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Artificial Intelligence is making rapid and remarkable progress in the development of more 
sophisticated and powerful systems. However, the acknowledgement of several problems 
with modern machine learning approaches has prompted a shift in AI benchmarking away 
from task-oriented testing (such as Chess and Go) towards ability-oriented testing, in which 
AI systems are tested on their capacity to solve certain kinds of novel problems. The Animal-AI 
Environment is one such benchmark which aims to apply the ability-oriented testing used in 
comparative psychology to AI systems. Here, we present the first direct human-AI comparison 
in the Animal-AI Environment, using children aged 6–10 (n = 52). We found that children of 
all ages were significantly better than a sample of 30 AIs across most of the tests we examined, 
as well as performing significantly better than the two top-scoring AIs, “ironbar” and “Trrrrr,” 
from the Animal-AI Olympics Competition 2019. While children and AIs performed similarly 
on basic navigational tasks, AIs performed significantly worse in more complex cognitive 
tests, including detour tasks, spatial elimination tasks, and object permanence tasks, 
indicating that AIs lack several cognitive abilities that children aged 6–10 possess. Both 
children and AIs performed poorly on tool-use tasks, suggesting that these tests are 
challenging for both biological and non-biological machines.

Keywords: human-AI comparison, artificial intelligence, AI benchmarks, comparative cognition, out-of-distribution 
testing, Animal-AI Olympics, cognitive AI

INTRODUCTION

In recent years, humans have been outperformed by AIs in several domains previously thought 
to be  too difficult for current or near-future systems. These include Chess (Campbell et  al., 
2002; Silver et  al., 2017), Jeopardy! (e.g., Ferrucci et al., 2013), Go (Silver et  al., 2016, 2017), 
Shogi (Silver et al., 2017), Dota 2 (OpenAI, 2018), StarCraft II (DeepMind, 2019), and multiplayer 
no-limit Texas hold’em poker (Brown and Sandholm, 2019). These results are remarkable, but 
they remain limited in several ways, due to the nature of the deep neural networks (DNNs) 
that underpin them. Douglas Heaven reports that many developers, engineers, and scientists 
see DNNs as “fundamentally brittle” (Heaven, 2019). They are exceptional at solving test 
problems taken from the same distribution as their training data but perform poorly and 
unpredictably when faced with slightly different problems (Crosby, 2020; Geirhos et  al., 2020; 
Hernández-Orallo, 2020). Geirhos et  al. (2020) argue that DNNs suffer from several issues 
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that give rise to this phenomenon, wherein they appear to 
be intelligently solving tasks when they are actually only finessing 
solutions via a number of “shortcuts” (the so-called Clever 
Hans Effect of AI; Sebeok and Rosenthal, 1981; Sturm, 2014; 
Hernández-Orallo, 2019, 2020). Geirhos et  al. argue that an 
effective measure against this issue is to test AIs on out-of-
distribution (o.o.d.) data, since, so long as testing uses data 
drawn from the same distribution as the training data (i.i.d., 
independent and identically distributed), it is impossible to 
distinguish between an agent that genuinely knows how to 
solve a problem and one that is using problem-irrelevant 
shortcuts to maximize reward (also Dickinson, 2012 for a 
perspective from animal psychology). Cases of adversarial attacks 
on image classifiers illustrate this: Dong et  al. (2018) report 
how a DNN can be  fooled into classifying the Alps as a dog 
and a puffer fish as a crab, by adding human-imperceptible 
noise to the original image. What such cases suggest is that 
certain AIs are overfitted to their training data or are using 
task-irrelevant correlations as ‘shortcuts’ to solve problems 
(Crosby, 2020). The move from i.i.d. to o.o.d. testing is gaining 
popularity (e.g., Jia and Liang, 2017; Agrawal et  al., 2018; 
Akula et  al., 2020; Teney et  al., 2020 for an overview), but 
not only because it promotes robustness in AI systems. It also 
marks a shift toward more ability-oriented AI benchmarking, 
as opposed to task-oriented benchmarking as in the cases of 
Chess and Go (Hernández-Orallo, 2017a,b). While many 
developers of, say, image classifiers would claim that they are 
creating systems with “the ability to classify objects,” the use 
of i.i.d. testing runs the risk of creating systems that simply 
“solve the task of classifying the training distribution,” ultimately 
by whatever means necessary. Using o.o.d. testing enables 
researchers to have grounds to say that they are testing for 
the presence of abilities. However, determining which o.o.d. 
data to select is problematic—it would not do to require a 
facial recognition system to start classifying dogs and cats in 
a test setting, if its only input were faces. In this way, then, 
the o.o.d. data need to be  meaningfully related to the training 
data but related in unpredictable and/or highly abstract ways 
(Crosby, 2020). A new testing platform, the Animal-AI 
Environment, is a means of generating training, validation, 
and test sets for use in AI development, wherein we  can 
generate out-of-distribution, relevant, and abstract ability-
oriented testing.

The Animal-AI Environment, first implemented in the 
Animal-AI Olympics 2019 (Beyret et  al., 2019; Crosby et  al., 
2020), offers a means by which to test AIs on a range of 
tasks used in comparative cognition. This provides a way to 
meaningfully define the training-test distribution relation, through 
testing of cognitively defined abilities. Comparative cognition 
as a field of research has long been asking whether animals 
can solve out-of-distribution, abstract tasks. A major thrust 
of the research literature is to develop experimental paradigms 
that can distinguish between “associative learning” using surface 
features (i.e., “shortcuts”) and “cognitive ability” (see Buckner, 
2011). To do this, researchers must develop ways for eliciting 
behaviours from animals that could not plausibly arise from 
“mere” stimulus–response association, thus enabling them to 

adjudicate between the predictions of “associative,” “shortcut” 
theories and “cognitive,” ability-based theories of animal learning. 
Regardless of whether this research practice is fruitful in principle 
(e.g., Papineau and Heyes, 2006; Meketa, 2014), it has resulted 
in a rich catalogue of experimental designs that can be  used 
to at least minimally distinguish between “shortcut” approaches 
to problem-solving and ability-based, intentional approaches. 
The Animal-AI Environment offers a simple way of reconstructing 
homologues of these designs for use in AI testing, enabling, 
for the first time, AI developers to test their systems on these 
ability-oriented tasks. The Animal-AI Olympics contained 300 
comparative cognition tasks using the inventory of objects 
available in the Animal-AI Environment. These were kept as 
a secret, and therefore difficult to predict, test set for investigating 
the abilities of the AIs submitted to the competition. The 
marriage of comparative cognition and AI benchmarking thus 
enables o.o.d. testing, but since the environment’s inventory 
of objects is strictly defined, selection of o.o.d. test sets is 
transparent. There is a further benefit to this partnership, in 
that we  know that these tasks are relevant for comparison 
with biological systems since real animals have been demonstrated 
to solve them. Therefore, while the precise nature of these 
abilities is hotly contested, it is manifestly true that these 
abilities are possessed by (some) animals and are thus of 
potential evolutionary value. The AAI Environment offers a 
rich resource for the next stage in AI benchmarking.

In this paper, we present the first direct AI-human comparison 
using the AAI Environment, contrasting human children aged 
6–10 with the top AI agents submitted to the 2019 Animal-AI 
Olympics Competition. We  were interested in how children 
compared to AIs on these common cognitive tasks, and whether 
this differed by the developmental stage of the child (using 
age as a proxy). First, we  detail five reasons why human-AI 
comparison using this environment is beneficial to both AI 
and comparative cognition research. Second, we  introduce the 
Animal-AI Environment, Testbed, and Olympics in full. Third, 
we  present the first direct AI-human comparison using this 
framework. While AI-human comparisons have been done 
before in other environments (e.g., Insa-Cabrera et  al., 2011; 
Schrimpf et  al., 2018, 2020; Kosoy et  al., 2020), this study is 
novel in its treatment of AI as objects for cognitive science 
research. Both AIs and human participants were presented 
with completely new, out-of-distribution cognitive problems 
to solve, in which neither have received extensive problem-
specific training. In this respect, the experimental paradigm 
developed here permits a more direct comparison of the 
general problem-solving capabilities of each type of agent. It 
extends beyond simplified same/different claims in human-AI 
comparison by drawing on methodologies from (comparative) 
psychology. We  used robust and transparent null hypothesis 
significance testing methods to compare performance between 
age groups and AIs. We  also applied clustering and 
dimensionality reduction to examine whether patterns of 
performance across the tasks were informative as to whether 
an agent was drawn from a human or an AI population. It 
is hoped that human performance in this study will constitute 
a benchmark for general problem-solving skill in future AI 
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algorithms, thus offering the first sophisticated case of the 
new generation of AI benchmark.

THE ANIMAL-AI ENVIRONMENT, 
TESTBED, AND OLYMPICS

The Animal-AI Environment is the platform in which the 
Animal-AI Testbed was developed. The testbed offers a means 
by which to test AIs on a range of tasks used in comparative 
cognition to examine the problem-solving capabilities of a 
range of species, from crows, chimpanzees, and humans, to 
octopuses, goldfish, and dolphins. The Animal-AI Olympics is 
a competition, first run in 2019, that asks AI developers to 
build systems that could solve the tasks in this testbed. In 
this paper, we  compare the AI systems submitted to the 
Animal-AI Olympics 2019 competition with human children 
aged 6–10 as a demonstration of how the Animal-AI Testbed 
can be  leveraged for direct human-AI comparison, laying the 
foundation for future direct comparisons using both human 
and non-human animals.

The Animal-AI (AAI) environment uses Unity (Juliani et al., 
2020) to generate the virtual analogues of comparative cognition 
tasks used in the AAI testbed, including trap-tube and string-
pulling/hook tasks, radial-arm- and Y- mazes, and Thorndike 
escape boxes. The AI agents submitted to the 2019 AAI Olympics 
Competition were predominantly Deep Reinforcement Learning 
systems. A principal aim of the Animal-AI Olympics Competition 
is to determine whether AI agents could solve problems that 
animals have been shown to solve in the lab. The general 
set-up of the testbed and the Olympics aims to imitate elements 
of animal cognition tasks both in terms of the type of problem 
and the context in which it is presented. Developers of AI 
agents were provided with the test arena and the inventory 
of objects that could populate it, and then instructed that 
their agents would be  tested on problems that animals can 
solve, without being provided, during the development process, 
with any of these problems. They were informed, however, 
that the tasks would only ever include items and objects that 
were available for interaction during training. Within the AAI 
Testbed, while the participating agent is not fully “embodied” 
in the sense of having a functional body (with limbs, multiple 
senses, etc), it is contextualized in that it acts within a 3D 
visual arena (where information is provided in the form of 
pixels – i.e., visually) whose properties and possible interactions 
are dictated by a physics engine. Egocentric velocity is provided 
as a vector for the AIs and as a visual display for human 
players. This provides the speed of the agent in the three 
dimensions, and acts as a proxy for proprioception. There are 
objects that can be  moved, and objects that cannot, there are 
movements that can be  performed (e.g., ascending a ramp), 
and those that cannot (e.g., flying, jumping). In each task, the 
objective for the agent is to maximize its “points” within a 
time-limit. Points are gained or lost through contact with 
rewards of differing size and significance, and punishments of 
differing severity. Points start at 0 and decrease linearly with 
each timestep. This creates time pressure, and therefore motivation 

for fast and decisive action. Obtaining a yellow “fruit” increases 
points, obtaining a green “fruit” also increases the points and 
is the ultimate objective, ending the level. Moving onto an 
orange area of floor accelerates the rate of point decrement 
over time, and so should be avoided unless necessary. Touching 
red “fruit” or moving onto a red area of floor (“Lava”) ends 
the level with failure (“death”). All fruit can be either stationary, 
or in motion through all three dimensions, and they can be of 
various sizes, indicating different reward values (but always 
spherical). There are a range of objects that might help or 
hinder achieving the goal, including opaque grey and translucent 
immovable barriers, blue platforms, pink ramps, pushable blocks, 
and pushable “cardboard” boxes. More information is available 
in the Supplementary Material.1 The 2019 AAI competition 
used 3 variations of each of 300 individual tasks, almost all 
adapted directly from the animal cognition literature, ranging 
from simple object retrieval to complex tool-use tasks.2 The 
AAI competition also provides plenty of raw data, in the form 
of a points score on each task and positional data at each 
time step, which can be  variously processed for the purposes 
of the specific hypothesis testing.

WHY COMPARE ARTIFICIAL 
INTELLIGENCE TO HUMANS?

The Animal-AI Environment is clearly well-placed in serving 
as an o.o.d. AI benchmark (see Chollet, 2019; Crosby, 2020; 
Hernández-Orallo, 2020). However, what benefit does human 
testing offer? We  present five reasons why direct human-AI 
comparison using the AAI Environment is critical:

Tests the Assumption That Tasks Used in 
the AAI Olympics Are Solvable by Humans
Beyret et  al. (2019) and Crosby et  al. (2020) argue that the 
tasks used in the AAI Olympics are easily solvable by humans. 
This is a plausible assumption to make since variants of these 
tasks are solvable by at least some non-human animals and 
human children in the lab. However, it remains an untested 
assumption within the specific context of the AAI Environment 
for o.o.d. testing. It may be  the case that certain extraneous 
factors (e.g., reaction times, ability to interact with the 
environment, appearance of objects) make some or all of these 
tasks much harder to solve than the “real-life” physical tasks 
they were based on. If so, holding AIs to these standards 
would be  unfair, constituting a case of what Buckner (2013) 
calls “anthropofabulation,” or the exaggeration of human 
capabilities. Anthropofabulation is a concern within comparative 
cognition research. It is often assumed that “simple” behaviors, 
such as bending wire to make a hook (Weir et  al., 2002) are 
also simple for humans. However, these assumptions are rarely 
tested, and when they are, many of these tasks prove surprisingly 
non-trivial – spontaneous wire bending, for example, does not 

1 Including details for how the reader can play the tasks presented to children 
in this study.
2 These can be  viewed and played here: http://animalaiolympics.com/AAI/
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occur reliably until 8–10 years of age (Beck et al., 2011). Similarly, 
control conditions that assume rational behavior (for example, 
not avoiding a trap if it is non-functional, e.g., on top of a 
tube) are sometimes failed by adult humans even if the requisite 
understanding (things do not fall up) is demonstrably present 
(Silva et  al., 2005). Hence, the solvability of the Animal-AI 
tasks, while plausibly assumed, must nevertheless be  tested 
empirically. In this way, we  may show that these tests are 
meaningful analogues of “real life” cognitive tasks, and within 
the grasp of artificial agents, if development occurs in the 
right areas, permitting actionable research (Crosby, 2020).

Provides Direct Data of How a Biological 
Agent Solves Each Task
Turing (1950) suggests that instead of artificially simulating 
the adult mind, we  should instead focus on simulating the 
child mind. To this end, providing data on not just whether 
but how children solve some of the tasks in the AAI Testbed 
offers a concrete cognitive blueprint for how engineers might 
develop systems capable of solving the same tasks. By analyzing 
which objects children attend to or which search paths they 
take when solving tasks, and how this differs to the way certain 
families of machine learning techniques perform in identical 
tasks, we  can develop a diagnostic for progress in AI research 
towards “human-like” intelligence. In this way, the AAI 
Environment moves from being just a benchmark for measuring 
AI progress, to a dynamic research programme facilitating 
dialogue between cognitive science and AI. It may be  argued 
that lab data already exist on how children perform in some 
of the tasks presented here. While these comparisons are 
certainly informative and important for AI progress, having 
humans interact with the AAI Environment directly means 
more sophisticated comparisons can be made beyond the gross 
level of success rates. When both types of agents are tested 
within the same environment (albeit via different interfaces), 
the playing field is levelled, permitting more accurate human-AI 
comparison (Firestone, 2020). Therefore, for the purposes of 
developing AIs that can pass the AAI Olympics, the empirical 
studies conducted and proposed here provide more pertinent 
data than can be  obtained in the laboratory.

Provides a Stepping-Stone Toward Direct 
Comparison With Non-human Animals
The limitations in comparing physical task data and that collected 
in virtual environments also apply to comparisons between 
AIs and non-human animals. While we  have a range of data, 
collected from a myriad of species, on how animals perform 
on the physical versions of tasks, current comparisons to AI 
performance can only be  indirect. This implementation of the 
AAI Environment for use with humans acts as a stepping-
stone towards later implementations with non-human animals, 
whether via joystick control, touchscreen, virtual reality, or 
scaled real-life matched copies of the testbed arena (Crosby, 
2020). These future studies will provide a rich compendium 
of data on how animals from a range of species solve certain 
types of tasks, enabling more informed cognitive modelling 

in AI research (e.g., Lake et  al., 2017). This study provides a 
starting point, presenting data from human children in different 
developmental stages.

Facilitates a Reciprocal Dialogue Between 
Cognitive Science and AI
The benefits do not just extend to AI research, but would 
enable a “virtuous cycle” of breakthroughs in cognitive science 
as well (Hassabis et al., 2017). For example, if AIs make similar 
errors to, say, six-year-olds, or chimpanzees, or pigeons, on 
some task, then an examination of the architecture and training 
curriculum of the AI may well shed light on why those errors 
appear in the biological agents. While many AI systems are 
“black boxes” in a certain sense, they are not opaque in the 
same ways as the “black boxes” of chimpanzee, pigeon, or 
child brains. AIs can, for example, be reset, trained on a wholly 
different dataset, or restructured in certain ways such that 
we  can form hypotheses about which factors might underly 
these errors. Instead of rearing new individuals which can 
take several years and incur high financial (and potentially 
ethical) cost, AI systems can be simply reset, or rerun thousands 
of times with minimal expenditure. AI-based analyses can then 
feed back into the cognitive science literature, promoting further 
study, and testing of phenomena that may have previously 
gone unnoticed. New and existing models based on these 
observations and insights can also be  “embodied” as agents 
in these tasks, with their ability to explain biological behaviour 
assessed, setting a “virtuous cycle” into motion.

Offers a New Experimental Resource for 
Comparative and Developmental 
Psychology
Aside from AI research, the Animal-AI Environment is also a 
useful resource for generating ersonali experiments for use in 
comparative and developmental psychology labs to supplement 
laboratory research. Since developers are free to generate their 
own configurations within the environment, psychologists would 
be  able to create “gamified” versions of their experiments that 
are playable online and remotely. This would permit sample sizes 
to be inflated and therefore statistical power to increase. Furthermore, 
in the pandemic and post-pandemic world where the possibility 
of lab and school closures remains high, the ability to conduct 
studies of, say, physical cognition remotely is a major benefit.

In summary, these five reasons exemplify the importance 
of human-AI comparison using this testbed. This study is 
valuable to not only AI developers interested in developing 
embodied and computer vision systems, but also to the AI 
world more generally, as well as to comparative and 
developmental psychologists.

MATERIALS AND METHODS

The AAI testbed includes 300 tasks which can be  broadly 
divided into 10 groups of increasing difficulty. They are presented 
in Table  1 and Figure  1. In the AAI Olympics competition, 
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AI agents were tested on 3 variations of each of the 300 tasks. 
Variations included minor perturbations of objects in the arena 
(light, shadow, position), and minor adjustments in starting 
position. This was to reduce the influence of task-irrelevant 
biases on performance and is similar to running repeated trials 
on the same test subject. Pass marks, or threshold values, are 

part of the AAI Testbed, and are designed to signify if an 
agent has the ability being tested for. For example, in the 
6-arm Radial Arm Maze, the pass mark is set such that the 
test is passed if all six food items are obtained within the 
time limit and failed otherwise. For the current study, 40 tasks 
were adapted into online computer games permitting children 

TABLE 1 | Tasks grouped into 10 levels of increasing difficulty.

Level Name Level Description What is required of the agent? Task Examples

L1 - Food Retrieval Rewarding and aversive stimuli in an 
open arena containing no obstacles.

Basic navigation towards rewarding stimuli and 
away from aversive stimuli. Tests whether the 
agent can navigate the arena and achieve the 
simple goals of obtaining rewards.

This is not a tested skill within comparative 
cognition, as it is assumed that any creature is 
able to feed itself to survive.

L2 - Preferences Rewarding and aversive stimuli 
arranged in forced-choice or free-
choice arrangements. All stimuli can 
be viewed from the same position (the 
agent need not reorient itself to view the 
stimuli)

Selection of most rewarding stimuli when 
presented with multiple visible options. Tests 
whether the agent has a notion of which stimuli 
are the most rewarding.

Y-mazes (Ryback, 1969; Castilla, 1972;  
Pollard et al.,1994; Pajor et al., 2003)

Delayed gratification tasks (Beran, 2002)

L3 - Static Obstacles Rewarding stimuli are fully or partially 
occluded by opaque or transparent 
static obstacles such as walls, ramps, 
tunnels, or boxes.

Navigation around variable static objects to 
obtain rewards that may be initially out of view. 
Tests whether the agent can explore the arena 
in the search for occluded rewarding stimuli.

Detour tasks and cylinder tasks (Maclean et al., 
2014; Langbein, 2018)

Escape boxes (Thorndike, 1911)

L4 - Avoidance Rewarding and aversive stimuli are 
arranged around aversive zones.

Navigation in an arena containing aversive 
zones. Tests whether the agent avoids aversive 
stimuli.

Y-maze variants (see L2)

L5 - Spatial Reasoning 
and Support

Rewarding stimuli are occluded, or not 
simultaneously visible from one position. 
They may also be supported out of 
reach by other static objects.

Inferences about the locations of rewarding 
stimuli from their absence elsewhere. Tests 
whether the agent can reason about space and 
how external objects can support each other.

T-mazes (Qin and Wheeler, 2007)

Spatial elimination tasks, support tasks, and 
radial arm mazes (Bailey et al., 1989; Kamil 
et al., 1994; Hughes and Blight, 1999; Bailey 
et al., 2000; Lipp et al., 2001; Leplow et al., 
2003)

L6 - Generalisation A selection of tasks from previous 
levels, except that the colour of the 
walls and flooring (except orange and 
red zones) is varied.

The agent is required to ignore irrelevant cues 
about colour. Tests whether the agent is using 
the colour of background objects as a cue to 
behaviour in the arena.

This is often a feature of controls within animal 
cognition tasks rather than a feature of test 
variables, e.g., counterbalancing colour, or 
stimulus location.

L7 - Internal Modelling A selection of tasks from previous levels 
except that visual information is blocked 
at periodic intervals.

The agent is required to continue navigating 
towards rewarding objects despite lack of 
visual input. Tests whether the agent behaves 
through step-by-step responses to pixel output 
or whether broader action plans are carried 
out.

‘Lights out’ radial arm mazes (Etienne et al., 
1994)

L8 - Object Permanence 
and Working Memory

Rewarding stimuli pass out of view 
behind occluding objects.

The agent is required to navigate to rewarding 
stimuli by inferring where they are from their 
initial trajectories before they were occluded. 
Tests whether the agent acknowledges that 
objects persevere even when they move behind 
a barrier.

Primate Cognition Test Battery (PCTB; 
Herrmann et al., 2007)

Object Permanence tasks (Chiandetti and 
Vallortigara, 2011)

L9 – Numerosity and 
Advanced Preferences

Preference tasks (L2) where the number 
of rewarding stimuli in each choice is 
high (3+). These are augmented with 
object permanence tasks (L8)

The agent is required to count the number of 
rewarding stimuli available and judge which 
option is optimal for the goal of reaching 
maximum points. These stimuli may pass 
behind occluding objects. Tests whether the 
agent acknowledges the number of rewarding 
stimuli in making preference decisions.

Numerical discrimination tasks (e.g., Kilian 
et al., 2003; Stancher et al., 2015)

L10 – Causal Reasoning Rewarding stimuli are only accessible 
through interactions with one or more 
non-rewarding stimuli such as boxes 
and pushable blocks.

The agent is required to manipulate non-
rewarding objects in the arena to facilitate them 
in obtaining rewarding stimuli. Tests whether 
the agent can reason about how objects 
interact causally to carry out multi-stage 
actions.

Trap-tube tasks (e.g., Seed et al., 2009)

String-pulling/hook tasks (Hauser et al., 1999; 
Taylor et al., 2007; Jacobs and Osvath, 2015)

Tool choice tasks (e.g., Wimpenny et al., 2009; 
see also Jelbert et al., 2014)

Box and banana task (Köhler, 1925)

“Rewarding stimuli” refer to green/yellow “fruit. “Aversive stimuli” refer to red “fruit.” “Aversive zones” refer to red and orange areas of the arena. In the final column, the experimental 
paradigms that inspired each level are referenced.
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FIGURE 1 | A visual description of the Animal-AI Environment and Testbed. Full details are presented in the Supplementary Material.

to interact with the environment. Four tasks from each level 
were randomly selected, the only constraint being that they 
must be  easily rendered by Unity WebGL for the online study. 
One of the three variants of each task was randomly selected. 
The Animal-AI Environment and Testbed, originally written 
in Unity, was made into an online game using Unity WebGL 
(Juliani et al., 2020), enabling online access via the competition 
website using ersonalized User IDs and passwords. Full details 
of these tasks can be  viewed in the Supplementary Material. 
The entire AAI Testbed can be  played on the AAI website 
(FN3). This study was given ethical approval by the Cambridge 
Psychology Research Ethics Committee.

Participants
Data on AI agents were drawn from the results of the Leverhulme 
Centre for Future of Intelligence’s Animal-AI Olympics 
competition (Crosby et  al., 2020). For training, the developers 
were provided with a “playground” which contained the testing 
arena which could be  configured to include permutations of 
the possible objects. Most of the competition entries used deep 
reinforcement learning algorithms, some with convolutional 
neural network architectures augmenting the RL algorithms, 
along with hand-coded elements to bias learning in favor of 
certain perceivable competition goals. For example, the AI agent 

“Trrrrr,” the winner of the AAI Olympics competition, was 
rewarded for achieving vertical velocity, meaning it actively 
sought out ramps (see Crosby et al., 2020). Note that the specific 
computational architectures and training curricula for each agent 
were not submitted by the competition entrants as they were 
proprietary, so that information is not available at this time. 
61 AIs were submitted to the competition. Full data were 
available for 58 of these agents. Four of those AIs were not 
involved in simulations of all 40 tasks, and so were excluded. 
A threshold for inclusion was used to remove any agents that 
failed in 2 out of 4 of the tasks in L1, since this eliminated 
agents that were unable to perform the fundamental task of 
navigating towards and obtaining the green reward. Agents that 
could not succeed in doing this were unlikely to be  indicative 
of cutting-edge machine learning algorithms. This resulted in 
a sample size of 30 AI agents being involved in the final analyses.

Children were recruited via parents/guardians using an online 
sign-up form distributed on social media. We  were interested 
in recruiting participants from a range of age groups, to begin 
to understand whether performance on AAI Tasks could 
be  associated with developmental stage. Studies using 
computerized test batteries have shown large age-related effects 
(Gur et  al., 2012). We  wanted to understand for example, 
which AIs outperformed 6-year-olds but not 7-year-olds, and 
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how this might relate to cognitive development in children. 
Due to potential motor difficulties with young children, 
we  decided to use a conservative lower age of 6-years-old, 
and due to potentially wider levels of experience in older 
children, we  elected an upper age of 10-years-old. Parents/
guardians were invited to participate in a study investigating 
flexible novel problem solving in children aged 6–10; they 
were informed that their child would be  asked to play an 
online game not unlike “Minecraft” and that parents/guardians 
would be  asked to fill out a short questionnaire. They were 
also informed that they would be  reimbursed with £5 for 
their and their child’s time. Parents/guardians who had signed 
up were then contacted with details on how to engage in the 
study. Partial questionnaire and game-play data were collected 
for 107 children. 59 of those children completed all 40 tasks. 
Applying the same threshold as for the AIs, a final sample 
size of 52 children was used in the study, eliminating 7 
participants who did not pass 2 out of 4 tasks in L1. This 
eliminated participants who might have experienced a glitch 
or a browser crash at the start of the game, which happened 
to some, according to a post-study questionnaire. The median 
age of the sample was 8 (mean age = 8.096). The final dataset 
included: 7 six-year-olds, 10 seven-year-olds, 16 eight-year-olds, 
9 nine-year-olds, and 10 ten-year-olds.

Procedure
Parents/guardians were provided with a link to an online 
Qualtrics survey (Qualtrics, 2019), which they filled in with 
their child. Parents/guardians and child provided informed 
consent and then answered questions about their child’s age 
(6, 7, 8, 9, or 10 years old) and whether they were color-blind. 
They were also asked how often their children play computerized 
video games, what genre of games these tend to be, and what 
controls they use. The children were shown a two-minute video 
explaining the rules of the online game, before following a 
link to the game itself. The children were provided with some 
tutorial rounds within a set-up similar to the AIs’ “playground,” 
which they could attempt as many times as they wished.  
This allowed them to adapt to the controls, which involved 
using arrow keys on a keyboard to navigate. Participants could 
move forwards and backwards with the ↑↓ keys and orientate 
themselves in any direction with the ← → keys. The test then 
began, in the level ordering presented in Table  1 (see 
Supplementary Material for task orderings). Participants were 
given twice as long as the AIs to complete each task because 
of differences in reaction times and visual acuity (due to it 
being presented on computer screens and online via internet 
browsers).3 We  did not counterbalance the order of the tasks 

3 This doubling of time limit was determined using a pilot study involving five 
adults, who found that they were unable to solve several tasks when provided 
with the same time limits as the AIs. A post-pilot survey suggested that this 
was because they were still learning the controls and the physics of the game. 
It was deemed that since human agents were not ‘embodied’ in the game 
environment in the same way as the AIs, giving them twice the time limit 
would be  optimal for allowing them to think about and solve the problems, 
without giving them too much time such that it was not a fair comparison.

because of concerns about the sample size in each of the 
counterbalanced groups.

Since the total points and pass marks varied greatly between 
tasks due to differences in the number of available “fruit,” 
total points and pass marks were converted into “accuracy” 
values. These values correspond to the proportion of the 
maximum possible points for each task achieved by each agent 
or required to pass each task (for pass marks). Maximum 
points values were defined as the maximum number of points 
achievable before the end of the first time-step (an impossible 
value to achieve, in practice). Minimum points values were 
corrected for rounding errors (see Supplementary Material 
for details). Accuracy values are reported on a scale from 0 
to 1. A value of 0.5 for agent accuracy means that the agent 
achieved half of the possible points available for that task. A 
value of 0.5 for a pass mark means that an agent needs to 
obtain half of the maximum available points for a task to 
be  deemed as having passed it.

Hypotheses and Statistical Analyses
We used Neyman-Pearson Null Hypothesis Significance Testing 
to examine various hypotheses relating to whether human 
children and AIs performed differently, using the conventional 
significance level of 0.05. We  performed parallel analyses with 
and without outliers (using the 1.5xIQR rule) because of the 
online, unsupervised nature of the study. We  reasoned that 
perhaps very high and very low results may have arisen due 
to software malfunction, given that participant were taking 
part from home with investigators on hand to help. Therefore, 
we  wanted to check whether removing outlier results affected 
interpretation. Where the statistics literature is unclear as to 
which test is uniformly most powerful for the data and 
distributions at hand, several alternative methods are used. 
We  could, therefore, transparently determine the robustness 
of our results under different statistical conditions (e.g., 
parametric vs. non-parametric assumptions). Two comparisons 
are made, (i) between all 52 children and all 30 AIs (agent 
contrasts) and (ii) between each age group and AIs (age-group 
contrasts). Correlation coefficients4 were used to examine whether 
there is a difference between what the AIs and the children 
found difficult by determining if there was a significant correlation 
between performance and level: That is, how does performance 
vary as tasks progress from L1 to L10? This indicates the 
relative general problem-solving ability of humans vs. AIs; if 
performance tends to decrease as level complexity increases, 
this suggests that the agent might exhibit general abilities 
applicable to a wide range of problems. In contrast, no correlation 
might suggest that that agent has more specific abilities suited 
to a subset of the levels and ill-suited to the others, perhaps 
suggesting a lack of generality.

A Two-Way Mixed ANOVA was used to examine whether 
AIs and children differ in their performance in the tasks 
(between-subjects factor) and across the 10 levels (within-
subjects factor). Accuracy was averaged across the four tasks 

4 Specifically Kendall’s Tau, Spearman’s Rho, and Pearson’s Product Moment 
Correlation Coefficient (PMCC).
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TABLE 2 | Rankings of 30 AI agents involved in this study compared to ranking 
in AAI Olympics 2019 Competition.

AI/Team Name
Total Average 

Accuracy (4 decimal 
places, d.p.)

Ranking
AAI Olympics 

Rank

ironbar 0.4896 1 2
Trrrrr 0.4881 2 1
sirius 0.4308 3 3
ARF-RL 0.4278 4 8
sungbinchoi 0.4198 5 6
Melflo (oltau.ai) 0.4196 6 5
DeepFox 0.4095 7 7
Juramaia 0.3910 8 10
BronzeBlood 0.3906 9 4
mmIA 0.3900 10 12

of each level. Main effects of Level (L1-L10) and Agent 
(AI:Children) and interaction effects of Level*Agent were 
calculated. The Aligned-Rank Transform (ART; Wobbrock et al., 
2011; Kay and Wobbrock, 2020) was used to facilitate a 
nonparametric analysis. Generalized eta-squared (hg2) effect sizes 
were reported for the parametric ANOVA, with a hg2 of 0.2 
or above considered to be  a large effect size (Lakens, 2013). 
To examine whether the AIs and children differ on the individual 
levels, Mann–Whitney U Tests were used. Vargha and Delaney’s 
A was used as the measure of effect size for these tests. Welch’s 
Two-Sample t-test (and Cohen’s d) was used as the parametric 
alternative. To examine how individual age-groups compare 
with AIs, parametric and nonparametric Two-Way Mixed 
ANOVAs, were run and t-ratio contrast effects calculated (Lenth 
et  al., 2019). These ANOVAs, Mann–Whitney U, and t-tests 
were used to help answer the question of how well the AI 
models explain the behaviour of the biological comparator 
(human children) across a range of age groups. If we  failed 
to reject the null hypotheses, this suggests that the AI models 
perform similarly to the human children. If we  rejected the 
null hypotheses, then the AI models do not perform similarly.

An extensive exploratory analysis was then conducted. A 
k-medoids clustering algorithm was used to examine how the 
data are grouped together. Two separate clustering analyses 
took place. First, overall accuracy data for each participant, 
without information about whether they were produced by a 
child or an AI, acted as input for the clustering algorithm, 
to determine whether grouping (child vs. AI) information could 
be  extracted. The phi coefficient and Cramer’s V were used 
to determine whether these clusters were significantly associated 
with child vs. AI information (Lüdecke, 2019) This analysis 
was supplemented by a clustering analysis on each group (AIs 
vs. children) to determine whether they individually cluster 
into different groups, following Kosoy et  al. (2020). Post-
clustering analyses, using several correlation coefficients,5 were 
conducted to determine whether any clusters in the child data 
correlate with age or video-game experience. Cluster quality 
is defined by “average silhouette width,” meaning the average 
distance between each data point in one cluster and one of 
the other clusters, and is measured from −1 to 1, with 1 
indicating high clustering of the data points and − 1 indicating 
that data points should be classified as being in different clusters. 
0 indicates that data points are on average equidistant from 
all clusters, suggesting a non-clustered distribution (Rousseeuw, 
1987). Strong clustering is suggested by an average silhouette 
width of at least 0.75, medium clustering by a width of at 
least 0.5, and weak clustering by a width of at least 0.25 
(ibid.).

The k-medoids analysis was supplemented with a 
dimensionality reduction technique called Uniform Manifold 
Approximation and Projection (UMAP; McInnes et  al., 2020). 
This allowed us to check the robustness of clustering results 
and to visualize how the AIs and children compared across 
all 40 tasks. The results of clustering, UMAP, and overall 

5 Phi Coefficient and Cramer’s V for binomial data. Kendall’s Tau, Spearman’s 
Rho, and Pearson’s PMCC for continuous data.

performance enabled the selection of two AIs, “Trrrrr” and 
“ironbar,” for further analysis and discussion. Both were 
individually compared to children first in terms of the percentiles 
they were in with respect to the children’s performances. Then 
they were compared using one-sample Hotelling’s T2 test across 
all 40 tasks, using the χ2-distribution and the F-distribution 
(Signorelli et  al., 2019). Hallin and Paindaveine’s (2002a,b) 
Multivariate Signed-Rank Test (with Tyler Angles) was run as 
the nonparametric alternative (Nordhausen et  al., 2018). Using 
the F-distribution for the Hotelling’s test enabled the computation 
of confidence intervals adjusted for family-wise error rate, for 
post hoc comparisons on a task-by-task basis. Correlation 
coefficients by level and by task were also generated for “Trrrrr” 
and “ironbar” individually. All analyses were conducted in R 
(R Core Team, 2020). Further details on statistical methods 
and results, along with further tables, a full description of the 
tasks, and R Scripts can be found in the Supplementary Material.

RESULTS

AI Rankings
Across the 40 tasks used in this study, the rankings of the 
AIs differed slightly from those in the full competition. Table 2 
presents the rankings for the top  10 agents in the sample of 
30. See Supplementary Material for the full rankings.

The top  3 AIs are the same as in the overall AAI Olympics 
Competition. However, over these 40 tasks, “ironbar” was 
slightly more successful than the competition winner, “Trrrrr.”

Agent Contrasts
General Statistics
Across all 40 tasks, children’s scores (median = 0.6276, 
mean = 0.6052, SD = 0.1476) were higher than those of the AI 
agents (median = 0.3529, mean = 0.3412, SD = 0.0809). 0% of AIs 
passed Levels 3 (static obstacles), 6 (generalization), 8 (object 
permanence and working memory), 9 (numerosity and advanced 
preferences) and 10 (causal reasoning), on average, where at 
least some children passed these levels, on average. In fact, 
at least 6 children (often several more) solved every task in 
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the 40-task testbed. The Supplementary Material includes the 
percentage of each sample that passed each task, not averaged 
by level.

Figure  2 shows that the average score for AIs was well 
below the average pass mark/threshold value. The estimated 
probability of success (in terms of pass/fail) for an AI is very 
low, approaching zero. In contrast, whilst the average accuracy 
for the children is still below the average pass mark threshold, 
it is considerably closer, with a much higher probability of 
success for that group. This suggests that the children (the 
biological comparator) are generally more capable of solving 
this wide range of tasks than the AIs (the model). Notable 
also is the difference in spread, with the children showing 
much greater variance compared to the AIs. This might 
be because the children represent a more heterogenous population 
than the AIs (systematic variance), due to subgroup differences 
in age and experience with computer games, something 
we explore below. Alternatively, it may be because the children 
simply have a more variable pattern of performance (random/
unexplained variance).

Figure  3 shows that the AIs only perform comparably with 
the children in L1 and L2; these levels tested basic navigation 
toward rewarding stimuli in an open field and simple preference 
tasks, and only in Level 2 are most of the AIs successful. No 
significant correlation was detected between average score on 
each level and level number for the AIs (rτ = −0.378, p = 0.1557). 
However, there was a significant weak correlation between 
individual task scores and level number (rτ = −0.268, p ≈ 0.0185). 
The significance of these results was unaffected by method. 
There was a significant strongly negative correlation between 
average score on each level and level number for the children 

(rτ = −0.8222, p < 0.001). There was also a significant moderate 
correlation between individual task scores and level number 
(rτ = −0.4242, p ≈ 0.0002). The significance of these results was 
unaffected by method.

It is also noticeable in Figure 3 that AIs performed particularly 
poorly on Level 3 and Level 6 compared to Levels 2, 4, 5, 
and 7. Breaking these levels down into their respective tasks, 
tasks 6-11-1 and 6-12-2 are both Y-maze variants, much like 
3-11-1, so poor ability in these L6 tasks may be  partially 
explained by poor ability on this L3 task. Post hoc paired 
t-tests and Wilcoxon signed-rank tests were run to examine 
this. They showed that performance in 6-11-1 was not significantly 
different from performance on 3–11-1 [t(29) = 2.01, p = 0.05408], 
but that performance on 6-12-2 was significantly different from 
performance on 3–11-1 [t(29) = 2.26, p = 0.03146]. The significance 
of these results was not affected by the use of the Wilcoxon 
either (V = 20, p = 0.05917; V = 21, p = 0.03603, respectively). This 
is interesting in that the only difference between 6-11-1 and 
6-12-2 was the positioning of the agent and reward relative 
to each other. An agent with the ability to solve detour tasks 
like these would be  robust to these kinds of irrelevant changes 
(as children are), suggesting perhaps that the AI agents are 
using some “shortcuts” to solve these tasks. We  also looked 
at performance on 6-9-1, which was a simple navigation task 
but in an oddly colored environment, and compared it to the 
analogous L1 task, 1–4-3 (without odd coloration of walls, 
floor, and ceiling). Performance on 6-9-1 was significantly 
different from performance on the analogous L1 task 1–4-3 
[t(29) = 24.21, p < 0.0001]. The significance of this result was 
not affected when a Wilcoxon signed-rank test was used as 
a nonparametric alternative (V = 464, p < 0.0001). Similar 

FIGURE 2 | Histograms of accuracy averaged across 40 tasks. AIs (left, purple) and children (right, red). The average pass mark across the 40 tasks is shown by 
the green line. Red/purple solid lines show the probability densities. Red/purple dotted lines show average accuracy.
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reasoning can be  applied here. The coloration of the walls, 
floor, and ceiling should be  irrelevant to the task of navigating 
toward a reward. The fact that these irrelevant changes incur 
differences in performance suggests that the agents may be using 
task-irrelevant “shortcuts” to solve some of these tasks, unlike 
children whose performances are robust to these irrelevant  
changes.

Comparison of Group Means
The nonparametric ART ANOVA indicated that there was a 
significant main effect for the type of agent (AI vs. child; 
F(1,80) = 92.381, p < 0.00001) and a significant main effect for 
level [F(9, 720) = 143.434, p < 0.00001]. There was also a significant 
interaction effect between the type of agent and the level [F(9, 
738) = 45.765, p < 0.00001]. These results suggest that when 
performance is averaged across the levels, children and AIs 
differ. The interaction effect suggests that the degree to which 
AIs and children differ is influenced by level. Running the 
analysis with and without outliers did not affect the significance 
of these results.6 Since the normality of the data is unclear 
(see Supplementary Material), a parametric variant was also 
run. The significance of these results is unaffected when a 
parametric Two-Way Mixed ANOVA7 was run: significant for 
type of agent [AI vs. child; F(1,80) = 81.512, p < 0.00001, hg2 = 0.368] 
and a significant main effect for level [F(7.36, 588.53) = 159.875, 

6 2 outliers for AIs (Nwith = 30; Nwithout = 28). 8 outliers for children (Nwith = 52; 
Nwithout = 44).
7 Levene’s Test shows that homogeneity of variance was present in all levels 
except for L3, L6, L8, and L9. Box’s M-Test showed that there was homogeneity 
of covariance (see Supplementary Material).

p < 0.00001, hg2 = 0.462]. These are large effect sizes. There was 
also a significant interaction effect between the type of agent 
and the level [F(7.36, 588.53) = 40.008, p < 0.00001, hg2 = 0.177]. 
These are medium effect sizes.

Looking at the individual levels, children and AIs did not 
differ significantly in L1 and L2, which tested food retrieval 
and preferences, respectively, but they differed significantly for 
all other levels (Table  3). The effect sizes were fairly small 
for L1 and L2, but large for the other levels, suggesting that 
performance was very different on these. Outliers did not affect 
the significance of these results. Parametric versions of these 
statistical methods (Welch’s t-test) did not affect the significance 
of these results.

Age-Group Contrasts
General Statistics
Across all 40 tasks, all age groups scored more highly on 
average than AIs and showed greater variance (Table  4).

Figure  4 shows the probability density distribution of the 
average accuracy for each age group and the AIs. The age 
groups are grouped together distinct from the AIs. Ages 7, 9 
and 10 appear to be  mostly successful in that the probability 
density peak is on or above the average pass mark across the 
40 tasks, which serves as a rough indicator of good performance. 
The probability density peaks for ages 6 and 8 are below the 
average pass mark, but the tails of the distributions are far 
into the successful zone.

Performance on a level-by-level basis by six- and ten-year-
olds is significantly strongly correlated with level complexity, 
whereas there is no such significant correlation for the 

FIGURE 3 | Boxplots by level and by agent. Levels are in ascending order on the x-axis, with AIs in purple (left hand boxplot of each pair) and children in red (right 
hand boxplot of each pair). Average pass marks for each level are shown in green.
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remaining age groups and AIs (Table 5). However, performance 
on a task-by-task basis by all age groups is significantly 
correlated with level complexity, but not so for AIs. The 

significance of these results (at α = 0.05) is unaffected 
by method.

Age groups perform similarly on each task, performing 
comparable with the AIs in L1 and L2 (Figure  5). While the 
AIs perform considerably worse in later levels, there is no 
clear pattern emerging for how the different age groups perform 
with respect to one another.

Comparison of Group Means
Using the nonparametric ART ANOVA, we detected a significant 
main effect of age group/AI [F(5, 76) = 18.702, p < 0.001], and 
a significant main effect for level [F(9, 684) = 120.838, p < 0.001]. 
There was also a significant interaction effect between age 
group/AI and level [F(45, 684) = 10.017, p < 0.001]. The ANOVA 
was repeated with outliers removed from each age/agent type 
category. Removing the outliers did not affect the significance 
of these results.8 The significance of these results is unaffected 
when a parametric Two-Way Mixed ANOVA was run: significant 
for age/agent type [F(5,76) =16.71, p < 0.00001, hg2 = 0.387] and 
a significant main effect for level [F(7.42, 564.24) = 103.83, 
p < 0.00001, hg2 = 0.368]. There was also a significant interaction 
effect between age/agent type and the level [F(37.12, 
564.24) = 8.886, p < 0.00001, hg2 = 0.199]. The effect sizes for all 
three effects are large.

Contrast effects for age/agent type, averaged over all levels 
are shown in Table  6. Age groups do not differ significantly 
from one another, but they each differ significantly from 

8 When outliers are removed, sample sizes change by: 4 for 6 year olds (Nwith = 7; 
Nwithout = 3); 3 for 7 year olds (Nwith = 10; Nwithout = 7); 1 for 8 year olds (Nwith = 16; 
Nwithout = 15); 1 for 9 year olds (Nwith = 9; Nwithout = 8); 3 for ten year olds (Nwith = 10; 
Nwithout = 7). AIs as earlier (Nwith = 30; Nwithout = 28).

TABLE 3 | Mann–Whitney U-test statistics and Vargha-Delaney’s A comparing AIs 
and children on each level.

Level 
Num.

Level Name W-statistic
Vargha-

Delaney’s A

L1 Food Retrieval 560 0.349
L2 Preferences 670 0.429
L3 Static Obstacles 52*** 0.033
L4 Avoidance 267*** 0.171
L5 Spatial Reasoning and Support 201*** 0.129
L6 Generalisation 153*** 0.098
L7 Internal Modelling 303*** 0.194
L8 Object Permanence and Working Memory 73*** 0.047
L9 Numerosity and Advanced Preferences 219*** 0.140
L10 Causal Reasoning 395** 0.253

NAI = 30, Nchildren = 52. Bonferroni correction applied to significance levels. *p < 0.005, 
**p < 0.001, ***p < 0.0001.

TABLE 4 | Measures of central tendency and deviation by age group/agent 
type.

Age Group/Agent Mean Median
Standard 
Deviation

6 (N = 7) 0.5823 0.5993 0.1355
7 (N = 10) 0.6081 0.6295 0.1330
8 (N = 16) 0.5823 0.5993 0.1355
9 (N = 9) 0.6539 0.6843 0.1548
10 (N = 10) 0.6081 0.6294 0.1330
AI (N = 30) 0.3412 0.3529 0.0809

FIGURE 4 | Density of plot of average score across 40 tasks, by age/agent type. The green line shows the average pass mark across 40 levels.
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TABLE 6 | T-ratio for pairwise comparisons (contrast effects) between age groups/AIs on Aligned Rank data. All DFs 76.

Age/AI 6 7 8 9 10

7 −0.730 (−0.399)
8 −0.349 (−0.125) 0.613 (0.247)
9 −1.446 (−0.809) −0.804 (−0.410) −1.479 (−0.684)
10 −1.053 (−0.576) −0.356 (−0.177) −1.008 (−0.451) 0.457 (0.233)
AI −4.401***(2.050) 6.045*** (2.449) 6.332*** (2.175) 6.779*** (2.859) 6.481*** (2.626)

Values of p adjusted by Tukey Method. Effect sizes (Cohen’s d) shown in brackets. *p < 0.05, **p < 0.01, ***p < 0.001.

AIs. The significance of these was not affected when t-ratio 
was calculated on non-transformed data (the equivalent 
parametric tests), except for a significant effect between 
nine-year olds and six-year olds, and nine-year olds and 
eight-year olds (Figure  5).

Exploratory Data Analysis
K-Medoids Clustering
Accuracy data from all 40 tasks were used in an exploratory 
cluster analysis, specifically k-medoids clustering. Average 
silhouette width was used as a metric for quality of clustering. 
The children weakly cluster into two groups, rather than four 
age groups (optimal average silhouette width: (k = 2) =0.2924). 
These clusters are significantly associated with experience playing 
joystick-controlled video games (φ = 0.5261 p < 0.001), meaning 
that children who frequently played joystick-controlled games 
were more likely to be  in cluster 2. The clusters are also 
significantly associated with experience playing keyboard-based 
games (φ = 0.0468, p < 0.05), but this does not survive Bonferroni 
correction for multiple comparisons. All other associations were 
non-significant (see Supplementary Material for all phi statistics 
and a description of analysis). The AIs cluster very weakly 
into 2, 3 or 4 clusters (average silhouette width (k = 2) = 0.143; 
(k = 3) = 0.134; (k = 4) = 0.136). This clustering is so weak as to 
suggest that the AIs can be  broadly treated as members of a 
single distribution, considering the magnitudes of accuracy and 
not their relative proportions. Overall, the k-medoids algorithm 
optimally clusters the entire dataset into two weakly clustered 
groups (average silhouette width (k = 2) = 0.356). The output of 
the clustering analysis suggests that there is one AI agent that 
clusters with the children, namely “ironbar,” which came second 
in the Animal-AI Olympics Competition and won the prize 
for the most biologically inspired entry (sponsored by The 

Whole Brain Architecture Initiative).9 However, the fact that 
“ironbar” clusters with children is perhaps explainable by the 
fact that this agent was the most successful AI across these 
40 tasks (see Table 2). All other AI agents are clustered together, 
along with ten children, representing all age groups (two 6-year-
olds, one 7-year-old, four 8-year-olds, one 9-year-olds, two 
10-year-olds). The AI vs. children distinction is significantly 
and strongly associated with the cluster 1 vs. cluster 2 distinction 
(φ = 0.7469, p < 0.001), suggesting that children are highly likely 
to be  clustered into cluster 1 and AIs are highly likely to 
be  clustered into cluster 2. The significance of this result was 
unaffected when age-data was used (Cramer’s V = 0.7553, 
p < 0.001).

Dimensionality Reduction: Uniform Manifold 
Approximation and Projection
Uniform manifold approximation and projection was then used 
as a more robust method to visualize the clustering of AIs 
and children. UMAP takes four hyperparameters, of which two 
are important for visualizing the global and local structure of 
the dataset: number of nearest neighbors, n, controls for the 
number of neighboring points considered in the local metric, 
with larger values preserving global structure at the loss of 
local structure; and minimum distance (min-dist) which 
determines how closely points can be grouped in low-dimensional 
representations, with smaller values assisting in the visualization 
of global structure at the loss of local structure (McInnes et  al., 
2020; pp.  22–3). Figure  6 shows a 2D mapping of the 
40-dimensional dataset for both children (red) and AIs (blue). 
With the default parameters of n = 15 and min-dist = 0.1, the 
dataset clusters into two defined groups. Indeed, applying the 
same k-medoids clustering algorithm as above, we  find a much 
higher average silhouette width for k = 2 clusters, of 0.6612. It 
is reasonable to assume that this marked improvement in strength 
of the clustering is due to the removal of strong multicollinearity 
problems by the UMAP dimensionality reduction. “Ironbar” 
no longer clusters with the children, but there are 4 children 
that clearly cluster with the AIs. It is particularly noticeable 
how the top two scoring AIs, “ironbar” and “Trrrrr” are quite 
differently distributed. “Ironbar” is much closer to the child 
cluster than “Trrrrr,” despite there being only a 0.2% difference 
in overall accuracy (see Table 2). This suggests that these agents 
may have a different pattern of performance which has a highly 

9 This was awarded to the algorithm that was deemed to be  most ‘biologically-
plausible’ by independent judges.

TABLE 5 | Kendall’s Tau by age group/agent type, with Bonferroni correction.

Age Group/
Agent Type

rτ (level average accuracy) rτ (task accuracy)

6 −0.7778* −0.4777***
7 −0.6889(p = 0.0056) −0.4030**
8 −0.7778* −0.4377**
9 −0.6000 (p = 0.0157) −0.3950**
10 −0.6889 (p = 0.0056) −0.3710*
AI −0.3778 (p = 0.1557) −0.2684 (p ≈ 0.0185)

*p < 0.005, **p < 0.001, ***p < 0.0001.
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similar outcome in terms of gross success, with ‘ironbar’s pattern 
of performance aligning more closely to children than ‘Trrrrr’s. 
This is the subject of the next section. The UMAP dimensionality 
reduction can be  viewed in the associated RShiny Dashboard 
App provided in the Supplementary Material, where the 

parameters of nearest neighbor and minimum distance can 
be  toggled for examination of the local and global structure 
of the dataset. Having determined earlier that the ages of the 
children are not related with performance, these data have been 
omitted from the following analyses.

FIGURE 6 | UMAP projection onto 2-dimensions using default values of N = 15 and min-dist = 0.1. The labels for AIs correspond to the algorithm name. Age labels 
are included for children. See the RShinyDash app provided in the Supplementary Material for different parameter settings.

FIGURE 5 | Boxplots of average accuracy on each level, by age/agent type. The left hand 5 boxplots for each level are the age groups 6–10 respectively, with the 
rightmost boxplot being the AI group. The green bars show the average pass mark for each level.
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Comparing Children to the Top Two AIs
This exploratory analysis has highlighted that whilst the AIs 
and children differ significantly at the group level, there is 
evidence to suggest that “ironbar” is perhaps the “most similar” 
in its behavior to the children, given its proximity on the 
UMAP manifold. Although absolute distances on this output 
cannot be diagnostic of actual similarities in higher-dimensional 
vector space, there is merit in a more precise comparison 
between some of the AIs and the children. “Ironbar” and 
“Trrrrr” differ in their overall score by less than 0.2% (Table 1), 
with both agents being in the 22nd percentile of child performance. 
Yet “ironbar” appears to be  “more like” the children than 
“Trrrrr” does. This might suggest that “ironbar” shows a similar 
pattern of performance to the children where “Trrrrr” does 
not, despite a similar outcome in overall accuracy. Table  7 
presents the percentile each agent is in with respect to children’s 
performances, by level. Both agents are in very different 
percentiles in all levels except L9, supporting the conclusion 
that their patterns of performance are distinct.

Both agents showed the exact same correlation coefficient 
relating level average accuracy and level,10 namely a significant 
moderately negative correlation (rτ = −0.5111, p = 0.0466), in 
contrast to all 30 AIs as a sample. “Trrrrr” showed a significant 
modest correlation between task accuracy and level number 
(rτ = −0.3347, p ≈ 0.0034), as did “ironbar” (rτ = −0.3418, p ≈ 0.0030). 
The significance of these results was not affected when Spearman’s 
Rho was used. Pearson’s PMCC failed to reject the null hypothesis 
for “Trrrrr” on the task score/level number correlation. It rejected 
the null hypothesis for “ironbar” in this case. Recall that the 
children showed a significant strongly negative correlation between 
average level accuracy and level complexity (rτ = −0.8222, p < 0.001), 
and a significant moderate correlation between task accuracy 
and level number, too (rτ = −0.4243, p ≈ 0.0002). These results 
suggest that both “ironbar” and “Trrrrr” resemble children in 
that they are sensitive to level complexity as we defined it a priori.

One-sample Hotelling’s T2 using the χ2-distribution indicated 
that there was a significant difference between “ironbar” and 
the children [T2(40) = 22,242, p < 0.0001] and a significant 
difference between “Trrrrr” and the children [T2(40) = 40,254, 
p < 0.0001]. Hotelling’s T2 was also conducted using the 
F-distribution, and once again there was a significant difference 
between “ironbar” and the children [T2(40, 14) = 129.1, p < 0.0001], 
and between “Trrrrr” and the children [T2(40, 14) = 258.49, 
p < 0.0001]. Hallin and Paindaveine’s (2002a,b) Signed-Rank 
Location Test was used as a non-parametric alternative to 
Hotelling’s T2. The Tyler Angles Rank, Sign, and van der Waerden 
tests with approximated p-values showed non-significant 
differences between the two agents [Trrrrr: Q.W(40) = 48.715, 
p ≈ 0.1624, Q.S(40) = 51.316, p ≈ 0.1084; Q.N(40) = 50.848, 
p ≈ 0.1168; Ironbar: Q.W(40) = 48.955, p ≈ 0.1567, Q.S(40) = 51.393, 
p ≈ 0.1070; Q.N(40) = 50.941, p ≈ 0.1151]. However, the equivalent 
tests with bootstrapped p-values (permutations = 1,000), indicated 
significant differences, as with Hotelling’s [Trrrrr: 
Q.W(40) = 48.715, p = 0.004, Q.S(40) = 51.316, p < 0.0001; 

10 We have no explanation for how this identical correlation coefficient has 
come to be.

Q.N(40) = 50.848, p < 0.0001; ironbar: Q.W(40) = 48.955, p = 0.001, 
Q.S(40) = 51.393, p < 0.0001; Q.N(40) = 50.941, p < 0.001]. The 
significance of the difference between these agents can, therefore, 
be  cautiously taken to be  acceptable, since three out of four 
of the analyses from the analytic multiverse showed significance. 
To compare these agents to children on a task-by-task basis, 
we  can use confidence intervals. However, this requires us to 
assume normality in the child dataset, which is not obviously 
the case (see Supplementary Material). While MANOVAs are 
robust to normality violations (e.g., Finch 2005), these data 
must nevertheless be  interpreted with caution.

Figure  7 presents the confidence intervals defined by the 
children’s performances on each task, with the results for 
“ironbar” and “Trrrrr” overlaid. Both these agents outperformed 
the average child on the simple navigation tasks in level 1 
(1-21-1, 1-4-3, 1-6-2). However, “ironbar” performs considerably 
better than the average child, who performs considerably better 
than “Trrrrr,” on the more complex navigational level 1 task 
(1-23-1) in which 10 yellow ‘fruit’ must be  obtained whilst 
avoiding 10 red ‘fruit’. In level 2, both agents outperform the 
average child on the forced- and free-choice Y-mazes (2-17-1 
and 2-2-1 respectively). Task 2–10-1 was a forced choice between 
a red “fruit” on the left and a green “fruit” on the right. The 
average child was successful, with “Trrrrr” performing 
considerably better, and “ironbar” considerably worse. The reverse 
is true for the delayed gratification level 2 task (2-29-1), in 
which one green then two yellow “fruit” fall off a ramp and 
maximum points are obtained if the agent waits to obtain the 
yellow “fruit” before obtaining the green “fruit.” The average 
child performed poorly, as did “Trrrrr,” whereas “ironbar” was 
successful. Level 3 showed some differing results for each agent. 
Both agents performed worse than the average child on Task 
3-9-1, forced choice detour around a transparent barrier. In 
contrast, “Trrrrr,” like the average child, performed well on 
the transparent inverted Y-maze of Task 3-11-1 where “ironbar” 
performed poorly. “Ironbar” performed successfully on tasks 
containing ramps (3-21-1 and 3-18-1) where “Trrrrr” was not 
successful. In level 4, which tested an ability to reason about 
and navigate around red “lava” and “hot zones,” at least one 
of the agents performed well on each task, but performance 

TABLE 7 | Percentile for “ironbar” and “Trrrrr” with respect to children’s 
performances.

Level
Percentile

Ironbar Trrrrr

Overall 22nd 22nd
1 97th 46th
2 38th 72nd
3 12th 4th
4 79th 75th
5 33rd 48th
6 1st 18th
7 62nd 74th
8 25th 0th
9 11th 11th
10 32nd 21st
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was highly inconsistent. In task 4-3-1, involving “zigzag” 
navigation around two “lava” zones, both agents were successful, 
performing considerably better than the average child, who 
performed worse. In task 4-16-1, involving cost–benefit analysis 
(choice between a large reward reached over a hot zone and 
a small reward directly accessible), “Trrrrr” and the average 
child were successful, where “ironbar” performed poorly. In 
task 4-13-1, a free choice “lava” T-maze, “ironbar” was successful 
where “Trrrrr” was not and the average child straddled the 
pass mark. In task 4-22-1, involving navigation across a “bridge” 
to avoid red “lava,” both agents were successful, where the 
average child overlapped with the pass mark. In level 5, both 
agents were successful in tasks 5-24-1 and 5-26-1, the 4- and 
6-arm Radial Arm Mazes, where the average child straddled 
the pass mark. “Trrrrr” performed successfully in 5-9-1, a forced 
choice spatial elimination task (where the reward is not initially 
visible, but there is only one possible occluder), where “ironbar” 
performed poorly, and neither the agents nor the average child 
performed well in task 5-15-1, involving pushing a box to 
knock a green “fruit” off a post. In Level 6, testing generalization 
across varied surface features (e.g., differently colored walls), 
“ironbar” performed poorly on all tasks. “Trrrrr” performed 
successfully and similar to the average child in tasks 6-11-1 
and 6-9-1, which were an inverted Y-maze variant using a 
‘fence’ rather than the previously seen opaque block, and color-
switched simple navigation task, respectively. “Trrrrr” performed 
very poorly on tasks 6-29-2 and 6-12-2, where the average 
child overlapped with the pass mark. These tasks were an escape 
maze with differently colored walls, and an inverted Y-maze 
with a “fence,” respectively. Comparing 6-11-1 and 6-12-2, it 
is interesting that “Trrrrr” performed well on the former but 
not the latter, when the only difference is the relative positioning 

of agent and goal. In 6-11-1 (good performance), the “fruit” 
was inside the Y-shape with the agent facing the apex. In 
6-12-2, the agent was inside the Y-shape, and the goal was at 
the apex. In Level 7, in which visual input was removed at 
periodic intervals (‘lights out’), both agents were successful and 
outperformed the average child in tasks 7-16-1 and 7-25-1, 
which involved navigation around a small area of red “lava” 
and the obtaining of three yellow “fruit,” respectively. “Ironbar” 
was successful in 7-17-1 where “Trrrrr” was not, and vice versa 
for 7-22-1; these tasks involved navigating around a large area 
of red “lava,” and delayed gratification, respectively. In level 8, 
involving four tasks testing various aspects of object permanence 
understanding, both agents were outperformed by the average 
child in tasks 8-30-1 and 8-11-1 (both involving choice between 
multiple occluders). In task 8-3-3 (in which two rewards are 
seen moving behind occluders and must both be  retrieved), 
both agents performed poorly, but “ironbar” performed like 
the average child where “Trrrrr” did not. In task 8–19–1 (in 
which a reward rolls out of a red zone and behind an occluder), 
both “Trrrrr” and the average child performed poorly and were 
outperformed by the successful “ironbar.” In level 9, testing 
advanced object permanence and numerosity, both agents 
performed identically, and neither agents nor children were 
generally successful. In tasks 9-24-1 (3 vs. 1 occluded rewards) 
and 9-3-1 (forced choice, 3 vs. 6 rewards), they performed 
worse than the average child, who was also unsuccessful. In 
task 9-8-1 (involving a forced choice between 1 and 2 rewards), 
the case is similar except that the average child’s score overlaps 
with the pass mark. In task 9-21-1 (3 occluded vs. 2 visible 
rewards), both agents performed like the average child, 
unsuccessfully. In level 10, testing causal cognition, both agents 
and the average child performed poorly, with the agents 

FIGURE 7 | Bonferroni confidence intervals for children’s data at alpha = 0.05 with ‘ironbar’ and ‘Trrrrr’ results and pass marks overlayed.
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performing like the average child on the ‘string-pulling/hook’ 
tasks 10-16-1 and 10-7-1, and worse than the average child 
in 10-21-1 and 10-22-3, which were variants of classic tool-use 
tasks (pushing blocks to attain out of reach rewards).

Across all these tasks, it should be  noted that differences 
in performance between children and these two agents may 
be confounded with differences in reaction time and ‘embodiment’ 
in the AAI environment. Similarities in performance may also 
be  confounded with the fact that only certain accuracy values 
are possible in certain tasks, due to the number of ‘fruit’ and 
the time cap available.

RESULTS AND DISCUSSION

Comparison on Overall Performance
This study demonstrated how direct human-AI comparison 
using comparative cognition tasks could be  done using the 
Animal-AI Testbed. Here, a sample of deep RL systems and 
a sample of children aged 6–10 was compared across a subset 
of 40 tasks from the AAI test battery. Across all 40 tasks, 
children performed more successfully than the AIs, and this 
difference was significant. Each age group also performed 
significantly better than the AIs, but no age group performed 
significantly better than any other. This suggests that the 
children were generally better than the AIs and that age did 
not affect this, indicating that the performance exhibited by 
the children is not necessarily a function of age-modulated 
psychological development. Indeed, a clustering analysis over 
the children’s performances suggested that variance in their 
success might be  better explained through experience with 
keyboard-controlled video games. We already know that many 
of the experimental paradigms used in the current 40-task 
study have been solved by children from a range of age 
groups in real-life laboratory set-ups, although a detailed 
review of how performance on these tasks compares to similar 
real-life tasks is beyond the scope of this paper, which is 
intended as an overview. It appears that the additional demand 
of solving these tasks on a computer game introduced, as 
expected, variation based on computer-experience. A clustering 
analysis was also performed to examine whether the groupings 
of “AI” vs. “child” were inferable from the variance in the 
dataset. It was found that weak clusters emerge that correlate 
strongly with “AI” vs. “child.” Only one AI clustered with 
the children, “ironbar,” the agent that scored the highest in 
the 40 tasks used in this study, and that came second overall 
in the Animal-AI Olympics Competition. This agent also won 
the prize for being most biologically inspired. However, further 
analysis using a method more robust to outliers and nonlinear 
clustering found that AIs and children clustered strongly into 
two groups, and that “ironbar” did not ultimately cluster 
with the children, although some children did cluster with 
the AIs.

At the broadest level of comparison, these results suggest 
that all the tasks are solvable by human children (to varying 
degrees), whilst only a subset of the tasks (the easier ones) 
are solvable by at least some AIs. There was a significant main 

effect of level, but crucially, there was also a significant interaction 
effect between agent type (i.e., AI/children) and level suggesting 
that the children and AIs differed in the way that performance 
was influenced by type of task. Indeed, the children’s performances 
were significantly, strongly, and negatively correlated with the 
level number, suggesting that they found the tasks more difficult 
on average as they progressed through the game. In contrast, 
the AIs performances were not correlated with level number, 
suggesting no relation between performance and the pre-defined 
notion of task-complexity. It should be  noted that this was 
despite the fact that, unlike the AIs, children were able to 
learn from level to level, and continue to grow accustomed 
to the game environment and controls. Overall, these results 
suggest that the AAI Testbed and 2019 Olympics competition 
constitute hard but potentially achievable benchmarks for the 
next generation of artificial systems. No tested AI showed 
problem-solving abilities comparable to those demonstrated by 
human children.

Comparing Performance on Specific 
Cognitive Abilities
The AIs and children performed comparably on L1 and L2, 
which tested food retrieval and preferences, with no significant 
difference between the two groups, indicating that current AI 
systems perform at the human level when it comes to basic 
navigation and food retrieval. However, in all other levels, the 
two groups perform significantly differently, with children always 
outperforming AIs on average. Noticeable are the poor 
performances by the AIs in L3 and L6 compared to the children 
(see Figure  3). L3 tested the ability to navigate around and 
over static objects, with two tasks (3-11-1 and 3-9-1) being 
detour task variants of tasks in L2 (2-10-1 and 2-17-1) and 
the other two tasks (3-21-1 and 3-18-1) being navigation tasks 
requiring movement in the third dimension up ramps (i.e., 
3-D versions of L1 tasks). L6 tested generalization by using 
previous task configurations from L1-L5 but altering colors 
and structures. Concretely, 6-12-2 and 6-11-1 were detour tasks 
of the format used in L3 (e.g., 3-11-1) but with static obstacles 
of a different shape to what had been provided in the AAI 
training environment, namely that they were fence-shaped 
rather than cuboidal blocks (see Figure  8).

6-29-2 was a variant of L1 basic navigation tasks but with 
colorings of the walls, roof, and floor altered. A suggestion 
for why the AIs performed considerably worse than the children 
in the L6 tasks, and compared to their performances in 
comparable levels (e.g., L1, L2, and L4) is that the AIs used 
perceptual cues of color or shape to perform successfully, 
whereas children are capable of abstracting beyond those cues 
to more features pertaining to objecthood (see Dubey et  al., 
2018; Shanahan et al., 2020). However, post hoc analyses showed 
that performance on 6-29-2 and the analogous task 1-4-3 were 
significantly different, as were performances on 3-11-1 compared 
to 6-12-2. Performance on 6-11-1 was not significantly different 
from performance on 3-11-1, however. This is interesting since 
the only difference between 6-11-1 and 6-12-2 is the positioning 
of agent and reward relative to the obstacle to be  navigated 
around. This suggests that the way we  as human observers 
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judge the difficulty of these cognitive tasks is not necessarily 
aligned with the difficulties that AIs face in solving them. It 
further demonstrates that AI ability is “brittle” and struggles 
to generalize to new, but similar, problems, unlike in the 
human case.

Comparing Human Performance to the 
Two Top-Scoring AIs
The results of the clustering analysis, along with the overall 
accuracy value, suggested that two agents were suited to 
individual comparisons: “ironbar” and “Trrrrr.” Despite 
outperforming the other AIs, overall, these agents still performed 
significantly differently to children. However, a task-by-task 
analysis raises some interesting observations. In several of the 
simple search tasks, the children were outperformed by these 
two AIs, although this could be  explained by differences in 
reaction/processing times. More interesting is these agents’ 
ability on the “lights out” navigation tasks in Level 7, in which 
visual input is withheld for periodic intervals. The two top 
agents outperformed children here, even though these tasks 
are more complex than some of the earlier tasks that these 
agents were unsuccessful at. However, this phenomenon could 
be  explained by the AIs’ direct access to velocity data, while 
children would have to attend and interpret the visual display 
presenting this information, all while solving these tasks under 
time pressure. In other words, children are subject to attentional 
and motivational constraints that are not necessarily present 
for the AIs. Turning to some of the concrete comparative 
cognition tasks used in this study, there are some notable 
observations. Tasks 2-29-1 and 7-22-1 were delayed gratification 
tasks, in which the goal(s) rolled down a high ramp onto the 
floor, with the latter involving “lights out.” Forgoing immediate 
smaller or worse rewards for larger or better later rewards 
has been studied extensively in developmental psychology, most 
notably in the “marshmallow task” (Shoda et  al., 1990; Watts 

et  al., 2018). Delayed gratification has been used to assess 
self-control and future planning in both humans and nonhuman 
animals (Koepke et al., 2015), as well as in DRL agents (Bontrager 
et al., 2019). Watts et al. (2018) demonstrate that some children 
struggle with delayed gratification tasks, although the explanation 
for this, and its correlation with intelligence, is debated 
(Duckworth et  al., 2013). Both agents showed ability here, 
with “ironbar” outperforming children and “Trrrrr” in 2-29-1, 
and “Trrrrr” outperforming children and “ironbar” in 7-22-1. 
While, on average, children appeared to struggle with these 
two tasks fairly evenly, both artificial agents show opposite 
ability on each task. This is perhaps suggestive that neither 
agent possesses an ability to solve delayed gratification tasks 
per se, but rather that they were able to solve these specific 
tasks due to some other non-cognitive factor playing a role 
(relating perhaps to the exact configuration of each task). 
Further research will investigate these findings in more detail, 
using the full range of delayed gratification tasks present in 
the AAI Testbed, as well as developing new tasks based on 
laboratory research. On tasks involving ramps, specifically in 
Level 3 (3-21-1, 3-18-1) “ironbar” showed superior performance 
to “Trrrrr,” despite the latter agent having been programmed 
to find vertical velocity rewarding (Crosby et al., 2020), suggesting 
that this policy is not necessarily conducive to success with 
ramp-based tasks. Indeed, in task 8-11-1, “Trrrrr” is observed 
circling around on the large ramp rather than searching for 
an occluded reward (which had been dropped into a ‘hole’; 
it should be  noted that “ironbar” was equally unsuccessful on 
this task, however). Level 3 also contained a task involving 
navigating around a transparent obstacle to obtain a reward 
that was directly observable through and under it. Both agents 
performed considerably worse than children on this task and 
are observed crashing into the transparent block and perseverating 
in their forward movement to try and get to the reward that 
is directly in front of them. This relates to the previous suggestion 
that these systems are sensitive to pixel-level representations 
of the environment, rather than larger object-centric and 
affordance-centric ones. It appears both agents and children 
had trouble with use of pushable objects. Task 5-15-1 and 
tasks in Level 10 that involved these objects were, however, 
solved by at least some children, suggesting that the affordances 
of pushable objects was learnt and understood in at least some 
cases. Including these tasks in the testbed is, therefore, not 
an instance of anthropofabulation, or the inflation of human 
ability in comparative contexts (Buckner, 2013). However, these 
tasks are clearly complex, and well beyond the scope of the 
current state-of-the-art systems instantiated by “Trrrrr” and 
“ironbar.”

Limitations
There are several limitations to this study that are worth 
highlighting. First, the data on children were collected online 
through the distribution of hyperlinks to the study page. This 
meant that an investigator was not present at the time of 
testing to determine: (a) whether the child participant was 
receiving help from parents/guardians/older siblings, (b) whether 
that child had already participated in the study using another 

FIGURE 8 | Different static obstacles in the AAI Testbed. Cuboidal blocks in 
L1-L5 (Top). Fence-like structures in L6 (bottom).
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username/email address and was, therefore, not playing the 
tasks for the first time, (c) whether the child fully understood 
the rules/controls of the game, or had been provided with 
adequate time to play and engage with the tutorial levels, 
and (d) whether technological or connection issues limited 
performance. For these reasons, any conclusions drawn must 
be  tentative. Second, no data were collected on the genders, 
sex, or ethnicities of the participants, because these were not 
directly related to our research questions. This meant that 
we were unable to assess the representativeness of our sample. 
Future research should ensure that basic demographic 
information is collected such that results are generalizable. 
Third, because we  do not know the details of how the AIs 
were coded or their training curricula (i.e., what experience 
they had been given), what we  can infer about the AIs is 
limited. This means that the relatively poor performance of 
the AI agents studied here does not necessarily generalize to 
DRL agents as a class. Moreover, DRL methods are not the 
only approach that could be  leveraged to solve the set of 
novel problems we  analyze here. The field of computational 
creativity, for example, has developed approaches based on 
analogical reasoning and conceptual blending that could 
be  adapted to create novel solutions to the AAI Testbed (see 
Veale and Cardoso, 2019, for a review). While we  have not 
evaluated these methods ourselves, the Testbed and our dataset 
of human performances offers a valuable way to do so. A 
fourth limitation is that the scoring system is a crude metric 
when assessing task performance: With strict time limits, it 
is impossible to distinguish between slow-and-careful (but 
ultimately on-target) behavior and fast but pseudo-random 
movement, both of which would be low-scoring. Future analysis 
including more subtle indicators of behavior (such as path 
analysis) may add sufficient resolution for meaningful analysis 
of this type. Finally, our decision to conduct this study as a 
broad overview of multiple tasks, rather than a detailed 
investigation of specific tasks, limits the degree of inference 
that can be  made on any given cognitive process. Future 
work should focus on specific cognitive processes to properly 
explore how current AIs are able to model performance of 
human children. Despite these difficulties, this study represents 
an important next stage in the use and implementation of 
the AAI Environment.

GENERAL DISCUSSION: THE FIVE 
REASONS

This study has compared humans and AIs in the AAI Environment 
for the first time, using a well-grounded cognitive science 
approach and draws on powerful and comprehensive statistical 
methods and approaches, including dimensionality reduction, 
and clustering. This study is important, we  have argued, for 
the following reasons:

 1. Tests the assumption that the tasks used in the AAI Olympics 
are solvable by humans.

 2. Provides direct data of how a biological agent solves each task.

 3. Provides a stepping-stone toward direct comparison with 
non-human animals.

 4. Facilitates a reciprocal dialogue between cognitive 
science and AI.

 5. Offers a new experimental resource for comparative and 
developmental psychology.

The results clearly demonstrate that the tasks are solvable 
by human children aged 6-10, thus affirming the hypotheses 
made in Beyret et  al. (2019) and Crosby et  al. (2020; Reason 
1). However, the tasks were not necessarily ‘easy’ for the human 
participants, especially the later levels. For example, Level 10 
included two horizontal string-pulling/hook tasks (10-7-1, 
10-16-1), requiring a block to be  pushed to tug a green “fruit” 
out of a red death zone. Children performed poorly on average 
in both. This is notable since Redshaw (1978) showed that 
horizontal string-pulling tasks are solvable by human and gorilla 
infants at around 42-weeks and 26.5-weeks old, respectively. 
Since the children who participated in this study are considerably 
older than this, it is notable that they were unsuccessful in 
these tasks. This is perhaps due to the fact that the “hooks” 
in question are so large relative to the avatar in the game 
that one cannot observe the whole scene at once. Indeed, 
since there was no “pull” action, these tasks involved either 
turning away from the reward and pushing the “handle” or 
reversing into the handle to push the “hook” while maintaining 
visual access to the reward. Unlike many hook/string tasks, 
this does not reliably result in the reward moving incrementally 
closer to the agent, since the agent is either turned away or 
moving backwards as the reward moves (see Taylor et  al., 
2010; Cheke et  al., 2011 for discussion on how incremental 
approach of reward may be  important in performance in such 
tasks). Further research should explore contexts that more 
closely match the conditions of “real life” tasks, as well as 
exploring the relative influence of different types of information 
and feedback in detail.

The results presented here also provide an overview of which 
tasks children found hard or easy, with difficulty correlated 
with level number. It appears that AIs and children are sensitive 
to different difficulty metrics, with AIs having particular problems, 
compared to children, with Levels 3 and 6. This direct comparison 
has thus highlighted where AI research could benefit greatly 
from examining more deeply how children solve these particular 
sets of problems. Ongoing research is exploring more 
sophisticated comparisons using this dataset, by analyzing the 
paths taken by children and AI in solving these problems. 
This will facilitate an analysis into how children approach these 
kinds of problems, and how we  might develop AIs that do 
the same. Future studies will also use eye-tracking or mouse-
tracking software to provide information as to which objects 
are being attended to by human players, permitting inferences 
about the kinds of representations that human players use to 
solve tasks (see Yesiltepe et al., 2020 for the use of eye-tracking 
software with the spatial navigation game Sea Hero Quest). 
Further to this kind of study, direct comparisons using the 
AAI Environment will also require a more objective measure 
of task complexity (Hernández-Orallo, 2017a,b, 2020) in place 
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of the somewhat arbitrary and anthropocentric level divisions 
used in this study, since this will allow for fairer and more 
objective direct comparisons (Firestone, 2020). So, while the 
current study only offers a broad-level direct comparison, the 
AAI Environment is rich and well-specified enough to facilitate 
sophisticated analyses that will engender cognitive modelling 
in AI research (Reason 2).

This study also develops the AAI environment into a 
game, with a simple player-computer interface, well-defined 
goals, and incremental increases in difficulty. With simple 
changes to the controls, the environment is ripe for use 
by both human and non-human animals, with this study 
a first implementation of how this can be  done, including 
data on how to develop and implement tutorial levels (see 
Supplementary Material; Reasons 3 and 5). The capability 
of the AAI Environment as a dynamic research programme 
which facilitates dialogue between comparative psychology, 
cognitive science, and AI is therefore strengthened, since 
the AAI platform can be  used for all kinds of agent 
comparisons, including:

 A. AI/human comparisons.
 B. AI/AI comparisons.
 C. Human/human comparisons.
 D. Non-human-animal/non-human-animal comparisons.
 E. Non-human-animal/human comparisons.
 F.  Non-human-animal/AI comparisons.

The environment is therefore pregnant with possibilities for 
academic research across a wide range of disciplines, enabling 
close and collaborative dialogue (Reason 4). In summary, while 
the conclusions to be  drawn from this study are limited for 
several reasons, this study serves as an important proof-of-
concept demonstration of the value of the Animal-AI 
Environment across multiple fields.

CONCLUSION

AI research has seen remarkable progress in recent years. 
However, many commentators and researchers have 
highlighted the problems with AI benchmarking and the 
use of independent-and-identically-distributed (i.i.d.) data, 
which means “shortcut” learning often appears as an inferior 
surrogate of true intelligence. An AI system can appear to 
be  performing “intelligently” on a test set when that test 
set was drawn from the same distribution as the training 
data. However, when testing on some sample drawn from 
another distribution, it starts to breakdown in unpredictable 
ways. The Animal-AI Environment offers a new benchmark 
in which o.o.d. testing is facilitated by using “building 
blocks” from the training environment to create a unique 
permutation that is homologous with a specific cognitive 
task. Such an approach promotes the development of robust, 
general AI systems. This paper has extended the Animal-AI 
Environment such that it is not just a benchmark, but also 
the platform for an interdisciplinary research programme 

that brings together AI, comparative psychology, and 
developmental psychology. This means that the development 
of robust, general AI systems can run in tandem to progress 
in cognitive science, with both sides benefitting.
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