f is surjective. Let B ∈
2Z and let A1 and A2 be two elements of (2f )−1(B). Hence, 2f (A1) = 2f (A2) =
B. Thus, for each a1 ∈ A1, there exists a2 ∈ A2 such that f(a1) = f(a2). Since
f is a V -map, we have that ρX(a1, a2) < V . This implies that A1 ⊂ B(A2, V ).
Similarly, A2 ⊂ B(A1, V ). Hence, ρ2X (A1, A2) < 2V . Therefore, 2f is a 2V -
map.

The proofs of the facts that (1) implies (2) and (3) are done in a similar way,
we need to use Theorem 6.1 to ensure that Cn(f) is surjective.

The proofs of (2) implies (3) and (4) follow from the fact that we only
intersect 2U with the appropriate hyperspace. �

Lemma 6.5. Let X and Z be compacta, let n ∈ N, let V ∈ UX and let
f : X →→ Z be a surjective map. If Cn(f) is a 2V |Cn(X)-map, then Fn(f) is a

2V |Fn(X)-map

Proof. The lemma follows from the fact that we are only intersecting 2U with
the appropriate hyperspace. �

Lemma 6.6. Let X and Z be compacta, let V ∈ UX , let n ∈ N, and let
g, f : X →→ Z be surjective maps. Consider the following statements:

(1) ρX(f(x), g(x)) < U , for every x ∈ X.

(2) ρ2Z (2f (A), 2g(A)) < 2U , for each A ∈ 2X .

(3) ρCn(Z)(Cn(f(A)), Cn(g(A))) < 2U |Cn(Z), for every A ∈ Cn(X) (Nota-
tion 2.3).

(4) ρFn(Z)(Fn(f(A)),Fn(g(A))) < 2U |Fn(Z), for all A ∈ Fn(X) (Nota-
tion 2.3).

Then (1) implies (2), (3) and (4). Also (2) implies (3) and (4); and (3) implies
(4).

Proof. Assume (1), we show (2). Let A ∈ 2X and let a ∈ A. By hypothesis, we
have that ρZ(f(a), g(a)) < U . Hence, f(A) ⊂ B(g(A), U). Similarly, g(A) ⊂
B(f(A), U). Hence, ρ2Z (2f (A), 2g(A)) < 2U . The proofs of (1) implies (3) and
(4) are done in a similar way.
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The proofs of the other implications follow from the fact that we intersect
2U with the appropriate hyperspace. �

A continuum Z is in Class(W ) provided that for each continuum X, every
surjective map f : X →→ Z is weakly confluent.

Theorem 6.7. Let X and Z be continua, let n ∈ N and let f : X →→ Z be a
map. Consider the following statements:

(1) f : X →→ Z is a uniformly refinable map.

(2) 2f is a uniformly refinable map.

(3) If Z is in Class(W ), then Cn(f) is a uniformly refinable map.

(4) Fn(f) is a uniformly refinable map.

Then (1) implies (2), (3) and (4).

Proof. Assume (1), we prove (2). Since f is surjective, 2f is surjective. Let
V ∈ 2UX and let U ∈ 2UZ . Then there exist V ∈ UX and U ∈ UZ such that
2V ⊂ V and 2U ⊂ U . Since f a uniformly refinable map, there exists a V -map
g : X →→ Z that is U -near f . By Lemma 6.4, 2g is a 2V -map. In particular, 2g

is a V-map. By Lemma 6.6, 2g is 2U -near 2f . In particular, 2g is U-near 2f .
Therefore, 2f is a uniformly refinable map.

The proofs of the facts that (1) implies (2) and (3) are done in a similar way.
We need to use the fact that Z is in Class(W ) and Theorem 6.1 to ensure that
Cn(f) and Cn(g) are surjective. �

As a consequence of Theorems 6.7 and 6.3, we have that:

Theorem 6.8. Let X and Z be continua, let n ∈ N and let f : X →→ Z be a
map. Consider the following statements:

(1) f is a monotonly uniformly refinable map.

(2) 2f is a monotonly uniformly refinable map.

(3) If Z is in Class(W ), then Cn(f) is a monotonly uniformly refinable map.

(4) Fn(f) is a monotonly uniformly refinable map.

Then (1) implies (2), (3) and (4).

Let X and Z be compacta and let f : X →→ Z be a map. Then f is a near-
homeomorphism provided that for each U ∈ UZ , there exists a homeomorphism
g : X →→ Z such that ρZ(f(x), g(x)) < U for all elements x of X.

Theorem 6.9. Let X and Z be continua, let n ∈ N and let f : X →→ Z be a
map. Consider the following statements:

(1) f is a near-homeomorphism.

(2) 2f is a near-homeomorphism.

(3) If Z is in Class(W ), then Cn(f) is a near-homeomorphism.

(4) Fn(f) is a near-homeomorphism.

Then (1) implies (2), (3) and (4).

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 79



S. Maćıas

Proof. Assume (1), we prove (2). Since f is a near-homeomorphism, f is a
uniformly refinable map. Let U ∈ 2UZ and let U ∈ UZ be such that 2U ⊂ U .
Since f is a near-homeomorphism, there exists a homeomorphism g : X →→ Z
such that ρZ(f(x), g(x)) < U for all points x of X. By Theorem 6.2, 2g is a
homeomorphism, and by Lemma 6.7, ρ2Z (2f (A), 2g(A)) < 2U , for each A ∈ 2X .
Therefore, 2f is a near-homeomorphism.

The proofs of (1) implies (3) and (4) are done in a similar way. We need to
use the fact that Z is in Class(W ) and Theorem 6.1 to ensure that Cn(f) is
surjective. �

Lemma 6.10. Let X and Z be continua. lf X is arcwise connected and
f : X →→ Z is an atomic map, then f is a homeomorphism.

Proof. Note that the proof of [13, Corollary 8.1.26] may be done using the fact
that continua are normal spaces instead of the metric hypothesis. �

Theorem 6.11. Let X and Z be continua, let n ∈ N and let f : X →→ Z be a
map.

(1) If 2f is an atomically refinable map, then 2f is a near-homeomorphism.

(2) If Cn(f) is an atomically refinable map, then Cn(f) is a near-homeo-
morphism.

Proof. We show (1). Suppose 2f is an atomically refinable map. Then for each
V ∈ 2UX and U ∈ 2UZ , there exists an atomic V-mapG : 2X →→ 2Z that is U-near
2f . By [18, Corollary 2.7], we have that 2X is arcwise connected. Hence, by
Lemma 6.10, G is a homeomorphism. Therefore, 2f is a near-homeomorphism.
Since Cn(X) is arcwise connected, [18, Corollary 2.7], the proof of (2) is done
in a similar way. �
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