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ABSTRACT

Based on the concept of Cauchy pair T -filters, we develop an axiomatic
theory of completeness for non-symmetric spaces, such as T-quasi-
uniform (limit) spaces or L-metric spaces. We show that the category of
T-quasi-Cauchy spaces is topological and Cartesian closed and we con-
struct a finest completion for a non-complete T-quasi-Cauchy space. In
the special case of symmetry, T-quasi-Cauchy spaces can be identified
with T-Cauchy spaces.
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1. INTRODUCTION

For studying completeness and completion, apart from uniform (limit) spa-
ces, Cauchy spaces have been considered an appropriate framework, see for
example Reed’s fundamental paper [20]. A Cauchy space is a set, together
with a set of filters satisfying axioms that are derived from the properties of
Cauchy filters of a uniform limit space [16]. As uniform limit spaces, uniform
spaces and metric spaces, are symmetric, Cauchy spaces are from their very
nature designed to describe completeness in symmetric spaces.
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For many years it has been observed that non-symmetric spaces are of in-
terest. Non-symmetric metric spaces, as so-called L-categories, are at the basis
of monoidal topology, and allow a “categorical” treatment of completeness and
completion [18, 12]. Non-symmetric uniform spaces, bearing the name quasi-
uniform spaces, have been studied since the middle of the last century, see e.g.
[17]. Completeness and completion in these spaces were defined and studied,
among others, by Lindgren and Fletcher [6] with the help of Cauchy pair filters.
Recently, this approach has been used — in the realm of many-valued topology
— in T-quasi-uniform spaces [25] using T-Cauchy pair filters. In [15], we have
stated the properties of the T-Cauchy pair filters in a T-quasi-uniform space
(with a small error that we will correct in this paper). These properties can be
used as an axiomatic definition of T-quasi-Cauchy spaces, thus allowing a non-
symmetric theory of completeness and completion that encompasses the corre-
sponding approaches in T-quasi-uniform spaces or in L-metric spaces. We use
commutative and integral quantales L as basis for treating “many-valuedness”
and would like to point out that for the two-point chain L = {0,1}, T-filters
can be identified with ordinary filters and the theory developed in this paper
can be used also in the classical case of quasi-uniform (limit) spaces.

The paper is organized as follows. In the next section, we collect the nec-
essary facts and concepts about quantales, L-sets and T-filters. In the third
section we define our category of T-quasi-Cauchy spaces and give important
examples, and the fourth section is devoted to the categorical properties. Com-
pleteness and completion are studied in section 5 and section 6 shows that if
a symmetry axiom is satisfied, then our spaces can be identified with the T-
Cauchy spaces of [21]. Finally we draw some conclusions.

2. PRELIMINARIES

The triple L = (L, <, %), where (L,<) is a complete lattice with order re-
lation < and with distinct top and bottom elements T # 1, and (L,x) is
a commutative semigroup for which the top element of L acts as the unit,
ie. ax T = « for all @ € L, and * is distributive over arbitrary joins, i.e.
(Viesi) = V,cj(ai x B), is called a commutative and integral quantale,
see e.g. [12]. Important examples of such quantales are e.g. the unit inter-
val [0,1] with a left-continuous t-norm [22], or Lawvere’s quantale, the inter-
val [0, 00] with the opposite order and addition « x 8 = a + 3, extended by
a+00=004a = o0, see e.g. [5]. A further important example is the quantale
(AT, <, %) of distance distribution functions [5]. This quantale finds applica-
tions, for example, in the theory of probabilistic metric spaces [22].

In a quantale, we can define an implicationby o« - =\/{6 €L : ax§ <
B}. The implication is characterized by § < a — S if, and only if, § x a < 5.

We list some of the properties of the implication, that we will use later on.
We omit the straightforward proofs.

Lemma 2.1. Let o, 3,7,6, a;, 85 € L for j € J. The following assertions hold.
(1) Ifa<B,thena—~vy>B—=vyandy = a<vy—p.
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(2) (a=PB)*x(y—=0) <(axy)— (8x0).
(3) Njeslag = 8)=(V ey 05) = B.
(4) Njeslay = Bi) < (Vjes ) = (Ve B))-

We denote the set of L-sets in X, or, more precisely, L-subsets of X, a,b, ¢, ...
by LX = {a: X — L}. In particular, we denote for A C X, the characteristic
function Ta € LX by Ta(x) = T if x € A and Ta(z) = L otherwise. The
lattice operations are extended pointwisely from L to LX. If a € LX, b€ LY
and ¢ : X — Y is a mapping, then we define p(a) € LY by ¢(a)(y) =
Viip(a)=y @(@) for y € Y and ¢ (b) = bo ¢

For a € LX and b € LY we define the monoidal product a ® b € LX*Y by
(a ®b)(z,y) = a(z) * b(y) for all (z,y) € X x Y.

For b,d € L we denote the fuzzy inclusion order [2] by [b,d] = A\, x (b(z) —
d(x)). We collect some of the properties that we will need later.

Lemma 2.2. Leta,a’,b,t/,c€ LX,dc LY andlet o : X — Y be a mapping.
Then

(i) a<bzfand0nlyzf[a b] =

(ii) a < a' implies [a’,b] < [a, b] and b < b implies [a,b] < [a,b'];
(iii) [a,¢] A [b,¢] = [a Vb, d];

(iv) [p(a), d) = a0 (d).

For L-sets b,c € LX*¥X we define the composition, boc € LX*X, by bo
c(z,y) =V, ex c(x,2) *b(z,y) for all z,y € X and the inverse, b=! € LX*¥,
by b= (z,y) = b(y,x) for all 7,y € X.

Definition 2.3 ([24, 9, 7]). A subset F C LX is called a T-filter on X if

(T-F1) V,cx b(x) =T for all b € T
(T-F2) a,b € F implies a A b € F;
(T-F3) \/,exlb,d] = T implies d € F.

We denote the set of all T-filters on X by F| (X).

Example 2.4. For z € X, [z] = {a € L* : a(z) = T} is a T-filter. More
general, if a(z) = T for some z € X, then [a] = {b € LX : a < b} is a T-filter.

Definition 2.5 ([24, 9, 7]). A subset B C L is called a T -filter basis if

(T-B1) V,exb(x) =T for all b € B;
(T-B2) a,b € B implies \/ cg[c,a Ab] =T

For a T-filter base B, [B] = {a € L* : \/,cglb,a] = T} is a T-filter, the
T-filter generated by B. For an ordinary filter F on X, the set {Tp : F € F}
is a T-filter basis and we denote the generated T-filter by T .

For the following definitions and properties, we refer to [9, 24, 14]. The set
F/ (X) is ordered by F < G if F C G. The meet of a non-empty family (F; >J6J
of T-filters on X is given by A\, ; F; = ;. ; F; and a T-filter base for A

is given by {V,c; fj + f; €F;Vje J}

jEJ
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For a T-filter F € F(X) and a mapping ¢ : X — Y, the set {p(f) :
f € F} is a T-filter basis and we call the generated T-filter, ¢(F) € F(Y),
the image of F under ¢. We then have ¢([z]) = [p(z)] and for two mappings
p: X — Yand ¢ : Y — Z we have ¢(p(F)) = (¢ o 9)(F). For a T-
filter G € L (Y), the set {¢*(g) : g € G} is a T-filter basis if and only if
Vyew(X) g(y) =T for all g € G. In this case, we denote the generated T-filter
by ¢ (G) € F/ (X) and call it the inverse image of G under ¢. We also say
that o (G) exists. In the special case of a subset A C X and the embedding
ia:A— X, we denote for G € F| (X), in case of existence, iy (G) = G4 and
call it the trace of G on A.

ForF € F/ (X),G € F] (U) we define F®G as the T-filter on X xU generated
by the T-filter basis {f ® g : f € F,g € G}. For mappings ¢ : X — Y, :
U — V we have, with the product mapping (¢ x ¥)(x,y) = (p(z),¥(y)),
(¢ % 0)(F & G) = o(F) @ 1(G).

Finally, for T-filters ®, ¥ on X x X, we define the inverse ®~! = {a=! :
a € ®} and the composition ® oW as the T-filter generated by the T-filter basis
{boc : be ®,ce ¥}

3. T-QUASI-CAUCHY SPACES

Following [6] and [25], we call, for F,G € F' (X), (F,G) a pair T-filter if for
all feF,g€ G wehave\/ _y f(z)*g(x) = T. If this condition is satisfied, we
also say that F and G are linked. The set of all pair T-filters on X is denoted
by PF (X). For (F,G), (F',G') € PF/ (X) we write (F,G) < (F/,G) if F < F
and G < G'.

Lemma 3.1. Let ¢ : X — X’ be a mapping and let (F,G) € PF! (X). Then
(p(F), 9(G)) € PF (X").
Proof. This follows as for f € F and g € G we have

V o) xe@)@) =\ fl@)xg@)=\ fla)xg(z)=T.

' eX’ ' eX’ p(z)=a' reX
([l

Definition 3.2. A set CP C PF| (X) is called a T-quasi-Cauchy structure if

(TQC1) ([z],[z]) € CP for all z € X
(TQC2) (F',G') € CP whenever (F,G) € CP and (F,G) < (F',G') € PF (X);
(TQC3) (FAF,GAG') € CP whenever (F,G), (F',G’") € CP and \/ .y f(x)
g @) =T =V,ex f(x)xg(x) forall f €T, f'€F,geG,¢g €CG
that is, if F and G’ as well as F/ and G are linked.
The pair (X, CP) is called a T-quasi-Cauchy space. A mapping ¢ : (X,CP) —
(X',CP") is called Cauchy continuous if (p(F), o(G)) € CP" whenever (F,G) €
CP.

*

We note that a T-quasi-Cauchy structure is not just a pair of T-Cauchy
structures as defined in [21], see Section 7 below, one for each component of a
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pair T-filter, but that the condition (TQC3) links different components of the
pair T-filters. The “linking condition” in this form stems from the following
example.

Example 3.3 (T-QUnif and L-Met). A T-quasi-uniform space (fuzzy L-quasi-
uniform space [9], probabilistic quasi-uniform space [25]) is a pair (X,U) of a
set X and a T-filter Y € F/ (X x X) with the properties (TU1) U < [(z,x)]
forall z € X, (TU2) U <U oU. A mapping ¢ : (X,U) — (X',U") between
two T-quasi-uniform spaces (X,U), (X', U’) is called uniformly continuous if
U < (o x P)U).

A pair T-filter (F, G) is called a Cauchy pair T-filterin (X,U) fU < GRF,
[25]. We denote the set of Cauchy pair T-filters in (X,U) by CP*. Then
(X,CPY) is a T-quasi-Cauchy space. The axiom (TQC1) follows with [z]®[z] =
[(z,z)]. The axiom (TQC2) is obvious. We show (TQC3). Let (F,G), (F',G’) €
CPY and let \/, .y f(2) * ¢'(z) = T and \, .y f'(z) * g(x) = T for all f €
F,f'elF.geG,g € G. Then Y < G®F and U < G’ ® F' and hence, by
(TU2), U <U UL (GRF)o(G'®F). ForgeG,feF, ¢ e G, f €F we
have

(9@ f)o(gd @ f)(s1)

V g'(s) = f'(x) % g(a) = (D)

reX

g(s) < f(t) =\ @) g(@) = g'@ f(50).
reX

Therefore, we have Y < (G®@F) o (G’ ® F') = G’ ® F. Similarly, we can show

that Y < G ® F’ and we conclude

UL (GRIF)AGRF)AN (G @F)A(G'@F)=(GAG)® (FAF).

Hence (FAF, G AG') € CPY.

A uniformly continuous mapping ¢ : (X,U) — (X',U’) is Cauchy contin-
uous as a mapping ¢ : (X,CPY) — (X’,C’Pu/): For (F,G) € CPY we have
U<LGRTF and hence U’ < (¢ x p)(U) < (¢ X ©)(GRF) = v(G) ® ¢(F), that
is, we have (o(F), ¢(G)) € CPY".

This example encompasses L-metric spaces (also called continuity spaces [5],
L-categories [18, 12] or L-preordered sets [26]) (X,d) with (LM1) d(z,2) = T
for all z € X and (LM2) d(z,y) * d(y,z) < d(z, z) for all z,y,z € X. Then
[d] = {u € LX*X . d < u} is a T-quasi-uniformity [13] and we call a pair T-
filter (F,G) a Cauchy pair T-filter if [d] < G®F, ie. f T =V g ;cplg® f,d].
If F =Tz and G = Tg with filters F,G on X, then (T £, Tg) is a Cauchy pair
T-filter if and only if 7V G exists and T =V geg per Nyegaer ¥ 2).

For Lawvere’s quantale L = ([0, c0), >, +), this establishes a connection with
the definition of Cauchy sequences in quasi-metric spaces given by Doitchinov
[4]. A sequence (x,) in a quasi-metric space (X, d) is called a Cauchy sequence
if there is a co-sequence (y,,) such that for all e > 0 there is N € IN such that
for all m,n > N we have d(ym,,z,) < €. If we denote the generated filters by
F = {((zn)) and G = ((yn)), then (T £, Tg) being a Cauchy pair implies that
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(z,,) is a Cauchy sequence with (y,) as co-sequence. We note that Doitchinov
does not demand that Tz and Tg are linked.

Remark 3.4. In [25], completeness for T-quasi-uniform spaces was studied using
Cauchy pair T-filters and also using the concept of adjoint promodules. It was
shown that both approaches are equivalent. The keypoint is, that adjoint
promodules can be identified with (minimal) Cauchy pair T-filters, see also
[15]. The condition \/ .y f(z) * g(x) = T for all f € F,g € G for a Cauchy
pair T-filter (F, G) is the one half of the adjointness. We would like to mention
in this respect also the work of Preuf} [19] who studied completeness in so-called
preuniform convergence spaces by means of pre-Cauchy filters 7 on X. Also
here the existence of a “co-filter” G on X is required such that G x F belongs
to the preuniform convergence structure, without demanding the existence of
the join of F and G. It seems that both Preufl’ and Doitchinov’s theory do not
fully fit into a lax algebraic setting as it was developed e.g. in [3].

Example 3.5 (T-QULim). Relaxing one axiom of a definition given in [21], we
call a pair (X, A) a T-quasi-uniform limit space if A C F] (X x X) satisfies

(TULS1) [(z,z)] € A for all x € X;

(TULS2) If ® < ¥ and ® € A, then ¥ € A;

(TULS3) ® A ¥ € A whenever &, € A;

(TULS4) ® o ¥ € A whenever ®, ¥ € A and ® o ¥ exists.
A mapping ¢ : (X,A) — (X', A’) between the T-quasi-uniform limit spaces
(X,A) and (X', A') is called uniformly continuous if (¢ x ¢)(®) € A’ whenever
¢ c A

We call a pair T-filter (F,G) € PF/ (X) a Cauchy pair T-filterif GQF € A

and we denote the set of all Cauchy pair T-filters on (X,A) by CP*. It is
then not difficult to see that (X, CPA) is a T-quasi-Cauchy space and that a
uniformly continuous mapping ¢ : (X, A) — (X’, A’) is Cauchy continuous as
a mapping ¢ : (X,CP*) — (X',CPA/).

Example 3.6 (T-PUConv). Generalizing a definition of Preufl [19] to the
lattice-valued case, we define a T-preuniform convergence space (X, A) with
A C F/ (X x X) satisfying (TULS1) and (TULS2). We further call F € F (X)
a Cauchy T-filter if FQTF € A and we call a pair T-filter (F,G) a Cauchy pair
T-filter if G @ F € A. We denote the set of Cauchy filters by C* and the set
of Cauchy pair T-filters by CP™. It is then not difficult to show that with A
defined by

A={PecF (X xX):3IFeC'st. FOF < &},

(X, 1~\) is the finest T-preuniform convergence space such that ch = CA, i.e. for
any T-preuniform convergence space (X, A*) with CcA" = CM we have A C A*.
We note that A is symmetric in the sense that ® € A implies &1 € A If
we are looking for the finest non-symmetric T-preuniform convergence space
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(X, A) such that cPr = C’PK, then analogously we get
A={®decF (X xX):3I(F,G)ecCP st. GRF < ®}.
As F € C* implies (F,F) € CP" we see that A C A.

4. CATEGORICAL PROPERTIES

It is clear that for T-quasi-Cauchy spaces (X,CP), (X’,CP’) and (X",CP"),
the identity mapping idx : (X,CP) — (X,CP) is Cauchy continuous and
that for two Cauchy continuous mappings ¢ : (X,CP) — (X',CP'), ¢ :
(X',CP") — (X”,CP") the composition 1) o ¢ : (X,CP) — (X",CP") is
Cauchy continuous. Therefore, we can form a category which has as objects
the T-quasi-Cauchy spaces and as morphisms the Cauchy continuous mappings.
We denote this category by T-QChy.

Proposition 4.1. T-QChy is a well-fibred and topological category.

Proof. The class of all T-quasi-Cauchy structures on a fixed set X is a subset of
{0, 1}PFLT(X), that is, it is a set and hence T-QChy is fibre-small. Furthermore,
on a one-point set X = {z}, there is exactly one T-quasi-Cauchy structure,
namely CP = {([z], [])}. Hence T-QChy is well-fibred.

We show the existence of initial constructions. Consider a source (p; :
X — (X;,CP;))jecs. We define the initial T-quasi-Cauchy structure on X as
follows. For (F,G) € PF/ (X), we define (F,G) € CP if for all j € J we have
(04(F). 9,(G)) € CP;.

Then (X,CP) is a T-quasi-Cauchy space. As for each j € J and each z € X
we have (5([2]), 95 ([2])) = ([p5(@)], [p(@)]) € CP;, we see that ([z], [z]) € CP
for all z € X and (TQC1) is valid. For (TQC2) consider (F',G’) > (F,G) € CP.
Then for all j € J we have (p;(F),¢;(G)) € CP; and ¢;(F') > ¢;(F) and
0;(G") > ¢;(G). Hence (¢;(F"),,;(G")) € CP; for all j € J which implies
(F",G') € CP. To show (TQC3), let (F,G),(F',G') € CP and \/ .y f(z) *
g @) =T = Vyex fl(@) xg(x) forall f € F,f' € F',g € G,¢' € G'. Then
Va o, 300 % 9300 (5) = T =V e, 235 )(w5) * 95(9)(z) for all j €
J. As (9j(F), 9;(G)), (v;(F), 9;(G")) € CP; we conclude (p;(F AF), (G A
G")) = (¢;i([F) A p;(F),0;(G) A p;(G")) € CP; for all j € J and therefore
FAF,GAG') € CP.

It is furthermore clear that all ¢; : (X,CP) — (X,,CP;) are Cauchy
continuous. Consider finally a mapping ¢ : (X”,CP") — (X,CP) such
that ¢, o ¢ are Cauchy continuous for all j € J. For (F’,G"”) € CP" then
(23 (E), 2, (U(G))) = (5 0 Y(F"), 33 0 Y(G”)) € CP; for all j € J. This
implies (¢(F"”),¥(G")) € CP and 9 is Cauchy continuous. O

Example 4.2 (Subspace). Let (X,CP) be a T-quasi-Cauchy space and let
A C X. The initial T-quasi-Cauchy structure on A for the embedding i, :
A — X, a—> a, CP 4, is defined, for (F,G) € PF (A), by

(F,G) € CP4 < ([FL,[G]) = (ia(F), i(G)) € CP.
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The following result shows that a subspace of a T-quasi uniform space in-
duces the subspace of the T-quasi-Cauchy space.

Proposition 4.3. Let (X,U) be a T-quasi-uniform space and let A C X. Then
(F,G) € (CPY) 4 if and only if GRF > Upxa.

Proof. This follows from [GRF] = (ia xi4)(GRF) = i4(G)®ia(F) = [G|®[F]
and [G @ Flaxa =G ®F and [Uaxa] > U, see e.g. [15]. O

In a similar way, we can show the next result.

Proposition 4.4. Let (X, A) be a T-quasi-uniform limit space and let A C X.
Then (F,G) € (CP™) 4 if and only if there is ® € A such that ® o 4 exists and
GOF > ®4x4.

Example 4.5 (Product space). Let (X;,CP,) be T-quasi-Cauchy spaces for all
j € J. The initial T-quasi-Cauchy structure on the Cartesian product [ | jes Xj
with respect to the projects pr; : Hje] X; — X;, 7 —CP, is defined by

(F,G) e m—CP <= (prj(F),pr;(G)) e CP; Vj € J.

For our next result we will assume that \/ A = T for A C L implies \/ 4 a*
a = T. It was shown in [13] that this can e.g. be ensured if the quantale L is
divisible [10], i.e. if for all o, 8 € L with a < 8 there is v € L such that o =
B*~. Another sufficient condition for this is the existence of a T -approzrimating
sequence (aq,@s,...) in L with the properties L # a3 < as < ... <9 T and
VieNax = T, [15]. Here, the well-below relation (sometimes also called the
totally-below relation) is defined by « <1 8 if for all subsets D C L such that
B <\ D there is § € D such that a < 4.

We note that (AT, <) satisfies this property [15], however (AT, < x) is in
general not divisible, see [8]. Also, L being a walue quantale [5] ensures the
property, see [13].

Theorem 4.6. Let the quantale L satisfy that \/ ., x « = T whenever
VA=T for AC L. Then the category T-QChy is Cartesian closed.

Proof. We show that T-QChy has function spaces in the sense of [1]. As a
well-fibred topological category, it is then Cartesian closed.
For (X,CP),(X’,CP") € | T-QChy| we denote

H=H((X,CP),(X',CP")) ={p: (X,CP) — (X',CP’) Cauchy continuous}.
We define CP, C PF (H) by
(H,K) € CP. <= for all (F,G) € CP we have (ev(H®F),ev(K®G)) € CP’,

with the evaluation mapping ev: H x X — X', (p,x) — p(z).

We first show that (H,CP..) is a T-quasi-Cauchy space.

(TQC1) We note that for ¢ € H and a € L~ we have ev(T,} ® a)(y) =
Vevwa)=y T{ey () * alz) = V(- al@) = ¢(a)(y). Hence, for F € F[(X)
we have ¢(F) = ev([¢] ® F) and we obtain for (F,G) € CP that (ev([¢] ®
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F),ev([p] @ G)) = (o(F),(G)) € CP' by the Cauchy continuity of ¢. This
shows ([¢], [¢]) € CPe.

(TQC2) follows from (ev(H' @ F),ev(K' @ G)) > (ev(H®F),ev(K® G)) for
a pair T-filter (H',K’) > (H,K) € CP..

(TQC3) Let (H,K), (H',K') € CP. such that \/ .y h(p) « k'(p) = T =
Voen W (p) xk(p) for all h € H,h' € H', k € K, k' € K. For (F,G) € CP we
have (ev(H® F),ev(K ®@ F)), (ev(H’ ® F),ev(K' ® F)) € CP’ and

(ev((HAH')QF), ev((KAK")®F)) = (ev(HRF)Aev(H ®F), ev(K@F)Aev(K'®F)).

The assumption on the quantale yields

V ev(h® fy) xev(k @ f)(y)

yeXx’

=V V we)sf@)x \/ ¥
YyeX' p(z)=y P(2)=y

> \/ V@) fl@)«E (o) * ()
yeX’ p(z)=y

=\ o) =K« \/ [
weH reX

= TxT = T.

Similarly, V, ¢y, ev(h’' @ f)(y) * ev(k ® f)(y) = T. This is true for all h €
H,»' € H',k € K,k € K and f € F and we conclude that (ev(HAH') ®
F),ev(KAK')®F)) € CP'. Hence (HAH,KAK') € CP..

Next we show that ev : (H,CP,.) x (X,CP) — (X’,CP’) is Cauchy contin-
uous. To this end, let (H,K) € CP. x CP. Then (pry(H),prg(K)) € CP. and
(prx (H), prx (K)) € CP with the corresponding projection mappings. By the
definition of CP. we obtain (ev(pry (H)®prx (H)), ev(pru (K)oprx (K))) € CP’
and as (ev(H), ev(K)) > (ev(prg(H) ® prx (H)), ev(pra (K) ® prx (K))) we de-
duce (ev(H),ev(K)) € CP".

Finally, let ¢ : (X,CP) x (X',CP") — (X",CP") be a Cauchy continuous
mapping. For x € X, we define ¢, : X' — X" by ¢, (2') = p(z,2'). Let
(F',G') € CP'. As ([z], [x]) € CP we see that ([z] ®F', [z]®G’) € CP xCP’ and
hence, by continuity of ¢, (¢([z] ® F'), ¢([z] ® G')) € CP”. It is not difficult
to show that (0. (F), p.(G')) > (¢([z] ® F'), o([z] ® G')) and therefore ¢, is
Cauchy continuous. We can hence define ¢* : X — H((X',CP"), (X",CP"))
by ¢*(x) = ¢, and we need to show that ¢* is Cauchy continuous. Let (F,G) €
CP. Then, for all (H,K) € CP" we have (F ® H,G ® K) € CP x CP'. From
ev(p* X idx/) = ¢ we obtain with the Cauchy continuity of ¢,

(ev(e*(F) @ H),ev(p*(G) ® K)) = (¢(F ® H), o(G ® K)) € CP".

This shows that (¢*(IF), ¢*(G)) € CP. and the proof is complete. O

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 213



G. Jager

5. CONVERGENCE

For a T-quasi-Cauchy space (X,CP) we say that a pair T-filter (F,G) €
PF!(X) converges to = € X, and we write z € ¢°P(F,G), if (F A [2],G A
[z]) € CP. We note that convergent pair T-filters are Cauchy pair T-filters by
(TQCS2).

Example 5.1. Let (X,U) be a T-quasi-uniform space. In [25], see also [15],
it is defined that a pair T-filter (IF, G) converges to z if and only if [z] @ F > U
and G ® [z] > U. In [15] it was shown that this requirement is equvalent to
(F A [z],G A [z]) being a Cauchy pair T-filter.

Example 5.2. Let (X,A) be a T-quasi-uniform limit space. We say that a
pair T-filter (F,G) converges to z if [x] @ F € A and G ® [z] € A. It is not
difficult to show that this is equivalent to (F A [z], G A [z]) being a Cauchy pair
T-filter.

Proposition 5.3. Let (X,CP) be a T-quasi-Cauchy space. Convergence of
pair T-filters has the following properties. For all (F,G),(F',G') € PF(X)
and all x € X we have:

(TQL1> LS qCP([x]a [.Z‘D,
(TQL2) (F,G) < (F',G’) implies ¢°F (F,G) C ¢“P(F',G');
(TQL3) ¢°F(F,G)Ng¢‘P(F',G') C ¢‘F(FAF,GAG).

Proof. We only show (TQL3). We have (FA[z], GAlz]), (F'A[z], G’ Alx]) € CP.
The axiom (TQC3) then yields (FAF A [z], GAG' A [z]) € CP. O

Proposition 5.4. Let (X,CP) and (X',CP’) be T-quasi-Cauchy spaces and let
¢ : (X,CP) — (X',CP’) be Cauchy continuous. Then x € ¢°F(F,G) implies
(@) € ¢°F (¢(F), p(G)).

Proof. If (FA[x], GA[z]) € CP, t
[o(@)]) = (P(F A f2]), o(G A fa])

Definition 5.5. Let (X, P) be a T-quasi-Cauchy space and let A C X. We
4C

define the closure of A, A= A" by z € A if there is a pair T-filter (F,G) €
PF"(A) such that 2 € ¢¢P([F], [G ])

The following result shows that this notion of closure coincides with the
definition of closure in T-quasi-uniform spaces given by Wang and Yue [23].

hen by Cauchy continuity, (¢(F)Alp(z)], o(G)A
) €CP'. O

Proposition 5.6. Let (X,U) be a T-quasi-uniform space and let A C X. Then
ze A’ if, and only if, for all uw € U we have \/ ¢ , u(x,a) * u(a,z) = T.

U
Proof. Let x € A By the definition of CPY there is a pair T-filter (F,G)
on A such that [z] ® [F] > U and [G] ® [z] > U. Hence, for u € U, we have
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T=V;erlTey @ fiu] =V eglg ® Tay,ul. We conclude

T =V AU@ = ulz,a)* (9(a) = ula,z))

feF,geGacA

<V AU(@) *g(@) = (u(z,a) xula, z)))

feF,geGacA

<V ((\/ f<a>*g<a>>ﬁ<\/u(x,a)*um,x)))
f€eF,geG acA acA

= \/u(a:,a)*u(a,x)
acA

because (F, G) is a pair T-filter on A.

Conversely, let \/,c 4 u(z,a) * u(a,z) = T for all u € U. We define F as
the T-filter on A with T-filter basis on A, {u(z,:) : u € Uaxa}. Here,
u(z,-)(a) = u(zx,a) for a € A, that is, u(z,-) € LA. Likewise, G is the T-filter
on A with T-filter basis {u(-,x) : u € Uaxa}. The given condition guarantees
that (F, G) is a pair T-filter on A. Moreover, we have [z]®[F] > U, as for u € U
we have Ty, ®ia(u(z,-))(s,t) < u(s,t) for s,t € X. Similarly, [G] ® [z] > U.

u
This implies z € ¢¢P ([F], [G]), that is, = € ar O

We note that for an L-metric space (X,d), the closure of A in (X, [d]) is

characterized by x € ZCPM if and only if \/,. 4 d(x,a) * d(a,z) = T. This is a
characterization of closure in (X, d) used in [11].

Using the concept of convergence, we can introduce the following separation
axiom. We call a T-quasi-Cauchy space (X,CP) separated if x,y € ¢°F(F,G)
implies x = y.

Separation for T-quasi-uniform spaces was defined in [23]. The following
result shows that our definition applies also there.

Proposition 5.7. Let (X,U) be a T-quasi-uniform space. Then (X,CPY) is
separated if and only if x = y whenever u(z,y) =T = u(y,x) for allu € U.

Proof. Let (X,CPY) be separated and let u(z,y) = T = u(y, z) for all u € U.
Then [z] ® [y] > U and [y] ® [x] > U. This implies = € ¢*([y], [y]) and because
y € ¢“([y], [y]) we obtain z = y.

For the converse, let z,y € ¢ (F,G). Then [z]®F > U and G® [y] > U and
with (TU2), we conclude Y <UolU < (GR[y]) o ([z] ®F) = [z] @ [y], as (F, G)
is a pair T-filter. Similarly, we see [y] ® [x] > U. Hence, for all u € U we have
w(z,y) =T and u(y,z) = T and therefore z = y. O

For the special case of an L-metric space (X, d), we have that (X,CP) is

separated if and only if x = y whenever d(z,y) = T = d(y, z). Again, this is a
characterization of separation of an L-metric space in [11].
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6. COMPLETENESS AND COMPLETION

We say that a pair T-filter (F,G) is convergent in (X,CP) if there is z € X
such that = € ¢ (F,G), that is, if (F A [2],G A [2]) € CP. Otherwise, we call
(F,G) non-convergent. A T-quasi-Cauchy space (X,CP) is called complete if
every (F,G) € CP is convergent.

Proposition 6.1. Let (X;,CP;) be complete T-quasi-Cauchy spaces for all
j € J. Then also the product space (HjeJXj,W — CP) is complete.

Proof. Let (F,G) € m — CP. Then for all j € J, (pr;(F),pr;(G)) € CP; and
hence there is z; € X such that (pr;([F) Alz;], prj(G) Alz;]) € CP,;. We define
z = (x;)jes. Then (prj(F Alz]), pr;(G Alz])) = (pr;(F) Alz;], pri(G) Alz;]) €
CP; for all j € J and hence (F A [z],G A [z]) € m —CP. O

A completion ((X*+,CP7),¢) of a T-quasi-Cauchy space (X,CP) is a com-
plete T-quasi-Cauchy space (X*,CP") and a dense Cauchy embedding ¢ :

(X,CP) — (X+,CPT). This means that ¢ is injective and that we have

(F,G) € CP if, and only if, (4(F), 6(G)) € CP* and that $(X) " = X+.

For two completions ((XT,CPT),¢),((X~,CP~),9) of (X,CP) we call
(X+,CPT),¢) finer than ((X~,CP~),%), and we write (X+,CPT),¢) >

((X~,CP™),%), if there is a Cauchy continuous mapping h : (X+,CPT) —
(X~,CP™) such that ho ¢ = .

We are now going to construct a completion of a non-complete T-quasi-
Cauchy space (X,CP). To this end, the following relation on CP is useful. Let
(F,G), (F',G") € CP. We define

(F,G) ~ (F,G') <= (FAF,GAG)eCP.

It is clear that for (F,G) € CP we have (F,G) ~ ([z],[z]) if and only if
z € ¢°P(F,G).

Proposition 6.2. Let (X,CP) be a T-quasi-Cauchy space. The relation ~ is
an equivalence relation.

Proof. Reflexivity and symmetry of the relation are clear. We check the tran-
sitivity. Let (F,G) ~ (F/,G') and (F',G') ~ (F",G"). As FAF < F
and G' AN G” < G’ we see that for f € FAF and ¢ € G' A G” we have
Vaex f(@)*g(x) = T, because (F',G’) is a pair T-filter. Similarly, we see that
forg € GAG' and f € F' AF” we have \/ .y f(x) * g(z) = T. Hence, from
(TQC3) we obtain (FAF AF",GAG AG") € CP and, using (TQC2), we
conclude (FAF’ GAG") € CP, that is, (F,G) ~ (F”,G"). O

We denote the equivalence class of (F,G) € CP by ((F,G)).

The equivalence relation allows simple proofs of the following results.
Lemma 6.3. Let (X,CP) be a T-quasi-Cauchy space and let (F,G),(F',G') €
CP. If (F',G') < (F,G) and if x € ¢°7(F,G), then also z € ¢°7 (F',G').

Proof. If (F',G') < (F,G), then (F',G’) ~ (F,G) ~ ([z], [z]) and, by transitiv-
ity, (F',G') ~ ([z], [z]). O
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Lemma 6.4. Let (X,CP) be a T-quasi-Cauchy space. If there is a pair T -filter
(F,G) converging to both = and y, then {(H,K) € PF(X) : = € ¢¢P(H,K)} =
{(H,K) € PF (X) : y € ¢“P(H,K)}.

Proof. Clearly, (F,G) € CP and we have ([y], [y]) ~ (F,G) ~ ([z], [z]). So if
(H,K) ~ ([z], [x]), then by transitivity (H,K) ~ ([y], [y]) and vice versa.

Lemma 6.5. Let (X,CP) be a T-quasi-Cauchy space. If x € ¢°F(F,G) and
(F',G') € CP satisfies that for all f € F,g € G,f" € F',¢ € G' we have
Voex /(@) xg(a) =T =V, ex f(2) * g'(2), then x € ¢°F(F',G).

Proof. We have (FAF' ,GAG') € CP and < (F,G). According to Lemma 6.3,
v € P((FAF,G AG)) C P ((F,G)). O

We define now X* = X U {{(F,G)) : (F,G) € CP non-convergent} and we
denote j : X — X*, z —— x the embedding injection of X into X*. We define
CP* C PF!(X*) as follows. (H,K) € CP* if there is (F,G) € CP convergent
such that H > j(F) and K > j(G) or if there is (F,G) € CP non-convergent
such that H > j(F) A [{((F,G))] and K > j(G) A [{(F,G))].

Theorem 6.6. Let (X,CP) be a T-quasi-Cauchy space. Then ((X*,CP*),7)
is a completion of (X,CP).

Proof. We first show that (X*,CP”) is a T-quasi-Cauchy space. The axiom
(TQC1) follows, as for x € X we have j([z]) = [j(z)]. For {(F,G)) with (F,G) €
CP non-convergent, we have [((F,G))] > j(F) A [{(F,G))] and [((F,G))] >
3(G) A[((F, G))] and hence also ([((F,G))], [((F,G))]) € CP™.

The axiom (TQC2) is obvious.

For the axiom (TQC3), let (H, K), (H',K’) € CP* such that \/,.. . h(z*) *
E'(2*) =T =V, ecx- M (2%) % k(z*) for all h € H, b € H',k € K, k' € K'. We
distinguish four cases.

Case 1: There are (F,G), (F',G’) € CP convergent such that H > j(F),K >
J(G) and H' > j(F'),K’ > j(G'). We then have

T =V JiHE)*ilg)E")
zreX*
=\ ilH) =ilg)(2)
zeX

v V JHOUE.G))) *ig")((F,G)))

(F,G)eCP non-conv.

= Vi) =4
zeX
Similarly, \/,.x f'(2) * g(2) = T and hence (FAF',G AG") € CP convergent,
from Lemma 6.3. Therefore (j(FAF),j(GAG)) < (HAH ,KAK') and we
obtain (HAH', K AK') € CP*.
Case 2: There is (F,G) € CP convergent such that H > j(F) and K > j(G)
and there is (F’,G’) € CP non-convergent such that H' > j(F')A[{((F',G'))] and
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K > (G) A [(F, G T Vyex /@) 5 9(2) = T = Vaex f(@) 5 ¢/(x) for al
feF f el .geG,g € G, then (F,G’) would be convergent by Lemma 6.5.
Hence we may assume without loss of generality that there are f' € F/,g € G
such that \V,oy /() * g(z) £ T. As (/') V T gy € 30 A {(F, G))] <
H" we conclude, with j(g) € j(G) < K that \/ ... (5(f") V T (@ .cy) (@) *
J(@)(@*) = V,ex f'(w) x g(x) # T, a contradiction. Hence this case does not
oceur.

Case 3: There is (F',G’) € CP convergent such that H' > j(F') and K’ >
J(G') and there is (F,G) € CP non-convergent such that H > j(F) A [((F, G))]
and K > j(G) A [{(F,G))]. The arguments of case 2 can be used to show that
also this case does not occur.

Case 4: There are (F,G),(F',G') € CP non-convergent such that H >
JEVALE, G, K > j(G) A[{(F, G)) and H' > j(F) A[(F,G)], K > j(G')A
[((F/,G"))]. Then we have, for f € F, f' € F, g€ G,¢ € G,

T =V G0V T ey @) =06) VT ey

zreX*

V r@«d@v \  Teey@E) s Tieey@),

zeX z*eX*\X

and, similarly,

T = VFA@xg@v V  Twen@)sTee).

zeX TrEX\X

IE((F,G)) # (F,G)), then Ve x f(2)xg'(2) = T = V,cx f'(2) *g(2) and
FAF,GAG') € CP. As this pair T- ﬁlter is < (F,G), (F',G’) we conclude

(
((F, )> (FAF,GAG)) = ((F',G)), a contradiction. Hence ((F,G)) =
{( / ,G')). Then (IE‘,(G) ~ (F',G’) and hence (FAF,GAG') € CP is non-
convergent, too. Therefore HAH' > j(FAF)A[((FAF ,GAG'))] and KAK' >
J(GAG)A[{(FAF,GAG'))] and we have (HAH' , KAK') € CP'.

The mapping j : (X,CP) — (X*,CP*) is Cauchy continuous, as for
(F,G) € CP either (F,G) is convergent and then (j(F),j(G)) € CP*. Or
(F, G) is non-convergent and then, because j(F) > j(F) A [{(F, G))] and j(G) >
J(G) A[((E,G))), again (j(F), j(G)) € CP".

Conversely, if (j(F), j(G)) € CP*, then either there is (F',G’) € CP conver-
gent such that F > F' and G > G’ and hence (F,G) € CP by (TQC2). Or
there is (F',G’) € CP non-convergent such that j(F) > j(F') A [((F',G))] and
J(G) > j(G') A{(F',G’))]. This implies I < F and G’ < G and again with
(TQC2), (F,G) € CP.

Furthermore, (X*,CP”) is complete. If (G,K) € CP* such that H > j(F)
and K > j(G) with (F,G) € CP convergent to € X, then (H, K) is convergent
to z in (X*,CP*). If (G,K) € CP* such that H > j(F) A [{((F,G))] and
K > j(G)A[{(F,G))] with (F,G) € CP non-convergent, then (HA[((F, G))], KA
[{(F,G))]) € CP*, that is (H,K) converges to ((F,G)) in (X*,CP™).
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*

Finally, we show that j(X) = X*. Let 2* € X*. If # € X, then
(3([x]),4([x])) converges to z in (X*,CP¥). If z* = ((F,G)) with (F,G) € CP
non-convergent, then (j(F) A [((F,G))],7(G) A [{((F,G))]) € CP* and hence

~cp
(§(F),j(G)) converges to z* in (X*,CP*). Hence z* € j(X)  and the proof
is complete. (I

Theorem 6.7. Let (X,CP),(X',CP’) be T-quasi-Cauchy spaces, let (X',CP")
be complete and let ¢ : (X,CP) — (X',CP’) be Cauchy continuous. Then
there exists a Cauchy continuous mapping ¢* : (X*,CP*) — (X',CP') such
that ¢ = p*oj.

Proof. We define ¢* as follows. For * = j(x) with = € X, we define p*(z*) =
o(x) and for z* = ((F, G)) with (F,G) € CP non-convergent, we define ¢*(x*)
=y, where y is one of the limits of (o(FF), ©(G)) in (X’,CP’). We note that we
consider y as a fixed choice and that it does not depend on the representative
of (F,G)). For if (F,G) ~ (F',G’) then (FAF ,GAG') € CP and is < (F,G).
Hence, if y € ¢°F (p(F), ¢(G)), with Lemma 6.3 also y € ¢“F (o(F AF'), (G A
G')) and using (TQC?2) then also y € ¢°7 (¢(F'), p(G)).

Clearly, with this definition, we have ¢©* o j = ¢ and we have to show that
©* is Cauchy continuous. To this end, let (H,K) € CP*. We distinguish two
cases.

Case 1: There is (F,G) € CP convergent such that H > j(IF) and K >
J(G). Let x € ¢°7(F,G). Then ¢*(H) > ¢(F), ¢*(K) > ¢(G) and p(z) €
47 (9(F), 9(G)). This means (¢(F) A[p(2)], 9(G) A [p(z)]) € CP’ and (TQC2)
yields (o*(H), p*(K)) € CP".

Case 2: There is (F,G) € CP non-convergent such that H > j(F) A[((F,G))
and K > j(G) A [((F,G))]. We conclude ¢ (H) > ¢*(j(F)) A [¢*({(F, G)))] =
¢(F) A [y] and, similarly, 9*(K) > ¢(G) A [y], where y € ¢°7 (o(F), ¢(G)).
Hence (p(F)Aly], p(G) Aly]) € CP" and, again with (TQC2), (¢*(H), »*(K)) €
CcP'. O
Corollary 6.8. Let (X,CP) be a T-quasi-Cauchy space. Then ((X*,CP*),7)
is the finest completion of (X,CP).

Proof. If ((X~,CP~),) is a further completion, then ¢ : (X,C) —
(X~,CP") is Cauchy continuous and (X~,CP") is complete. Theorem 6.7
ensures that there exists a Cauchy continuous mapping ¢* : (X*,CP*) —
(X~,CP") such that v* o j = 1. Hence, ((X*,CP*),j) > (X~,CP™),v). O

Corollary 6.9. Let (X,CPx),(Y,CPy) be T-quasi-Cauchy spaces and let ¢
(X,CPx) — (Y,CPy) be Cauchy continuous. We denote the finest comple-
tions of (X,CPx) and (Y,CPy) by ((X*,CP%),jix) and (Y*,CPY),jy), re-
spectively. Then there exists a Cauchy continuous mapping ¢* : (X*,CP%) —
(Y*,CPY) such that p* o jx = jy o p.

Proof. We consider the Cauchy continuous mapping g = jy o ¢ : (X,CP) —
(Y*,CP3 ). Then there exists a Cauchy continuous mapping ¢* : (X*,CP*) —
(Y*,CP5y) such that p* o jx = g.

O
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Finally, we are showing that separation carries over from (X,CP) to
(X*,CP").

Proposition 6.10. Let (X,CP) be a separated T-quasi-Cauchy space. Then
also (X*,CP*) is separated.

Proof. Let z*,y* € ¢°F" (H,K). We distinguish three cases.

Case 1: z* = j(z),y* = j(y) with 2,55 € X. Then, by definition of ¢°%", we
have (H A [j(2)], K A j(2)]) € CP* and (H A [j(y)], K A i(y)) € CP".

IHHAL(2)] > §(F)AL(F, G))] and KALi(z)] > §(G)A[{(F.G))] with (F,G) €
CP non-convergent, then for f € F we have that j(f) V T wg) € HA [j(x)].
Hence

T=\11BVTiwi(f)V Twey <ilF)i) = f(),
heH

and we have F < [z]. Similarly, we obtain G < [z] and hence (F,G) converges
to z in (X,CP), a contradiction. Hence we must have H A [j(z)] > j(F) and
KA [j(z)] > j(G) with (F,G) € CP convergent. If we assume that (F,G)
converges to T, then H A [j(z)] > j(F) A [j(Z)] and for f € F we have j(f) V
Ti@ € HA[j(x)]. This implies

T= VIV Tiw NV Ti@l <iN6@) VT @)
heH

If j(T) # j(x), then f(z) = T and we see that F < [z]. Similarly, G < [z] and
hence (F,G) converges also to x. As (X,CP) is separated, we obtain x = 7.

As a result, we have that the convergence of (H,K) to j(z) in (X*,CP™)
implies the existence of (F,G) € CP converging to z, such that H > j(IF) and
K > j(G). In the same way, (F',G’) € CP exists, converging to y and H > j(F')
and K > j(G’). We conclude that j (H) and j¢ (K) exist. We show this for
JS(H). For f € F and h € H we have h A j(f) € H and as H is a T-filter, we
conclude

T= "\ (hAj(f <V hi@) =\ i
rreX* z€X zeX
We conclude j< (H) > F, j(K) > G and also j< (H) > F' and j<(K) > G'.
We note that (H,K) is a pair T-filter and H > j(F),K > j(G) and we fix
f€F,g€G. Then for h € H,k € K we have h A j(f) € H,k A j(g) € K and
hence,

T =\ AG))ET)*(kAG(9) (")
rreX*
<\ @) < kG(@) =\ 7 (R)() * 5 (k)(x)
reX zeX

and hence (j (H),j (K)) is a pair T-filter converging to both x and y in
(X,CP). Separation yields x = y, i.e. z* = y*.
Case 2: 2" = ((F,G)), y* = <(F' G)) w

wi ) (F’,G’) € CP non-
convergent. Then (H A [((F,G))],K A [((F,G))

ith (F,
))ecC If we assume H A
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[((F,G))] > j(F) and [((F,G))] > j(G) with (F,@) € CP convergent, then for
feFwehad T =\, ulhV Trey.i(f)] <i(f)((F,G))) = L, a contradic-
tion. Hence we must have H A [((F,G))] > j(F) A [((F,G))] with (F,G) € CP

non-convergent. For f € F then

T=V0hVvTi@e iV T <TEe(FG).
heH
Hence ((F,G)) = ((F,G)) and we conclude H > j(F) A [{((F,G))],K > j(G) A
[((F,G))]. In the same way we see that also H > j(F') A ((F/,G"))],K >
J(G) A((F',G"))]. As (H,K) is a pair T-filter, we conclude, for f € F and
g € G’ that

T =\ G0V Tme @) () V Tieen) )
e X*
= \/ fl@)+g
rzeX
v V Tx.e)) ((F,G))) * T @ o)y ((F, G))).

(F,G)eCP non-conv.

If (F,G)) # ((F',G")), then \/ . x f(x) x¢’(x) = T and, with analogous argu-
ments, \/ oy f'(z) xg(x) =T for f' € F',g € G. Therefore, (FAF,GAG’) €
CP, < (F,G),(F',G") and we conclude (F,G) ~ (FAF ,GAG') ~ (F/,G’) and
we have also in this case 2* = ((F,G)) = ((F',G')) =y

Case 3: x* = j(z) with z € X and y* = ((F,G)) with (F,G) € CP non-
convergent. As we have seen before, then H > j(F’) and K > j(G’) with
(F",G’) € CP convergent and H > j(F) A [{(F,G))] and H > j(G) A [{(F,G))].
For f" € " and g € G we have j(f') € H and j(g) V T (r,c)) € K and because
(H, H) is a T-pair filter we obtain

T=\ i) G0V TEe)e) =\ 1@
zrEX* zeX
Hence, F’, G are linked. Similarly, we can show that also F, G’ are linked and
hence (FATF' G AG’) € CP. As this pair T-filter is < (F/,G’) it is convergent
and therefore also (F, G) is convergent, a contradiction. Hence this case cannot
occur. O

7. SYMMETRY — T-CAUCHY SPACES
Let (X,CP) be a T-quasi-Cauchy space. We call (X,CP) symmetric if the
axiom
(TQCS) (F,G) € CP implies (G,F) € CP
is satisfied.

For T-quasi-uniform spaces and L-metric spaces, we obtain the usual con-
cepts.

Proposition 7.1. Let (X,U) be a T-quasi-uniform space. Then (X, CPZ’{) 18
symmetric if, and only if, U <U™".
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Proof. Let first (X,CPY) be symmetric. It was shown in [25] that, for each
re X, Ux,-),U(-,x)) € CPY where U(x,-) is generated by the T-filter basis
{u(z,) : uw € U} and U(-,xz) is generated by the T-filter basis {u(-,x)

u € U}. A T-filter basis for A . U(-,z) @ U(x,-) is given by the L-sets b =
Vaex u(-z) @u(z,-) with u € U and we have b(s,t) > u(s, s) xu(s,t) = u(s, t).
Hence we have A . U(-,z) @ U(x,-) <U and we conclude

u<s N GeF< A\ Utz eU)<U
(F,G)eCcP4 TEX

Therefore, using the symmetry of (X,CPY), we conclude
u't= A GeF)'>= A\ FeG=U

(F,G)eCPU (G,F)ecPU
For the converse, let (F,G) € CPY. Then G ® F > U and hence F ® G =
(GeF)~' >U~' > U, that is, (G,F) € CPY. O

Corollary 7.2. Let (X,d) be an L-metric space. Then (X, C’P[d]) 8 symmetric
if, and only if, d(x,y) = d(y,x) for all x,y € X.

In the sequel we are going to show that symmetric T-quasi-Cauchy spaces
can be identified with T-Cauchy spaces. Reid and Richardson [21] gave the
following definition. A T-Cauchy space (X,C)) is a set X with a set of T-filters
C C F'(X) such that
(TC1) [z] € C for all x € X;

(TC2) If G <F and F € C, then G € C;

(TC3) FAG € C whenever F,G € C and \/ .y f(z) * g(x) = T for all f €
F,g €G.

A mapping ¢ : (X,C) — (X’,C’) is called Cauchy continuous if p(F) € C’

whenever F € C. We denote the category of T-Cauchy spaces with Cauchy

continuous mappings as morphisms by T-Chy.

Let now (X,CP) be a T-quasi-Cauchy space. We define

Cep={HeF/ (X) : (H,H) e CP}.
The proofs of the following propositions are straightforward and not shown.

Proposition 7.3. Let (X,CP) be a T-quasi-Cauchy space. Then (X,Cep) is
a T-Cauchy space.

Proposition 7.4. If ¢ : (X,CP) — (X',CP’) is Cauchy continuous, then
v (X,Cep) — (X', Cepr) is Cauchy continuous.

Hence we have a functor F : T-QChy — T-Chy which maps a T-quasi-
Cauchy space (X,CP) to the T-Cauchy space (X,Ccp) and leaves morphisms
unchanged.

Let now (X,C) be a T-Cauchy space. We define

CPe ={(F,G) e PF/(X) : IH € C s.t. (H,H) < (F,G)}.

Again, we omit the straightforward proofs of the following results.
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Proposition 7.5. Let (X,C) be a T-Cauchy space. Then (X,CPc) is a sym-
metric T-quasi-Cauchy space.

Proposition 7.6. If ¢ : (X,C) — (X',C’) is Cauchy continuous, then ¢ :
(X,CPc) — (X',CPc) is Cauchy continuous.

Hence we have another functor G : T-Chy — T-QChy which maps a T-
Cauchy space (X,C) to the T-quasi-Cauchy space (X,CP¢) and leaves mor-
phisms unchanged.

Proposition 7.7. We have F o G =idt_chy and Go F > idt_qchy.

Proof. For a T-Cauchy space (X,C), we have F € C¢p,) if, and only if, (F,F) €
CP¢, if, and only if, there is H € C such that (H,H) < (F,F) if, and only if,
there is H € C such that H < F. This is equivalent to F € C.

For a T-quasi-Cauchy space (X,CP), we have (F,G) € CP(c.,) if, and
only if, there is H € Cep such that (H,H) < (F,G), if, and only if, there
is H € F/(X) such that (H,H) € CP and (H,H) < (F,G). This implies
(F,G) € CP. Hence we have shown CP .,y € CP. We note that if (X,CP)
is symmetric, we even have equality, as (F,G) € CP implies (G,F) € CP and
hence (FAG,FAG) € CP and we can choose H =F A G. O

Corollary 7.8. The category T-Chy is isomorphic to a reflective subcategory
of the category T-QChy

We denote the subcategory of symmetric T-quasi-Cauchy spaces by
T-sQChy. We restrict the domain of the functor F to this subcategory, and
note that the codomain of G is automatically in this subcategory. Denoting
these resulting functors again by F,G, we even have F o G = idt_chy and
GoF = idT—sQChy-

Corollary 7.9. The categories T-Chy and T-sQChy are isomorphic.

In this way we can identify symmetric T-quasi-Cauchy spaces and T-Cauchy
spaces.

Proposition 7.10. Let (X,CP) be a T -quasi-Cauchy space and ((X*,CP™), j)
be the finest completion. If (X,CP) is symmetric, then so is (X*,CP™).

Proof. This follows directly from the definition of CP*. O

We will finally outline, that for a symmetric T-quasi-Cauchy space (X, CP),
we can construct (X*,CP*) in a different way. We first need some definitions
[21].

Let (X,C) be a T-Cauchy space. A T-filter F € F| (X) converges to z € X
if FA[x] € C. The space (X,C) is called complete if each F € C converges to

some x € X. For a subset A C X we define the C-closure of A by x € ZC if
there is F € F/ (A) such that [F] A [z] € C. A completion ((X,C*),¢) of a
T-Cauchy space (X,C) is a complete T-Cauchy space (X*,CT) with a dense
embedding ¢ : X — X, that is, we have ¢(F) € C* if, and only if, F € C
— ¢t
and ¢(X) =XT.
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Lemma 7.11. A T- Cauchy space (X,C) is complete if, and only if, (X,CP¢)
is complete.

Proof. If (X,C) is complete and (F,G) € CP¢ then there is H € C such that
(H,H) < (F,G). Hence there is € X such that HA [z] € C and (HA [z],H A
[z]) < (F A [z],G A [z]). This means that (F,G) converges to = in (X,CP¢).
Hence, (X,CPc¢) is complete.

Conversely, if (X,CP¢) is complete and H € C, then (H, H) € CP¢ and there
is © € X such that (HA [z],HA[z]) € CP¢. By definition of CP¢ thereisF € C
auch that (F,F) < (H A [z],H A [z]) which shows H A [z] € C and (X,C) is
complete. O

Lemma 7.12. If the T-quasi-Cauchy space (X,CP) is complete, then also
(X,Cep) is complete. If (X,CP) is symmelric, then we have equivalence.

Proof. Let (X,CP) be complete and let F € Cep. Then (F,F) € CP and hence
there is z € X such that (F A [z],F A [z]) € CP. This means that F A [z] € Ccp
and (X, Cep) is complete.

If (X,CP) is symmetric and (X,Ccp) is complete, then for (F,G) € CP we
have (FAG,FAG) € CP and hence, F AG € Cep. Therefore, there is € X
such that F A G A [z] € Cep and we conclude (F A [z],G A [z]) € CP. Hence,
(X,CP) is complete. O

Reid and Richardson constructed a finest completion as follows [21]. With
the equivalence relation on C, given by F ~ G if F A G € C, we denote the
equivalence class of F € C by (F) and we define Xt = X U{(F) : F €
C non-convergent}. Then ((X1,CT1),;T) is defined by j*(z) = x for z € X
and H € C* if either H > j(F) for some convergent F € C or H > j(F) A [(F)]
with some F € C non-convergent.

Proposition 7.13. Let (X,CP) be a symmetric T-quasi-Cauchy space. For
(F,G),(F',G') € CP we have (F,G) ~ (F',G’) in (X,CP) if, and only if, F ~ F’
m (X, Ccp).

Proof. Let first (F,G) ~ (F/,G’). The symmetry of (X,CP) ensures F,F' €
Cep. From (FAF G AG’') € CP we conclude, again by symmetry, that (F A
FAGAG ,FAF AGAG') € CP and, using (TQC2), (FAF FAF) e CP,
that is, F AF" € Cep. Therefore F ~ F'.

If FAF € Cep, then (FAF,FATF) € CP. As (F,G),(F,G') € CP, we
conclude (FAG,FAG), (" NG ,F' ANG’) € CP. Applying (TQC3) twice, we
conclude (FAF' AGAG',FAF' AGAG') € CP. (TQC2) yields (FAF' ,GAG') €
CP, that is (F,G) ~ (F',G’). O

We note that by symmetry we also have G ~ G’ in (X, C¢p) if, and only if,
(F,G) ~ (F',G") e CP.

Corollary 7.14. The pair T-filter (F,G) converges to = in (X,CP) if, and
only if, F converges to x in (X,Ccep).
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As a consequence, the mapping 7 : {{(F,G)) : (F,G) € CP non-convergent}
— {(F) : F € Ccp non-convergent} defined by n({(F,G))) = (F) is a bijection
and we can identify in this way X* and j (from the finest completion of (X, CP))
and X* and j© (from the finest completion of (X,Ccp) for a symmetric T-
quasi-Cauchy space.

Moreover, we can deduce the following result.

Corollary 7.15. Let (X,CP) be a symmetric T-quasi-Cauchy space and let
—Ccp

ACX. Then A7 =4

If we have a symmetric T-quasi-Cauchy space (X,CP), then we can construct
the finest completion (X*,CP*). Alternatively, we can move to the T-Cauchy
space (X,Ccp) and construct the finest completion (X, (Cep)™) and from
there move to (X+,CPc,,y+). Identifying X+ with X*, we will show that
(Xt,CPcopy+) = (X*,CP™). First of all, we notice that for (F,G) € CP we
have F,G € Ccp and hence j(FF), j(G) € (Cep)t which implies (j(F),5(G)) €
CP(cep)y+- Conversely, if (j(F),7(G)) € CP(copy+, then there is H € (Cep)™
such that H < j(F),j(G). Hence j(F),j(G) € (Ccp)™, which implies F,G €
Cep. This means that (F,F), (G,G) € CP, and as (F,G) is a pair T-filter, we
conclude with (TQC3) (FAG,FAG) € CP. Hence, also (F,G) € CP. Corollary
7.15 and Lemma 7.11 thus show that ((X*,CP(c..)+),J) is a completion of
(X,CP) and therefore, ((X*,CP*), ) being the finest completion, we see that
CP* C CP(cepy+- For the converse subsethood relation, we take (H,K) €
CP(cep)+- Then there is H' € (Cep)™ such that (H',H') < (H,K). Then either
there is a convergent F € Cep, that is (F,F) € CP such that j(F) < H < H, K,
which shows (H,K) € CP*. Or there is F € Ccp non-convergent such that
JE)A[(F)] <H'. Then (F,F) € CP is non-convergent and, upon identification
(F) = ((F,T)), we conclude j(F) A [{(F,F))] < H < H,K which again implies
(H,K) € CP*. Hence we have proven the following result.

Proposition 7.16. For a symmetric T -quasi-Cauchy space (X,CP) we have
(X*?CP*) = (X*7CP(CCP)+)'

We note that in the non-symmetric case, (X*,CPc,,)+) is in general not a
completion of (X,CP). To see this, we consider a complete T-quasi-Cauchy
space (X,CP). Then (X,Ccp) is a complete T-Cauchy space and we get
(X*,CP*) = (X,CP) and (X, (Cep)™) = (X,Ccp) and from there, the com-
plete T-quasi-Cauchy space (X,CP(c.,)). As (X,CP) is non-symmetric, there
is (F,G) € CP such that (G,F) ¢ CP. Since CP ¢,y € CP, this (F,G) cannot
be in CP(c.py. Hence, j = idx : (X,CP) — (X,CP.p)) is not Cauchy
continuous.

8. CONCLUSIONS

We defined a non-symmetric framework for studying completeness and com-
pletion, generalizing the T-Cauchy pair filters in a T-uniform space that were
used in [25] and [15]. Our category of T-quasi-Cauchy spaces has nice categor-
ical properties and covers the important examples of T-quasi-uniform spaces
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and L-metric spaces. It allows a theory of completeness and completion which
is patterned after the corresponding theory in the symmetric case [21]. In the
future, completions with special properties, e.g. diagonal completions or reg-
ular completions, can be studied using similar techniques as in [21] and the
connection to completions of T-quasi-uniform (limit) spaces are of interest. It
would also be interesting to see if such a non-symmetric theory of completeness
and completion finds a place in the field of monoidal topology [12].
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