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Abstract

We study concrete endofunctors of the category of convergence spaces
and continuous maps that send initial maps to initial maps or final
maps to final maps. The former phenomenon turns out to be fairly
common while the latter is rare. In particular, it is shown that the pre-
topological modification is the coarsest hereditary modifier finer than
the topological modifier and this is applied to give a structural interpre-
tation of the role of Fréchet-Urysohn spaces with respect to sequential
spaces and of k′-spaces with respect to k-spaces.
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1. Preliminaries

Except for details of presentation and some examples, everything in this
section on preliminaries is well-known and most of it can be found under one
form or another in [8], though in too scattered a form to easily refer the reader
to everything needed.
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1.1. Convergence spaces. The context of this paper is that of the category
Conv of convergence spaces and continuous maps. We use the terminology
and notations of [8]. In particular, a convergence ξ on a set X is a relation
between points of X and filters on X, denoted

x ∈ limξ F

whenever x and F are ξ-related, subjected to two simple axioms: x ∈ limξ{x}↑
for every x ∈ X, and limξ F ⊂ limξ G whenever G is a filter finer than the
filter F . If (X, ξ) and (Y, τ) are two convergence spaces, a map f : X → Y is
continuous (from ξ to τ), in symbols f ∈ C(ξ, τ), if

f(limξ F) ⊂ limτ f [F ],

where f [F ] = {B ⊂ Y : f−(B) ∈ F} is the image filter. A convergence ξ is
called a Kent convergence if moreover

x ∈ limξ F =⇒ x ∈ limξ F ∧ {x}↑.
Of course, every topology τ can be seen as a (Kent) convergence given by
x ∈ limτ F if and only if F ≥ Nτ (x), where Nτ (x) denotes the neighborhood
filter of x in the topology τ . This turns the category Top of topological spaces
and continuous maps into a full subcategory of Conv.

We denote by | · | : Conv → Set the forgetful functor, so that |ξ| denotes
the underlying set of a convergence ξ and |f | is the underlying function of a
morphism. If |ξ| = |τ |, we say that ξ is finer than τ or that τ is coarser than ξ,
in symbols, ξ ≥ τ , if the identity map of their underlying set belongs to C(ξ, τ).
This order turns the set of convergences on a given set into a complete lattice
whose greatest element is the discrete topology, least element is the antidiscrete
topology, and whose suprema and infima are given by

lim∨
ξ∈Ξ ξ

F =
⋂
ξ∈Ξ

limξ F and lim∧
ξ∈Ξ ξ

F =
⋃
ξ∈Ξ

limξ F . (1.1)

Conv is a concrete topological category; in particular, for every f : X → |τ |,
there is the coarsest convergence on X, called initial convergence for (f, τ) and
denoted f−τ , making f continuous (to τ), and for every f : |ξ| → Y , there is
the finest convergence on Y , called final convergence for (f, ξ) and denoted fξ,
making f continuous (from ξ). Note that with these notations

f ∈ C(ξ, τ) ⇐⇒ ξ ≥ f−τ ⇐⇒ fξ ≥ τ. (1.2)

Moreover, the initial lift on X of a structured source (fi : X → |τi|)i∈I turns
out to be

∨
i∈I f

−
i τi and the final lift on Y of a structured sink (fi : |ξi| → Y )i∈I

turns out to be
∧
i∈I fiξi.

If f : |ξ| → Y is surjective, fξ is also called the quotient convergence. If
A ⊂ |ξ|, the subspace convergence ξ|A or induced convergence on A is i−Aξ where
iA : A→ |ξ| is the inclusion map. If Ξ is a set of convergences, then the product
convergence is

Πξ∈Ξξ =
∨
ξ∈Ξ

p−ξ ξ,
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where pξ : Πξ∈Ξ|ξ| → |ξ| is the projection, that is, Πξ∈Ξξ is the initial conver-
gence for the family of projections.

1.2. Concrete functors. Most functors considered will be concrete endofunc-
tors of Conv, that is, functors F : Conv → Conv (1) such that |Ff | = |f |
for every continuous map f . As a result, |Fξ| = |ξ| for every convergence
space ξ and thus F can be seen as simply modifying the convergence struc-
ture on |ξ|. Similarly, we will not distinguish notationally between morphisms
f and Ff , and the underlying map |f |, usually writing f for all of them.
Unless specified otherwise, functor will mean concrete endofunctor. With
this convention, C(ξ, τ) ⊂ C(Fξ, Fτ) for every convergences ξ and τ means
that F preserves continuity. Functors do preserve continuity. In particular,
if ξ ≥ τ (that is, id : (X, ξ) → (X, τ) is continuous) then Fξ ≥ Fτ (because
id : (X,Fξ) → (X,Fτ) is continuous), that is, a functor is monotone on each
fiber of |·|. In other words, a concrete functor is a modifier in the sense of [8] (2)
which additionally satisfies C(ξ, τ) ⊂ C(Fξ, Fτ) for every pair of Conv-objects
ξ, τ (3).

It is easily seen that the latter condition can be rephrased in terms of initial
and final convergences. Namely

∀
ξ,τ∈Ob(Conv)

C(ξ, τ) ⊂ C(Fξ, Fτ) ⇐⇒ ∀
ξ,τ∈Ob(Conv)

∀
f∈|τ ||ξ|

F (f−τ) ≥ f−(Fτ)

⇐⇒ ∀
ξ,τ∈Ob(Conv)

∀
f∈|τ ||ξ|

f(Fξ) ≥ F (fξ).

(1.3)

We order functors “pointwise”, that is, F ≤ G means that Fξ ≤ Gξ for
every convergence ξ. Suprema and infima of functors are defined accordingly.
We will denote by I the identity functor.

1.3. Reflectors and coreflectors.

1.3.1. Concretely (co)reflective subcategory and concrete (co)reflector. A full
subcategory R of Conv is concretely reflective (See e.g., [1]) if for every con-
vergence ξ there is an R-object Rξ with Rξ ≤ ξ with the universal property
that for any f ∈ C(ξ, σ) where σ is a R-object, there is a unique morphism
f ′ ∈ C(Rξ, σ) making the following diagram commute:

1with the abuse that the codomain of F may be a subcategory C of Conv, but we do
not distinguish F from F ◦N where N : C→ Conv is the inclusion functor.

2Explicitly, a modifier M associates with each convergence ξ a convergence Mξ with
|ξ| = |Mξ| and is monotone on fibers of | · |.

3Note that preservation of composition is automatic because |Ff | = |f | for every mor-

phism.
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ξ
id //
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Rξ

f ′

��
σ

Figure 1. concretely reflective subcategory

Note that necessarily |f ′| = |f |, so that Rξ satisfies

σ ∈ Ob(R) and f ∈ C(ξ, σ) =⇒ f ∈ C(Rξ, σ).

The corresponding operator R is of course a modifier because if ξ ≥ τ and
σ = Rτ with f = id in Figure 1, then id ∈ C(Rξ,Rτ), that is, Rξ ≥ Rτ .
Moreover, applying the scheme of Figure 1 to Rξ in the role of ξ, σ = Rξ and
f = id, yields id ∈ C(R(Rξ), Rξ),that is, RRξ ≥ Rξ and Rξ ≥ RRξ because R
is contractive by definition, so that R is an idempotent modifier. The modifier
R is also a functor. Indeed, for every f with domain ξ, f ∈ C(ξ,R(fξ)) because
fξ ≥ R(fξ), so that we can apply the definition of R with σ = R(fξ) to the
effect that f ∈ C(Rξ,R(fξ)), that is, f(Rξ) ≥ R(fξ). In view of (1.3), R is a
functor.

As a result R satisfies

ξ ≥ τ =⇒ Rξ ≥ Rτ (monotone)

ξ ≥ Rξ (contractive)

Rξ = RRξ (idempotent)

for every ξ and τ , and

f(Rξ) ≥ R(fξ) (1.4)

because R is a functor.
Conversely, if R is a contractive and idempotent concrete functor, then the

concrete full subcategory R = fixR = {ξ ∈ Ob(Conv) : ξ = Rξ} is concretely
reflective and R acts as in the definition of concretely reflective subcategory (4).
We say that R is a reflector. Note that for every convergence ξ, the convergence
Rξ is the finest convergence of R that is coarser than ξ (if σ = Rσ ≤ ξ then
σ ≤ Rξ because R is idempotent and monotone).

As a concretely reflective subcategory R of Conv is the class of fixed points
for a reflector (a contractive and idempotent concrete functor) R, the category
R is closed under suprema in Conv. Indeed, if Ξ is a set of convergences of R on

the same set, then R
(∨

Ξ
)
≥ Rξ ≥ ξ for each ξ ∈ Ξ, and thus R

(∨
Ξ
)
≥
∨

Ξ.

Moreover, the antidiscrete topology on X is the smallest element of | · |−1(X)

4This is because if σ = Rσ and f ∈ C(ξ, σ), that is, fξ ≥ σ, then R(fξ) ≥ Rσ = σ by
(monotone) and thus f(Rξ) ≥ σ by (1.4), that is, f ∈ C(Rξ, σ) as desired.
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and thus belongs to R = fixR. So R is closed over all infima; even over the
empty family, which yields the antidiscrete topology.

Moreover,

τ = Rτ =⇒ f−τ = R(f−τ) (1.5)

for every τ and f with codomain |τ |. Indeed, if τ ≤ Rτ then f−τ ≤ f−(Rτ) ≤
R(f−τ), where the latter inequality follows from (1.3). In fact,

Proposition 1.1. A concrete full subcategory A of Conv is concretely reflec-
tive in Conv if and only if it is closed under all suprema in Conv and satisfies
f−τ ∈ Ob(A) whenever τ ∈ Ob(A) and f has codomain |τ |.

Proof. We only need to show the converse part. Because A is closed under
all infima, it contains all antidiscrete spaces. Hence, given a convergence ξ,
{τ ∈ Ob(A) : τ ≤ ξ} is non-empty and its supremum, that we shall denote Rξ,
belongs to Ob(A). It is clear that Rξ is the finest convergence of A coarser than
ξ and that R is a contractive idempotent modifier and that Ob(A) = fixR. If
now τ is a convergence Rτ ∈ Ob(A) so that

f−(Rτ) ≤ R(f−(Rτ)) ≤ R(f−τ),

where the first inequality follows from the fact that f−τ ∈ Ob(A) whenever
τ ∈ Ob(A) and the second follows from the fact that R is contractive. In view
of (1.3), R is a functor, hence a reflector. �

Dually, a concrete functor C that is idempotent and expansive, that is,

ξ ≤ Cξ (expansive)

for every convergence ξ is called a coreflector. The corresponding concrete full
subcategory C = fixC of Conv (whose objects satisfy ξ = Cξ, equivalently
ξ ≥ Cξ) is a concretely coreflective subcategory of Conv (in the usual sense
of [1]). A concrete full subcategory A of Conv is coreflective if and only if its
class of objects is the class of convergences fixed by such a functor, if and only
if it is closed under all infima in Conv (in particular, it contains all discrete
spaces) and fξ ∈ Ob(A) whenever ξ ∈ Ob(A) and f has domain |ξ|.

1.3.2. Reflective and coreflective parts of a (concrete) functor. It is essentially
an observation of Greco and Dolecki (in different terms) [6] and is proved in
details in [8, Sections XIV.1 and XIV.2] that,

Theorem 1.2. If F is a (concrete) functor then

F+ := {ξ : Fξ ≥ ξ}

is a (concretely) reflective class and

F− := {ξ : ξ ≥ Fξ}

is a (concretely) coreflective class.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 191



F. Mynard

Let RF and CF denote the corresponding reflector and coreflectors on F+

and F− respectively.
Given a functor F , we define by transfinite induction (F )1 = (F )1 = F and

(F )α = F
( ∨
β<α

F β
)

and (F )α = F
( ∧
β<α

Fβ

)
.

Proposition 1.3. Let F be a functor. For every convergence ξ, there are
ordinals α and β such that

RF ξ = (F ∧ I)αξ and CF = (F ∨ I)βξ.

In particular, RF is the smallest among functors G with G+ = F+ and CF
is the greatest among functors G with G− = F−.

Proof. This follows immediately from [8, Propositions XIV.1.18 and XIV.1.19],
after observing that

(F ∧ I)+ = F+ and (F ∧ I)− = F−.

�

1.3.3. Classes of filters. Recall that the powerset PX = {∅}↑X is the degen-
erate filter on X and we denote by FX the set of all (degenerate or proper)
filters on X. Note that F : Rel → Rel is a functor that associates to a
set X ∈ Ob(Rel) the set FX and to a relation R ⊂ X × Y the relation
FR : FX → FY defined by

(FR)(F) = R[F ] = {R(F ) : F ∈ F}↑Y .

We will denote by D ⊂ F the fact that D is a subfunctor, that is, DX ⊂ FX for
every set X and FR(D) ∈ DY for every D ∈ DX and every relation R ⊂ X×Y .
We can alternatively say that D is an F0-composable class of filters. Such a
class must contain all principal filters, in particular every principal ultrafilter
(See e.g., [8, Lemma XIV.3.7] for this and other properties of F0-composable
classes). Among such classes, we distinguish the class F0 of principal filters,
F1 of countably based filters, F∧1 of countably deep filters. In contrast, the
class U of ultrafilters and the class E of filters generated by a sequence are not
F0-composable.

Given F ∈ FX and D a class of filters, we write

D(F) := {D ∈ DX : D ≥ F}.

As we assume the Axiom of Choice, U(F) 6= ∅ for every filter F and F =⋂
U∈U(F) U while F# =

⋃
U∈U(F) U .

1.3.4. Reflectors and coreflectors determined by a class of filters. Several im-
portant examples of concrete endofunctors of Conv are defined modulo a class
D ⊂ F. For instance, the functor AD defined (on objects) by

limAD ξ F =
⋂

D3D#F

adhξ D,
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where the adherence of D is defined by

adhξ D =
⋃

FX3H#D

limξH =
⋃

U∈U(D)

limξ U ,

is a reflector, while BD defined (on objects) by

limBD ξ F =
⋃

D3D≤F
limξ D

is a coreflector. The table below gathers notations and names for these functors
for specific classes of filters.

D AD reflector’s name BD coreflector’s name

F S pseudotopologizer I identity
F1 S1 paratopologizer I1 modifier of countable character
F∧1 S∧1 hypotopologizer I∧1 P -modifier
F0 S0 pretopologizer I0 modifier on finitely generated spaces

Table 1. reflectors and coreflectors

Note that U and U ∩ F0 are not F0-composable, so that we cannot directly
conclude from the above considerations that the modifiers AD and BD are re-
flectors and coreflectors respectively for these classes. However, [8, XIV.3.1
and XIV.4] provides sufficient conditions on D (weaker than F0-composability)
to ensure that AD is a reflector and that BD is a coreflector. In particular, BU
and BU∩F0

are coreflectors.
We call BU the ultrafilter convergence modifier and G := BU∩F0

the graph
modifier as it is characterized by the underlying digraph of the convergence in
which x→ y if y ∈ lim{x}↑ (See, e.g., [8, Example XIV.4.6])(5).

Similarly, though the class E of filters generated by sequences is not F0-
composable, Seq := BE is a coreflector.

1.3.5. Other important reflectors and coreflectors. A subset A of a convergence
space (X, ξ) is closed if

A ∈ F =⇒ limξ F ⊂ A

and open if

limξ F ∩A 6= ∅ =⇒ A ∈ F .
The collection of all open subsets of a convergence space (X, ξ) is a topology

on X called topological modification of ξ and denoted by T ξ (of course, we
identify this topology with the convergence it defines). The modifier T is a
reflector. Note that T can alternatively be seen as a type of regularization.

5Note also that AU = S.
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Indeed, [8, VII.2] introduces a notion of regularity with respect to a family of
sets. Namely, if Z is a family of subsets of X, then a convergence ξ is Z-regular
if

limξ F = limξ(F ∩ Z)↑

for every F ∈ FX, with the convention that limξ ∅↑ = ∅ (6). An admissible
assignment Z(·) associates with each convergence ξ a family Z(ξ) of subsets
of |ξ| in such a way that Z(ξ) is closed under intersections of finitely many
members,

ξ ≤ θ =⇒ Z(ξ) ⊂ Z(θ),

and

f−[Z(τ)] ⊂ Z(f−τ)

for every function f and convergence τ on its codomain.
It is easily checked that if O(ξ) denotes the set of ξ-open sets then O(·)

defines an admissible assignment. Similarly, the collection C(ξ) of ξ-closed
sets, the collection Z(ξ) of ξ-zero sets (that is, sets of the form f−(0) for some
continuous function f : (X, ξ)→ R), and the collection CZ(ξ) of complements
of zero-sets (cozero sets) define admissible assignments.

[8, Prop. VII.2.5 and VII.2.6] state that:

Proposition 1.4. If Z(·) is an admissible assignment then for every conver-
gence ξ there is the finest Z-regular convergence RegZ ξ that is coarser than ξ
and RegZ is a reflector.

Remark 1.5. Note that if Z(·) and B(·) are admissible assignments and Z(ξ) ⊂
B(ξ) for every convergence ξ then RegZ ≤ RegB.

Example 1.6. In particular, the reflector RegO = T is the reflector on topolo-
gies (7), while the reflector RegCZ = Ω is the reflector on completely regular
topologies (8). The reflector RegC = RT is the reflector on topologically regu-
lar convergences in the sense of [8, VI.4] and the reflector RegZ = RΩ is the
reflector on Ω-regular convergences (9).

6Of course, (F ∩Z)↑ is either the degenerate filter ∅↑ or a filter coarser than F , so that

limξ(F ∩ Z)↑ ⊂ limξ F is always true, that is, ξ is Z-regular if limξ F ⊂ limξ(F ∩ Z)↑ for
every filter F .

7Indeed, it is clear that a topological space is O-regular, and conversely, if ξ is O-regular,

then

x ∈ lim{x}↑ = lim
(
{x}↑ ∩ Oξ

)↑
= limNξ(x),

so that ξ is topological.
8In view of Remark 1.5, RegCZ is a reflector on a subcategory of that of topological

spaces. Moreover, if ξ = RegCZ ξ then Oξ(x)↑ = (Oξ(x) ∩ CZ)↑ that is, Nξ(x) has a filter-

base composed of cozero sets. Hence, if F is closed and x /∈ F then F c ∈ Oξ(x) and there
is a cozero set C with x ∈ C ⊂ F c. As a result, there is f ∈ C(ξ, ν) with f(x) = 1

and f(F ) = {0} and thus ξ is completely regular. Conversely, if ξ is a completely regular
topology and x ∈ U ∈ Oξ(x), then there is f ∈ C(ξ, ν) with f(x) = 1 and f(Uc) = {0} so
that x ∈ {f = 0}c ⊂ U , that is, ξ is CZ-regular.

9Also called ω-regular convergences in [2].
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It is easily checked that the modifier χ associating with a convergence ξ its
characteristic convergence χ(ξ) defined by

limχ(ξ) F =

{
|ξ| if limξ F 6= ∅
∅ if limξ F = ∅

is a reflector. The class fixχ is the (concrete full) subcategory of constant
convergences, that is, convergences with the same set of convergent filters at
each point. This reflector is instrumental in connecting convergence structures
with nearness structures [9] and in the study of compactness [5, 4].

The modifier Dis sending every convergence to the discrete topology on the
same underlying set is a coreflector called discretization.

A subset K of a convergence space (X, ξ) is compact if adhξ F ∩ K 6= ∅
whenever K ∈ F . The locally compact modifier K defined by x ∈ limK ξ F if
x ∈ limξ F and there is a compact set K ∈ F , is a coreflector.

1.4. Functorial inequalities and quotient maps. In [3], various topological
properties were characterized in terms of functorial inequalities of the form

ξ ≥ RCξ

where R is a reflector and E is a coreflector (of Conv), and various classes
of quotient maps naturally appearing in topology were characterized in similar
terms: given a reflector R, an onto map f : |ξ| → |τ | is R-quotient if τ ≥ R(fξ).
Here is a partial list of such maps and topological properties:

reflector R R -quotient I1 Seq K
f : |ξ| → |τ |

I almost open first-countable sequentially based locally compact

τ ≥ fξ ξ ≥ I1 ξ ξ ≥ Seq ξ ξ ≥ K ξ
S biquotient bisequential sequentially based locally compact

τ ≥ S(fξ) ξ ≥ S I1 ξ ξ ≥ S Seq ξ ξ ≥ S K ξ
S1 countably biquotient countably bisequential countably bisequential strongly k′

τ ≥ S1(fξ) ξ ≥ S1 I1 ξ ξ ≥ S1 Seq ξ ξ ≥ S1 K ξ
S∧1 weakly biquotient weakly bisequential weakly bisequential

τ ≥ S∧1(fξ) ξ ≥ S∧1 I1 ξ
S0 hereditarily quotient Fréchet-Urysohn Fréchet-Urysohn k′

τ ≥ S0(fξ) ξ ≥ S0 I1 ξ ξ ≥ S0 Seq ξ ξ ≥ S0 K ξ
T quotient sequential sequential k

τ ≥ T(fξ) ξ ≥ T I1 ξ ξ ≥ T Seq ξ ξ ≥ T K ξ

Table 2. quotient maps and topological properties

See [8, Sections XIV.6, XV.1, XV.2 ] for details.
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2. functors respecting initiality and finality

We have seen (1.3) that the functoriality condition on a modifier F amounts
to

F (f−τ) ≥ f−(Fτ) (2.1)

for every f with codomain |τ |, equivalently,

f(Fξ) ≥ F (fξ) (2.2)

for every f with domain |ξ|.
In contrast, the reverse inequalities do not hold in general, and moreover,

they are not equivalent to each other (as we will see shortly).
We say that a functor F respects initiality if

f−(Fτ) ≥ F (f−τ) (2.3)

for every f with codomain |τ |, and respect finality if

F (fξ) ≥ f(Fξ) (2.4)

for every f with domain |ξ|.

Lemma 2.1. A functor F respects finality if and only if it sends every final
map to a final map and respects initiality if and only if it sends every initial
map to an initial map.

Proof. If f : (X, ξ) → (Y, fξ) then Ff = f : (X,Fξ) → (Y, F (fξ)). If F is a
functor that respects finality then F (fξ) = f(Fξ) and the conclusion follows.
Similarly, if f : (X, f−τ) → (Y, τ) then Ff = f : (X,F (f−τ)) → (Y, Fτ). If
F is a functor that respects initiality then F (f−τ) = f−(Fτ) and the result
follows. �

Example 2.2 (A reflector that respects initiality but not finality). If D is an
F0-composable class of filters then the concrete reflector AD respects initiality
(e.g., [8, Corollary XIV.3.8]), but not finality. For instance, if ξ and τ are
topologies and f : |ξ| → |τ | is continuous, AD-quotient but not almost-open,
then

τ = AD(fξ) � fξ = f(AD ξ).

Example 2.3 (A coreflector that respects finality but not initiality). The
discretization Dis respects finality: because Dis is a functor, f(Dis ξ) ≥ Dis(fξ),
that is, f(Dis ξ) is the discrete topology, which is also Dis(fξ). But Dis does
not respect initiality. Indeed, if X has more than 2 points and f : X → {∗}
then the codomain τ is discrete but the initial convergence f−τ is antidiscrete,
so that f−τ = f−(Dis τ) � Dis(f−τ).

Note that the later part of this argument can be extended to the effect that:

Proposition 2.4. Let F be a modifer. If F respects initiality then the image
of every antidiscrete space under F is antidiscrete. If F respects finality then
the image of every discrete space under F is discrete.
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Recall that we denote by oX the antidiscrete topology on X and by ιX the
discrete topology on X.

Proof. There is only one convergence structure τ = ι = o on {∗}, so Fτ = τ
and f−τ is antidiscrete. Hence, if F respects initiality and f : X → {∗} then
f−τ = f−(Fτ) = oX ≥ F (f−τ) = F (oX) and thus oX = F (oX).

Note that for any g : {∗} → X, gτ is discrete. If F respects finality then
F (gτ) = F (ιX) ≥ g(Fτ) = g(τ) = ιX , and then F (ιX) = ιX . �

Example 2.5 (applications of Proposition 2.4). The reflector χ on constant
convergences does not preserve the discrete topology and thus χ does not re-
spect finality. It is easily seen that χ preserves initiality.

Similarly, the coreflectors BU, Seq and G do not preserve antidiscrete spaces
and therefore they do not respect initiality. We will see (Corollary 2.19) that
BU respects finality but Seq and G do not.

Note that every contractive modifier preserves antidiscrete spaces and every
expansive modifier preserves discrete spaces. Preserving finality turns out to
be a rare phenomenon. Indeed, the following immediately follows from the
definitions:

Lemma 2.6. If there are ξ > Fξ and σ = Fσ with ξ = fσ, then F does not
respect finality.

As all Kent convergences are the final image of a coproduct of prime topolo-
gies (10), if fixF contains all prime topologies and their coproducts (for instance,
all topologies) and there is a Kent convergence ξ > Fξ then the lemma above
applies. In particular, no reflector greater or equal to T that is “non-trivial” in
the sense that it doesn’t leave all Kent convergences fixed can preserve finality.

Example 2.7 (A modifier that is not a functor but preserves initiality). Con-
sider the modifier UD defined by

limUD ξ F =
⋂

D∈D(F)

limξ D,

introduced and studied in [7, Section 4]. In view of [7, Prop.20, Lemma 22],
UD is generally not a functor (11). In particular, it is not a functor if D = F1.
However, UD preserves initiality, as long as D is F0-composable. Indeed, if x ∈
limf−(UD τ) F then f(x) ∈ limUD τ f [F ]. Suppose D ∈ D(F). Then f [D] ≥ f [F ]
and f [D] ∈ D because D is F0-composable, so that f [D] ∈ D(f [F ]). Since
f(x) ∈ limUD τ f [F ], we conclude that f(x) ∈ limτ f [D], that is, x ∈ limf−τ D.
Hence x ∈ limUD f−τ F .

10Given a Kent convergence ξ and x ∈ limξ F , let π[x,F ] denote the prime topology in

which the only non-isolated point is x and Nπ[F,x](x) = F ∧ {x}↑. Then ξ = fσ where

σ =
∐

(F,x)∈ξ π[x,F ] is the topological sum and f is the obvious quotient map identifying

all copies of the same point.
11but it can be: note that UD is the identity functor when D = F and UD = S when D = U.

See [7] for a characterization of classes D for which UD is a functor.
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Definition 2.8. Let C be a class of convergences. We say that τ ∈ C is C-
initially stable if f−τ ∈ C for every map f with codomain |τ |. The initial kernel
keri C of C is the subclass of C formed by C-initially stable convergences. The
class C is initially closed if keri C = C.

Notions of C-finally stable convergence, final kernel kerf C, and finally closed
class are defined dually.

Remark 2.9. Since

g−(f−τ) = (f ◦ g)−τ and g(fξ) = (g ◦ f)ξ,

keri C is initially closed and kerf C is finally closed, for any class C of conver-
gences.

Remark 2.10. Note that a class C is reflective if and only if it is initially closed
and closed under suprema, and coreflective if and only if it is finally closed and
closed under infima (12). In particular, given a functor F , F+ is initially closed
and F− is finally closed.

Theorem 2.11. Let F be a functor.

(1) If F respects finality then F+ is finally closed. Moreover, if F+ is fi-
nally closed, then RF respects finality. In particular a reflective class is
finally closed if and only if the corresponding reflector respects finality.

(2) If F respects initiality then F− is initially closed. Moreover, if F− is
initially closed, then CF respects initiality. In particular, a coreflec-
tive class is initially closed if and only if the corresponding coreflector
respects initiality.

Proof. By duality we only need to prove (1). Assume that F respects finality
and let ξ ∈ F+, that is, ξ ≤ Fξ. Then for every f with |ξ| as domain

fξ ≤ f(Fξ)
(2.4)

≤ F (fξ),

so that fξ ∈ F+.
Assume now that F+ = (RF)+ is finally closed, and let f : |ξ| → Y . Since

RF ξ ∈ F+, f(RF ξ) ∈ F+, that is,

f(RF ξ) ≤ RF (f(RF ξ)) ≤ RF (fξ),

where the second inequality follows from RF ξ ≤ ξ. As a result, RF respects
finality. �

Note that reflective classes are initially closed but reflectors need not respect
initiality while coreflective classes are finally closed but coreflectors need not
respect finality:

12Of course, suprema and infima can be seen as final and initial structures respectively,
for a concrete sink or concrete source.
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Example 2.12 (The reflector T on topologies does not respect initiality). Let

X = {xn,k : (n, k) ∈ N2} ∪ {xn : n ∈ N} ∪ {∞}

with its usual bisequence pretopology π defined by Vπ(xn,k) = {xn,k}↑, Vπ(xn) =
{{xn,k : k ≥ p} ∪ {xn} : p ∈ N}↑ and Vπ(∞) = {{xn : n ≥ p} ∪ {∞} : p ∈ N}.
Let A = {xn,k : (n, k) ∈ N2} ∪ {∞} and f : A → X be the inclusion map.
Then f−π = π|A is the discrete topology, hence T(f−π) = f−π is discrete,

while f−(Tπ) = (Tπ)|A is not, as the neighborhood filter of∞ for Tπ meshes
with A.

Example 2.13 (The coreflector K on locally compact convergences does not
respect finality). Let ξ be the Arens topological space (13), so that its compact
subsets are finite and thus K ξ is discrete. Let f : |ξ| → ω be defined by
f(xn,k) = k for all n and f(∞) = ω. Then fξ is the usual topology of ω
because f [N (∞)] = {ω} ∧ (ω)0 and thus is locally compact. But f(K ξ) is
discrete because K ξ is. Hence K(fξ) � f(K ξ).

On the other hand,

Proposition 2.14. The coreflector K respects initiality.

Proof. If x ∈ limf−(K τ) F then f(x) ∈ limK τ f [F ], that is, f(x) ∈ limτ f [F ]
and there is K ∈ K(τ) ∩ f [F ]. Then there is F ∈ F with f(F ) ⊂ K so that
F ⊂ f−(K) ∈ F . Remains to see that f−(K) is f−τ -compact to conclude that
x ∈ limK(f−τ) F . If an ultrafilter U#f−[K] then f [U ]#K so that limτ f [U ] ∩
K 6= ∅ and thus limf−τ U ∩ f−(K) 6= ∅. �

Recall that Iκ is the coreflector on convergences based in filters with a filter-
base of cardinality less than ℵκ.

Proposition 2.15. Let κ be a cardinal. Then Iκ respects initiality.

Proof. If x ∈ limf−(Iκ τ) F then f(x) ∈ limIκ τ f [F ], that is, there is a filter
D ∈ Fκ with D ≤ f [F ] and f(x) ∈ limτ D. Let B denote a filter-base of D of
cardinality less than ℵκ. For each B ∈ B there is FB ∈ F with f(FB) ⊂ B.
Then {FB : B ∈ B}↑ ∈ Fκ and this filter converges Iκ f

−τ to x and the
conclusion follows. �

Recall from [7] that a filter F is D-rich if for every f : X → Y and every
G ∈ D(f [F ]) there is D ∈ D(F) with G ≥ f [D]. Let R(D) denote the class of
D-rich filters. If D ⊂ F then D ⊂ R(D) [7, Lemma 19], so that BR(D) ≤ BD.

13that is, the prime topology on

{xn,k : n, k ∈ ω} ∪ {∞}

defined by V ∈ N (∞) if there is h : N→ N and p ∈ N with {∞}∪{xn,k : k ≥ h(n), n ≥ p} ⊂
V .
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Theorem 2.16. If ξ ≥ BR(D) ξ then

BD(fξ) ≥ f(BD ξ),

for every function f with domain |ξ|.
On the other hand, if there is a filter F that is not D-rich then there is a

convergence ξ with

BD(fξ) � f(BD ξ).

Proof. If y ∈ limBD(fξ)H ⊂ limBD f(BR(D) ξ)H then there is G ∈ D(|fξ|) with

G ≤ H and x ∈ f−y and F ∈ R(D)|ξ| with x ∈ limξ F and f [F ] ≤ G. As F is
D-rich, there is D ∈ D(F) with G ≥ f [D]. Since D ≥ F , x ∈ limBD ξ D so that
f(x) ∈ limf(BD ξ) G.

If there is F ∈ FX that is not D-rich, then there is f : X → Y and there is
G ∈ D(f [F ]) such that G � f [D] whenever D ∈ D(F). Pick x0 ∈ X. Let ξ be

the pretopology on X where Vξ(t) = F ∧ {t}↑ if f(t) = f(x0) and Vξ(t) = {t}↑
if f(t) 6= f(x0). Then

f(x0) ∈ limBD fξ G \ limf(BD ξ) G.

�

Corollary 2.17. The coreflector BD respects finality if and only if all filters
are D-rich.

It is clear that all filters are F-rich and also U-rich (see e.g., [8, Lemma II.6.6]
for U-rich).

Lemma 2.18. If all filters are D-rich then U ⊂ D.

Proof. Recall from [7, Lemma 22] that if the class D satisfies DX 6= ∅ for all
set X and F is a filter with D(F) = ∅, then F is not D-rich (14). In particular,
if D does not contain all ultrafilters and U is an ultrafilter that is not a D-filter,
then D(U) = ∅ and thus U is not D-rich. In other words if every filter is D-rich
then U ⊂ D. �

In view of Corollary 2.17 and Lemma 2.18:

Corollary 2.19. The coreflector BU respects finality but G, I0, I1 and Seq do
not.

To summarize the main examples we went over:

14consider f : X → {∗}.
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modifier respects initiality respects finality

Dis No Yes
Iκ Yes No
BU No Yes
G No No

Seq No No
K Yes No
χ Yes No
S Yes No
S1 Yes No
S∧1 Yes No
S0 Yes No
T No No

3. Heredity

As already noticed, in contrast to preserving initiality, preserving finality
is a rare phenomenon. Thus we focus now on questions related to preserving
initiality.

The inequality
(Fξ)|A ≤ F (ξ|A) (3.1)

is true for every functor F , as a particular case of (2.1).
We call a concrete functor F hereditary if (2.3) is restricted to inclusion

maps, that is, if
(Fξ)|A ≥ F (ξ|A) (3.2)

for every convergence ξ and every A ⊂ |ξ|. Of course, every functor that
respects initiality is hereditary, but not conversely:

Example 3.1 (An hereditary functor that does not respect initiality). Dis is
hereditary: (Dis ξ)|A = Dis(ξ|A) is the discrete topology on A, but as we have
seen in Example 2.3, Dis does not respect initiality.

We know that S0 ≥ T and S0 respects initiality, hence is hereditary. On the
other hand, this is the coarsest such modifier:

Theorem 3.2. Let J be a modifier with J ≥ T. If J is hereditary then J ≥ S0.

Proof. Assume to the contrary that Jξ � S0 ξ for some convergence ξ. Then
there is a filter F on |ξ| and x ∈ |ξ| with x ∈ limJξ F but x /∈ limS0 ξ F , that
is, there is A ∈ F# with x /∈ adhξ A. Let B = A ∪ {x}. Then, x ∈ lim(Jξ)|B G
where G = {H ⊂ A : ∃F ∈ F , F ∩ A ⊂ H} because x ∈ limJξ F ∨ A, but
x /∈ limT(ξ|B) G hence x /∈ limJ(ξ|B) G. Indeed, x /∈ adhξ|B A ⊂ adhξ A, so A is
ξ|B-closed. �

Remark 3.3. More specifically we showed that if J ≥ T and for a certain
convergence ξ we have

(Jξ)|A ≥ J(ξ|A)

for all A ⊂ |ξ|, then Jξ ≥ S0 ξ.
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Definition 3.4. If C denotes a class of convergences, CX denotes the set of
convergences on X that belong to C. A convergence ξ ∈ C is C-hereditary if
for every A ⊂ |ξ|, the subspace convergence ξ|A ∈ C. The hereditary kernel
kerH C of C is the subclass of C formed by C-hereditary convergences. The
class C is hereditary if it is equal to its hereditary kernel, that is, if every ξ ∈ C
is C-hereditary.

Note that reflective classes are initially closed, hence hereditary. In particu-
lar, given a functor F , the associated reflective class F+ is hereditary. On the
other hand, we prove (15) in a way similar to Theorem 2.11 that:

Lemma 3.5. Let F be a (concrete) functor. If F is hereditary then so is F−.
On the other hand, if F− is hereditary then the corresponding coreflector CF
is hereditary.

Theorem 3.6. Let E be an expansive functor that respects initiality. Then

Top ∩ keri TE− = Top ∩ kerH TE− = Top ∩ S0E−.

Proof. Because S0 and E respects initiality, so does S0E, hence S0E− is ini-
tially closed by Theorem 2.11 (2). Since S0 ≥ T, S0E− ⊂ TE− hence

S0E− ⊂ keri TE− ⊂ kerH TE−.

Moreover, if ξ ∈ Top ∩ kerH TE− then ξ = TEξ and for every A ⊂ |ξ| we
have

ξ|A = (TEξ)|A ≥ TE(ξ|A) ≥ T(Eξ)|A.

In view of Remark 3.3, for J = T and Eξ playing the role of ξ, we conclude
that TEξ = S0Eξ and thus ξ ∈ Top ∩ S0E−. �

In view of Propositions 2.14 and 2.15, we can apply Theorem 3.6 with E = K
and with E = I1 to the effect that:

Corollary 3.7. The hereditary kernel and initial kernel of

(1) the class of sequential topologies is the class of Fréchet topologies.
(2) the class of k-topologies is the class of k′-topologies.

In other words, as is well-known, hereditarily sequential topologies are Fréchet
topologies and hereditarily k-topologies are k′-topologies.

15

Proof. Suppose F is hereditary and let ξ in F−, that is, ξ ≥ Fξ. Then for every A ⊂ |ξ|,
ξ|A ≥ (Fξ)|A ≥ F (ξ|A) because F is hereditary, that is, ξ|A is in F−.

Assume and F− = (CF)− is hereditary. Then for every ξ and A ⊂ |ξ|, CF ξ is in F−,
which is hereditary, so that

(CF ξ)|A ≥ CF ((CF ξ)|A) ≥ CF (ξ|A)

because CF ξ ≥ ξ and thus (CF ξ)|A ≥ ξ|A. �
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