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Abstract

In this article, we investigate the notion of setwise betweenness, a con-
cept introduced by P. Bankston as a generalisation of pointwise be-
tweenness. In the context of continua, we say that a subset C of a
continuum X is between distinct points a and b of X if every subcon-
tinuum K of X containing both a and b intersects C. The notion of
an interval [a, b] then arises naturally. Further interesting questions
are derived from considering such intervals within an associated hyper-
space on X. We explore these ideas within the context of the Vietoris
topology and n-fold symmetric product hyperspaces on all nonempty
closed subsets of a topological space X, CL(X). Moreover, an alter-
native pointwise interval, derived from setwise intervals, is introduced.
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1. Introduction

When does an element lie between two other elements? This question arises
naturally in various situations according to the elements themselves and the re-
lation which relates them together. However, betweenness, as a mathematical
concept, first emerged from geometry. In 1882, the geometer, Pasch [15] intro-
duced the mathematical foundation of betweenness. More than three decades
later, a refining investigation on axioms of betweenness was carried by Hunt-
ington and Kline [11]. Then it was followed by another examination which was
conducted by Huntington [10].
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After the essential foundation of betweenness was established, many investi-
gations then followed to explore this concept via a wide range of mathematical
structures. Betweenness relations that emerge from ordered set were inten-
sively investigated. In [18], Sholander investigated the betweenness induced
by partially ordered sets. In [8], Fishburn investigated betweenness relations
induced by semiorder and weak order relations. Other studies in the same vein
can be found, for example, in [21] and [7].

Betweenness plays a significant role in lattice theory, and many investiga-
tions have been carried out to examine betweenness in lattice theory. In [19],
Smiley investigated betweenness on lattices and also made a comparison be-
tween betweenness relations that arise from lattices and other mathematical
structures. Pitcher and Smiley [16] investigated betweenness relations induced
by lattice, however, they needed to introduce axioms that involve five points to
deal with lattices. Many other studies which investigated betweenness relations
arising from lattices were initiated, among them [5] [18], [9] and [17].

The notion of betweenness also attracted the attention of many researchers
who worked on investigating metric spaces. For instance, Wald in [22] charac-
terised metric betweenness using certain five axioms. Moszyńska in [13] stud-
ied the first-order theory of betweenness and equidistance relations in metric
spaces. In [12], it was shown that the class of all metrizable betweenness spaces
can be axiomatized by a set of universal Horn sentences. In topology, between-
ness was also investigated within a series of studies. For example, Bankston
examined gap freeness and antisymmetric axiom of specific betweenness rela-
tions induced by the topology of Hausdorff continua in [2] and [3], respectively.
In [6], betweenness relations were examined within a topological categorical
point of view.

Bankston in [1] introduced the concept of road systems and examined be-
tweenness relations induced by various road systems. This article adopts the
notion of a specific road system to introduce our interested betweenness rela-
tions.

2. Preliminaries

Bankston in [1], developed the concept of road system and used such system
to show various known mathematical structures which induced betweenness
have a common behaviour in general. A road sysem is a pair 〈X,R〉, where
X is a nonempty set and R is a collection of nonempty subsets of X, called
the roads, such that for each a ∈ X, the singleton set {a} is a road and each
two points a, b ∈ X belong to at least one road. Therefore, if 〈X,R〉 is a road
system with a, b, c ∈ X, then c ∈ [a, b]R if every road containing a and b also
contains c. Then c ∈ [a, b]R if c ∈ ∩{R ∈ R : R ∈ R(a, b)}, where R(a, b)
denotes the set of roads that contain both a and b. This ternary relation tells
us that a point lies between two other points a and b whenever each road
containing a and b is also containing c.

Many road systems which are induced from various mathematical structures
were investigated in [1]. In this article, we use a road system that arises from
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topology. Specifically, we use a connected system to define our two kinds of
intervals, i.e. setwise and pointwise. We mean by 〈X, CO〉 a road system, where
CO is a collection of nonempty connected subsets of X.

The ternary relation that we consider here concerns relating a set with two
other points, and this can be accomplished using a road system as follows. Let
〈X,R〉 be a road system with a, b ∈ X and φ 6= C ⊆ X. We say that C is
between a and b if C ∩ R 6= φ for all R ∈ R(a, b). However, such a relation
brings points and sets together, which might cause inconsistency. To resolve
such a problem, we use hyperspace theory, as it considers sets as points. Such
an idea was first used by Bankston over continuum theory [4] as a road system
and hyperspaces.

Theory of hyperspaces got much attention and intensive studies have been
conducted in the literature, [14]. In this work, we consider only two hyper-
spaces, Vietoris and n-fold symmetric product hyperspaces. Consider, CL(X),
the collection of all non-empty closed subsets of X. Vietoris topology is the
one that is generated by sets of the form U+ = {A ∈ CL(X) : A ⊂ U} and
U− = {A ∈ CL(X) : A

⋂
U 6= ∅}, where U is an open subset of a topological

space X. A basis of the Vietoris topology consists of the collection of sets of
the form

〈U1, U2, ..., Un〉 = {A ∈ CL(X) : A ⊆
n⋃

i=1

Ui and if 1 ≤ i ≤ n,A
⋂
Ui 6= ∅}

where U1, U2, ..., Un are non-empty open subsets of X.
We also consider n-fold symmetric product of X, denoted by Fn(X) and

defined as Fn(X) = {A ∈ X : |A| ≤ n}. This hyperspace is a subspace of the
Vietoris space 2X . Notice that if 〈U1, U2, ..., Um〉 is an open set in the Vietoris
space 2X , then 〈U1, U2, ..., Um〉n = 〈U1, U2, ..., Um〉

⋂
Fn(X) is an open set in

Fn(X).

3. Setwise betweeness

Matching a road system with a specific hyperspace would relate sets to points
in a sense that a betweenness relationship can be defined. We generalise a
setwise betweenness concept given in [4], where continuum system is considered
as a road system. Instead of considering continuum system, we use throughout
this article connected systems to act as road systems. In the following, we
set a definition of setwise betweenness with respect to a road system and a
hyperspace.

Let X be a topological space and a, b ∈ X, the collection of sets that satisfies
a topological property P forms a road system. The collection of sets that
contain a and b and satisfy P is denoted by P(a, b). Thus, we define the
setwise interval with respect to property P and a hyperspace H as follows.

[a, b]SPH = {C ∈ H : C
⋂
K 6= ∅ for every K ∈ P(a, b)} (3.1)

We elaborate on the interval notation in 3.1; A superscript is used to dis-
tinguish between two kinds of betweenness intervals. For the notion SP, S is
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used to mention a setwise betweenness and P represents a topological property
while PP is used to mention pointwise betweenness. Notice that the interval
defined in 3.1 contains elements of a hyperspace that lie between two points
in X. Throughout this article, we apply two widely used hyperspaces, namely
Vietoris topology and n-fold symmetric product hyperspace. However, other
kinds of hyperspaces can be used to define other types of setwise and point-
wise intervals in the same sense as the intervals defined here. Now, we can
describe in some details the two types of setwise intervals, and we start with
one that is defined via Vietoris topology 2X , i.e. [a, b]SCO2X , where CO refers to
the collection of all connected sets that contains a and b, i.e. CO(a, b).

Example 3.1. Let X = C
⋃
B be a subspace of R2 where C = ( 1

2 , 1] and

B =
⋃∞

i=1 Ci where Ci = {closed line segment joining (0, 0) and (1, 1i )} for

i = 1, 2, . . . . Now, if a ∈ Ci and b ∈ Cj with i 6= j then for a set A ∈ 2X to be
lie in the interval [a, b]SCO2X it is necessary and sufficient that (0, 0) ∈ A, Figure
1.

Figure 1. Any set A ∈ 2X that contains the origin point will
be in the interval [a, b]SCO2X .

Now, we consider setwise interval with respect to the n-fold symmetric prod-
uct hyperspace Fn(X), i.e. [a, b]SCOn(X).

Examples 3.2. We present the following three examples that concerns the
interval [a, b]SCOn(X).

(1) Consider the real numbers with the standard topology and a, b ∈ R,
then [a, b]SCO1(R) = [a, b].

(2) Let X be the comb space and K = {[x, 0]
⋃

[0.2, y] : 0.2 ≤ x ≤
0.6 and 0 ≤ y ≤ 0.4}. It is clear that K ∈ CO(a, b) where a = (0.2, 0.4)
and b = (0.6, 0). Now, for a C ∈ Fn(X) to lie between a and b, it is
enough that C intersects K, Figure 2.

Proposition 3.3. Let X be a topological space with a, b ∈ X. Then
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Figure 2. A set C ∈ [a, b]SCO2(X) should intersects K.

(1) {a}, {b} ∈ [a, b]SCO2X

(2) 〈[a, b]SCOn(X)〉
− ⊂ [a, b]SCOn(X) for n ≥ 2

(3) 〈[a, b]SCO2(X)〉
− = 〈{a, b}〉−

(4) 〈{a, b}〉− ⊂ [a, b]SCO2(X)

(5) [a, a]SCO1(X) = {a}
(6) For n ≥ 3, we have [a, b]SCOn(X)

⋂
[b, c]SCOn(X) 6= ∅

(7) [a, b]SCO1(X) ⊆ [a, b]SCO2(X) ⊆ ... ⊆ [a, b]SCOn(X)

Proof. (1) Obvious.
(2) LetA ∈ 〈[a, b]SCOn(X)〉

−. SoA
⋂

[a, b]SCOn(X) 6= ∅ and thereforeA ∈ [a, b]SCOn(X).

(3) Let C ∈ 〈[a, b]SCO2(X)〉
−. So, C

⋂
[a, b]SCO2(X) 6= ∅ which means for every K ∈

CO(a, b) we have C
⋂
K 6= ∅. But C ∈ F2(X), therefore, C

⋂
{a, b} 6=

∅. Consequently, C ∈ 〈{a, b}〉−. Notice that the other direction can
easily follows.

(4) Let C ∈ 〈{a, b}〉−. So C
⋂
{a, b} 6= φ. It is clear that any K ∈ C(a, b)

we have C
⋂
K 6= φ . Thus, C ∈ [a, b]SCO2(X).

(5) Obvious.
(6) This follows from being {b} ∈ [a, b]SCOn(X)

⋂
[b, c]SCOn(X)

(7) Let C ∈ [a, b]SCOi(X) , for 1 ≤ i ≤ n − 1. Thus, for each K ∈ CO(a, b),

we have C
⋂
K 6= ∅. But Fi(X) ⊂ Fi+1(X) which leads to C ∈

[a, b]SCOi+1(X).

�

Proposition 3.4. Let X be a topological space with a, b ∈ X and Ci ∈ Fn(X)
for i = 1, 2, . . . such that C1 ⊂ C2 ⊂ . . . . If C1 ∈ [a, b]SCOn(X) then Ci ∈ [a, b]SCOn(X)

for each i = 2, 3, . . . .
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Proof. Since C1 ∈ [a, b]SCOn(X), so any connected subset K of X that contains

a and b yields C1

⋂
K 6= φ. But C1 ⊂ C2 ⊂ ..., so Ci

⋂
K 6= φ for each

i = 2, 3, . . . . Therefore, Ci ∈ [a, b]SCOn(X). �

Proposition 3.5. Let X and Y be two homeomorphic spaces with a, b ∈ X.
Let f : X −→ Y be a homeomorphism, then

(1) f([a, b]SCO2X ) = [f(a), f(b)]SCO2Y

(2) f([a, b]SCOn(X)) = [f(a), f(b)]SCOn(Y )

Proof. We only proceed the proof of (1).
⇒ Let A ∈ f([a, b]SCO2X ). Let K ∈ CO(f(a), f(b)) in Y . To show that A

⋂
K 6=

∅. Let A = f(S) for some S ∈ [a, b]SCO2X .

Since f−1 is continuous then f−1(K) ∈ CO(a, b) in X.
Thus, S

⋂
f−1(K) 6= ∅ which means that f(S)

⋂
K 6= ∅ i.e. A

⋂
K 6= ∅.

Therefore A ∈ [f(a), f(b)]SCO2Y

⇐ Let B ∈ [f(a), f(b)]SCO2Y and D ∈ CO(a, b) in X.

Hence f(D) ∈ CO(f(a), f(b)) in Y , so f(D)
⋂
B 6= ∅. So D

⋂
f−1(B) 6= ∅.

Thus f−1(B) ∈ [a, b]SCO2X . Therefore B ∈ f([a, b]SCO2X )
�

Corollary 3.6. Let X and Y be two topological spaces such that X ∼= Y and
a, b ∈ X. Consider the interval [a, b]SCO2X and [a, b]SCOn(X), then there exist c, d ∈ Y
such that [a, b]SCO2X

∼= [c, d]SCO2Y and [a, b]SCOn(X)
∼= [c, d]SCOn(Y ), respectively.

4. Pointwise betweenness via setwise intervals

In the following, we discuss a new type of betweenness relation that relates
three points via the betweenness relation that we introduced in Section 3. Let
x be a point in a topological space X. We define a hyperstar collection of x
with respect to a hyperspace H to be st(x,H) = {C ∈ H : x ∈ C}. We also

define the hyperstar collection of a set C ⊂ X as st(C,H) =
⋃
c∈C

st(c,H). In

the following, we investigate some properties of this hyperstar collection.

Proposition 4.1. Let A,B ⊆ X such that A ⊆ B, then st(A, 2X) ⊆ st(B, 2X).

Proof. Let C ∈ st(A, 2X). So C ∈
⋃
a∈A

st(a, 2X). Thus, there is some a0 ∈

A such that C ∈ st(a0, 2
X). But a0 ∈ B which implies that st(a0, 2

X) ⊆⋃
b∈B

st(b, 2X). Hence, C ∈ st(B, 2X). �

Now, we consider a hyperstar collection with respect to the n-fold symmetric
product hyperspace, namely st(x,Fn(X)).

Example 4.2. Let X = {1, 2, 3, 4} and τ = {φ, {1}, {2}, {1, 2}, X}. Hence,
CL(X) = {{2, 3, 4}, {1, 3, 4}, {3, 4}, X}, F3(X) = {{2, 3, 4}, {1, 3, 4}, {3, 4}}.
It is clear that st(3,F3(X)) = F3(X) while st(1,F3(X)) = {{1, 3, 4}}.
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Proposition 4.3. Let X be a topological space, x ∈ X and C,K be two subsets
in X. Then

(1) st(x,F1(X)) = {{x}}
(2) st(C,F1(X)) = {C}
(3) st(x,Fn(X)) ⊂ st(x,Fm(X)) where m > n
(4) If K ⊆ C, then st(K,Fn(X)) ⊆ st(C,Fn(X))

Proof. (1) Obvious.

(2) st(C,F1(X)) =
⋃
c∈C

st(c,F1(X)) =
⋃
c∈C
{c} = {C}.

(3) Since Fn(X) ⊂ Fm(X).
(4) Let A ∈ st(K,Fn(X)). So there is some k0 ∈ K such that A ∈

st(k0,Fn(X)). But k0 ∈ C, so there is some c0 ∈ C with c0 = k0 such

that A ∈ st(c0,Fn(X)). Hence A ∈
⋃
c∈C

st(c,Fn(X)). Consequently we

get A ∈ st(C,Fn(X)).
�

Now, we are ready to introduce the following betweenness relation. Suppose
a, b, c ∈ X. We say that c lies between a and b with respect to a hyperspace
H if st(c,H) ⊆ [a, b]SPH . This betweenness relation induces the pointwise be-
tweenness interval [a, b]PPH = {c ∈ X : st(c,H) ⊂ [a, b]SSH }.

Proposition 4.4. Let a and b are two points in a topological space X. Then

(1) {a, b} ⊂ [a, b]PCOn(X)

(2) [a, b]PCOn(X) ⊂ [a, b]PCOm(X) for m > n

Note that the interval [a, b]PCOH is a set of points which lie between a and b.
Thus, it is more convenient to rename such a set and try to investigate some
of its properties. We fix a topological property, P and a hyperspace H. Let a
and b be two points in X, define CHa,b = {c ∈ X : c ∈ [a, b]PCOH }.

Example 4.5.
Consider the unit circle S1. Let A and B are two arcs of S1 such that their
union is S1 and a, b ∈ S1 and A

⋂
B = {a, b} . A set C ∈ F2(S1) lies in the

interval [a, b]SCO2(S1) if one point of C lies in A and the other point of C lies in

B, Figure 3. It is clear that the interval [a, b]SCO1(S1) contains only {a} and {b}.
Hence C

n(1)
a,b = {a, b}. On the other hand, C

n(1)
a,a = {a}.

Proposition 4.6. Let X be a topological space with a, b ∈ X. Then

(1) a, b ∈ Cn(X)
a,b

(2) If X is T1 space and |Cn(X)
a,b | ≤ n, then C

n(X)
a,b ∈ [a, b]SCOn(X)

(3) C
n(X)
a,b ⊆ Cn+1(X)

a,b

Proof. (1) We need to show that st(a,Fn(X)) ⊆ [a, b]SCOn(X). Let C ∈ Fn(X)

such that a ∈ C. It is clear that for every connected subset K of X
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Figure 3. The set which contains x ∈ A and y ∈ B lies
between a and b, i.e. C = {x, y} ∈ [a, b]SCO2(X).

containing both a and b, we have φ 6= {a} ⊂ C
⋂
K. Hence C ∈

[a, b]SCOn(X). The same previous argument can be applied to show that

b ∈ Cn(X)
a,b .

(2) Clearly, C
n(X)
a,b ∈ Fn(X). Hence, for every K ∈ CO(a, b), {a, b} ⊂

C
n(X)
a,b

⋂
K 6= ∅. Therefore, C

n(X)
a,b ∈ [a, b]SCOn(X).

(3) It follows from being Fn(X) ⊂ Fn+1(X).
�

Proposition 4.7. If f : X −→ Y be a homeomorphism between two topological
spaces X and Y with a, b ∈ X, then

(1) f(C2X

a,b ) = C2Y

f(a),f(b)

(2) f(C
n(X)
a,b ) = C

n(Y )
f(a),f(b)

Proof. We only present the proof of (2). Clearly, f(a) 6= f(b) ( since f is one

to one map). Let y ∈ f(C
n(X)
a,b ), so f−1(y) ∈ Cn(X)

a,b , i.e. st(f−1(y),Fn(X)) ⊆
[a, b]SCOn(X). Let C ∈ st(f−1(y),Fn(X)). Thus, C

⋂
K 6= ∅ for every K ∈

CO(a, b). But f(C)
⋂
f(K) 6= ∅ for every f(K) ∈ CO(f(a), f(b)). This means,

f(C) ∈ [f(a), f(b)]SCOn(Y ). But f(C) ∈ st(y,Fn(Y )), therefore, y ∈ Cn(Y )
f(a),f(b).

�
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[7] N. Doüvelmeyer and W. Wenzel, A characterization of ordered sets and lattices via

betweenness relations, Results Math. 46 (2004), 237–250.
[8] P. C. Fishburn, Betweenness, orders and interval graphs, J. Pure and Appl. Alg. 1 (1971),

159–178.
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[13] M. Moszyńska, Theory of equidistance and betweenness relations in regular metric
spaces, Fund. Math. 96 (1977), 17–29.

[14] S. B. Nadler Jr., Continuum Theory: An Introduction, Marcel Dekker, New York (1992).

[15] M. Pasch, Vorlesungen uber Neuere Geometrie, Teubner, Leipzig, (1882).
[16] E. Pitcher and M. Smiley, Transitivities of betweenness, Trans. Amer. Math. Soc. 52

(1942), 95–114.
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