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Abstract

Based on the concept of Cauchy pair >-filters, we develop an axiomatic
theory of completeness for non-symmetric spaces, such as >-quasi-
uniform (limit) spaces or L-metric spaces. We show that the category of
>-quasi-Cauchy spaces is topological and Cartesian closed and we con-
struct a finest completion for a non-complete >-quasi-Cauchy space. In
the special case of symmetry, >-quasi-Cauchy spaces can be identified
with >-Cauchy spaces.

2020 MSC: 54A40; 54A05; 54A20; 54E15.

Keywords: fuzzy topology; pair >-filter; Cauchy pair >-filter; >-quasi-
Cauchy space; >-quasi-uniform space; >-quasi-uniform limit
space; L-metric space.

1. Introduction

For studying completeness and completion, apart from uniform (limit) spa-
ces, Cauchy spaces have been considered an appropriate framework, see for
example Reed’s fundamental paper [20]. A Cauchy space is a set, together
with a set of filters satisfying axioms that are derived from the properties of
Cauchy filters of a uniform limit space [16]. As uniform limit spaces, uniform
spaces and metric spaces, are symmetric, Cauchy spaces are from their very
nature designed to describe completeness in symmetric spaces.
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For many years it has been observed that non-symmetric spaces are of in-
terest. Non-symmetric metric spaces, as so-called L-categories, are at the basis
of monoidal topology, and allow a “categorical” treatment of completeness and
completion [18, 12]. Non-symmetric uniform spaces, bearing the name quasi-
uniform spaces, have been studied since the middle of the last century, see e.g.
[17]. Completeness and completion in these spaces were defined and studied,
among others, by Lindgren and Fletcher [6] with the help of Cauchy pair filters.
Recently, this approach has been used – in the realm of many-valued topology
– in >-quasi-uniform spaces [25] using >-Cauchy pair filters. In [15], we have
stated the properties of the >-Cauchy pair filters in a >-quasi-uniform space
(with a small error that we will correct in this paper). These properties can be
used as an axiomatic definition of >-quasi-Cauchy spaces, thus allowing a non-
symmetric theory of completeness and completion that encompasses the corre-
sponding approaches in >-quasi-uniform spaces or in L-metric spaces. We use
commutative and integral quantales L as basis for treating “many-valuedness”
and would like to point out that for the two-point chain L = {0, 1}, >-filters
can be identified with ordinary filters and the theory developed in this paper
can be used also in the classical case of quasi-uniform (limit) spaces.

The paper is organized as follows. In the next section, we collect the nec-
essary facts and concepts about quantales, L-sets and >-filters. In the third
section we define our category of >-quasi-Cauchy spaces and give important
examples, and the fourth section is devoted to the categorical properties. Com-
pleteness and completion are studied in section 5 and section 6 shows that if
a symmetry axiom is satisfied, then our spaces can be identified with the >-
Cauchy spaces of [21]. Finally we draw some conclusions.

2. Preliminaries

The triple L = (L,≤, ∗), where (L,≤) is a complete lattice with order re-
lation ≤ and with distinct top and bottom elements > 6= ⊥, and (L, ∗) is
a commutative semigroup for which the top element of L acts as the unit,
i.e. α ∗ > = α for all α ∈ L, and ∗ is distributive over arbitrary joins, i.e.
(
∨
i∈J αi) ∗ β =

∨
i∈J(αi ∗ β), is called a commutative and integral quantale,

see e.g. [12]. Important examples of such quantales are e.g. the unit inter-
val [0, 1] with a left-continuous t-norm [22], or Lawvere’s quantale, the inter-
val [0,∞] with the opposite order and addition α ∗ β = α + β, extended by
α+∞ =∞+ a =∞, see e.g. [5]. A further important example is the quantale
(∆+,≤, ∗) of distance distribution functions [5]. This quantale finds applica-
tions, for example, in the theory of probabilistic metric spaces [22].

In a quantale, we can define an implication by α→ β =
∨
{δ ∈ L : α ∗ δ ≤

β}. The implication is characterized by δ ≤ α→ β if, and only if, δ ∗ α ≤ β.
We list some of the properties of the implication, that we will use later on.

We omit the straightforward proofs.

Lemma 2.1. Let α, β, γ, δ, αj , βj ∈ L for j ∈ J . The following assertions hold.

(1) If α ≤ β, then α→ γ ≥ β → γ and γ → α ≤ γ → β.
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(2) (α→ β) ∗ (γ → δ) ≤ (α ∗ γ)→ (β ∗ δ).
(3)

∧
j∈J(αj → β) = (

∨
j∈J αj)→ β.

(4)
∧
j∈J(αj → βj) ≤ (

∨
j∈J αj)→ (

∨
j∈J βj).

We denote the set of L-sets in X, or, more precisely, L-subsets of X, a, b, c, ...
by LX = {a : X −→ L}. In particular, we denote for A ⊆ X, the characteristic
function >A ∈ LX by >A(x) = > if x ∈ A and >A(x) = ⊥ otherwise. The
lattice operations are extended pointwisely from L to LX . If a ∈ LX , b ∈ LY
and ϕ : X −→ Y is a mapping, then we define ϕ(a) ∈ LY by ϕ(a)(y) =∨
x:ϕ(x)=y a(x) for y ∈ Y and ϕ←(b) = b ◦ ϕ.

For a ∈ LX and b ∈ LY we define the monoidal product a ⊗ b ∈ LX×Y by
(a⊗ b)(x, y) = a(x) ∗ b(y) for all (x, y) ∈ X × Y .

For b, d ∈ LX we denote the fuzzy inclusion order [2] by [b, d] =
∧
x∈X(b(x)→

d(x)). We collect some of the properties that we will need later.

Lemma 2.2. Let a, a′, b, b′, c ∈ LX , d ∈ LY and let ϕ : X −→ Y be a mapping.
Then

(i) a ≤ b if and only if [a, b] = >;
(ii) a ≤ a′ implies [a′, b] ≤ [a, b] and b ≤ b′ implies [a, b] ≤ [a, b′];

(iii) [a, c] ∧ [b, c] = [a ∨ b, c];
(iv) [ϕ(a), d] = [a, ϕ←(d)].

For L-sets b, c ∈ LX×X we define the composition, b ◦ c ∈ LX×X , by b ◦
c(x, y) =

∨
z∈X c(x, z) ∗ b(z, y) for all x, y ∈ X and the inverse, b−1 ∈ LX×X ,

by b−1(x, y) = b(y, x) for all x, y ∈ X.

Definition 2.3 ([24, 9, 7]). A subset F ⊆ LX is called a >-filter on X if

(>-F1)
∨
x∈X b(x) = > for all b ∈ F;

(>-F2) a, b ∈ F implies a ∧ b ∈ F;
(>-F3)

∨
b∈F[b, d] = > implies d ∈ F.

We denote the set of all >-filters on X by F>L (X).

Example 2.4. For x ∈ X, [x] = {a ∈ LX : a(x) = >} is a >-filter. More
general, if a(x) = > for some x ∈ X, then [a] = {b ∈ LX : a ≤ b} is a >-filter.

Definition 2.5 ([24, 9, 7]). A subset B ⊆ LX is called a >-filter basis if

(>-B1)
∨
x∈X b(x) = > for all b ∈ B;

(>-B2) a, b ∈ B implies
∨
c∈B[c, a ∧ b] = >.

For a >-filter base B, [B] = {a ∈ LX :
∨
b∈B[b, a] = >} is a >-filter, the

>-filter generated by B. For an ordinary filter F on X, the set {>F : F ∈ F}
is a >-filter basis and we denote the generated >-filter by >F .

For the following definitions and properties, we refer to [9, 24, 14]. The set
F>L (X) is ordered by F ≤ G if F ⊆ G. The meet of a non-empty family (Fj)j∈J
of >-filters on X is given by

∧
j∈J Fj =

⋂
j∈J Fj and a >-filter base for

∧
j∈J Fj

is given by {
∨
j∈J fj : fj ∈ Fj ∀j ∈ J}.
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For a >-filter F ∈ F>L (X) and a mapping ϕ : X −→ Y , the set {ϕ(f) :
f ∈ F} is a >-filter basis and we call the generated >-filter, ϕ(F) ∈ F>L (Y ),
the image of F under ϕ. We then have ϕ([x]) = [ϕ(x)] and for two mappings
ϕ : X −→ Y and ψ : Y −→ Z we have ψ(ϕ(F)) = (ψ ◦ ϕ)(F). For a >-
filter G ∈ L>L (Y ), the set {ϕ←(g) : g ∈ G} is a >-filter basis if and only if∨
y∈ϕ(X) g(y) = > for all g ∈ G. In this case, we denote the generated >-filter

by ϕ←(G) ∈ F>L (X) and call it the inverse image of G under ϕ. We also say
that ϕ←(G) exists. In the special case of a subset A ⊆ X and the embedding
iA : A −→ X, we denote for G ∈ F>L (X), in case of existence, i←A (G) = GA and
call it the trace of G on A.

For F ∈ F>L (X),G ∈ F>L (U) we define F⊗G as the>-filter onX×U generated
by the >-filter basis {f ⊗ g : f ∈ F, g ∈ G}. For mappings ϕ : X −→ Y, ψ :
U −→ V we have, with the product mapping (ϕ × ψ)(x, y) = (ϕ(x), ψ(y)),
(ϕ× ψ)(F⊗G) = ϕ(F)⊗ ψ(G).

Finally, for >-filters Φ,Ψ on X × X, we define the inverse Φ−1 = {a−1 :
a ∈ Φ} and the composition Φ◦Ψ as the >-filter generated by the >-filter basis
{b ◦ c : b ∈ Φ, c ∈ Ψ}.

3. >-quasi-Cauchy spaces

Following [6] and [25], we call, for F,G ∈ F>L (X), (F,G) a pair >-filter if for
all f ∈ F, g ∈ G we have

∨
x∈X f(x)∗g(x) = >. If this condition is satisfied, we

also say that F and G are linked. The set of all pair >-filters on X is denoted
by PF>L (X). For (F,G), (F′,G′) ∈ PF>L (X) we write (F,G) ≤ (F′,G′) if F ≤ F′
and G ≤ G′.

Lemma 3.1. Let ϕ : X −→ X ′ be a mapping and let (F,G) ∈ PF>L (X). Then

(ϕ(F), ϕ(G)) ∈ PF>L (X ′).

Proof. This follows as for f ∈ F and g ∈ G we have∨
x′∈X′

ϕ(f)(x′) ∗ ϕ(g)(x′) ≥
∨

x′∈X′

∨
ϕ(x)=x′

f(x) ∗ g(x) =
∨
x∈X

f(x) ∗ g(x) = >.

�

Definition 3.2. A set CP ⊆ PF>L (X) is called a >-quasi-Cauchy structure if

(TQC1) ([x], [x]) ∈ CP for all x ∈ X;

(TQC2) (F′,G′) ∈ CP whenever (F,G) ∈ CP and (F,G) ≤ (F′,G′) ∈ PF>L (X);
(TQC3) (F ∧ F′,G ∧G′) ∈ CP whenever (F,G), (F′,G′) ∈ CP and

∨
x∈X f(x) ∗

g′(x) = > =
∨
x∈X f

′(x) ∗ g(x) for all f ∈ F, f ′ ∈ F′, g ∈ G, g′ ∈ G′,
that is, if F and G′ as well as F′ and G are linked.

The pair (X, CP) is called a >-quasi-Cauchy space. A mapping ϕ : (X, CP) −→
(X ′, CP ′) is called Cauchy continuous if (ϕ(F), ϕ(G)) ∈ CP ′ whenever (F,G) ∈
CP.

We note that a >-quasi-Cauchy structure is not just a pair of >-Cauchy
structures as defined in [21], see Section 7 below, one for each component of a
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pair >-filter, but that the condition (TQC3) links different components of the
pair >-filters. The “linking condition” in this form stems from the following
example.

Example 3.3 (>-QUnif and L-Met). A >-quasi-uniform space (fuzzy L-quasi-
uniform space [9], probabilistic quasi-uniform space [25]) is a pair (X,U) of a
set X and a >-filter U ∈ F>L (X × X) with the properties (TU1) U ≤ [(x, x)]
for all x ∈ X, (TU2) U ≤ U ◦ U . A mapping ϕ : (X,U) −→ (X ′,U ′) between
two >-quasi-uniform spaces (X,U), (X ′,U ′) is called uniformly continuous if
U ′ ≤ (ϕ× ϕ)(U).

A pair >-filter (F,G) is called a Cauchy pair >-filter in (X,U) if U ≤ G⊗F,

[25]. We denote the set of Cauchy pair >-filters in (X,U) by CPU . Then

(X, CPU ) is a>-quasi-Cauchy space. The axiom (TQC1) follows with [x]⊗[x] =
[(x, x)]. The axiom (TQC2) is obvious. We show (TQC3). Let (F,G), (F′,G′) ∈
CPU and let

∨
x∈X f(x) ∗ g′(x) = > and

∨
x∈X f

′(x) ∗ g(x) = > for all f ∈
F, f ′ ∈ F′, g ∈ G, g′ ∈ G′. Then U ≤ G ⊗ F and U ≤ G′ ⊗ F′ and hence, by
(TU2), U ≤ U ◦ U ≤ (G⊗ F) ◦ (G′ ⊗ F′). For g ∈ G, f ∈ F, g′ ∈ G′, f ′ ∈ F′ we
have

(g ⊗ f) ◦ (g′ ⊗ f ′)(s, t) =
∨
x∈X

g′(s) ∗ f ′(x) ∗ g(x) ∗ f(t)

= g′(s) ∗ f(t) ∗
∨
x∈X

f ′(x) ∗ g(x) = g′ ⊗ f(s, t).

Therefore, we have U ≤ (G ⊗ F) ◦ (G′ ⊗ F′) = G′ ⊗ F. Similarly, we can show
that U ≤ G⊗ F′ and we conclude

U ≤ (G⊗ F) ∧ (G⊗ F′) ∧ (G′ ⊗ F) ∧ (G′ ⊗ F′) = (G ∧G′)⊗ (F ∧ F′).

Hence (F ∧ F′,G ∧G′) ∈ CPU .
A uniformly continuous mapping ϕ : (X,U) −→ (X ′,U ′) is Cauchy contin-

uous as a mapping ϕ : (X, CPU ) −→ (X ′, CPU
′
): For (F,G) ∈ CPU we have

U ≤ G⊗ F and hence U ′ ≤ (ϕ× ϕ)(U) ≤ (ϕ× ϕ)(G⊗ F) = ϕ(G)⊗ ϕ(F), that

is, we have (ϕ(F), ϕ(G)) ∈ CPU
′
.

This example encompasses L-metric spaces (also called continuity spaces [5],
L-categories [18, 12] or L-preordered sets [26]) (X, d) with (LM1) d(x, x) = >
for all x ∈ X and (LM2) d(x, y) ∗ d(y, z) ≤ d(x, z) for all x, y, z ∈ X. Then
[d] = {u ∈ LX×X : d ≤ u} is a >-quasi-uniformity [13] and we call a pair >-
filter (F,G) a Cauchy pair >-filter if [d] ≤ G⊗F, i.e. if > =

∨
g∈G,f∈F[g⊗ f, d].

If F = >F and G = >G with filters F ,G on X, then (>F ,>G) is a Cauchy pair
>-filter if and only if F ∨ G exists and > =

∨
G∈G,F∈F

∧
y∈G,x∈F d(y, x).

For Lawvere’s quantale L = ([0,∞),≥,+), this establishes a connection with
the definition of Cauchy sequences in quasi-metric spaces given by Doitchinov
[4]. A sequence (xn) in a quasi-metric space (X, d) is called a Cauchy sequence
if there is a co-sequence (yn) such that for all ε > 0 there is N ∈ IN such that
for all m,n ≥ N we have d(ym, xn) ≤ ε. If we denote the generated filters by
F = 〈(xn)〉 and G = 〈(yn)〉, then (>F ,>G) being a Cauchy pair implies that
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(xn) is a Cauchy sequence with (yn) as co-sequence. We note that Doitchinov
does not demand that >F and >G are linked.

Remark 3.4. In [25], completeness for >-quasi-uniform spaces was studied using
Cauchy pair >-filters and also using the concept of adjoint promodules. It was
shown that both approaches are equivalent. The keypoint is, that adjoint
promodules can be identified with (minimal) Cauchy pair >-filters, see also
[15]. The condition

∨
x∈X f(x) ∗ g(x) = > for all f ∈ F, g ∈ G for a Cauchy

pair >-filter (F,G) is the one half of the adjointness. We would like to mention
in this respect also the work of Preuß [19] who studied completeness in so-called
preuniform convergence spaces by means of pre-Cauchy filters F on X. Also
here the existence of a “co-filter” G on X is required such that G × F belongs
to the preuniform convergence structure, without demanding the existence of
the join of F and G. It seems that both Preuß’ and Doitchinov’s theory do not
fully fit into a lax algebraic setting as it was developed e.g. in [3].

Example 3.5 (>-QULim). Relaxing one axiom of a definition given in [21], we
call a pair (X,Λ) a >-quasi-uniform limit space if Λ ⊆ F>L (X ×X) satisfies

(TULS1) [(x, x)] ∈ Λ for all x ∈ X;
(TULS2) If Φ ≤ Ψ and Φ ∈ Λ, then Ψ ∈ Λ;
(TULS3) Φ ∧Ψ ∈ Λ whenever Φ,Ψ ∈ Λ;
(TULS4) Φ ◦Ψ ∈ Λ whenever Φ,Ψ ∈ Λ and Φ ◦Ψ exists.

A mapping ϕ : (X,Λ) −→ (X ′,Λ′) between the >-quasi-uniform limit spaces
(X,Λ) and (X ′,Λ′) is called uniformly continuous if (ϕ×ϕ)(Φ) ∈ Λ′ whenever
Φ ∈ Λ.

We call a pair >-filter (F,G) ∈ PF>L (X) a Cauchy pair >-filter if G⊗ F ∈ Λ

and we denote the set of all Cauchy pair >-filters on (X,Λ) by CPΛ. It is

then not difficult to see that (X, CPΛ) is a >-quasi-Cauchy space and that a
uniformly continuous mapping ϕ : (X,Λ) −→ (X ′,Λ′) is Cauchy continuous as

a mapping ϕ : (X, CPΛ) −→ (X ′, CPΛ′).

Example 3.6 (>-PUConv). Generalizing a definition of Preuß [19] to the
lattice-valued case, we define a >-preuniform convergence space (X,Λ) with
Λ ⊆ F>L (X ×X) satisfying (TULS1) and (TULS2). We further call F ∈ F>L (X)
a Cauchy >-filter if F⊗ F ∈ Λ and we call a pair >-filter (F,G) a Cauchy pair
>-filter if G ⊗ F ∈ Λ. We denote the set of Cauchy filters by CΛ and the set

of Cauchy pair >-filters by CPΛ. It is then not difficult to show that with Λ̃
defined by

Λ̃ = {Φ ∈ F>L (X ×X) : ∃F ∈ CΛ s.t. F⊗ F ≤ Φ},

(X, Λ̃) is the finest >-preuniform convergence space such that CΛ̃ = CΛ, i.e. for

any >-preuniform convergence space (X,Λ∗) with CΛ∗ = CΛ we have Λ̃ ⊆ Λ∗.

We note that Λ̃ is symmetric in the sense that Φ ∈ Λ̃ implies Φ−1 ∈ Λ̃. If
we are looking for the finest non-symmetric >-preuniform convergence space
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(X,Λ) such that CPΛ = CPΛ, then analogously we get

Λ = {Φ ∈ F>L (X ×X) : ∃ (F,G) ∈ CPΛ s.t. G⊗ F ≤ Φ}.

As F ∈ CΛ implies (F,F) ∈ CPΛ we see that Λ̃ ⊆ Λ.

4. Categorical properties

It is clear that for >-quasi-Cauchy spaces (X, CP), (X ′, CP ′) and (X ′′, CP ′′),
the identity mapping idX : (X, CP) −→ (X, CP) is Cauchy continuous and
that for two Cauchy continuous mappings ϕ : (X, CP) −→ (X ′, CP ′), ψ :
(X ′, CP ′) −→ (X ′′, CP ′′) the composition ψ ◦ ϕ : (X, CP) −→ (X ′′, CP ′′) is
Cauchy continuous. Therefore, we can form a category which has as objects
the>-quasi-Cauchy spaces and as morphisms the Cauchy continuous mappings.
We denote this category by >-QChy.

Proposition 4.1. >-QChy is a well-fibred and topological category.

Proof. The class of all >-quasi-Cauchy structures on a fixed set X is a subset of

{0, 1}PF>L (X), that is, it is a set and hence >-QChy is fibre-small. Furthermore,
on a one-point set X = {x}, there is exactly one >-quasi-Cauchy structure,
namely CP = {([x], [x])}. Hence >-QChy is well-fibred.

We show the existence of initial constructions. Consider a source (ϕj :
X −→ (Xj , CPj))j∈J . We define the initial >-quasi-Cauchy structure on X as

follows. For (F,G) ∈ PF>L (X), we define (F,G) ∈ CP if for all j ∈ J we have
(ϕj(F), ϕj(G)) ∈ CPj .

Then (X, CP) is a >-quasi-Cauchy space. As for each j ∈ J and each x ∈ X
we have (ϕj([x]), ϕj([x])) = ([ϕj(x)], [ϕj(x)]) ∈ CPj , we see that ([x], [x]) ∈ CP
for all x ∈ X and (TQC1) is valid. For (TQC2) consider (F′,G′) ≥ (F,G) ∈ CP.
Then for all j ∈ J we have (ϕj(F), ϕj(G)) ∈ CPj and ϕj(F′) ≥ ϕj(F) and
ϕj(G′) ≥ ϕj(G). Hence (ϕj(F′), ϕj(G′)) ∈ CPj for all j ∈ J which implies
(F′,G′) ∈ CP. To show (TQC3), let (F,G), (F′,G′) ∈ CP and

∨
x∈X f(x) ∗

g′(x) = > =
∨
x∈X f

′(x) ∗ g(x) for all f ∈ F, f ′ ∈ F′, g ∈ G, g′ ∈ G′. Then∨
xj∈Xj

ϕj(f)(xj) ∗ ϕj(g′)(xj) = > =
∨
xj∈Xj

ϕj(f
′)(xj) ∗ ϕj(g)(xj) for all j ∈

J . As (ϕj(F), ϕj(G)), (ϕj(F′), ϕj(G′)) ∈ CPj we conclude (ϕj(F ∧ F′), ϕj(G ∧
G′)) = (ϕj(F) ∧ ϕj(F′), ϕj(G) ∧ ϕj(G′)) ∈ CPj for all j ∈ J and therefore
(F ∧ F′,G ∧G′) ∈ CP.

It is furthermore clear that all ϕj : (X, CP) −→ (Xj , CPj) are Cauchy
continuous. Consider finally a mapping ψ : (X ′′, CP ′′) −→ (X, CP) such
that ϕj ◦ ψ are Cauchy continuous for all j ∈ J . For (F′′,G′′) ∈ CP ′′ then
(ϕj(ψ(F′′)), ϕj(ψ(G′′))) = (ϕj ◦ ψ(F′′), ϕj ◦ ψ(G′′)) ∈ CPj for all j ∈ J . This
implies (ψ(F′′), ψ(G′′)) ∈ CP and ψ is Cauchy continuous. �

Example 4.2 (Subspace). Let (X, CP) be a >-quasi-Cauchy space and let
A ⊆ X. The initial >-quasi-Cauchy structure on A for the embedding iA :
A −→ X, a 7−→ a, CPA, is defined, for (F,G) ∈ PF>L (A), by

(F,G) ∈ CPA ⇐⇒ ([F], [G]) = (iA(F), iA(G)) ∈ CP.
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The following result shows that a subspace of a >-quasi uniform space in-
duces the subspace of the >-quasi-Cauchy space.

Proposition 4.3. Let (X,U) be a >-quasi-uniform space and let A ⊆ X. Then

(F,G) ∈ (CPU )A if and only if G⊗ F ≥ UA×A.

Proof. This follows from [G⊗F] = (iA× iA)(G⊗F) = iA(G)⊗ iA(F) = [G]⊗ [F]
and [G⊗ F]A×A = G⊗ F and [UA×A] ≥ U , see e.g. [15]. �

In a similar way, we can show the next result.

Proposition 4.4. Let (X,Λ) be a >-quasi-uniform limit space and let A ⊆ X.

Then (F,G) ∈ (CPΛ)A if and only if there is Φ ∈ Λ such that ΦA×A exists and
G⊗ F ≥ ΦA×A.

Example 4.5 (Product space). Let (Xj , CPj) be >-quasi-Cauchy spaces for all
j ∈ J . The initial >-quasi-Cauchy structure on the Cartesian product

∏
j∈J Xj

with respect to the projects pri :
∏
j∈J Xj −→ Xi, π − CP, is defined by

(F,G) ∈ π − CP ⇐⇒ (prj(F), prj(G)) ∈ CPj ∀j ∈ J.

For our next result we will assume that
∨
A = > for A ⊆ L implies

∨
α∈A α∗

α = >. It was shown in [13] that this can e.g. be ensured if the quantale L is
divisible [10], i.e. if for all α, β ∈ L with α ≤ β there is γ ∈ L such that α =
β∗γ. Another sufficient condition for this is the existence of a >-approximating
sequence (α1, α2, ...) in L with the properties ⊥ 6= α1 ≤ α2 ≤ ... � > and∨
k∈IN αk = >, [15]. Here, the well-below relation (sometimes also called the

totally-below relation) is defined by α � β if for all subsets D ⊆ L such that
β ≤

∨
D there is δ ∈ D such that α ≤ δ.

We note that (∆+,≤) satisfies this property [15], however (∆+,≤, ∗) is in
general not divisible, see [8]. Also, L being a value quantale [5] ensures the
property, see [13].

Theorem 4.6. Let the quantale L satisfy that
∨
α∈A α ∗ α = > whenever∨

A = > for A ⊆ L. Then the category >-QChy is Cartesian closed.

Proof. We show that >-QChy has function spaces in the sense of [1]. As a
well-fibred topological category, it is then Cartesian closed.

For (X, CP), (X ′, CP ′) ∈ |>-QChy| we denote

H = H((X, CP), (X ′, CP ′)) = {ϕ : (X, CP) −→ (X ′, CP ′) Cauchy continuous}.

We define CPc ⊆ PF>L (H) by

(H,K) ∈ CPc ⇐⇒ for all (F,G) ∈ CP we have (ev(H⊗F), ev(K⊗G)) ∈ CP ′,

with the evaluation mapping ev : H ×X −→ X ′, (ϕ, x) 7−→ ϕ(x).
We first show that (H, CPc) is a >-quasi-Cauchy space.
(TQC1) We note that for ϕ ∈ H and a ∈ LX we have ev(>{ϕ} ⊗ a)(y) =∨

ev(ψ,x)=y >{ϕ}(ψ) ∗ a(x) =
∨
ϕ(x)=y a(x) = ϕ(a)(y). Hence, for F ∈ F>L (X)

we have ϕ(F) = ev([ϕ] ⊗ F) and we obtain for (F,G) ∈ CP that (ev([ϕ] ⊗
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F), ev([ϕ] ⊗ G)) = (ϕ(F), ϕ(G)) ∈ CP ′ by the Cauchy continuity of ϕ. This
shows ([ϕ], [ϕ]) ∈ CPc.

(TQC2) follows from (ev(H′ ⊗ F), ev(K′ ⊗G)) ≥ (ev(H⊗ F), ev(K⊗G)) for
a pair >-filter (H′,K′) ≥ (H,K) ∈ CPc.

(TQC3) Let (H,K), (H′,K′) ∈ CPc such that
∨
ϕ∈H h(ϕ) ∗ k′(ϕ) = > =∨

ϕ∈H h
′(ϕ) ∗ k(ϕ) for all h ∈ H, h′ ∈ H′, k ∈ K, k′ ∈ K′. For (F,G) ∈ CP we

have (ev(H⊗ F), ev(K⊗ F)), (ev(H′ ⊗ F), ev(K′ ⊗ F)) ∈ CP ′ and

(ev((H∧H′)⊗F), ev((K∧K′)⊗F)) = (ev(H⊗F)∧ev(H′⊗F), ev(K⊗F)∧ev(K′⊗F)).

The assumption on the quantale yields∨
y∈X′

ev(h⊗ f)(y) ∗ ev(k′ ⊗ f)(y)

=
∨
y∈X′

∨
ϕ(x)=y

h(ϕ) ∗ f(x) ∗
∨

ψ(z)=y

k′(ψ) ∗ f(z)

≥
∨
y∈X′

∨
ϕ(x)=y

h(ϕ) ∗ f(x) ∗ k′(ϕ) ∗ f(x)

=
∨
ϕ∈H

h(ϕ) ∗ k′(ϕ) ∗
∨
x∈X

f(x) ∗ f(x)

= > ∗ > = >.

Similarly,
∨
y∈X′ ev(h′ ⊗ f)(y) ∗ ev(k ⊗ f)(y) = >. This is true for all h ∈

H, h′ ∈ H′, k ∈ K, k′ ∈ K′ and f ∈ F and we conclude that (ev((H ∧ H′) ⊗
F), ev((K ∧K′)⊗ F)) ∈ CP ′. Hence (H ∧H′,K ∧K′) ∈ CPc.

Next we show that ev : (H, CPc)× (X, CP) −→ (X ′, CP ′) is Cauchy contin-
uous. To this end, let (H,K) ∈ CPc × CP. Then (prH(H), prH(K)) ∈ CPc and
(prX(H), prX(K)) ∈ CP with the corresponding projection mappings. By the
definition of CPc we obtain (ev(prH(H)⊗prX(H)), ev(prH(K)⊗prX(K))) ∈ CP ′
and as (ev(H), ev(K)) ≥ (ev(prH(H)⊗ prX(H)), ev(prH(K)⊗ prX(K))) we de-
duce (ev(H), ev(K)) ∈ CP ′.

Finally, let ϕ : (X, CP) × (X ′, CP ′) −→ (X ′′, CP ′′) be a Cauchy continuous
mapping. For x ∈ X, we define ϕx : X ′ −→ X ′′ by ϕx(x′) = ϕ(x, x′). Let
(F′,G′) ∈ CP ′. As ([x], [x]) ∈ CP we see that ([x]⊗F′, [x]⊗G′) ∈ CP×CP ′ and
hence, by continuity of ϕ, (ϕ([x] ⊗ F′), ϕ([x] ⊗ G′)) ∈ CP ′′. It is not difficult
to show that (ϕx(F′), ϕx(G′)) ≥ (ϕ([x] ⊗ F′), ϕ([x] ⊗ G′)) and therefore ϕx is
Cauchy continuous. We can hence define ϕ∗ : X −→ H((X ′, CP ′), (X ′′, CP ′′))
by ϕ∗(x) = ϕx and we need to show that ϕ∗ is Cauchy continuous. Let (F,G) ∈
CP. Then, for all (H,K) ∈ CP ′ we have (F ⊗ H,G ⊗ K) ∈ CP × CP ′. From
ev(ϕ∗ × idX′) = ϕ we obtain with the Cauchy continuity of ϕ,

(ev(ϕ∗(F)⊗H), ev(ϕ∗(G)⊗K)) = (ϕ(F⊗H), ϕ(G⊗K)) ∈ CP ′′.

This shows that (ϕ∗(F), ϕ∗(G)) ∈ CPc and the proof is complete. �
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5. Convergence

For a >-quasi-Cauchy space (X, CP) we say that a pair >-filter (F,G) ∈
PF>L (X) converges to x ∈ X, and we write x ∈ qCP(F,G), if (F ∧ [x],G ∧
[x]) ∈ CP. We note that convergent pair >-filters are Cauchy pair >-filters by
(TQCS2).

Example 5.1. Let (X,U) be a >-quasi-uniform space. In [25], see also [15],
it is defined that a pair >-filter (F,G) converges to x if and only if [x]⊗F ≥ U
and G ⊗ [x] ≥ U . In [15] it was shown that this requirement is equvalent to
(F ∧ [x],G ∧ [x]) being a Cauchy pair >-filter.

Example 5.2. Let (X,Λ) be a >-quasi-uniform limit space. We say that a
pair >-filter (F,G) converges to x if [x] ⊗ F ∈ Λ and G ⊗ [x] ∈ Λ. It is not
difficult to show that this is equivalent to (F∧ [x],G∧ [x]) being a Cauchy pair
>-filter.

Proposition 5.3. Let (X, CP) be a >-quasi-Cauchy space. Convergence of

pair >-filters has the following properties. For all (F,G), (F′,G′) ∈ PF>L (X)
and all x ∈ X we have:

(TQL1) x ∈ qCP([x], [x]);
(TQL2) (F,G) ≤ (F′,G′) implies qCP(F,G) ⊆ qCP(F′,G′);
(TQL3) qCP(F,G) ∩ qCP(F′,G′) ⊆ qCP(F ∧ F′,G ∧G′).

Proof. We only show (TQL3). We have (F∧[x],G∧[x]), (F′∧[x],G′∧[x]) ∈ CP.
The axiom (TQC3) then yields (F ∧ F′ ∧ [x],G ∧G′ ∧ [x]) ∈ CP. �

Proposition 5.4. Let (X, CP) and (X ′, CP ′) be >-quasi-Cauchy spaces and let
ϕ : (X, CP) −→ (X ′, CP ′) be Cauchy continuous. Then x ∈ qCP(F,G) implies

ϕ(x) ∈ qCP′(ϕ(F), ϕ(G)).

Proof. If (F∧[x],G∧[x]) ∈ CP, then by Cauchy continuity, (ϕ(F)∧[ϕ(x)], ϕ(G)∧
[ϕ(x)]) = (ϕ(F ∧ [x]), ϕ(G ∧ [x])) ∈ CP ′. �

Definition 5.5. Let (X,P) be a >-quasi-Cauchy space and let A ⊆ X. We

define the closure of A, A = A
CP

, by x ∈ A if there is a pair >-filter (F,G) ∈
PF>L (A) such that x ∈ qCP([F], [G]).

The following result shows that this notion of closure coincides with the
definition of closure in >-quasi-uniform spaces given by Wang and Yue [23].

Proposition 5.6. Let (X,U) be a >-quasi-uniform space and let A ⊆ X. Then

x ∈ ACP
U

if, and only if, for all u ∈ U we have
∨
a∈A u(x, a) ∗ u(a, x) = >.

Proof. Let x ∈ ACP
U

. By the definition of CPU there is a pair >-filter (F,G)
on A such that [x] ⊗ [F] ≥ U and [G] ⊗ [x] ≥ U . Hence, for u ∈ U , we have
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> =
∨
f∈F[>{x} ⊗ f, u] =

∨
g∈G[g ⊗>{x}, u]. We conclude

> =
∨

f∈F,g∈G

∧
a∈A

(f(a)→ u(x, a)) ∗ (g(a)→ u(a, x))

≤
∨

f∈F,g∈G

∧
a∈A

((f(a) ∗ g(a))→ (u(x, a) ∗ u(a, x)))

≤
∨

f∈F,g∈G

(
(
∨
a∈A

f(a) ∗ g(a))→ (
∨
a∈A

u(x, a) ∗ u(a, x))

)
=

∨
a∈A

u(x, a) ∗ u(a, x)

because (F,G) is a pair >-filter on A.
Conversely, let

∨
a∈A u(x, a) ∗ u(a, x) = > for all u ∈ U . We define F as

the >-filter on A with >-filter basis on A, {u(x, ·) : u ∈ UA×A}. Here,
u(x, ·)(a) = u(x, a) for a ∈ A, that is, u(x, ·) ∈ LA. Likewise, G is the >-filter
on A with >-filter basis {u(·, x) : u ∈ UA×A}. The given condition guarantees
that (F,G) is a pair >-filter on A. Moreover, we have [x]⊗ [F] ≥ U , as for u ∈ U
we have >{x} ⊗ iA(u(x, ·))(s, t) ≤ u(s, t) for s, t ∈ X. Similarly, [G]⊗ [x] ≥ U .

This implies x ∈ qCPU ([F], [G]), that is, x ∈ ACP
U

. �

We note that for an L-metric space (X, d), the closure of A in (X, [d]) is

characterized by x ∈ ACP
[d]

if and only if
∨
a∈A d(x, a) ∗ d(a, x) = >. This is a

characterization of closure in (X, d) used in [11].
Using the concept of convergence, we can introduce the following separation

axiom. We call a >-quasi-Cauchy space (X, CP) separated if x, y ∈ qCP(F,G)
implies x = y.

Separation for >-quasi-uniform spaces was defined in [23]. The following
result shows that our definition applies also there.

Proposition 5.7. Let (X,U) be a >-quasi-uniform space. Then (X, CPU ) is
separated if and only if x = y whenever u(x, y) = > = u(y, x) for all u ∈ U .

Proof. Let (X, CPU ) be separated and let u(x, y) = > = u(y, x) for all u ∈ U .
Then [x]⊗ [y] ≥ U and [y]⊗ [x] ≥ U . This implies x ∈ qU ([y], [y]) and because
y ∈ qU ([y], [y]) we obtain x = y.

For the converse, let x, y ∈ qU (F,G). Then [x]⊗F ≥ U and G⊗ [y] ≥ U and
with (TU2), we conclude U ≤ U ◦U ≤ (G⊗ [y]) ◦ ([x]⊗F) = [x]⊗ [y], as (F,G)
is a pair >-filter. Similarly, we see [y]⊗ [x] ≥ U . Hence, for all u ∈ U we have
u(x, y) = > and u(y, x) = > and therefore x = y. �

For the special case of an L-metric space (X, d), we have that (X, CP [d]) is
separated if and only if x = y whenever d(x, y) = > = d(y, x). Again, this is a
characterization of separation of an L-metric space in [11].
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6. Completeness and completion

We say that a pair >-filter (F,G) is convergent in (X, CP) if there is x ∈ X
such that x ∈ qCP(F,G), that is, if (F ∧ [x],G ∧ [x]) ∈ CP. Otherwise, we call
(F,G) non-convergent. A >-quasi-Cauchy space (X, CP) is called complete if
every (F,G) ∈ CP is convergent.

Proposition 6.1. Let (Xj , CPj) be complete >-quasi-Cauchy spaces for all
j ∈ J . Then also the product space (

∏
j∈J Xj , π − CP) is complete.

Proof. Let (F,G) ∈ π − CP. Then for all j ∈ J , (prj(F), prj(G)) ∈ CPj and
hence there is xj ∈ Xj such that (prj(F)∧ [xj ], prj(G)∧ [xj ]) ∈ CPj . We define
x = (xj)j∈J . Then (prj(F∧ [x]), prj(G∧ [x])) = (prj(F)∧ [xj ], prj(G)∧ [xj ]) ∈
CPj for all j ∈ J and hence (F ∧ [x],G ∧ [x]) ∈ π − CP. �

A completion ((X+, CP+), φ) of a >-quasi-Cauchy space (X, CP) is a com-
plete >-quasi-Cauchy space (X+, CP+) and a dense Cauchy embedding φ :
(X, CP) −→ (X+, CP+). This means that φ is injective and that we have

(F,G) ∈ CP if, and only if, (φ(F), φ(G)) ∈ CP+ and that φ(X)
CP+

= X+.
For two completions ((X+, CP+), φ), ((X∼, CP∼), ψ) of (X, CP) we call

((X+, CP+), φ) finer than ((X∼, CP∼), ψ), and we write ((X+, CP+), φ) ≥
((X∼, CP∼), ψ), if there is a Cauchy continuous mapping h : (X+, CP+) −→
(X∼, CP∼) such that h ◦ φ = ψ.

We are now going to construct a completion of a non-complete >-quasi-
Cauchy space (X, CP). To this end, the following relation on CP is useful. Let
(F,G), (F′,G′) ∈ CP. We define

(F,G) ∼ (F′,G′) ⇐⇒ (F ∧ F′,G ∧G′) ∈ CP.
It is clear that for (F,G) ∈ CP we have (F,G) ∼ ([x], [x]) if and only if

x ∈ qCP(F,G).

Proposition 6.2. Let (X, CP) be a >-quasi-Cauchy space. The relation ∼ is
an equivalence relation.

Proof. Reflexivity and symmetry of the relation are clear. We check the tran-
sitivity. Let (F,G) ∼ (F′,G′) and (F′,G′) ∼ (F′′,G′′). As F ∧ F′ ≤ F′
and G′ ∧ G′′ ≤ G′ we see that for f ∈ F ∧ F′ and g ∈ G′ ∧ G′′ we have∨
x∈X f(x) ∗ g(x) = >, because (F′,G′) is a pair >-filter. Similarly, we see that

for g ∈ G ∧ G′ and f ∈ F′ ∧ F′′ we have
∨
x∈X f(x) ∗ g(x) = >. Hence, from

(TQC3) we obtain (F ∧ F′ ∧ F′′,G ∧ G′ ∧ G′′) ∈ CP and, using (TQC2), we
conclude (F ∧ F′′,G ∧G′′) ∈ CP, that is, (F,G) ∼ (F′′,G′′). �

We denote the equivalence class of (F,G) ∈ CP by 〈(F,G)〉.
The equivalence relation allows simple proofs of the following results.

Lemma 6.3. Let (X, CP) be a >-quasi-Cauchy space and let (F,G), (F′,G′) ∈
CP. If (F′,G′) ≤ (F,G) and if x ∈ qCP(F,G), then also x ∈ qCP(F′,G′).

Proof. If (F′,G′) ≤ (F,G), then (F′,G′) ∼ (F,G) ∼ ([x], [x]) and, by transitiv-
ity, (F′,G′) ∼ ([x], [x]). �
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Lemma 6.4. Let (X, CP) be a >-quasi-Cauchy space. If there is a pair >-filter

(F,G) converging to both x and y, then {(H,K) ∈ PF>L (X) : x ∈ qCP(H,K)} =

{(H,K) ∈ PF>L (X) : y ∈ qCP(H,K)}.

Proof. Clearly, (F,G) ∈ CP and we have ([y], [y]) ∼ (F,G) ∼ ([x], [x]). So if
(H,K) ∼ ([x], [x]), then by transitivity (H,K) ∼ ([y], [y]) and vice versa. �

Lemma 6.5. Let (X, CP) be a >-quasi-Cauchy space. If x ∈ qCP(F,G) and
(F′,G′) ∈ CP satisfies that for all f ∈ F, g ∈ G, f ′ ∈ F′, g′ ∈ G′ we have∨
x∈X f

′(x) ∗ g(x) = > =
∨
x∈X f(x) ∗ g′(x), then x ∈ qCP(F′,G′).

Proof. We have (F ∧ F′,G ∧G′) ∈ CP and ≤ (F,G). According to Lemma 6.3,
x ∈ qCP((F ∧ F′,G ∧G′)) ⊆ qCP((F′,G′)). �

We define now X∗ = X ∪ {〈(F,G)〉 : (F,G) ∈ CP non-convergent} and we
denote j : X −→ X∗, x 7−→ x the embedding injection of X into X∗. We define
CP∗ ⊆ PF>L (X∗) as follows. (H,K) ∈ CP∗ if there is (F,G) ∈ CP convergent
such that H ≥ j(F) and K ≥ j(G) or if there is (F,G) ∈ CP non-convergent
such that H ≥ j(F) ∧ [〈(F,G)〉] and K ≥ j(G) ∧ [〈(F,G)〉].

Theorem 6.6. Let (X, CP) be a >-quasi-Cauchy space. Then ((X∗, CP∗), j)
is a completion of (X, CP).

Proof. We first show that (X∗, CP∗) is a >-quasi-Cauchy space. The axiom
(TQC1) follows, as for x ∈ X we have j([x]) = [j(x)]. For 〈(F,G)〉 with (F,G) ∈
CP non-convergent, we have [〈(F,G)〉] ≥ j(F) ∧ [〈(F,G)〉] and [〈(F,G)〉] ≥
j(G) ∧ [〈(F,G)〉] and hence also ([〈(F,G)〉], [〈(F,G)〉]) ∈ CP∗.

The axiom (TQC2) is obvious.
For the axiom (TQC3), let (H,K), (H′,K′) ∈ CP∗ such that

∨
z∗∈X∗ h(z∗) ∗

k′(z∗) = > =
∨
z∗∈X∗ h

′(z∗) ∗ k(z∗) for all h ∈ H, h′ ∈ H′, k ∈ K, k′ ∈ K′. We
distinguish four cases.

Case 1: There are (F,G), (F′,G′) ∈ CP convergent such that H ≥ j(F),K ≥
j(G) and H′ ≥ j(F′),K′ ≥ j(G′). We then have

> =
∨

z∗∈X∗
j(f)(z∗) ∗ j(g′)(z∗)

=
∨
z∈X

j(f)(z) ∗ j(g′)(z)

∨
∨

(F,G)∈CP non-conv.
j(f)(〈(F,G)〉) ∗ j(g′)(〈(F,G)〉)

=
∨
z∈X

f(z) ∗ g′(z)

Similarly,
∨
z∈X f

′(z) ∗ g(z) = > and hence (F ∧ F′,G ∧G′) ∈ CP convergent,
from Lemma 6.3. Therefore (j(F ∧ F′), j(G ∧ G′)) ≤ (H ∧ H′,K ∧ K′) and we
obtain (H ∧H′,K ∧K′) ∈ CP∗.

Case 2: There is (F,G) ∈ CP convergent such that H ≥ j(F) and K ≥ j(G)
and there is (F′,G′) ∈ CP non-convergent such that H′ ≥ j(F′)∧[〈(F′,G′)〉] and
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K′ ≥ j(G′) ∧ [〈(F′,G′)〉]. If
∨
x∈X f

′(x) ∗ g(x) = > =
∨
x∈X f(x) ∗ g′(x) for all

f ∈ F, f ′ ∈ F′, g ∈ G, g′ ∈ G′, then (F′,G′) would be convergent by Lemma 6.5.
Hence we may assume without loss of generality that there are f ′ ∈ F′, g ∈ G
such that

∨
x∈X f

′(x) ∗ g(x) 6= >. As j(f ′) ∨ >〈(F′,G′)〉 ∈ j(F′) ∧ [〈(F′,G′)〉] ≤
H′ we conclude, with j(g) ∈ j(G) ≤ K that

∨
x∗∈X∗(j(f

′) ∨ >〈(F′,G′)〉)(x∗) ∗
j(g)(x∗) =

∨
x∈X f

′(x) ∗ g(x) 6= >, a contradiction. Hence this case does not
occur.

Case 3: There is (F′,G′) ∈ CP convergent such that H′ ≥ j(F′) and K′ ≥
j(G′) and there is (F,G) ∈ CP non-convergent such that H ≥ j(F) ∧ [〈(F,G)〉]
and K ≥ j(G) ∧ [〈(F,G)〉]. The arguments of case 2 can be used to show that
also this case does not occur.

Case 4: There are (F,G), (F′,G′) ∈ CP non-convergent such that H ≥
j(F)∧ [〈(F,G)〉],K ≥ j(G)∧ [〈(F,G)〉] and H′ ≥ j(F′)∧ [〈(F′,G′)〉],K′ ≥ j(G′)∧
[〈(F′,G′)〉]. Then we have, for f ∈ F, f ′ ∈ F′, g ∈ G, g′ ∈ G′,

> =
∨

x∗∈X∗
(j(f) ∨ >〈(F,G)〉)(x

∗) ∗ (j(g′) ∨ >〈(F′,G′)〉)(x∗)

=
∨
x∈X

f(x) ∗ g′(x) ∨
∨

x∗∈X∗\X

>〈(F,G)〉(x
∗) ∗ >〈(F′,G′)〉(x∗),

and, similarly,

> =
∨
x∈X

f ′(x) ∗ g(x) ∨
∨

x∗∈X∗\X

>〈(F′,G′)〉(x∗) ∗ >〈(F,G)〉(x
∗).

If 〈(F,G)〉 6= 〈(F′,G′)〉, then
∨
x∈X f(x)∗g′(x) = > =

∨
x∈X f

′(x)∗g(x) and
(F ∧ F′,G ∧ G′) ∈ CP. As this pair >-filter is ≤ (F,G), (F′,G′) we conclude
〈(F,G)〉 = 〈(F ∧ F′,G ∧ G′)〉 = 〈(F′,G′)〉, a contradiction. Hence 〈(F,G)〉 =
〈(F′,G′)〉. Then (F,G) ∼ (F′,G′) and hence (F ∧ F′,G ∧ G′) ∈ CP is non-
convergent, too. Therefore H∧H′ ≥ j(F∧F′)∧ [〈(F∧F′,G∧G′)〉] and K∧K′ ≥
j(G ∧G′) ∧ [〈(F ∧ F′,G ∧G′)〉] and we have (H ∧H′,K ∧K′) ∈ CP ′.

The mapping j : (X, CP) −→ (X∗, CP∗) is Cauchy continuous, as for
(F,G) ∈ CP either (F,G) is convergent and then (j(F), j(G)) ∈ CP∗. Or
(F,G) is non-convergent and then, because j(F) ≥ j(F)∧ [〈(F,G)〉] and j(G) ≥
j(G) ∧ [〈(F,G)〉], again (j(F), j(G)) ∈ CP∗.

Conversely, if (j(F), j(G)) ∈ CP∗, then either there is (F′,G′) ∈ CP conver-
gent such that F ≥ F′ and G ≥ G′ and hence (F,G) ∈ CP by (TQC2). Or
there is (F′,G′) ∈ CP non-convergent such that j(F) ≥ j(F′) ∧ [〈(F′,G′)〉] and
j(G) ≥ j(G′) ∧ [〈(F′,G′)〉]. This implies F′ ≤ F and G′ ≤ G and again with
(TQC2), (F,G) ∈ CP.

Furthermore, (X∗, CP∗) is complete. If (G,K) ∈ CP∗ such that H ≥ j(F)
and K ≥ j(G) with (F,G) ∈ CP convergent to x ∈ X, then (H,K) is convergent
to x in (X∗, CP∗). If (G,K) ∈ CP∗ such that H ≥ j(F) ∧ [〈(F,G)〉] and
K ≥ j(G)∧ [〈(F,G)〉] with (F,G) ∈ CP non-convergent, then (H∧ [〈(F,G)〉],K∧
[〈(F,G)〉]) ∈ CP∗, that is (H,K) converges to 〈(F,G)〉 in (X∗, CP∗).
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Finally, we show that j(X)
CP∗

= X∗. Let x∗ ∈ X∗. If x ∈ X, then
(j([x]), j([x])) converges to x in (X∗, CP∗). If x∗ = 〈(F,G)〉 with (F,G) ∈ CP
non-convergent, then (j(F) ∧ [〈(F,G)〉], j(G) ∧ [〈(F,G)〉]) ∈ CP∗ and hence

(j(F), j(G)) converges to x∗ in (X∗, CP∗). Hence x∗ ∈ j(X)
CP∗

and the proof
is complete. �

Theorem 6.7. Let (X, CP), (X ′, CP ′) be >-quasi-Cauchy spaces, let (X ′, CP ′)
be complete and let ϕ : (X, CP) −→ (X ′, CP ′) be Cauchy continuous. Then
there exists a Cauchy continuous mapping ϕ∗ : (X∗, CP∗) −→ (X ′, CP ′) such
that ϕ = ϕ∗ ◦ j.
Proof. We define ϕ∗ as follows. For x∗ = j(x) with x ∈ X, we define ϕ∗(x∗) =
ϕ(x) and for x∗ = 〈(F,G)〉 with (F,G) ∈ CP non-convergent, we define ϕ∗(x∗)
= y, where y is one of the limits of (ϕ(F), ϕ(G)) in (X ′, CP ′). We note that we
consider y as a fixed choice and that it does not depend on the representative
of 〈(F,G)〉. For if (F,G) ∼ (F′,G′) then (F ∧ F′,G ∧G′) ∈ CP and is ≤ (F,G).
Hence, if y ∈ qCP(ϕ(F), ϕ(G)), with Lemma 6.3 also y ∈ qCP(ϕ(F ∧ F′), ϕ(G ∧
G′)) and using (TQC2) then also y ∈ qCP(ϕ(F′), ϕ(G′)).

Clearly, with this definition, we have ϕ∗ ◦ j = ϕ and we have to show that
ϕ∗ is Cauchy continuous. To this end, let (H,K) ∈ CP∗. We distinguish two
cases.

Case 1: There is (F,G) ∈ CP convergent such that H ≥ j(F) and K ≥
j(G). Let x ∈ qCP(F,G). Then ϕ∗(H) ≥ ϕ(F), ϕ∗(K) ≥ ϕ(G) and ϕ(x) ∈
qCP

′
(ϕ(F), ϕ(G)). This means (ϕ(F)∧ [ϕ(x)], ϕ(G)∧ [ϕ(x)]) ∈ CP ′ and (TQC2)

yields (ϕ∗(H), ϕ∗(K)) ∈ CP ′.
Case 2: There is (F,G) ∈ CP non-convergent such that H ≥ j(F)∧ [〈(F,G)〉]

and K ≥ j(G) ∧ [〈(F,G)〉]. We conclude ϕ∗(H) ≥ ϕ∗(j(F)) ∧ [ϕ∗(〈(F,G)〉)] =

ϕ(F) ∧ [y] and, similarly, ϕ∗(K) ≥ ϕ(G) ∧ [y], where y ∈ qCP
′
(ϕ(F), ϕ(G)).

Hence (ϕ(F)∧ [y], ϕ(G)∧ [y]) ∈ CP ′ and, again with (TQC2), (ϕ∗(H), ϕ∗(K)) ∈
CP ′. �

Corollary 6.8. Let (X, CP) be a >-quasi-Cauchy space. Then ((X∗, CP∗), j)
is the finest completion of (X, CP).

Proof. If ((X∼, CP∼), ψ) is a further completion, then ψ : (X,C) −→
(X∼, CP∼) is Cauchy continuous and (X∼, CP∼) is complete. Theorem 6.7
ensures that there exists a Cauchy continuous mapping ψ∗ : (X∗, CP∗) −→
(X∼, CP∼) such that ψ∗ ◦ j = ψ. Hence, ((X∗, CP∗), j) ≥ ((X∼, CP∼), ψ). �

Corollary 6.9. Let (X, CPX), (Y, CPY ) be >-quasi-Cauchy spaces and let ϕ :
(X, CPX) −→ (Y, CPY ) be Cauchy continuous. We denote the finest comple-
tions of (X, CPX) and (Y, CPY ) by ((X∗, CP∗X), jX) and ((Y ∗, CP∗Y ), jY ), re-
spectively. Then there exists a Cauchy continuous mapping ϕ∗ : (X∗, CP∗X) −→
(Y ∗, CP∗Y ) such that ϕ∗ ◦ jX = jY ◦ ϕ.

Proof. We consider the Cauchy continuous mapping g = jY ◦ ϕ : (X, CP) −→
(Y ∗, CP∗Y ). Then there exists a Cauchy continuous mapping ϕ∗ : (X∗, CP∗) −→
(Y ∗, CP∗Y ) such that ϕ∗ ◦ jX = g. �
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Finally, we are showing that separation carries over from (X, CP) to
(X∗, CP∗).

Proposition 6.10. Let (X, CP) be a separated >-quasi-Cauchy space. Then
also (X∗, CP∗) is separated.

Proof. Let x∗, y∗ ∈ qCP∗(H,K). We distinguish three cases.
Case 1: x∗ = j(x), y∗ = j(y) with x, y ∈ X. Then, by definition of qCP

∗
, we

have (H ∧ [j(x)],K ∧ [j(x)]) ∈ CP∗ and (H ∧ [j(y)],K ∧ [j(y)]) ∈ CP∗.
If H∧[j(x)] ≥ j(F)∧[〈(F,G)〉] and K∧[j(x)] ≥ j(G)∧[〈(F,G)〉] with (F,G) ∈

CP non-convergent, then for f ∈ F we have that j(f) ∨ >〈(F,G)〉 ∈ H ∧ [j(x)].
Hence

> =
∨
h∈H

[h ∨ >j(x), j(f) ∨ >〈(F,G)〉] ≤ j(f)(j(x)) = f(x),

and we have F ≤ [x]. Similarly, we obtain G ≤ [x] and hence (F,G) converges
to x in (X, CP), a contradiction. Hence we must have H ∧ [j(x)] ≥ j(F) and
K ∧ [j(x)] ≥ j(G) with (F,G) ∈ CP convergent. If we assume that (F,G)
converges to x, then H ∧ [j(x)] ≥ j(F) ∧ [j(x)] and for f ∈ F we have j(f) ∨
>j(x) ∈ H ∧ [j(x)]. This implies

> =
∨
h∈H

[h ∨ >j(x), j(f) ∨ >j(x)] ≤ j(f)(j(x)) ∨ >j(x)(j(x)).

If j(x) 6= j(x), then f(x) = > and we see that F ≤ [x]. Similarly, G ≤ [x] and
hence (F,G) converges also to x. As (X, CP) is separated, we obtain x = x.

As a result, we have that the convergence of (H,K) to j(x) in (X∗, CP∗)
implies the existence of (F,G) ∈ CP converging to x, such that H ≥ j(F) and
K ≥ j(G). In the same way, (F′,G′) ∈ CP exists, converging to y and H ≥ j(F′)
and K ≥ j(G′). We conclude that j←(H) and j←(K) exist. We show this for
j←(H). For f ∈ F and h ∈ H we have h ∧ j(f) ∈ H and as H is a >-filter, we
conclude

> =
∨

x∗∈X∗
(h ∧ j(f))(x∗) ≤

∨
x∈X

h(j(x)) =
∨
x∈X

j←(h)(x).

We conclude j←(H) ≥ F, j←(K) ≥ G and also j←(H) ≥ F′ and j←(K) ≥ G′.
We note that (H,K) is a pair >-filter and H ≥ j(F),K ≥ j(G) and we fix
f ∈ F, g ∈ G. Then for h ∈ H, k ∈ K we have h ∧ j(f) ∈ H, k ∧ j(g) ∈ K and
hence,

> =
∨

x∗∈X∗
(h ∧ j(f))(x∗) ∗ (k ∧ j(g))(x∗)

≤
∨
x∈X

h(j(x)) ∗ k(j(x)) =
∨
x∈X

j←(h)(x) ∗ j←(k)(x)

and hence (j←(H), j←(K)) is a pair >-filter converging to both x and y in
(X, CP). Separation yields x = y, i.e. x∗ = y∗.

Case 2: x∗ = 〈(F,G)〉, y∗ = 〈(F′,G′)〉 with (F,G), (F′,G′) ∈ CP non-
convergent. Then (H ∧ [〈(F,G)〉],K ∧ [〈(F,G)〉]) ∈ CP∗. If we assume H ∧
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[〈(F,G)〉] ≥ j(F) and [〈(F,G)〉] ≥ j(G) with (F,G) ∈ CP convergent, then for
f ∈ F we had > =

∨
h∈H[h ∨ >〈(F,G)〉, j(f)] ≤ j(f)(〈(F,G)〉) = ⊥, a contradic-

tion. Hence we must have H ∧ [〈(F,G)〉] ≥ j(F) ∧ [〈(F,G)〉] with (F,G) ∈ CP
non-convergent. For f ∈ F then

> =
∨
h∈H

[h ∨ >〈(F,G)〉, j(f) ∨ >〈(F,G)〉] ≤ >〈(F,G)〉(〈(F,G)〉).

Hence 〈(F,G)〉 = 〈(F,G)〉 and we conclude H ≥ j(F) ∧ [〈(F,G)〉],K ≥ j(G) ∧
[〈(F,G)〉]. In the same way we see that also H ≥ j(F′) ∧ [〈(F′,G′)〉],K ≥
j(G′) ∧ [〈(F′,G′)〉]. As (H,K) is a pair >-filter, we conclude, for f ∈ F and
g′ ∈ G′ that

> =
∨

x∗∈X∗
(j(f) ∨ >〈(F,G)〉)(x

∗) ∗ (j(g′) ∨ >〈(F′,G′)〉)(x∗)

=
∨
x∈X

f(x) ∗ g′(x)

∨
∨

(F,G)∈CP non-conv.

>〈(F,G)〉(〈(F,G)〉) ∗ >〈(F′,G′)〉(〈(F,G)〉).

If 〈(F,G)〉 6= 〈(F′,G′)〉, then
∨
x∈X f(x) ∗ g′(x) = > and, with analogous argu-

ments,
∨
x∈X f

′(x) ∗ g(x) = > for f ′ ∈ F′, g ∈ G. Therefore, (F ∧ F′,G ∧G′) ∈
CP, ≤ (F,G), (F′,G′) and we conclude (F,G) ∼ (F ∧ F′,G ∧G′) ∼ (F′,G′) and
we have also in this case x∗ = 〈(F,G)〉 = 〈(F′,G′)〉 = y∗.

Case 3: x∗ = j(x) with x ∈ X and y∗ = 〈(F,G)〉 with (F,G) ∈ CP non-
convergent. As we have seen before, then H ≥ j(F′) and K ≥ j(G′) with
(F′,G′) ∈ CP convergent and H ≥ j(F) ∧ [〈(F,G)〉] and H ≥ j(G) ∧ [〈(F,G)〉].
For f ′ ∈ F′ and g ∈ G we have j(f ′) ∈ H and j(g) ∨ >〈(F,G)〉 ∈ K and because
(H,H) is a >-pair filter we obtain

> =
∨

x∗∈X∗
j(f ′)(x∗) ∗ (j(g) ∨ >〈(F,G)〉)(x

∗) =
∨
x∈X

f ′(x) ∗ g(x).

Hence, F′,G are linked. Similarly, we can show that also F,G′ are linked and
hence (F ∧ F′,G ∧G′) ∈ CP. As this pair >-filter is ≤ (F′,G′) it is convergent
and therefore also (F,G) is convergent, a contradiction. Hence this case cannot
occur. �

7. Symmetry – >-Cauchy spaces

Let (X, CP) be a >-quasi-Cauchy space. We call (X, CP) symmetric if the
axiom

(TQCS) (F,G) ∈ CP implies (G,F) ∈ CP
is satisfied.

For >-quasi-uniform spaces and L-metric spaces, we obtain the usual con-
cepts.

Proposition 7.1. Let (X,U) be a >-quasi-uniform space. Then (X, CPU ) is
symmetric if, and only if, U ≤ U−1.
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Proof. Let first (X, CPU ) be symmetric. It was shown in [25] that, for each

x ∈ X, (U(x, ·),U(·, x)) ∈ CPU where U(x, ·) is generated by the >-filter basis
{u(x, ·) : u ∈ U} and U(·, x) is generated by the >-filter basis {u(·, x) :
u ∈ U}. A >-filter basis for

∧
x∈X U(·, x) ⊗ U(x, ·) is given by the L-sets b =∨

x∈X u(·, x)⊗u(x, ·) with u ∈ U and we have b(s, t) ≥ u(s, s)∗u(s, t) = u(s, t).
Hence we have

∧
x∈X U(·, x)⊗ U(x, ·) ≤ U and we conclude

U ≤
∧

(F,G)∈CPU
G⊗ F ≤

∧
x∈X
U(·, x)⊗ U(x, ·) ≤ U .

Therefore, using the symmetry of (X, CPU ), we conclude

U−1 =
∧

(F,G)∈CPU
(G⊗ F)−1 ≥

∧
(G,F)∈CPU

F⊗G = U .

For the converse, let (F,G) ∈ CPU . Then G ⊗ F ≥ U and hence F ⊗ G =

(G⊗ F)−1 ≥ U−1 ≥ U , that is, (G,F) ∈ CPU . �

Corollary 7.2. Let (X, d) be an L-metric space. Then (X, CP [d]) is symmetric
if, and only if, d(x, y) = d(y, x) for all x, y ∈ X.

In the sequel we are going to show that symmetric >-quasi-Cauchy spaces
can be identified with >-Cauchy spaces. Reid and Richardson [21] gave the
following definition. A >-Cauchy space (X, C)) is a set X with a set of >-filters
C ⊆ F>L (X) such that

(TC1) [x] ∈ C for all x ∈ X;
(TC2) If G ≤ F and F ∈ C, then G ∈ C;
(TC3) F ∧ G ∈ C whenever F,G ∈ C and

∨
x∈X f(x) ∗ g(x) = > for all f ∈

F, g ∈ G.

A mapping ϕ : (X, C) −→ (X ′, C′) is called Cauchy continuous if ϕ(F) ∈ C′
whenever F ∈ C. We denote the category of >-Cauchy spaces with Cauchy
continuous mappings as morphisms by >-Chy.

Let now (X, CP) be a >-quasi-Cauchy space. We define

CCP = {H ∈ F>L (X) : (H,H) ∈ CP}.
The proofs of the following propositions are straightforward and not shown.

Proposition 7.3. Let (X, CP) be a >-quasi-Cauchy space. Then (X, CCP) is
a >-Cauchy space.

Proposition 7.4. If ϕ : (X, CP) −→ (X ′, CP ′) is Cauchy continuous, then
ϕ : (X, CCP) −→ (X ′, CCP′) is Cauchy continuous.

Hence we have a functor F : >-QChy −→ >-Chy which maps a >-quasi-
Cauchy space (X, CP) to the >-Cauchy space (X, CCP) and leaves morphisms
unchanged.

Let now (X, C) be a >-Cauchy space. We define

CPC = {(F,G) ∈ PF>L (X) : ∃H ∈ C s.t. (H,H) ≤ (F,G)}.
Again, we omit the straightforward proofs of the following results.
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Proposition 7.5. Let (X, C) be a >-Cauchy space. Then (X, CPC) is a sym-
metric >-quasi-Cauchy space.

Proposition 7.6. If ϕ : (X, C) −→ (X ′, C′) is Cauchy continuous, then ϕ :
(X, CPC) −→ (X ′, CPC′) is Cauchy continuous.

Hence we have another functor G : >-Chy −→ >-QChy which maps a >-
Cauchy space (X, C) to the >-quasi-Cauchy space (X, CPC) and leaves mor-
phisms unchanged.

Proposition 7.7. We have F ◦ G = id>−Chy and G ◦ F ≥ id>−QChy.

Proof. For a >-Cauchy space (X, C), we have F ∈ C(CPC) if, and only if, (F,F) ∈
CPC , if, and only if, there is H ∈ C such that (H,H) ≤ (F,F) if, and only if,
there is H ∈ C such that H ≤ F. This is equivalent to F ∈ C.

For a >-quasi-Cauchy space (X, CP), we have (F,G) ∈ CP(CCP) if, and
only if, there is H ∈ CCP such that (H,H) ≤ (F,G), if, and only if, there
is H ∈ F>L (X) such that (H,H) ∈ CP and (H,H) ≤ (F,G). This implies
(F,G) ∈ CP. Hence we have shown CP(CCP) ⊆ CP. We note that if (X, CP)
is symmetric, we even have equality, as (F,G) ∈ CP implies (G,F) ∈ CP and
hence (F ∧G,F ∧G) ∈ CP and we can choose H = F ∧G. �

Corollary 7.8. The category >-Chy is isomorphic to a reflective subcategory
of the category >-QChy

We denote the subcategory of symmetric >-quasi-Cauchy spaces by
>-sQChy. We restrict the domain of the functor F to this subcategory, and
note that the codomain of G is automatically in this subcategory. Denoting
these resulting functors again by F,G, we even have F ◦ G = id>−Chy and
G ◦ F = id>−sQChy.

Corollary 7.9. The categories >-Chy and >-sQChy are isomorphic.

In this way we can identify symmetric >-quasi-Cauchy spaces and >-Cauchy
spaces.

Proposition 7.10. Let (X, CP) be a >-quasi-Cauchy space and ((X∗, CP∗), j)
be the finest completion. If (X, CP) is symmetric, then so is (X∗, CP∗).

Proof. This follows directly from the definition of CP∗. �

We will finally outline, that for a symmetric >-quasi-Cauchy space (X, CP),
we can construct (X∗, CP∗) in a different way. We first need some definitions
[21].

Let (X, C) be a >-Cauchy space. A >-filter F ∈ F>L (X) converges to x ∈ X
if F ∧ [x] ∈ C. The space (X, C) is called complete if each F ∈ C converges to

some x ∈ X. For a subset A ⊆ X we define the C-closure of A by x ∈ AC if
there is F ∈ F>L (A) such that [F] ∧ [x] ∈ C. A completion ((X+, C+), φ) of a
>-Cauchy space (X, C) is a complete >-Cauchy space (X+, C+) with a dense
embedding φ : X −→ X+, that is, we have φ(F) ∈ C+ if, and only if, F ∈ C
and φ(X)

C+
= X+.
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Lemma 7.11. A >- Cauchy space (X, C) is complete if, and only if, (X, CPC)
is complete.

Proof. If (X, C) is complete and (F,G) ∈ CPC then there is H ∈ C such that
(H,H) ≤ (F,G). Hence there is x ∈ X such that H ∧ [x] ∈ C and (H ∧ [x],H ∧
[x]) ≤ (F ∧ [x],G ∧ [x]). This means that (F,G) converges to x in (X, CPC).
Hence, (X, CPC) is complete.

Conversely, if (X, CPC) is complete and H ∈ C, then (H,H) ∈ CPC and there
is x ∈ X such that (H∧ [x],H∧ [x]) ∈ CPC . By definition of CPC there is F ∈ C
auch that (F,F) ≤ (H ∧ [x],H ∧ [x]) which shows H ∧ [x] ∈ C and (X, C) is
complete. �

Lemma 7.12. If the >-quasi-Cauchy space (X, CP) is complete, then also
(X, CCP) is complete. If (X, CP) is symmetric, then we have equivalence.

Proof. Let (X, CP) be complete and let F ∈ CCP . Then (F,F) ∈ CP and hence
there is x ∈ X such that (F∧ [x],F∧ [x]) ∈ CP. This means that F∧ [x] ∈ CCP
and (X, CCP) is complete.

If (X, CP) is symmetric and (X, CCP) is complete, then for (F,G) ∈ CP we
have (F ∧ G,F ∧ G) ∈ CP and hence, F ∧ G ∈ CCP . Therefore, there is x ∈ X
such that F ∧ G ∧ [x] ∈ CCP and we conclude (F ∧ [x],G ∧ [x]) ∈ CP. Hence,
(X, CP) is complete. �

Reid and Richardson constructed a finest completion as follows [21]. With
the equivalence relation on C, given by F ∼ G if F ∧ G ∈ C, we denote the
equivalence class of F ∈ C by 〈F〉 and we define X+ = X ∪ {〈F〉 : F ∈
C non-convergent}. Then ((X+, C+), j+) is defined by j+(x) = x for x ∈ X
and H ∈ C+ if either H ≥ j+(F) for some convergent F ∈ C or H ≥ j+(F)∧ [〈F〉]
with some F ∈ C non-convergent.

Proposition 7.13. Let (X, CP) be a symmetric >-quasi-Cauchy space. For
(F,G), (F′,G′) ∈ CP we have (F,G) ∼ (F′,G′) in (X, CP) if, and only if, F ∼ F′
in (X, CCP).

Proof. Let first (F,G) ∼ (F′,G′). The symmetry of (X, CP) ensures F,F′ ∈
CCP . From (F ∧ F′,G ∧ G′) ∈ CP we conclude, again by symmetry, that (F ∧
F′ ∧ G ∧ G′,F ∧ F′ ∧ G ∧ G′) ∈ CP and, using (TQC2), (F ∧ F′,F ∧ F′) ∈ CP,
that is, F ∧ F′ ∈ CCP . Therefore F ∼ F′.

If F ∧ F′ ∈ CCP , then (F ∧ F′,F ∧ F′) ∈ CP. As (F,G), (F′,G′) ∈ CP, we
conclude (F ∧ G,F ∧ G), (F′ ∧ G′,F′ ∧ G′) ∈ CP. Applying (TQC3) twice, we
conclude (F∧F′∧G∧G′,F∧F′∧G∧G′) ∈ CP. (TQC2) yields (F∧F′,G∧G′) ∈
CP, that is (F,G) ∼ (F′,G′). �

We note that by symmetry we also have G ∼ G′ in (X, CCP) if, and only if,
(F,G) ∼ (F′,G′) ∈ CP.

Corollary 7.14. The pair >-filter (F,G) converges to x in (X, CP) if, and
only if, F converges to x in (X, CCP).
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As a consequence, the mapping η : {〈(F,G)〉 : (F,G) ∈ CP non-convergent}
−→ {〈F〉 : F ∈ CCP non-convergent} defined by η(〈(F,G)〉) = 〈F〉 is a bijection
and we can identify in this wayX∗ and j (from the finest completion of (X, CP))
and X+ and j+ (from the finest completion of (X, CCP) for a symmetric >-
quasi-Cauchy space.

Moreover, we can deduce the following result.

Corollary 7.15. Let (X, CP) be a symmetric >-quasi-Cauchy space and let

A ⊆ X. Then A
CP

= A
CCP

.

If we have a symmetric>-quasi-Cauchy space (X, CP), then we can construct
the finest completion (X∗, CP∗). Alternatively, we can move to the >-Cauchy
space (X, CCP) and construct the finest completion (X+, (CCP)+) and from
there move to (X+, CP(CCP)+). Identifying X+ with X∗, we will show that

(X+, CP(CCP)+) = (X∗, CP∗). First of all, we notice that for (F,G) ∈ CP we

have F,G ∈ CCP and hence j(F), j(G) ∈ (CCP)+ which implies (j(F), j(G)) ∈
CP(CCP)+ . Conversely, if (j(F), j(G)) ∈ CP(CCP)+ , then there is H ∈ (CCP)+

such that H ≤ j(F), j(G). Hence j(F), j(G) ∈ (CCP)+, which implies F,G ∈
CCP . This means that (F,F), (G,G) ∈ CP, and as (F,G) is a pair >-filter, we
conclude with (TQC3) (F∧G,F∧G) ∈ CP. Hence, also (F,G) ∈ CP. Corollary
7.15 and Lemma 7.11 thus show that ((X∗, CP(CCP)+), j) is a completion of
(X, CP) and therefore, ((X∗, CP∗), j) being the finest completion, we see that
CP∗ ⊆ CP(CCP)+ . For the converse subsethood relation, we take (H,K) ∈
CP(CCP)+ . Then there is H′ ∈ (CCP)+ such that (H′,H′) ≤ (H,K). Then either
there is a convergent F ∈ CCP , that is (F,F) ∈ CP such that j(F) ≤ H′ ≤ H,K,
which shows (H,K) ∈ CP∗. Or there is F ∈ CCP non-convergent such that
j(F)∧ [〈F〉] ≤ H′. Then (F,F) ∈ CP is non-convergent and, upon identification
〈F〉 = 〈(F,F)〉, we conclude j(F) ∧ [〈(F,F)〉] ≤ H′ ≤ H,K which again implies
(H,K) ∈ CP∗. Hence we have proven the following result.

Proposition 7.16. For a symmetric >-quasi-Cauchy space (X, CP) we have
(X∗, CP∗) = (X∗, CP(CCP)+).

We note that in the non-symmetric case, (X+, CP(CCP)+) is in general not a
completion of (X, CP). To see this, we consider a complete >-quasi-Cauchy
space (X, CP). Then (X, CCP) is a complete >-Cauchy space and we get
(X∗, CP∗) = (X, CP) and (X+, (CCP)+) = (X, CCP) and from there, the com-
plete >-quasi-Cauchy space (X, CP(CCP)). As (X, CP) is non-symmetric, there
is (F,G) ∈ CP such that (G,F) /∈ CP. Since CP(CCP) ⊆ CP, this (F,G) cannot
be in CP(CCP). Hence, j = idX : (X, CP) −→ (X, CP(CCP)) is not Cauchy
continuous.

8. Conclusions

We defined a non-symmetric framework for studying completeness and com-
pletion, generalizing the >-Cauchy pair filters in a >-uniform space that were
used in [25] and [15]. Our category of >-quasi-Cauchy spaces has nice categor-
ical properties and covers the important examples of >-quasi-uniform spaces
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and L-metric spaces. It allows a theory of completeness and completion which
is patterned after the corresponding theory in the symmetric case [21]. In the
future, completions with special properties, e.g. diagonal completions or reg-
ular completions, can be studied using similar techniques as in [21] and the
connection to completions of >-quasi-uniform (limit) spaces are of interest. It
would also be interesting to see if such a non-symmetric theory of completeness
and completion finds a place in the field of monoidal topology [12].
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334–341.
[17] H.P. A. Künzi, An introduction to quasi-uniform spaces, in: Beyond Topology, F. My-

nard, E. Pearl, eds., Contempory Mathematics 486, Amer. Math. Soc., Providence,
Rhodes Island (2009), 239–304.

[18] F. W. Lawvere, Metric spaces, generalized logic, and closed categories, Rendiconti del

Seminario Matematico e Fisico di Milano 43 (1973) 135–166. Reprinted in: Reprints in

Theory and Applications of Categories 1 (2002), 1–37.
[19] G. Preuß, Prefilter spaces and a precompletion of preuniform convergence spaces related

to some well-known completions, Topology Appl. 156 (2009), 2005 – 2012.
[20] E. E. Reed, Completion of uniform convergence spaces, Math. Annal. 194 (1971), 83–108.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 226



>-quasi-Cauchy spaces — a non-symmetric theory of completeness and completion

[21] L. Reid and G. Richardson, Lattice-valued spaces: >-completions, Fuzzy Sets and Sys-

tems 369 (2019), 1–19.

[22] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland, New York, 1983.
[23] Y. Wang and Y. Yue, Cauchy completion of fuzzy quasi-uniform Spaces, Filomat 35, no.

12 (2021), 3983–4004.

[24] Q. Yu and J. Fang, The category of >-convergence spaces and its cartesian-closedness,
Iranian J. of Fuzzy Systems 14, no. 3 (2017), 121–138.

[25] Y. Yue and J. Fang, Completeness in probabilistic quasi-uniform spaces, Fuzzy Sets and

Systems 370 (2019), 34–62.
[26] D. Zhang, An enriched category approach to many valued topology, Fuzzy Sets and

Systems 158 (2007), 349–366.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 227


