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Abstract: Retrieval of land surface temperature (LST) from satellite data allows to estimate the
surface urban heat island (SUHI) as the difference between the LST obtained in the urban area
and the LST of its surroundings. However, this definition depends on the selection of the urban
and surroundings references, which translates into greater difficulty in comparing SUHI values in
different urban agglomerations across the world. In order to avoid this problem, a methodology is
proposed that allows reliable quantification of the SUHI. The urban reference is obtained from the
European Space Agency Climate Change Initiative Land Cover and three surroundings references
are considered; that is, the urban adjacent (Su), the future adjacent (Sf), and the peri-urban (Sp),
which are obtained from mathematical expressions that depend exclusively on the urban area.
In addition, two formulations of SUHI are considered: SUHIMAX and SUHIMEAN, which evaluate
the maximum and average SUHI of the urban area for each of the three surrounding references.
As the urban population growth phenomenon is a world-scale problem, this methodology has been
applied to 71 urban agglomerations around the world using LST data obtained from the sea and
land surface temperature radiometer (SLSTR) on board Sentinel-3A. The results show average values
of SUHIMEAN of (1.8 ± 0.9) ◦C, (2.6 ± 1.3) ◦C, and (3.1 ± 1.7) ◦C for Su, Sf, and Sp, respectively,
and an average difference between SUHIMAX and SUHIMEAN of (3.1 ± 1.1) ◦C. To complete the study,
two additional indices have been considered: the Urban Thermal Field Variation Index (UFTVI) and
the Discomfort Index (DI), which proved to be essential for understanding the SUHI phenomenon
and its consequences on the quality of life of the inhabitants.
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1. Introduction

By 2050, the world’s population is estimated to increase to nine billion, 70% of whom will live in
urban areas [1]. The rapid increase of these areas without adequate prior planning is an increasingly
worrying problem that seriously threatens the environment and the health and well-being of the
population [2].

One of the most problematic consequences of rapid urbanization is the increase of the urban heat
island (UHI) [3,4], which is defined as the difference between the air temperature (AT) within the urban
area and the AT of its surroundings [5]. Generally, the temperature in urban areas is higher than in
rural areas, especially at night [5]. This phenomenon, which will be reinforced by the effects of climate
change, not only affects people psychologically and physiologically, but also controls daily behaviours
and economic activities [6] and can lead to a drastic increase in morbidity and mortality [7], increased
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energy consumption [8], and even violent behaviours [9] within urban areas [10]. UHI was shown to
also have a positive effect on heating-dominated buildings owing to the lower heating demands during
winter [11]. When the UHI is monitored with remote sensing data, we have to talk about surface
urban heat island (SUHI), as the parameter studied is no longer AT, but the land surface temperature
(LST) [12].

Many authors have written on obtaining LST and urban heat islands on spatial, spectral, and
temporal scales [3,4,13–24], in addition to examining satellite sensors that may be more or less suitable
for SUHI detection and calculation [25]. Other authors have documented the importance of different
satellite images in detecting the relationship between LST and land use change [26,27], but most of
the studies carried out to date focus on a single city or urban agglomeration where the definition of
rural and urban areas is adapted to each study case [10], which complicates the comparison between
cities in different parts of the world. On the other hand, there is no concrete methodology to define the
non-urban area. Proper selection of this area is crucial to make a correct estimation of the SUHI. If we
consider areas too close to the city, the effect can be underestimated, owing to the human activity that
persists outside the urban core, and in highly urbanized metropolitan areas, it is likely that external
reference areas are influenced by the SUHI of nearby cities [28]; in addition, too external areas may
suppose too extreme a change of scenario to use as a reference.

In this paper, we propose a new methodology to calculate and compare SUHI values of urban
agglomerations around the world. SUHI will be calculated for three surrounding areas using LST
acquired during the night-time according to the recommendations given by [12]. The proposed
methodology is applied to 71 selected urban agglomerations around the world. The LST product used
was the provided by the European Space Agency (ESA) from the land and sea surface temperature
radiometer (SLSRT) aboard the Sentinel-3A (SLSTR Level-2 LST) [29] (for more information, visit the
site https://earth.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/level-2/lst-processing). Finally,
to complement SUHI analysis, two additional indices have been considered, the Urban Thermal Field
Variance Index (UTFVI), which quantifies the SUHI at the district level [6,18,30], and the Discomfort
Index (DI), which estimates the impact of temperature on human health [31].

2. Methodology

2.1. SUHI Selection of the Urban and Surrounding References

The main objective of this work is to present a methodology that allows the analysis and comparison
of SUHI in urban agglomerations around the world. For this purpose, night-time LST obtained from
satellite data has been used [12] to estimate SUHIMAX and SUHIMEAN, which are defined as the thermal
differences between the maximum and average LST of the urban area and the LST of its surroundings,
respectively, according to

SUHIMAX = LSTURB−MAX − LSTSUR (1)

SUHIMEAN = LSTURB−MEAN − LSTSUR (2)

where LSTURB−MAX is the maximum LST of the urban area (hottest pixel), LSTURB-MEAN is the average
temperature of the pixels that define the urban area, and LSTSUR is the average temperature of the
pixels that compose the surrounding area.

The main problem in estimating SUHIMAX and SUHIMEAN is the difficulty in identifying urban
and surrounding references. There is no clear definition in the literature of how to select these
areas [32], which makes it extremely difficult to compare SUHI between different urban agglomerations.
To address this problem, we propose the following approach:

(a) Urban:

To define the urban reference, a land cover map with explicit representation of urban areas is the
most operational solution. In our case, among the large number of free land cover products available
today, we use the global land cover map produced by the European Space Agency (ESA) Climate Change
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Initiative (CCI) [33] (for more information, visit the website https://maps.elie.ucl.ac.be/CCI/viewer/),
where the urban reference is obtained from those classified as “urban areas”. From this class, a polygon
is generated that is identified with the area of the urban agglomeration selected (A).

(b) Surroundings:

As for the surrounding, three different reference areas were defined, the urban adjacent (SU),
the future urban adjacent (Sf), and the peri-urban (SP). The width (WU, Wf, and WP) of the buffer for
each surrounding is calculated as follows:

WU = 0.25 A1/2 (3)

Wf = 0.25 AWu

1
2 (4)

WP = 1.5 A1/2
−Wf −WU (5)

where Awu is the sum of A and Su areas (see Figure 1). Similar expressions for Wu and Wp can be
found in [34] and [35], respectively, while Wf is introduced in this paper assuming future expansion of
the urban area to include the urban adjacent surrounding Su. With this approach, the extent of the
surrounding areas is clearly defined and depends only on A (the area of the urban agglomeration).
As an example, Figure 2 shows the application of the methodology to the Paris urban agglomeration.
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Figure 2. Surrounding areas of the Paris agglomeration. The white colour is the urban agglomeration
polygon generated from the land cover map produced by European Space Agency (ESA) Climate
Change Initiative (CCI) [33], whose value is 1457 km2. The yellow, orange, and burgundy colours are
those of the surrounding areas Su, Sf, and Sp, respectively, which are obtained from QGIS with the
buffer tool (WU = 9.5 km, Wf = 15.7 km, and WP = 32.1 km).

2.2. UTFVI and DI Indices

To complement the analysis of SUHI, two additional indices were considered. That is, the Urban
Thermal Field Variance Index (UTFVI) [18,31] and the Discomfort Index (DI) [36]. The UTFVI is
the most widely used index for the ecological evaluation of urban environment owing to its direct
relation to LST and considers the thermal impact of the different sub-areas (district level) in the urban
agglomeration area (A), according to

UFTVI = 1 − (LSTURB-MEAN/LSTURB-PIXEL) (6)

where LSTURB-PIXEL is the LST in K, obtained from satellite data, of a given pixel of A and LSTURB-MEAN

is the average LST of the whole urban area (A). Note that SUHIMAX and SUHIMEAN describe the SUHI
between the whole urban area and the surroundings, while UFTVI is used for evaluating the effect
for each pixel located within the urban area with respect to the whole urban area. UTFVI is divided
into six levels by six specific ecological evaluation indices. The thresholds at the six UFTVI levels are
shown in Table 1, from no SUHI (excellent) if LSTURB-PIXEL < LSTURB-MEAN to strongest (worst) with
UFTVI > 0.02, a situation that occurs when the value of LSTURB-PIXEL is several degrees higher than
LSTURB-MEAN, for example, 302 K and 295 K, respectively.

Table 1. Threshold values of Urban Thermal Field Variance Index (UTFVI) and ecological evaluation
index [18].

Urban Thermal Field Variation Index Urban Heat Island Phenomenon Ecological Evaluation Index

<0 None Excellent
0–0.005 Weak Good

0.005–0.010 Middle Normal
0.010–0.015 Strong Bad
0.015–0.020 Stronger Worse

>0.020 Strongest Worst
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It is well known that one of the consequences of SUHI is the influence on human health.
The Discomfort Index (DI), also known as the Thom’s discomfort index [37], is a measure of the reaction
of the human body to a combination of heat and humidity. DI can be estimated according to Sobrino et
al. [5] at night-time from satellite measurements according to

DI = LST − (0.55 − 0.055 RH) (LST − 14.5) (7)

where LST is the land surface temperature in ◦C, obtained from satellite data, for a given pixel of A
and RH is the relative humidity in %. RH can be obtained from in situ or satellite data. Our objective is
to propose an operational methodology and, for this purpose, RH is obtained from the atmospheric
infrared sounder (AIRS), L3 surface relative humidity product on board NASA’s AQUA satellite [38].
DI is divided into ten categories, which are shown in Table 2.

Table 2. Threshold values of the Discomfort Index (DI) categories [36].

DI Categories DI temperature (◦C)

Hyperglacial <−40
Glacial −39.9 to −20

Extremely cold −19.9 to −10
Very cold −9.9 to −1.8

Cold −1.7 to +12.9
Cool +13 to +14.9

Comfortable +15 to +19.9
Hot +20 to +26.4

Very hot +26.5 to +29.9
Torrid >+30

2.3. Criteria for Urban Agglomerations Selection

In order to apply the methodology developed, 71 urban agglomerations were selected around the
world: 7 in Africa, 19 in America, 24 in Asia, 18 in Europe, and 3 in Oceania (more information on
the characteristics of the selected agglomerations can be found in Appendix A). The criteria used for
selection (see Figure 3a–c) were as follows

(a) urban agglomeration areas, which cover the globe as extensively and widely as possible at different
latitudes and longitudes, in different climatic zones and with different population and density of
habitants, giving priority to those that are experiencing a large increase in population [39,40] or
are considered particularly vulnerable to climate change [41];

(b) urban areas at different altitudes (e.g., from Perth at 0 m above sea level to Lhasa at 3650 m);
(c) coastal and inland agglomerations (e.g., Rio de Janeiro, Moscow);
(d) urban agglomerations with high levels of NO2 [42] and night-time light pollution (e.g., Shanghai,

New York);
(e) urban agglomerations with an area greater than 50 km2 in order to have a number of pixels

representative at the spatial resolution of the satellite.
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2.4. Satellite Data

So far, the most used satellites for SUHI estimation have been TERRA, AQUA, and Landsat [11],
with few studies using data from the ESA’s Sentinel 3 satellites owing to the short period of operation.
In this paper, SUHI is analysed using the LST product obtained from the SLSTR sensor onboard
Sentinel-3A (Level-2 LST) [29] during the period June 2018 to May 2019. Night images were selected
following Sobrino et al. [5], when the SUHI effect is most notable. For each urban agglomeration,
the month with the warmest temperature records was searched, and for that month, a warm and
clear night.

Level-2 LST products have been validated against in situ observations from twelve “gold standard”
stations spread thoughout the Earth that are installed with well-calibrated instrumentation: seven
from the Surface Radiation Budget Network (SURFRAD) in Bondville, Illinois; Desert Rock, Nevada;
Fort Peck, Montana; Goodwin Creek, Mississippi; Penn State University, Pennsylvania; Sioux Fall,
South Dakota; Table Mountain, and Colorado; two from the Atmospheric Radiation Measurement
(ARM) network in Southern Great Plains, Oklahoma; Barrow, and Alaska; and three from the U.S.
Clima Reference Network (USCRN) in Williams, Arizona; Des Moines, Iowa; Manhatten, and Kansas.
The average absolute accuracy is within the 1 K requirement (better than 1 K) [43].

3. Results and Discussion

In this section, values of SUHI, UTFVI, and DI in 71 urban agglomerations around the world are
given. It is important to note that whether a given agglomeration has high or low values of SUHI, or can
be classified according to the values of UFTVI and Di, should be interpreted as these are the results for
the day and time of the selected Sentinel 3A image (more information, including the numerical values
of the indices and the Level-2 LST for each agglomeration, can be found in Appendix A).

We also want to point out that the main objective of the present work is to propose an operational
methodology that allows a systematic and effective assessment of SUHI, UTFVI, and DI in order
to detect warning situations and identify the vulnerabilities of the urban area. This is particularly
necessary in the current context of global warming, but even more so if we consider future scenarios,
for example, Sobrino et al. [44] shows a linear warming trend of the surface temperature of the planet
of 0.18 K per decade. In that sense, the inhabitants of the urban area, especially those who live or
develop their activities in urban districts with high UTFVI values, are already intensely suffering the
effects of the increase in temperature.

3.1. SUHI

Figures 4 and 5 show the SUHIMAX and SUHIMEAN values, respectively, which vary according to
the agglomeration and the surrounding area considered. The proposed methodology has the potential
to reflect the differences in a quantitative way. For example, the European agglomerations show less
dispersion than the American and Asian agglomerations, among which there were those that present
greater differences with respect to the selected surrounding.

In general, the highest differences are for the peri-urban areas (Sp), and the smallest are for the
urban adjacent (Su). We only identified three cases (San Diego-Tijuana, Los Angeles, and Taskent)
that show a different pattern to the other 68 cities with greater temperature differences in the adjacent
urban surroundings (Su) and smaller in Sf and Sp. In the case of San Diego-Tijuana and Los Angeles,
the temperature of the most remote areas is higher owing to the proximity of desert and other urban
agglomerations that emit heat. Taskent, on the other hand, has an adjacent urban area of crops and
irrigated land that cools the surface, while the farthest areas are covered with dry vegetation or bare
soil. Other particular cases are agglomerations that show similar SUHI values for Su, Sf, and Sp (e.g.,
Dammam, Calcutta, Shanghai, or Athens). In most cases, this corresponds to urban areas whose
surroundings present similar characteristics to the area close to the urban nucleus. Characteristics
that are not very common in the rest of the selected agglomerations. In the case of Lhasa, the values
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for Sf and Sp are much higher than for Su. This is because the city of Lhasa is built in the valley
of the Brahmaputra river, surrounded by the Himalayan mountains that take altitudes immediately
higher than those of the city in very short distances, which contributes to the maintenance of higher
temperatures in the urban area. In addition, the dams built in the river regulate the temperature of the
city holding part of the heat accumulated during the day. In some cases, there is a big difference in LST
in the hottest area within the urban area compared with the peri-urban area (Sp). Figure 4 (blue column)
shows values above 8 ◦C in Vancouver, New York, Tokyo, Lhasa, Ürümqi, Las Vegas, Ciudad de
Mexico, Rio de Janeiro, Jakarta, Buenos Aires, San José, and Moscow.
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Figure 5. SUHIMEAN values (height of the column) in ◦C for the adjacent urban (red), the future adjacent
urban (orange), and the peri-urban (blue) surroundings of the 71 urban agglomerations selected.

A relevant aspect to highlight is that the average difference between SUHIMAX and SUHIMEAN

for all cases is (3.1 ± 1.1) 0C (see numerical values in Table A2 of Appendix A). This implies that,
on average for the agglomerations selected, the inhabitants of the urban zone where the maximum
temperature occurs experience up to 3.1 degrees higher LST than the rest of the inhabitants of the
urban agglomerations. Note that a difference of zero between SUHIMAX and SUHIMEAN would imply
a value of UFTVI lower than 0 (i.e., an excellent ecological evaluation index, see Table 1).

As a complement to Figure 5, Table 3 shows the SUHIMEAN values for the three surrounding
areas (Su, Sf, and Sp) ordered according to the following criteria: by continent, for populations above
20 million inhabitants, with an urban area higher than 1000 km2, at a minimum distance of 1000 km
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from the coast, at an altitude higher than 1 km above sea level, by climate classification according to
the five Köppen vegetation groups [45] and including the 71 agglomerations.

Table 3. Values of surface urban heat island (SUHI)MEAN in (◦C) for the urban adjacent (Su), the future
adjacent (Sf), and the periurban (Sp) considering different criteria.

Criteria SUHIMEAN (Su) (◦C) SUHIMEAN (Sf) (◦C) SUHIMEAN (Sp) (◦C)

Africa 1.1 ± 0.5 2.0 ± 0.5 2.4 ± 1.0

America 1.9 ± 0.8 2.8 ± 1.6 3.3 ± 2.4

Asia 1.4 ± 1.0 2.3 ± 1.6 2.7 ± 1.9

Europe 2.4 ± 0.6 3.1 ± 0.6 3.6 ± 0.7

Oceania 1.7 ± 0.6 2.5 ± 0.3 2.7 ± 0.7
(1)Population > 20 millions 2.4 ± 0.8 3.3 ± 1.3 3.5 ± 1.8

(2)Urban surface > 1000 km2 2.1 ± 0.8 3.0 ± 1.3 3.3 ± 2.0
(3)Coast distance > 100 km 1.9 ± 0.9 2.7 ± 1.3 3.2 ± 1.5

(4)Elevation > 1 km 1.5 ± 1.1 2.9 ± 1.7 3.3 ± 1.9
(5)Equatorial 1.4 ± 0.9 2.4 ± 1.6 2.8 ± 1.5

Arid 1.2 ± 0.9 2.1 ± 1.5 2.8 ± 1.9

Warm Temperate 2.0 ± 0.7 2.7 ± 1.1 3.1 ± 1.7

Snow 2.1 ± 1.1

All (71 agglomerations) 1.8 ± 0.9 2.6 ± 1.3 3.1 ± 1.7

(1) Tokyo, New Delhi, Shanghai, Sao Paulo, Ciudad de México, El Cairo, Beijing. (2) Los Angeles, New York, Tokyo,
Chicago, Jakarta, Buenos Aires, Beijing, Shanghai, Melbourne, San Diego-Tijuana, Sao Paulo, Rio de Janeiro, Paris,
Ciudad de Mexico, Toronto, Sydney, London, Bangkok, New Delhi, Moscow, Ruhr región. (3) Milan, Toulouse, Paris,
Antananarivo, Beijing, Berlin, Ruhr región, Ciudad de Mexico, Warsaw, Monterrey, Madrid, Hyderabad, Riyad,
Las Vegas, Aktobe, Adis Abeba, Wuhan, Mosocw, Oklahoma City, Yakutsk, Lhasa, Niamey, Asunción, New Delhi,
Yinchuan, Manaus, Yamena, Taskent, Ürümqi. (4) Lhasa, Adis Abeba, Ciudad de Mexico, Antananarivo, San José,
Yinchun, Caracas. (5) Urban agglomerations are classified in Appendix A according to the five vegetation groups of
Köppen [45]: equatorial (13 agglomerations), arid (12 agglomerations), warm temperate (37 agglomerations), and
snow (6 agglomerations).

Taking these last values as reference, the average heat island effect of 1.8 ◦C for the adjacent
surrounding area increases by 0.8 ◦C for Sf and 1.3 ◦C for Sp, which means that, considering this average
as a representative on a global scale and assuming a linear warming trend of 0.18 K per decade [44],
the inhabitants of the urban agglomerations in the world are already suffering the effects of the warming
that will be reached by the inhabitants of the adjacent surrounding area in the next century.

It is also noted that Europe is the continent with the highest values of SUHI in the three reference
areas, with Africa being the continent with the lowest values. High values are also observed in the
seven agglomerations with more than 20 million inhabitants, being 0.3 ◦C higher than those obtained
for agglomerations with surfaces above 1000 km2. With regard to the agglomerations situated at
a distance of more than 1000 km from the coast, values similar to the world average are obtained,
with the elevation producing a slight decrease of 0.3 ◦C compared with the average in Su. Finally,
in terms of climate, the highest values are found in warm temperate and snow climates, and the lowest
in the equatorial and arid climates.

3.2. UTFVI

UTFVI is a complementary index to SUHIMEAN that allows to detect areas affected by heat
accumulation within the urban agglomeration. In Figure 6, we present the maximum values of
the UFTVI index for each urban agglomeration. The highest values are obtained for the urban
agglomerations of San José and Ürümqi, followed by Mexico City, New York, Los Angeles, Toronto,
Jakarta, Kuala Lumpur, and Buenos Aires.
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Figure 6. Map of the maximum values (see Appendix A) of the UTFVI for the urban agglomeration
areas (A) and the sea and land surface temperature radiometer (SLSTR) Sentinel 3A images selected in
this paper. The colors indicate the specific ecological evaluation according to Table 1.

3.3. DI

With regard to the DI index, the values are correlated to climate, geographical location, and
altitude, so that, in some cases, the accumulation of temperature in urban areas allows a transition
from cold to comfortable categories (e.g., Vancouver). Figure 7 shows the map of maximum DI values
for the 71 urban areas considered. The highest values are obtained for the urban agglomerations of
Wuham, Karachi, Shanghai, Manila, Asunción, and Tokyo. Note that, with the exception of Irkutsk,
Addis Abeba, and Lhasa, all agglomerations have values above 20 ◦C.
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Figure 8 shows the maximum and average values of the DI versus the LSTURB-MEAN for the
selected agglomerations. As can be seen, 89% of the 71 agglomerations have a DIMEAN above 20 ◦C
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(hot) and 10% are very hot (see Table 2). As for the DIMAX, 37% of the urban agglomeration are very
hot and 9% are torrid.

Remote Sens. 2020, 12, 2052 11 of 31 

 

from cold to comfortable categories (e.g., Vancouver). Figure 7 shows the map of maximum DI values 
for the 71 urban areas considered. The highest values are obtained for the urban agglomerations of 
Wuham, Karachi, Shanghai, Manila, Asunción, and Tokyo. Note that, with the exception of Irkutsk, 
Addis Abeba, and Lhasa, all agglomerations have values above 20 °C. 

 
Figure 7. Map of the maximum values (see Table A2 of Appendix A) of the Discomfort Index (DIMAX) 
for the urban agglomeration areas selected in this paper. The colors indicated the DI categories 
according to Table 2. 

Figure 8 shows the maximum and average values of the DI versus the LSTURB-MEAN for the selected 
agglomerations. As can be seen, 89% of the 71 agglomerations have a DIMEAN above 20 °C (hot) and 
10% are very hot (see Table 2). As for the DIMAX, 37% of the urban agglomeration are very hot and 9% 
are torrid. 

 
Figure 8. Maximum (red points) and mean (purple points) values of Discomfort Index (DI) versus 
LSTURB-MEAN obtained from the SLSTR Level-2 land surface temperature (LST) product. 

Figure 8. Maximum (red points) and mean (purple points) values of Discomfort Index (DI) versus
LSTURB-MEAN obtained from the SLSTR Level-2 land surface temperature (LST) product.

Finally, to facilitate the comparison, a ranking of the 20 urban agglomerations with highest values
of SUHIMEAN, DIMEAN, and UTFVIMAX is presented in Table 4.

Table 4. Urban agglomerations with highest SUHIMEAN, with respect to the urban adjacent surrounding
(Su), UTFVIMAX, and DIMEAN for the Sentinel 3A images selected.

RANKING SUHIMEAN (Su) (◦C) UTFVIMAX DIMEAN (◦C)

1 Saint Petersburg 3.9 San José 0.020 Wuhan 30.1
2 Ciudad de México 3.5 Ürümqi 0.020 Shanghai 29.3
3 Athens 3.1 Nueva York 0.019 Karachi 28.9
4 Moscow 3.1 Ciudad México 0.019 Monterrey 28.6
5 Kuala Lumpur 3.0 Toronto 0.018 Hyderabad 28.5
6 Berlin 2.9 Los Ángeles 0.018 Manila 28.5
7 Beijing 2.8 Kuala Lumpur 0.016 Kolkata 28.3
8 Tokyo 2.8 Yakarta 0.016 Asunción 27.8
9 Sao Paulo 2.8 Buenos Aires 0.015 Las Vegas 27.4
10 Chicago 2.8 San Diego 0.014 Jeddah 27.3
11 Madrid 2.7 Perth 0.014 Tokyo 27.3
12 Sevilla 2.6 Manaus 0.013 Beijing 27.1
13 Paris 2.6 Berlín 0.013 Riyad 27.0
14 Taskent 2.6 Vancouver 0.013 El Cairo 26.2
15 Riyad 2.6 Estambul 0.013 Rio de Janeiro 26.1
16 Milan 2.5 Athens 0.012 Bangkok 26.0
17 London 2.5 Melbourne 0-012 Paris 25.9
18 Rio de Janeiro 2.4 Taskent 0.012 Madrid 25.7
19 Vancouver 2.4 Yakuts 0.012 Valencia 25.7
20 Las Vegas 2.4 Moscow 0.011 Oklahoma City 25.7

4. Conclusions

Retrieval of land surface temperature (LST) from satellite data allows the estimation of the surface
urban heat island (SUHI) as the difference between the LST obtained in the urban area and the LST of
its surroundings. However, this definition depends on the selection of the urban and its surrounding.
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So far, there is no clear definition in the literature of how to select these reference areas, and thus this
makes it extremely difficult to compare the SUHI between different urban agglomerations.

In this work, a methodology was proposed to estimate the SUHI in a precise and simple way
in which the urban reference is obtained from the urban area class of the ESA CCI land cover map
and three surroundings references are defined: the urban adjacent (SU), the future adjacent (SF),
and the peri-urban (SP), which are obtained from mathematical expressions that depend exclusively
on the total urban area (A). In addition, two formulations of SUHI are considered: SUHIMAX and
SUHIMEAN, which evaluate the maximum and average SUHI of the urban area for each of the three
surrounding references.

The proposed methodology was applied to the LST level-2 data product obtained from the SLSTR
sensor on board the Sentinel-3A satellite in 71 urban agglomerations worldwide. To complete the
study, two additional indices were considered: the Urban Thermal Field Variation Index (UTFVI) and
the Discomfort Index (DI), which proved to be complementary to the SUHI phenomenon.

Once the methodology was presented and applied, future work will require a systematic evaluation
of SUHIMAX and SUHIMEAN in urban agglomerations around the world in order to analyse the impact
of latitude, longitude, morphology of the urban area, season, distance from ocean, as well as the impact
of global warming, which will make necessary to take preventive measures against episodes of heat
waves that will be increasingly intense and frequent.
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Appendix A

Characteristics of the Urban Agglomerations Selected (see Table A1)

Table A1. Urban agglomerations selected in the present paper. CITY is the name of the urban
agglomeration. LAT and LON are the latitude and longitude. HEIGHT is the average elevation above
sea level in meters. CLIMATE indicates the climatic zone according to Köppen–Geiger classification,
see Table 1 of [45]. AREA is the extension in km2 of the urban agglomeration according to [33].
POPULATION is the number of inhabitants in thousands, referring to 2018 [46].

CITY. LAT LON HEIGHT
(m) CLIMATE AREA

(km2)
POPULATION

(Thousands)

Adís Abeba 9.03 38.74 2355.00 Cwb 205 4400
Antananarivo −18.94 47.52 1435.00 Cwb, Cfb 143 3058

Cairo 30.06 31.24 23.00 BWh 690 20,076
Lagos 6.52 3.38 41.00 Aw 798 13,463

Niamey 13.51 2.11 207.00 BSh 65 1214
Tripoli 32.89 13.19 81.00 BSh 282 1158

Yamena 12.12 15.07 298.00 BSh 92 1323
Chicago 41.90 −87.65 182.00 Dfa 4860 8864

Las Vegas 36.17 −115.14 610.00 BWk 703 2541
Los Angeles 34.05 −118.24 71.00 Csb 5791 12,458
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Table A1. Cont.

CITY. LAT LON HEIGHT
(m) CLIMATE AREA

(km2)
POPULATION

(Thousands)

New York 40.67 −73.94 10.00 Cfa 5765 18,819
Oklahoma City 35.48 −97.54 366.00 Cfa 613 969

San Diego-Tijuana 32.72 −117.16 22.00 Csa 1541 5270
Toronto 43.67 −79.39 76.00 Dfb 1378 6082

Vancouver 49.25 −122.98 3.00 Cfb 600 2531
Habanna 23.14 −82.36 59.00 Aw 192 2136

México City 19.42 −99.15 2250.00 Cwb 1382 21,581
Monterrey 25.67 −100.31 530.00 BSh 468 4712

San José 9.93 −84.08 1300.00 Am, Cfb 310 1358
Asunción −25.28 −57.64 89.00 Cfa 408 3222

Buenos Aires −34.60 −58.38 25.00 Cfa 2032 14,967
Caracas 10.50 −66.93 1000.00 Aw 176 2935
Manaus −3.10 −60.02 92.00 Am 225 2171

Río de Janeiro −22.91 −43.20 11.00 Aw 1513 13,293
Santiago de Chile −33.45 −70.67 520.00 Csb 552 6680

São Paulo −23.55 −46.63 760.00 Cfa 1526 21,650
Aktobe 50.30 57.17 225.00 Dfa 69 420
Alepo 36.20 37.15 379.00 Csa 133 1754

Bangkok 13.75 100.52 1.50 Aw 1231 10,156
Beijing 39.91 116.39 43.00 Dwa 1951 19,618

Dammam 26.28 50.20 10.00 BWh 391 1197
Ho Chi Minh 10.82 106.63 19.00 Aw 632 8145
Hyderabad 17.37 78.48 505.00 Aw 498 9482

Irkutsk 52.28 104.30 440.00 Dwc 109 633
Jakarta −6.21 106.85 4.00 Af 4481 10,517
Jeddah 21.54 39.17 12.00 BWh 360 4433
Karachi 24.86 67.01 8.00 BWh 415 15,400
Kolkata 22.54 88.34 9.00 Aw 795 14,681

Kuala Lumpur 3.15 101.70 66.00 Af 963 7564
Lhasa 29.65 91.10 3650.00 ET 58 330
Manila 14.58 121.00 5.00 Am 794 13,482

New Delhi 28.67 77.22 239.00 Cwa, BSh 1181 28,514
Riyad 24.65 46.71 612.00 BWh 879 6907

Shanghai 31.17 121.47 4.00 Cfa 1739 25,582
Taskent 41.30 69.27 455.00 Csa 390 2464
Tokyo 35.68 139.68 6.00 Cfa 5028 37,468

Ürümqi 43.83 87.60 830.00 Bsk 241 4011
Wuhan 30.57 114.28 37.00 Cfa 546 8176
Yakutsk 62.03 129.73 95.00 Dfd 80 318

Yinchuan 38.48 106.23 1100.00 BWk 139 1483
Atenas 37.98 23.72 170.00 Csa 424 3156
Berlin 52.52 13.38 34.00 Cfb 604 3552
Bilbao 43.26 −2.95 6.00 Cfb 70 352

Catania 37.50 15.09 7.00 Csa 143 586
Istambul 41.01 28.96 40.00 Csa 881 14,751
Lisbon 38.72 −9.17 2.00 Csa 426 2927
London 51.51 −0.13 35.00 Cfb 1233 9046
Madrid 40.42 −3.69 657.00 Csa 318 6497
Milán 45.46 9.19 120.00 Cfa 688 3132

Moscow 55.76 37.62 156.00 Dfb 1111 12,410
Paris 48.86 2.35 33.00 Cfb 1457 10,901
Roma 41.89 12.48 21.00 Csa 293 4210

Ruhr region 51.47 7.55 45.00 Cfb 1006 5119
Saint Petersburg 59.95 30.32 3.00 Dfb 425 5383

Sevilla 37.39 −5.98 200.00 Csa 113 707
Toulouse 43.60 1.44 141.00 Cfb 252 997
Valencia 39.47 −0.38 16.00 Csa 197 830
Warsaw 52.22 21.03 100.00 Cfb 360 1768

Melbourne −37.82 144.96 31.00 Cfb 1656 4771
Perth −31.95 115.86 0.00 Csa 951 1991

Sydney −33.87 151.20 3.00 Cfa 1325 4792



Remote Sens. 2020, 12, 2052 14 of 29

Table A2. The results for the urban agglomerations. LST is the average temperature of the urban area
in K (LSTURBAN-MEAN). Columns 3 to 8 give the values for the surroundings Su, Sf, and Sp of SUHIMAX

and SUHIMEAN, respectively. UTFVIMAX and DIMAX are the maximum values of the indices and DATE
is the day of the Sentinel 3A image.

CITY LST (K) SUHI
MAX Su Sf Sp SUHI

MEAN Su Sf Sp UTFVI
(MAX)

DI
(MAX) DATE

Adís Abeba 286.40 3.46 4.48 3.79 0.85 1.87 1.18 0.009 15.57 2019/01/16
Antananarivo 294.73 2.51 4.13 4.96 0.02 1.65 2.48 0.008 23.38 2019/01/16

Cairo 302.64 3.54 4.39 4.92 1.44 2.28 2.81 0.007 27.84 2018/08/13
Lagos 297.05 3.12 4.71 6.17 1.34 2.93 4.38 0.006 24.76 2019/04/03

Niamey 300.46 4.23 4.98 5.27 1.53 2.27 2.57 0.009 27.79 2018/08/04
Tripoli 302.39 4.36 4.88 5.03 1.29 1.81 1.97 0.010 26.03 2018/07/19

Yamena 301.56 2.40 2.81 3.17 0.91 1.31 1.67 0.005 23.13 2019/04/03
Chicago 301.36 3.94 6.26 6.19 1.71 4.02 3.95 0.007 27.38 2018/06/30

Las Vegas 307.72 5.38 7.74 9.18 2.38 4.74 6.17 0.010 29.32 2018/08/04
Los Angeles 298.13 6.78 6.75 3.48 1.35 1.32 −1.95 0.018 25.25 2018/08/04
New York 294.88 7.83 8.90 10.46 2.03 3.10 4.66 0.019 26.09 2018/07/19

Oklahoma City 302.70 4.75 5.62 5.64 1.87 2.74 2.76 0.009 27.80 2018/07/22
San Diego-Tijuana 297.49 5.54 4.91 4.23 1.18 0.56 −0.13 0.014 24.79 2018/08/04

Toronto 292.13 6.81 7.08 7.48 1.33 1.60 1.99 0.018 23.26 2018/07/22
Vancouver 291.00 6.23 9.86 12.18 2.43 6.07 8.38 0.013 21.09 2018/08/04
Habanna 297.85 4.40 5.40 5.39 1.83 2.83 2.82 0.009 25.52 2019/04/26

México City 288.54 9.11 10.28 9.15 3.50 4.67 3.54 0.019 20.68 2018/07/22
Monterrey 304.33 3.85 5.42 6.87 2.31 3.88 5.33 0.005 29.92 2018/07/22

San José 290.56 6.64 7.64 8.46 0.76 1.76 2.58 0.020 22.86 2019/04/26
Asunción 302.79 3.96 4.43 4.88 1.38 1.85 2.31 0.008 30.07 2019/01/23

Buenos Aires 297.92 6.36 6.73 8.93 1.87 2.23 4.44 0.015 28.04 2019/01/23
Caracas 293.74 5.06 5.02 6.26 2.23 2.19 3.42 0.010 22.89 2018/07/19
Manaus 300.36 4.16 3.54 4.40 0.23 −0.39 0.47 0.013 29.03 2018/07/19

Río de Janeiro 301.57 5.69 8.33 9.03 2.44 5.08 5.77 0.011 28.75 2019/01/29
Santiago de Chile 295.23 3.73 4.54 6.92 0.93 1.74 4.12 0.009 22.31 2019/01/26

São Paulo 298.65 5.23 5.51 4.72 2.75 3.02 2.24 0.008 25.69 2019/01/29
Aktobe 297.51 3.27 3.70 3.91 0.76 1.19 1.40 0.008 25.71 2019/07/19
Alepo 299.10 3.62 4.07 4.26 1.21 1.66 1.85 0.008 24.85 2018/08/14

Bangkok 300.61 2.62 3.37 3.77 0.25 1.00 1.40 0.008 28.15 2019/03/11
Beijing 301.99 5.31 3.64 3.41 2.80 1.48 1.25 0.008 29.26 2018/07/28

Dammam 309.29 1.91 2.11 2.10 −0.04 0.16 0.15 0.006 29.79 2018/08/13
Ho Chi Minh 298.95 1.70 2.16 2.69 0.38 0.83 1.37 0.004 25.74 2019/03/11
Hyderabad 306.04 3.49 4.39 5.07 1.69 2.58 3.27 0.006 29.91 2019/05/16

Irkutsk 291.32 3.38 3.60 4.08 1.15 1.37 1.84 0.008 19.77 2018/07/14
Jakarta 297.52 6.93 9.13 8.98 2.14 4.34 4.19 0.016 27.75 2018/07/16
Jeddah 305.33 1.98 2.46 2.84 0.43 0.91 1.29 0.005 28.44 2018/08/14
Karachi 303.97 2.66 3.17 3.12 −0.22 0.29 0.24 0.009 31.38 2019/05/23
Kolkata 303.59 2.22 2.34 2.23 0.93 1.05 0.93 0.004 29.37 2019/05/16

Kuala Lumpur 298.62 7.90 9.05 7.57 3.04 4.18 2.70 0.016 28.59 2018/07/16
Lhasa 282.71 4.47 8.70 9.91 1.82 6.05 7.26 0.009 12.32 2019/05/16
Manila 302.80 3.10 4.24 5.66 1.15 2.29 3.71 0.006 30.33 2019/04/30

New Delhi 300.76 5.03 5.81 5.94 2.15 2.93 3.06 0.009 26.18 2019/05/16
Riyad 308.55 4.56 5.75 6.57 2.56 3.75 4.57 0.006 28.21 2018/07/31

Shanghai 303.64 3.43 3.64 3.41 1.27 1.48 1.25 0.007 31.35 2018/07/19
Taskent 300.23 6.25 5.91 4.79 2.56 2.22 1.10 0.012 24.95 2018/07/09
Tokyo 301.59 5.82 8.26 10.02 2.80 5.24 6.99 0.010 30.06 2018/07/31

Ürümqi 298.67 6.39 6.98 9.37 0.41 1.00 3.40 0.020 27.47 2018/08/11
Wuhan 306.60 4.06 4.37 4.71 1.93 2.24 2.57 0.007 31.87 2018/07/19
Yakutsk 294.19 4.75 5.35 6.12 1.27 1.87 2.64 0.012 24.08 2018/07/07

Yinchuan 297.73 4.32 5.18 5.63 1.54 2.40 2.84 0.009 23.82 2018/07/25
Atenas 298.13 6.85 7.22 6.82 3.14 3.51 3.12 0.012 26.89 2018/08/13
Berlin 296.97 6.78 7.34 7.49 2.90 3.47 3.62 0.013 26.39 2018/08/03
Bilbao 297.37 3.66 4.06 4.21 1.93 2.33 2.47 0.006 25.39 2018/08/02

Catania 298.92 4.41 5.52 6.67 1.27 2.38 3.54 0.010 26.60 2018/08/03
Istambul 297.62 5.50 6.14 6.93 1.63 2.27 3.06 0.013 26.59 2018/08/14
Lisbon 302.01 5.01 5.83 6.66 1.80 2.62 3.45 0.011 25.89 2018/08/04
London 296.97 4.84 5.92 7.06 2.49 3.56 4.71 0.008 25.21 2018/08/02
Madrid 303.03 6.09 6.52 6.98 2.70 3.13 3.58 0.011 28.21 2018/08/02
Milán 299.85 5.78 6.61 7.22 2.50 3.33 3.94 0.011 27.00 2018/07/19

Moscow 293.05 6.47 7.37 8.03 3.06 3.96 4.62 0.012 22.59 2018/07/31
Paris 300.63 5.07 6.04 6.76 2.57 3.54 4.26 0.008 28.11 2018/08/03
Roma 297.47 5.33 6.28 7.08 2.30 3.26 4.05 0.010 25.72 2018/07/19

Ruhr region 297.17 4.56 5.64 6.14 1.29 2.37 2.88 0.011 26.16 2018/08/02
Saint Petersburg 295.90 6.53 6.98 7.37 3.89 4.34 4.73 0.009 25.02 2018/07/31

Sevilla 302.35 5.08 5.64 6.10 2.60 3.17 3.63 0.008 26.15 2018/08/01
Toulouse 300.27 5.33 5.94 6.19 2.21 2.82 3.07 0.010 27.90 2018/08/02
Valencia 301.59 4.44 4.76 5.22 1.75 2.07 2.53 0.009 27.83 2018/08/02
Warsaw 295.39 4.69 5.40 5.83 2.06 2.77 3.20 0.009 23.73 2018/08/13

Melbourne 294.67 5.94 6.53 6.86 2.29 2.87 3.20 0.012 23.24 2019/01/03
Perth 293.83 5.26 6.32 5.96 1.11 2.17 1.81 0.014 24.38 2019/01/15

Sydney 295.90 5.09 5.88 6.34 1.71 2.50 2.96 0.011 25.04 2019/01/03
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Land surface temperature images (Sentinel-3A SLSTR Level-2 LST product) of the urban
agglomerations selected. The images cover the peri-urban area. The polygon is the urban area
obtained from ESA CCI [33].
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