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Abstract

In this paper, we investigate new solutions to the Rhoades’ discontinuity
problem on the existence of a self-mapping which has a fixed point but
is not continuous at the fixed point on metric spaces. To do this, we
use the number defined as

n(x, y) = [d(x, y)]β [d(x, T x)]α [d(y, Ty)]γ
[
d(x, Ty) + d(y, T x)

2

]1−α−β−γ

,

where α, β, γ ∈ (0, 1) with α + β + γ < 1 and some interpolative type
contractive conditions. Also, we investigate some geometric proper-
ties of Fix(T ) under some interpolative type contractions and prove
some fixed-disc (resp. fixed-circle) results. Finally, we present a new
application to the discontinuous activation functions.

2020 MSC: 54H25; 47H09; 47H10.

Keywords: Rhoades’ open problem; fixed-circle problem; interpolative type
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1. Introduction and Motivation

There are some examples of self-mappings has a fixed point but is not con-
tinuous at this fixed point as seen in the following example:

Let (R, d) be the usual metric space with the function d : R × R → [0,∞)
defined as

d(x, y) = |x− y| ,
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for all x, y ∈ R. If we consider the self-mappings T : R → R and S : R → R
defined as

T x =

{
x ; x ≥ 0

x + 1 ; x < 0

and

Sx =

 x ; x ≤ 0
2 ; 0 < x ≤ 10
11 ; x > 10

,

for all x ∈ R, then we have Fix(T ) = {x ∈ R : x = T x} = R+ ∪ {0} and
T is discontinuous at the fixed point x = 0. Also, we obtain Fix(S) =
{x ∈ R : x = Sx} = R− ∪ {0, 2, 11} and S is discontinuous at the fixed point
x1 = 0 and x2 = 2.

In this context, in [19], Rhoades introduced the following open problem
related to the discontinuity at fixed point:

“What are the contractive conditions which are strong enough to generate
a fixed point but which do not force the map to be continuous at fixed point?”

After then, in [14], Pant obtained a first solution using the following number:

m(x, y) = max {d(x, T x), d(y, Ty)} .

As an another solution, in [2, 3], Bisht and Pant studied on this open problem
using the numbers

M(x, y) = max

{
d(x, y), d(x, T x), d(y, Ty),

d(x, Ty) + d(y, T x)

2

}
and

M∗(x, y) = max

{
d(x, y), d(x, T x), d(y, Ty),

α [d(x, Ty) + d(y, T x)]

2

}
, α ∈ [0, 1) .

Also, using different approaches, new solutions to the this problem were ob-
tained by various authors (for example, see [4], [5], [15], [16], [17], [18] and the
references therein).

On the other hand, a self-mapping can have more than one fixed point.
For example, the self-mappings T and S have more than one fixed point. For
this reason, the fixed-point theory has been studied by geometric thinking.
Recently, the following open problem has been investigated for this purpose:

“What are the geometric properties of fixed points in which case a self-
mapping has more than one fixed point?”

This problem was introduced as fixed-circle problem and first discussed in
[11]. A first solution was obtained in[11] as follows:

Let (X, d) be a metric space and Cx0,ρ a circle on X. Let us define the
mapping ϕ : X → [0,∞) as

ϕ(x) = d(x, x0),

for all x ∈ X. If there exists a self-mapping T : X → X satisfying
(C1) d(x, T x) ≤ ϕ(x)− ϕ(T x),
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(C2) d(T x, x0) ≥ ρ,
for each x ∈ Cx0,ρ, then the circle Cx0,ρ is a fixed circle of T .

After this study, various solutions were proved using different techniques (for
example, see [10], [12], [13], [16], [17], [18], [20] and the references therein).

From the above motivation, our aim is to obtain new solutions to the above
two open problems. To do this, we modify the notions of interpolative Boyd-
Wong type contraction and interpolative Matkowski type contraction. Also,
we give some necessary examples to show the validity of the obtained results
and present a new application to the discontinuous activation functions.

2. Main Results

In this section, we present some solutions to the Rhoades’ open problem on
the existence of a self-mapping which has a fixed point but is not continuous at
the fixed point on metric spaces. Also, we investigate some geometric properties
of a fixed point set Fix(T ) of a self-mapping T : X → X satisfying the used
contractive conditions.

At first, we recall the followings:
Let Ψ be the set of functions ψ : [0,∞)→ [0,∞) such that
(ψ1) ψ(0) = 0,
(ψ2) ψ(t) < t for each t > 0,
(ψ3) ψ is upper semi-continuous from the right.

Definition 2.1 ([9], Interpolative Boyd-Wong type contraction). Let (X, d)
be a metric space. We say that the self-mapping T : X → X is an interpolative
Boyd-Wong type contraction, if there exist α, β, γ ∈ (0, 1) with α + β + γ < 1
and a nondecreasing function ψ ∈ Ψ such that

d(T x, Ty) ≤ ψ

(
[d(x, y)]

β
[d(x, T x)]

α
[d(y, Ty)]

γ

[
d(x, Ty) + d(y, T x)

2

]1−α−β−γ
)

,

for all x, y ∈ X − Fix(T ).

Let Φ be the set of functions φ : [0,∞)→ [0,∞) such that
(ψ1) φ is nondecreasing,
(ψ2) lim

n→∞
φn(t) = 0 for each t > 0.

Lemma 2.2 ([1], [8]). Let φ ∈ Φ. Then φ(t) < t for all t > 0 and φ(0) = 0.

Definition 2.3 ([9], Interpolative Matkowski type contraction). Let (X, d) be
a metric space. We say that the self-mapping T : X → X is an interpolative
Matkowski type contraction, if there exist α, β, γ ∈ (0, 1) with α + β + γ < 1
and φ ∈ Φ such that

d(T x, Ty) ≤ φ

(
[d(x, y)]

β
[d(x, T x)]

α
[d(y, Ty)]

γ

[
d(x, Ty) + d(y, T x)

2

]1−α−β−γ
)

,

for all x, y ∈ X − Fix(T ).
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2.1. Some Discontinuity Results. In this subsection, to obtain new results
related to the discontinuity at the fixed point, we use the following number:

n(x, y) = [d(x, y)]
β

[d(x, T x)]
α

[d(y, Ty)]
γ

[
d(x, Ty) + d(y, T x)

2

]1−α−β−γ

,

where α, β, γ ∈ (0, 1) with α+ β + γ < 1.
We begin the following proposition:

Proposition 2.4. Let T be a self-mapping of a complete metric space (X, d)
such that for all x, y ∈ X, we have

(a) Given ε > 0, there exists a δ > 0 such that

ε ≤ n(x, y) < ε+ δ =⇒ d(T x, Ty) < ε.

Then the sequence {Tnx} is a Cauchy sequence and

lim
n→∞

Tnx = z,

for some z ∈ X and given x ∈ X.

Proof. By the condition (a), if n(x, y) > 0 then we get

d(T x, Ty) < n(x, y). (2.1)

Let x0 ∈ X and let us define a sequence {xn} in X by

xn+1 = T xn = Tnx0

and

µn = d(xn, xn+1),

n ∈ N∪ {0}. Assume that xn 6= xn+1 for each n. Using the inequality (2.1), we
obtain

µn = d(xn, xn+1) = d(T xn−1, T xn) < n(xn−1, xn)

= [d(xn−1, xn)]
β

[d(xn−1, T xn−1)]
α

[d(xn, T xn)]
γ

[
d(xn−1, T xn) + d(xn, T xn−1)

2

]1−α−β−γ

= [d(xn−1, xn)]
β

[d(xn−1, xn)]
α

[d(xn, xn+1)]
γ

[
d(xn−1, xn+1) + d(xn, xn)

2

]1−α−β−γ

= [d(xn−1, xn)]
α+β

[d(xn, xn+1)]
γ

[
d(xn−1, xn+1)

2

]1−α−β−γ

≤ [d(xn−1, xn)]
α+β

[d(xn, xn+1)]
γ

[
d(xn−1, xn) + d(xn, xn+1)

2

]1−α−β−γ

= µα+β
n−1µ

γ
n

[
µn−1 + µn

2

]1−α−β−γ

. (2.2)

Now suppose µn−1 < µn for some n ≥ 1. Hence, we get

µn−1 + µn
2

≤ µn
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and using the inequality (2.2), we have

µn ≤ µα+β
n−1µ

1−α−β
n . (2.3)

By the inequality (2.3), we find

µα+β
n ≤ µα+β

n−1 ,

a contradiction. Therefore, it should be

µn ≤ µn−1,

for all n ≥ 1. Thereby, {µn−1} is a nonincreasing sequence of positive real
numbers. Let

µ = lim
n→∞

µn−1.

Then we have
µn−1 + µn

2
≤ µn−1,

for all n ≥ 1 and using the inequality (2.2), we get

µn < µn−1.

So we obtain
lim
n→∞

µn = µ < lim
n→∞

µn−1 = µ,

a contradiction. It should be

lim
n→∞

µn = µ = 0.

Now, we show that {xn} is Cauchy. On the contrary, we assume that {xn} is
not a Cauchy sequence. Then there exist an ε > 0 and a subsequence {xni

} of
{xn} such that

d(xni
, xni+1

) > 2ε. (2.4)

Let us select δ in (a) such that 0 < δ ≤ ε. Since lim
n→∞

µn = 0, there exists a

positive integer N such that

µn <
δ

4
, (2.5)

whenever n ≥ N . Let ni > N . Hence there exist integers mi satisfying
ni < mi < ni+1 such that

d(xni , xmi) ≥ ε+
δ

2
. (2.6)

If not, then

d(xni
, xni+1

) ≤ d(xni
, xni+1−1) + d(xni+1−1, xni+1

) < ε+
δ

2
+
δ

4
< 2ε,

a contradiction. Let ri be the smallest integer such that ni < ri < ni+1 and

d(xni
, xri) ≥ ε+

δ

2
.

Then

d(xni , xri−1) < ε+
δ

2
.
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By the condition (a), we have

d(xni
, xri) = d(T xni−1, T xri−1) < n(xni−1, xri−1)

= [d(xni−1, xri−1)]
β

[d(xni−1, T xni−1)]
α

[d(xri−1, T xri−1)]
γ[

d(xni−1, T xri−1) + d(xri−1, T xni−1)

2

]1−α−β−γ

and so we get

ε ≤ 0,

a contradiction. Therefore, {xn} is Cauchy in the complete metric space (X, d)
and

lim
n→∞

xn = lim
n→∞

Tnx = z,

for some z ∈ X. �

To obtain our main discontinuity theorem, we recall the definition of the
notion of a k-continuity and give some examples.

Definition 2.5 ([15]). A self-mapping T of a metric space X is called k-
continuous, k = 1, 2, 3, . . ., if T kxn → T t whenever {xn} is a sequence in X
such that T k−1xn → t.

In this paper, unless otherwise stated, we use the usual metric on R or
X ⊂ R.

Example 2.6. Let X = [0, 4] and T : X → X be defined by

T x =

{
2 ; x ∈ [0, 2]
1 ; x ∈ (2, 4]

.

Since T xn → t implies t = 1 or t = 2 and T 2xn = 2 for all n, then T xn → t =⇒
T 2xn → t. Therefore, T is 2-continuous, but T is discontinuous at x = 2. On
the other hand, the point x = 2 is a fixed point of T .

Example 2.7. Let X = [0, 10] and T : X → X be defined by

T x =

 3 ; x ∈ [0, 3]
2 ; x ∈ (3, 6]
x
2 ; x ∈ (6, 10]

.

Then T is 3-continuous, but not 2-continuous. If attention, T has a fixed point
x = 3, but T is not continuous at this fixed point.

Remark 2.8. It is easy proved that 1-continuity is equivalent to continuity.
Also, we have the following implications

continuity =⇒ 2-continuity =⇒ 3-continuity =⇒ . . .

and the converse statements of them are not always true (see Example 2.7 and
for more details [17]).

Now we prove the following discontinuity theorem:
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Theorem 2.9. Let T be a self-mapping of a complete metric space (X, d)
satisfying the condition (a) for all x, y ∈ X. If T is k-continuous, then T has a
fixed point z. Also, T is continuous at z iff

lim
x→z

n(x, z) = 0.

Proof. Let x0 ∈ X and let us define a sequence {xn} in X by xn = T xn−1. Using
Proposition 2.4, we obtain that {xn} is Cauchy. Since (X, d) is a complete
metric space, there exists a point z ∈ X such that {xn} → z. Also, we have
Tnx→ z for each n ≥ 1.

Let T be a k-continuous self-mapping. Then we get

T kxn → T z since T k−1xn → z

and so we have
T z = z as T kxn → z.

Thereby, z is a fixed point of T . Finally, it is easily proved that T is continuous
at z iff

lim
x→z

n(x, z) = 0.

�

Example 2.10. Let X = [0, 2] and let us consider T : X → X defined by

T x =

{
1 ; x ∈ [0, 1]
0 ; x ∈ (1, 2]

,

for all x ∈ X [14]. Then T satisfies the conditions of Theorem 2.9. Indeed, let
us take

δ(ε) =

{
4− ε ; ε < 1

4 ; ε ≥ 1
.

Then T satisfies the condition (a) and T is 2-continuous. Consequently, T has
a unique fixed point x = 1 and T is discontinuous at this point.

Using the sets Ψ, Φ and the above similar arguments, we can easily prove
the following discontinuity corollaries:

Corollary 2.11. Let T be a self-mapping of a complete metric space (X, d)
satisfying the condition (a) and

(b) d(T x, Ty) ≤ ψ (n(x, y)) where ψ ∈ Ψ,
for all x, y ∈ X. If T is k-continuous, then T has a fixed point z. Also, T is

continuous at z iff
lim
x→z

n(x, z) = 0.

Corollary 2.12. Let T be a self-mapping of a complete metric space (X, d)
satisfying the condition (a) and

(c) d(T x, Ty) ≤ φ (n(x, y)) where φ ∈ Φ,
for all x, y ∈ X. If T is k-continuous, then T has a fixed point z. Also, T is

continuous at z iff
lim
x→z

n(x, z) = 0.
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2.2. Some Fixed-Disc Results. In this subsection, we investigate some geo-
metric properties of Fix(T ) under some interpolative type contractions. Before,
we recall the followings:

“Fixed-circle problem” has been occurred as a geometric approach to the
fixed-point theory when the self-mapping T : X → X has more than one fixed
point [11].

Let (X, d) be a metric space and T : X → X a self-mapping. Then the circle
is defined by

Cx0,ρ = {x ∈ X : d(x, x0) = ρ} .

If T x = x for every x ∈ Cx0,ρ then Cx0,ρ is called as the fixed circle of T (see
[11]).

After then, the notion of a fixed circle was generalized the notion of a fixed
disc as follows:

Let (X, d) be a metric space and T : X → X a self-mapping. Then the disc
is defined by

Dx0,ρ = {x ∈ X : d(x, x0) ≤ ρ} .

If T x = x for every x ∈ Dx0,ρ then Dx0,ρ is called as the fixed disc of T (see [10]
and [12]).

Now, we begin the following theorem.

Theorem 2.13. Let T be a self-mapping of a metric space (X, d) and the
number ρ defined by

ρ = inf {d(x, T x) : x /∈ Fix(T )} . (2.7)

If there exists x0 ∈ X such that

d(x, T x) < n(x, x0), (2.8)

for all x ∈ X − Fix(T ), then
(i) x0 ∈ Fix(T ),
(ii) T fixes the disc Dx0,ρ,
(iii) T fixes the circle Cx0,ρ.

Proof. (i) Let x0 ∈ X − Fix(T ). By (2.8), we get

d(x0, T x0) < n(x0, x0) = 0,

a contradiction. Hence it should be x0 ∈ Fix(T ).
(ii) Let x ∈ Dx0,ρ and x ∈ X − Fix(T ). Using (2.8) and the condition (i),

we obtain
d(x, T x) < n(x, x0) = 0,

a contradiction. So, we have x ∈ Fix(T ). Consequently, T fixes the disc Dx0,ρ.
(iii) It is clear from the condition (ii). �

Remark 2.14. If T satisfies the conditions of Theorem 2.13, then we obtain
that T is an identity map. Therefore, we rewrite Theorem 2.13 as follows:

Let T be a self-mapping of a metric space (X, d). There exists x0 ∈ X such
that

d(x, T x) < n(x, x0),
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for all x ∈ X − Fix(T ) iff T is an identity map.

From the above reason, we ignore the third term of n(x, y) as follows:

n′(x, y) = [d(x, y)]
β

[d(x, T x)]
α

[
d(x, Ty) + d(y, T x)

2

]1−α−β

,

where α, β ∈ (0, 1) with α+ β < 1.
Using the numbers n′(x, y) and ρ, we prove the following theorem:

Theorem 2.15. Let T be a self-mapping of a metric space (X, d) and the
number ρ defined as in (2.7). If there exists x0 ∈ X such that

d(x, T x) < n′(x, x0) (2.9)

and

0 < d(x0, T x) ≤ ρ, (2.10)

for all x ∈ X − Fix(T ), then
(i) x0 ∈ Fix(T ),
(ii) T fixes the disc Dx0,ρ,
(iii) T fixes the circle Cx0,ρ.

Proof. (i) Let x0 ∈ X − Fix(T ). By (2.9), we get

d(x0, T x0) < n′(x0, x0) = 0,

a contradiction. Hence it should be x0 ∈ Fix(T ).
(ii) Let x ∈ Dx0,ρ and x ∈ X−Fix(T ). Using (2.9), (2.10) and the condition

(i), we get

d(x, T x) < n′(x, x0)

= [d(x, x0)]
β

[d(x, T x)]
α

[
d(x, T x0) + d(x0, T x)

2

]1−α−β

≤ ρβ [d(x, T x)]
α
ρ1−α−β = ρ1−α [d(x, T x)]

α

≤ [d(x, T x)]
1−α

[d(x, T x)]
α

= d(x, T x),

a contradiction and so we have x ∈ Fix(T ). Consequently, T fixes the disc
Dx0,ρ.

(iii) It is a natural consequence of the condition (ii). �

We give an illustrative example:

Example 2.16. Let X = {−1, 0, 1, 2, 3, 4} and T : X → X be a self-mapping
defined by

T x =

(
−1 0 1 2 3 4
−1 0 1 2 1 4

)
,

for all x ∈ X. Then T satisfies the hypothesis of Theorem 2.15 with x0 = 0.
Indeed, for x = 3, we obtain

ρ = 2,

d(3, 1) = 2 < n′(3, 0) ≈ 2.38,
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with β = 1
2 , α ∈

(
0, 1

2

)
and

0 < d(0, 1) = 1 ≤ 2.

Consequently, 0 ∈ Fix(T ) = X − {3}, T fixes the disc D0,2 = Fix(T ) − {4}
and so T fixes the circle C0,2 = {2}.

Using the sets Ψ and Φ, we obtain the following two results:

Theorem 2.17. (Interpolative Boyd-Wong type fixed-disc result) Let T be a
self-mapping of a metric space (X, d) and the number ρ defined as in (2.7). If
there exist x0 ∈ X and ψ ∈ Ψ such that

d(x, T x) < ψ (n′(x, x0))

and
0 < d(x0, T x) ≤ ρ,

for all x ∈ X − Fix(T ), then
(i) x0 ∈ Fix(T ),
(ii) T fixes the disc Dx0,ρ,
(iii) T fixes the circle Cx0,ρ.

Proof. Using the similar arguments given in the proof of Theorem 2.15 and the
conditions (ψ1), (ψ2), we can easily proved it. �

Theorem 2.18. (Interpolative Matkowski type fixed-disc result) Let T be a
self-mapping of a metric space (X, d) and the number ρ defined as in (2.7). If
there exist x0 ∈ X and φ ∈ Φ such that

d(x, T x) < φ (n′(x, x0))

and
0 < d(x0, T x) ≤ ρ,

for all x ∈ X − Fix(T ), then
(i) x0 ∈ Fix(T ),
(ii) T fixes the disc Dx0,ρ,
(iii) T fixes the circle Cx0,ρ.

Proof. By the similar arguments used in the proof of Theorem 2.15 and Lemma
2.2, we can easily proved it. �

2.3. Discontinuous Activation Functions and an Application. In the
literature, there are some examples of activation functions which have a fixed
point and are not continuous at this fixed point. Such functions are used as
an activation function in neural networks. When the number of fixed points
of an activation function is more than one, then it is important to study a
geometry of the fixed point set of a used activation function. Therefore, in
this subsection, we give an example of discontinuous activation functions and
present an application to these functions using the obtained theoretical results
as follows:

Discontinuous activation functions are used the ability of train networks
which enables us to investigate networks of neurons (see [7] for more details).
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For example, in [7], we consider any neuron activation xi represented by the
value yi, an integer −n ≤ yi ≤ n such that

xi =

 2yi−n ; yi > 0
0 ; yi = 0

−2−yi−n ; yi < 0
.

In terms of the yi, the network can be mathematically described by an activa-
tion function of the form

yi = F

∑
j

sgn(yj)2
|yj |wij + 2nvi

 ,

where

sgn(z) =

 1 ; z > 0
0 ; z = 0
−1 ; z < 0

and F is any monotonic nondecreasing function returning an integer between
−n and n.

Now, let us consider the function sgn on X = {−1, 0, 1, 2, 3}. Then the
function sgn satisfies the conditions of Theorem 2.15 with z0 = 0. Indeed, for
z ∈ {2, 3}, we get

ρ = inf {d(2, 1), d(3, 1)} = 1,

d(2, T2) = d(2, 1) < n′(2, 0), d(3, T3) = d(3, 1) < n′(3, 0)

and

0 < d(0, T2) ≤ 1, 0 < d(0, T3) ≤ 1,

with β = 1
2 and α ≤ 1

3 . Then we have sgn(0) = 0 and the function sgn fixes
the disc D0,1 = {−1, 0, 1}, the circle C0,1 = {−1, 1}. On the other hand, the
function sgn is discontinuous at the point z0 = 0. Hence, it is not continuous
at all points in D0,1.

3. Conclusion

In this paper, we obtain new solutions to the Rhoades’ open problem on the
existence of a self-mapping which has a fixed point but is not continuous at
the fixed point and fixed-disc problem on metric spaces. For this purpose, we
inspire the known interpolative Boyd-Wong and Matkowski type contractions.
Finally, we give an application to the discontinuous activation functions.

Also, Bisht presented an overview that aims to discuss a brief historical ac-
count of the development through the definitions and comparison of weaker
forms of continuity notions in metric fixed point theory in [6]. If we consider
some known continuity notions given in [6], we obtain the following open prob-
lem:

Problem 3.1. Does Theorem 2.9 hold under other weaker continuity notions?
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