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Abstract
The scientific research in High Energy Physics (HEP) is characterised by complex com-
putational challenges, which over the decades had to be addressed by researching
computing techniques in parallel to the advances in understanding physics. One of
the main actors in the field, CERN, hosts both the Large Hadron Collider (LHC) and
thousands of researchers yearly who are devoted to collecting and processing the huge
amounts of data generated by the particle accelerator. This has historically provided
a fertile ground for distributed computing techniques, which led to the creation of the
Worldwide LHC Computing Grid (WLCG), a global network providing large comput-
ing power for all the experiments revolving around the LHC and the HEP field. Data
generated by the LHC so far has already posed challenges for computing and storage.
This is only going to increase with future hardware updates of the accelerator, which
will bring a scenario that will require large amounts of coordinated resources to run the
workflows of HEP analyses. The main strategy for such complex computations is, still
to this day, submitting applications to batch queueing systems connected to the grid
and wait for the final result to arrive. This has two great disadvantages from the user’s
perspective: no interactivity and unknown waiting times. In more recent years, other
fields of research and industry have developed new techniques to address the task of
analysing the ever increasing large amounts of human-generated data (a trend com-
monly mentioned as "Big Data"). Thus, new programming interfaces and models have
arised that most often showcase interactivity as one key feature while also allowing the
usage of large computational resources.

In light of the scenario described above, this thesis aims at leveraging cutting-edge
industry tools and architectures to speed up analysis workflows in High Energy
Physics, while providing a programming interface that enables automatic paralleli-
sation, both on a single machine and on a set of distributed resources. It focuses on
modern programming models and on how to make best use of the available hardware
resources while providing a seamless user experience. The thesis also proposes a
modern distributed computing solution to the HEP data analysis, making use of the
established software framework called ROOT and in particular of its data analysis
layer implemented with the RDataFrame class. A few key research areas that revolved
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around this proposal are explored. From the user’s point of view, this is detailed in the
form of a new interface to data analysis that is able to run on a laptop or on thousands
of computing nodes, with no change in the user application. This development opens
the door to exploiting distributed resources via industry standard execution engines
that can scale to multiple nodes on HPC or HTC clusters, or even on serverless
offerings of commercial clouds. Since data analysis in this field is often I/O bound, a
good comprehension of what are the possible caching mechanisms is needed. In this
regard, a novel storage system based on object store technology was researched as a
target for caching.

In conclusion, the future of data analysis in High Energy Physics presents chal-
lenges from various perspectives, from the exploitation of distributed computing and
storage resources to the design of ergonomic user interfaces. Software frameworks
should aim at efficiency and ease of use, decoupling as much as possible the defini-
tion of the physics computations from the implementation details of their execution.
This thesis is framed in the collective effort of the HEP community towards these goals,
defining problems and possible solutions that can be adopted by future researchers.
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Resumen
La investigación científica en Física de Altas Energías (HEP) se caracteriza por desafíos
computacionales complejos, que durante décadas tuvieron que ser abordados median-
te la investigación de técnicas informáticas en paralelo a los avances en la comprensión
de la física. Uno de los principales actores en el campo, el CERN, alberga tanto el Gran
Colisionador de Hadrones (LHC) como miles de investigadores cada año que se dedi-
can a recopilar y procesar las enormes cantidades de datos generados por el acelerador
de partículas. Históricamente, esto ha proporcionado un terreno fértil para las técnicas
de computación distribuida, conduciendo a la creación de Worldwide LHC Computing
Grid (WLCG), una red global de gran potencia informática para todos los experimentos
LHC y del campo HEP. Los datos generados por el LHC hasta ahora ya han plantea-
do desafíos para la informática y el almacenamiento. Esto solo aumentará con futuras
actualizaciones de hardware del acelerador, un escenario que requerirá grandes canti-
dades de recursos coordinados para ejecutar los análisis HEP. La estrategia principal
para cálculos tan complejos es, hasta el día de hoy, enviar solicitudes a sistemas de
colas por lotes conectados a la red. Esto tiene dos grandes desventajas para el usua-
rio: falta de interactividad y tiempos de espera desconocidos. En años más recientes,
otros campos de la investigación y la industria han desarrollado nuevas técnicas para
abordar la tarea de analizar las cantidades cada vez mayores de datos generados por
humanos (una tendencia comúnmente mencionada como "Big Data"). Por lo tanto, han
surgido nuevas interfaces y modelos de programación que muestran la interactividad
como una característica clave y permiten el uso de grandes recursos informáticos.

A la luz del escenario descrito anteriormente, esta tesis tiene como objetivo apro-
vechar las herramientas y arquitecturas de la industria de vanguardia para acelerar
los flujos de trabajo de análisis en HEP, y proporcionar una interfaz de programación
que permite la paralelización automática, tanto en una sola máquina como en un con-
junto de recursos distribuidos. Se centra en los modelos de programación modernos
y en cómo hacer el mejor uso de los recursos de hardware disponibles al tiempo que
proporciona una experiencia de usuario perfecta. La tesis también propone una solu-
ción informática distribuida moderna para el análisis de datos HEP, haciendo uso del
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software llamado ROOT y, en particular, de su capa de análisis de datos llamada RDa-
taFrame. Se exploran algunas áreas clave de investigación en torno a esta propuesta.
Desde el punto de vista del usuario, esto se detalla en forma de una nueva interfaz
que puede ejecutarse en una computadora portátil o en miles de nodos informáticos,
sin cambios en la aplicación del usuario. Este desarrollo abre la puerta a la explotación
de recursos distribuidos a través de motores de ejecución estándar de la industria que
pueden escalar a múltiples nodos en clústeres HPC o HTC, o incluso en ofertas ser-
verless de nubes comerciales. Dado que el análisis de datos en este campo a menudo
está limitado por E/S, se necesita comprender cuáles son los posibles mecanismos de
almacenamiento en caché. En este sentido, se investigó un sistema de almacenamiento
novedoso basado en la tecnología de almacenamiento de objetos como objetivo para el
caché.

En conclusión, el futuro del análisis de datos en HEP presenta desafíos desde va-
rias perspectivas, desde la explotación de recursos informáticos y de almacenamiento
distribuidos hasta el diseño de interfaces de usuario ergonómicas. Los marcos de soft-
ware deben apuntar a la eficiencia y la facilidad de uso, desvinculando la definición de
los cálculos físicos de los detalles de implementación de su ejecución. Esta tesis se en-
marca en el esfuerzo colectivo de la comunidad HEP hacia estos objetivos, definiendo
problemas y posibles soluciones que pueden ser adoptadas por futuros investigadores.
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Resum
La investigació científica a Física d’Altes Energies (HEP) es caracteritza per desafia-
ments computacionals complexos, que durant dècades van haver de ser abordats mit-
jançant la investigació de tècniques informàtiques en paral·lel als avenços en la com-
prensió de la física. Un dels principals actors al camp, el CERN, acull tant el Gran
Col·lisionador d’Hadrons (LHC) com milers d’investigadors cada any que es dediquen
a recopilar i processar les enormes quantitats de dades generades per l’accelerador de
partícules. Històricament, això ha proporcionat un terreny fèrtil per a les tècniques
de computació distribuïda, conduint a la creació del Worldwide LHC Computing Grid
(WLCG), una xarxa global de gran potència informàtica per a tots els experiments LHC
i del camp HEP. Les dades generades per l’LHC fins ara ja han plantejat desafiaments
per a la informàtica i l’emmagatzematge. Això només augmentarà amb futures actu-
alitzacions de maquinari de l’accelerador, un escenari que requerirà grans quantitats
de recursos coordinats per executar les anàlisis HEP. L’estratègia principal per a càlculs
tan complexos és, fins avui, enviar sol·licituds a sistemes de cues per lots connectats a
la xarxa. Això té dos grans desavantatges per a l’usuari: manca d’interactivitat i temps
de espera desconeguts. En anys més recents, altres camps de la recerca i la indústria
han desenvolupat noves tècniques per abordar la tasca d’analitzar les quantitats cada
vegada més grans de dades generades per humans (una tendència comunament esmen-
tada com a "Big Data"). Per tant, han sorgit noves interfícies i models de programació
que mostren la interactivitat com a característica clau i permeten l’ús de grans recursos
informàtics.

A la llum de l’escenari descrit anteriorment, aquesta tesi té com a objectiu aprofi-
tar les eines i les arquitectures de la indústria d’avantguarda per accelerar els fluxos
de treball d’anàlisi a HEP, i proporcionar una interfície de programació que permet la
paral·lelització automàtica, tant en una sola màquina com en un conjunt de recursos
distribuïts. Se centra en els models de programació moderns i com fer el millor ús dels
recursos de maquinari disponibles alhora que proporciona una experiència d’usuari
perfecta. La tesi també proposa una solució informàtica distribuïda moderna per a
l’anàlisi de dades HEP, fent ús del programari anomenat ROOT i, en particular, de la
seva capa d’anàlisi de dades anomenada RDataFrame. S’exploren algunes àrees clau
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de recerca sobre aquesta proposta. Des del punt de vista de l’usuari, això es detalla
en forma duna nova interfície que es pot executar en un ordinador portàtil o en milers
de nodes informàtics, sense canvis en l’aplicació de l’usuari. Aquest desenvolupament
obre la porta a l’explotació de recursos distribuïts a través de motors d’execució estàn-
dard de la indústria que poden escalar a múltiples nodes en clústers HPC o HTC, o
fins i tot en ofertes serverless de núvols comercials. Atès que sovint l’anàlisi de dades
en aquest camp està limitada per E/S, cal comprendre quins són els possibles meca-
nismes d’emmagatzematge en memòria cau. En aquest sentit, es va investigar un nou
sistema d’emmagatzematge basat en la tecnologia d’emmagatzematge d’objectes com
a objectiu per a la memòria cau.

En conclusió, el futur de l’anàlisi de dades a HEP presenta reptes des de diverses
perspectives, des de l’explotació de recursos informàtics i d’emmagatzematge distribu-
ïts fins al disseny d’interfícies d’usuari ergonòmiques. Els marcs de programari han
d’apuntar a l’eficiència i la facilitat d’ús, desvinculant la definició dels càlculs físics
dels detalls d’implementació de la seva execució. Aquesta tesi s’emmarca en l’esforç
col·lectiu de la comunitat HEP cap a aquests objectius, definint problemes i possibles
solucions que poden ser adoptades per futurs investigadors.
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Chapter 1

Introduction

Computer Science research can be applied to a wide range of topics and fields. The
particular properties of High Energy Physics provide a fertile ground for research in
computer science techniques. The next pages will go into detail in describing the con-
text and status of such scientific field, highlighting the requirements to cope with future
challenges.

1.1 Scientific context

“High Energy Physics (HEP) explores what the world is made of and how
it works at the smallest and largest scales, seeking new discoveries from the
tiniest particles to the outer reaches of space.” [10]

This field explores all physics phenomena that involve interactions between parti-
cles at the subatomic level. The most established theory that describes such interactions
is called the Standard Model [11]. Since its definition in the 1970s, many experiments
have been conducted to challenge the theory. The nature of the particles is such that
only certain properties can be examined in ordinary conditions. A complex hardware
setup is required in order to actually gain evidence about all the events described by
the equations in the Standard Model, a task which requires accelerating and colliding
particles, detecting their passage and finally analysing the gathered data.

The main goal of physicists in the field is to put this theory to the test, bringing it all
to reality or possibly finding its limits. One of the most important research centers in
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this context is the European Organization for Nuclear Research (CERN) [12]. It gathers
scientists worldwide with expertise in a diverse range of fields with the objective of
better understanding the most fundamental building blocks of the universe. In order
to achieve this, they use the world’s largest and most complex scientific instruments to
study the basic constituents of matter – the fundamental particles. These are isolated
and accelerated in a specific environment that brings them close to the speed of light,
until a collision is forced, generating a huge amount of physical phenomena. In turn,
this gives the physicists a means to study the interaction between matter at its most
pure state and gain insights about the fundamental laws of nature.

The main technical instrument used to pursue this goal is currently the Large
Hadron Collider (LHC), a two-ring superconducting hadron1 accelerator with a
circumference of 27 km of superconducting magnets. It can nominally provide a center
of mass energy of 14 TeV2 for proton-proton collisions, created by 2808 bunches con-
taining 1.15 · 1011 particles each, with a bunch spacing of 25 ns. The design luminosity
of the collider is 1034cm−2s−1. Primary protons are obtained from Helium, they are
first accelerated in a linear collider (Linac), to be then injected in the chain of circular
accelerators that allows the achievement of their maximum energy (6.5 TeV). Protons
pass through the Proton Synchrotron (PS, 25 GeV), the Super Proton Synchrotron (SPS,
450 GeV) and finally are injected in LHC [13].

Four experiments were designed and built to completely exploit the physics pro-
gram for proton collisions. They are located at four interaction points of LHC, in which
the actual collisions happen. Two general purpose experiments, ATLAS (A Toroidal
Lhc ApparatuS) [14] and CMS (Compact Muon Solenoid) [15], were designed to ex-
plore all the possible aspects of LHC physics, from heavy-ions collisions and forward
physics, to Higgs boson physics and direct search of new particles. The ALICE (A Large
Ion Collider Experiment) experiment [16] is specifically devoted to research in heavy-
ions physics, while the LHCb (LHC beauty) experiment [17] aims at maximising LHC
potential in beauty and charm physics.

1A hadron is a subatomic particle. Examples of hadrons are protons and neutrons.
2The electronvolt (eV) is a unit of measure, representing the energy an electron has while passing inside

an electric potential of 1 Volt (V). A Teraelectronvolt (TeV) is equivalent to a thousand-billion electronvolts
(1012 eV).
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The accelerator alternates active periods, usually called Runs, with scheduled Long
Shutdowns for maintenance and upgrade. During Run 1 (2010-2012), LHC could already
deliver several tens of Petabytes (PB) per year and the mass storage systems at CERN
surpassed the remarkable figure of 100 PB of stored data by the beginning of 2013 [18].
This number has steadily grown over time, surpassing the 200 PB mark in 2017 [19]
and reaching a peak of 15.8 PB generated only in the month of November 2018, at the
end of Run 2 [20]. Consequently, the volumes of data that are continuously accessed
by researchers reach even higher limits. For example, the CERN storage service, EOS,
has served 2.5 Exabytes (EB) of data to users only in the year 2020 [21]. This trend will
continue in the current Run 3 and future runs as well.

One of the main driving factors behind the creation of LHC was the search for a
specific particle, the Higgs boson, named after Peter Higgs who theorised in 1964 that
all particles are given their mass thanks to a fundamental field that is present every-
where. In 2012, researchers announced the discovery of the Higgs boson, the last miss-
ing piece in the Standard Model. The finding of the Higgs boson was chosen as the
“Breakthrough of the Year” by Science journal [22] and became a major milestone in
the history of physics. Being the current most powerful accelerator in the world, LHC
has the potential to go on and help to shed light on some of the unknown questions
of this age: the existence of supersymmetry; the nature of dark matter; the existence of
extra dimensions [23]. The impact of this discovery goes beyond the culmination of a
long quest, it marked indeed the beginning of a new period in particle physics. Analy-
ses about the behaviour of the Higgs boson have been performed ever since, helping in
understanding other known and unknown particle properties.

However, that discovery alone was not the end of the story. Most of the hypotheses
that have been explored require an even larger production of Higgs bosons to increase
the statistical pools of the experiments. To extend its discovery potential, LHC needs a
major upgrade in many areas, that has started since the end of Run 2 and will go on for
most of the 2020s. A more powerful LHC would provide more accurate measurements
of new particles and enable observation of rare processes that occur below the current
sensitivity level.

Thus, all experiments have different upgrade schedules to follow. In preparation
for Run 3, which started in the first half of 2022, the ALICE experiment underwent
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hardware upgrades in several subsystems and the online–offline system for data ac-
quisition and processing. The experiment then registered the first Pb-Pb collision3 of
Run 3 in November of 2022 [24]. The goal set is to reach a nominal collision rate of 50
thousand events per second (KHz), finally producing more than 1 Terabyte (TB) data
per second while functional [25]. Also the LHCb experiment upgraded its hardware
for Run 3, with the triggering system (the one taking care of keeping only good events
to be later processed) changing from hardware based to only software based. The goal
is to process more than 40 times the number of collisions happening in previous runs
(about 10 million collisions every second), thus enabling an increase in the output rate
to storage of a factor 10, from 0.5 Gigabytes per second (GB/s) to up to 5 GB/s [26].
ATLAS and CMS have received a partial update during the last shutdown period, with
a full hardware upgrade scheduled in the next shutdown [27, 28].

The specifications for Run 3 are not even close to those of the next LHC config-
uration, the High Luminosity LHC (HL-LHC) [29]. Figure 1.1 shows the timeline of
the scheduled runs and shutdowns of LHC, including the upgrades involved between
them leading to HL-LHC.

The updated accelerator, scheduled to begin taking data in 2029, is planned to col-
lect only by ATLAS and CMS some 30 times more data than LHC has produced in its
whole lifetime until now. As the total amount of LHC data already collected has al-
ready passed the Exabyte (EB) limit, it is clear that the problems to be solved require
approaches beyond simply scaling current solutions. They reveal instead a strong ne-
cessity of collaboration in multiple areas, including those outside physics. Moore’s
Law [30] cannot be taken for granted anymore - even with a conservative 20% increase
in computing power per year due to technological evolution alone - and LHC experi-
ments will need efficient software to handle their computing needs [31].

Experiments at the LHC will face a step change from 2029 onwards, where just
increasing resources will not be enough due to budget limitations. For example, Fig-
ure 1.2 shows the expected increase in CPU and disk usage respectively for the ATLAS
and CMS experiments. In the images, the black curves (solid for ATLAS, dashed for
CMS), represent the increase in budget with an interval between 10% and 20% per year.

3Collision between two ions of the lead atom, specifically Pb82+.
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FIGURE 1.1: LHC project schedule [1].

In all cases except for the expected disk usage by CMS, proceeding without R&D im-
provements would mean a total failure in the physics programme even in the best case
scenario of a continuous 20% budget increase per year. Nonetheless, both experiments
agree that even the most optimistic perspective of a more aggressive and fruitful R&D
would still fall behind schedule in case of restricted resources due to a lower budget.
Evidently, this statement applies to both computing and storage requirements, with
quite similar linearly increasing trends overall. Consequently, this thesis will touch
upon both subjects, describing some of the current pitfalls and highlighting potential
paths to a more sustainable future. Data collection, processing and storage will depend
on affordable software and computing, so the physics reach during the HL-LHC era
and beyond will be limited by how efficiently those resources can be used. In spite
of the fact that hardware is rapidly evolving with new paradigms and architectures, a
vast majority of the software currently in use was written with one single architecture
in mind and following a sequential processing model. Consequently, squeezing the
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(A) (B)

(C) (D)

FIGURE 1.2: Examples of future computing and storage requirements
for LHC experiments. First row: ATLAS experiment CPU consumption
(on the left) and disk storage used (on the right) [2]. Second row: CMS
experiment cpu consumption (on the left) and disk storage used (on the

right) [3].

most out of computing resources often becomes an arduous task. Similarly, I/O imple-
mentations used to have sequential access to disk as their prime target, while concepts
like asynchrony and concurrent transactions became promiment more recently.

1.2 Data lifecycle at the Large Hadron Collider

From the physics events that occur in the LHC when two bunches of protons collide
to the final insights that researchers gather from those events, all happens through the
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exchange of information between different steps of a more general data lifecycle. At the
LHC, this usually involves: particle collisions with consequent collection of information
by the detectors, storage of the relevant events in the CERN data center, reconstruction
of the full event information from the raw detector data, reduction of the dataset sizes
by changing to smaller and smaller data formats, final processing of the reconstructed
events, visualisation and interpretation. In parallel, CERN experiments also run cam-
paigns of generation of simulated events according to physics laws, so that they can be
compared against the real data obtained via the accelerator.

As it was previously mentioned, physics events occur in LHC when two bunches of
protons collide in correspondence of one of the four detectors. The collisions happen
once every 25 nanoseconds, which translates to 40 million times per second (MHz),
only considering single-pair collision (also called elastic collision). Considering that
protons in the same bunch crossing collide multiple times (a phenomenon also called
“pileup”) the total number of collisions per second is actually higher. In the first active
periods of the LHC pileup was around 15 (six hundred million collisions per second),
whereas during Run 2 it was around 25 on average (one billion collisions per second).
One parameter that is useful in characterising the performance of a particle accelerator
is the luminosity, defined as the ratio of the number of events detected (N) in a certain
time (t) to the interaction cross-section4 (σ). The integral of the luminosity over time
is often referred to as an important parameter, since the higher its value the more data
available for studying [32]. The design luminosity of LHC was first reached in June
2016 [33]. By 2017 twice this value was achieved [34] and it was confirmed by the start
of Run 3 [35]. The planned luminosity for HL-LHC will increase the current value by
a factor 10, reaching 1035cm−2s−1 [36]. Engineers and physicists strive to maximize
these two quantities as they are a direct measurement of the amount of data that will
be available for analyses. In particular, each event generates approximately 1 Megabyte
(MB), so that around one Petabyte (PB) per second of raw data is produced at any given
experiment while active:

1 · 109 collisions/s · 1 MB = 1 · 1015 bytes/s = 1 PB/s. (1.1)

4Probability that two particles will collide in a certain way decaying into a certain product.
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Clearly, storing information from all the events would represent a huge technical
challenge. Furthermore, most of the events are not interesting in terms of the physics
that they represent and are considered background noise. Thus, LHC experiments im-
plement trigger systems for the purpose of filtering out events which do not have to be
stored. The selectivity of the triggers, that is the rate at which events are kept, is usually
very low, leading to keep only a small fraction of the generated events. For example, the
order of magnitude of event production is in the millions of events per second, while
the events that are usually kept are in the order of tens per second. It should be noted
that the previously discussed figures regarding the data delivered by LHC experiments
to the storage centers (O(100) PB/year) were already taking into account the trigger
systems, without which those same metrics would be in the orders of Zettabytes (ZB)
per year.

After passing the trigger systems, data are sent from the experiments to the CERN
Data Centre for their first processing. The data centre itself is made up of fifteen thou-
sand servers and two-hundred-thirty thousand processor cores. At this stage, the in-
formation that arrives is still in its raw state, made of digits representing the signals
coming from the detector hardware. Various algorithms of event reconstruction are ap-
plied to datasets in order to get them to a state that can be practically analysed later
on. First, the trajectories of the particles involved in the collision must be computed.
Later on, particles are identified based on some relevant dimensions such as their en-
ergy and the kinematics of the collision. These steps require external knowledge such
as calibration constants for the detector or the magnetic field in place. A copy of the
reconstructed data is archived to long-term tape storage, using the data management
system called CERN Tape Archive [37].

The reconstructed events represent the real, gold-standard datasets from which the
final insights and possibly new physics discoveries will be gathered by researchers
down the line. But in order to reach that goal, reality has to be compared against the-
ory. In High Energy Physics, the process of simulation creates dataset with volumes
at least the same order of magnitude as real data, representing the physics phenomena
described in the Standard Model. In practice this means running very long simulation
campaigns (months at a time) with distributed programs that apply Monte Carlo sim-
ulations based on the physics equations until a big enough statistical sample has been
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generated. Each experiment runs separate Monte Carlo simulations, which usually dif-
fer not only by the physics involved but also by the software algorithms used. In recent
years, machine learning concepts have been extensively explored in this area, to speed
up the simulations while maintaining a high degree of accuracy.

Up to this point, no actual data analysis has been run yet. Data managed centrally
by the experiments is a non-interactive effort involving large parts of the community
to produce curated datasets that can later be processed. Furthermore, the amount of
steps involved in this centralised pipelines varies depending on the LHC experiment.
Centrally-managed datasets are then queried and processed by individuals, interac-
tively, leaving place to end-user analysis workflows. Data storage for end-user HEP
analysis is thus a write-once-read-many scenario. Depending on the state in the recon-
struction chain, different data models are in place among the experiments:

• RECO, ESD, DST: files formatted as such contain first reconstruction of raw data
coming from LHC. They usually represent tracks of the particles with associated
hits of the modules in the detectors and calorimetry quantities that are kept after
the triggering system.

• AOD: Analysis Object Data, containing full tracks, descriptions of particles and
vertices inside specific objects.

The different experiments have different data models and therefore different schemes
of their data. Table 1.1 summarises the data size of each data format that the different
experiments use in their workflows.

This thesis targets in particular requirements and improvements related to the final
analysis stage (i.e. related to the data formats of the last two rows in Table 1.1). Over
the years and with the different runs of LHC, experiments have introduced new data
format specifications targeting lower disk size and faster I/O transactions. For exam-
ple, CMS defined the MINIAOD targeting Run 2 as a successor of the AOD model used
in Run 1. MINIAOD event size is around 40 KB, a factor 10 reduction with respect to
the previous AOD format [38]. More recently, a new format called NANOAOD has
been created, with an event size of around 1-2 KB, roughly twenty times smaller than
before [39]. The ATLAS collaboration on its part also used an AOD model for Run
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TABLE 1.1: Event data sizes for different data formats in use by the vari-
ous experiments in LHC [9].

Data Format [KB/event] ALICE ATLAS CMS LHCb

RAW
1050 (p–p)
1625 (p--Pb)
7500 (Pb--Pb)

1000 500 60

ESD 15–30% RAW 2700 1000 110
AOD 10–15% RAW 600 400-500 120
Final analysis AOD variable variable 10

1, with derived AOD (DAOD) formats being defined on an analysis group basis with
somewhat smaller sizes but no formal definition. A similar approach was followed also
for Run 2, with some DAOD files counting as low as 40 KB per event and others reach-
ing around 450 KB per event. Two new formats have been defined for the latest run,
in order to standardise the schema used by the various groups in the collaboration.
These are called DAOS_PHYS (with a target of 50 KB/event) and DAOS_PHYSLITE
(with a target of 10 KB/event) and they are centrally produced and managed by the
experiment [40].

Data in this final stage can be processed and analysed by physicists. This is indeed
the first point of contact between the final users and the information they want to
process. At the highest level possible, this happens by selecting the interesting physics
events, deriving some new quantities from them and plotting the results, mainly
through histograms or closely related graphics as shown for example in Figure 1.3.
Since this part of the lifecycle is the main focus of this thesis, it will be further explored
and detailed in the following sections.

1.3 Layout of physics events in an analysis dataset

Due to the particular nature of the phenomena that happen in the LHC, particle col-
lision information is stored in a quite peculiar way on disk, thus leading to dataset
schemas that are not easily seen in other fields. First, it must be noted that events in
the collider are statistically independent, that is processing any two different events can
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(A) (B)

FIGURE 1.3: Examples of typical plots resulting from data analysis appli-
cations in HEP. (a): Invariant mass distribution observed by the ATLAS
experiment with 2012 data [4]. (b): Invariant mass distribution observed

by the CMS experiment with 2012 data [5].

happen in separate calls to the same function (or even in separate processes that apply
the same function to the different events). The results of the different function calls will
not depend on each other. Thus, by nature, data processing in High Energy Physics can
be approached as an embarassingly parallel problem [41].

The information contained in a single event, which refers to the physics quantities of
the particles resulting from that collision, can vary from simple scalar or floating point
values to complex, arbitrarily-nested data structures. Furthermore, some quantities are
inherently representable with collections of values, for example the collection of all the
energy values of the particles involved in a certain collision. Two different events usu-
ally involve a different number of particles. If a dataset can be described by the events
on the rows and the different quantities on the columns, it follows that the same col-
umn may have different number of elements in the collections that belong to different
rows. In this sense, a column can be represented by a particular type of n-dimensional
array, where only one dimension has a fixed length (corresponding to the number of
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events in the dataset) and all other dimensions have a variable length. More generally,
this class of arrays is known as ragged or jagged arrays [42].

As for the types of the values contained in different columns, this can vary a lot
from experiment to experiment, analysis to analysis. It has been previously mentioned
that in the past it was common to see large size per event in HEP formats. AOD formats
were usually characterised not only by more information stored per each event, but also
by large data structures used to contain it. With more recent and slimmer formats, the
types employed in dataset columns are converging towards simpler structures, often
just scalars and arrays thereof.

It has been established that physics datasets, once they pass the reconstruction stage,
are not modified. They represent the reality of the processes that happened in the col-
lider, that is why they are written once and then read many times by researchers af-
terwards. This implies a key consequence: it means that the information about many
different particles involved in collisions is stored in one single dataset. Thus, it is quite
common to see thousands of columns in the same dataset. It is the case most often
that not all columns are actually needed in an analysis application. Any two different
physics research groups may be interested in exploring the characteristics and phenom-
ena related to some specific particles, or a specific subset of their dimensions. Conse-
quently, it is desirable for a data format targeted at the HEP use case to be inherently
columnar, so that I/O transactions are minimised to only the desired information.

1.4 The workflow of a data analysis application in High Energy
Physics

A physics analysis is the main task for many research groups at CERN and partner in-
stitutions worldwide. It represents the actual interpretation of the physics objects that
were created by the event reconstruction step, together with the comparison against
those simulated according to the theoretical. Purely from the perspective of a com-
puter scientist, this step entails the production of programs that will receive the recon-
structed data as input and will output plots that help the physicists to reason about
what happened in the accelerator (eventually providing them with good material for
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publications). But for many researchers in the field data analysis includes a large series
of considerations that must be done regarding physics laws and related statistical mea-
surements. It so happens that a typical data analysis workflow is comprised of multiple
steps, which can be all included in the same application or only some of them may be
selected. The following list should provide most of the steps that a typical analysis goes
through:

1. The first step is always defining which dataset should be processed. The dataset
is defined usually by a list of files and some attached metadata. Notably, the
same application may need to process data coming from different sources, for
example real data versus Monte Carlo generated events. Metadata may then be
used in code to configure different parameters or distinguish different operations
that should be applied to different data. The parts of the dataset that share the
same metadata or follow the same configuration parameters are sometimes also
called “samples”. The input dataset size can vary a lot, but a full-scale analysis
typically processes at least a few Terabytes of data.

2. In the first stage of the analysis the source data is filtered in order to retrieve the
interesting features, e.g. selecting only certain physics dimensions such as energy,
angle or establishing thresholds such as particles with momentum higher than a
certain value. This category of operations is mostly known as “cutting” and the
filters themselves are also called “cuts”.

3. Once the right physics events have been selected, an analyst usually designs the
operations that create new quantities, also called “variables” or “observables”.
This means combining the remaining particles through functions that fall in a
wide range of complexity and sometimes become computationally heavy. His-
torically, these functions share a common logic pattern which processes particles
proceeding iteratively event by event, following their statistically independent
nature. More recently, some analyses have begun to follow an approach which
processes batches of events at a time.
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4. Sometimes the defined quantities have to be calibrated according to detector spec-
ification. Furthermore, depending on the sample one or more observables may
need to be reweighted before proceeding.

5. At the late stages of the analysis it is necessary to deal with the systematic uncer-
tainties connected to the observables. These are those type of errors that lead to
measurements which stray away from their true expected values in a precise way
and little variability. Although these characterise many physical measurements,
also in our daily lives, they pose a particular challenging issue in the context of
HEP analysis. The difficulty comes mainly from two factors. First, that their ori-
gin is not always clear. Second, that there is no set of predefined equations that
establishes how to deal with them. Thus, they require a mixture of knowledge and
common sense to be properly addressed [43]. As for the analysis implementation,
this usually means that for any observable, numerous systematic variations may
be present, thus creating a multiplying factor in the computations needed.

6. In recent years, various groups have begun exploring various Machine Learning
techniques to improve the efficiency or precision in defining some quantities. Not
all analyses include this, but seeing some functions which leverage pre-trained
models to infer variables from what is available in a dataset has become more
common. Existing use cases include classification and signal-background selec-
tion [44].

7. Once all the relevant physics quantities are defined, they can be aggregated in use-
ful statistics. Most analyses share a common set of summaries and plots, usually
histograms and closely related graphics, which are also often stacked or drawn
together. This is mainly due to the need for visualising and comparing the dis-
tributions of the physics events in the analysis, as done in the examples given in
Figure 1.3.

8. The distributions seen in the results of the analysis have to be interpreted and this
is usually done through statistical inference in order to get a better idea about the
phenomena that generated a signal in the detectors. It is natural for physicists to
model these distributions through Probability Density Functions (PDFs), which
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describe the probability that a theory is correct given the output of the analysis.
These functions are used to fit data according to a likelihood, that is the probabil-
ity of obtaining a result x given a certain model parameter θ [45].

The analysis landscape in this field is characterised by a plethora of different soft-
ware tools, with some generic patterns as described above but sometimes very differ-
ent implementations. Each LHC experiment controls and manages a separate software
stack that includes analysis frameworks tailored to the specific program of the exper-
iment collaboration. Further down the line, any university group or even any single
researcher may write custom code for their analysis need. This aspect will be further
discussed in following chapters of this thesis.

1.5 Traditional HEP distributed computing and its limitations

The context described in the previous section clearly poses some serious computing and
storage challenges that no single machine can tackle. It has already been discussed how
experiments at the LHC rely on large storage facilities where data from the detectors is
sent and further organised in various data formats. Consequently, these large amounts
of data are processed following the lifecycle described earlier and this involves the co-
ordination of the work of multiple different computing nodes. In general, this area of
computer science is called distributed computing and involves both the hardware and
software that contribute to manage and process very large datasets over a set of ma-
chines. There are different approaches to the distribution of a workload, the one that
has been most extensively used and explored in HEP is the Grid [46]. It was already un-
der development years before the LHC was operational, when it became evident that,
with the available funding, CERN alone would not be able to satisfy all the comput-
ing and storage requirements that the activities of the LHC experiments required. The
solution to this problem was found in the local computing facilities of the associated
institutes participating in the LHC experiments. A distributed system that made use
of all the available resources was proposed and Grid middleware was developed and
deployed to support such system. This distributed resource model matched well with
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the funding structure of the entities involved with the LHC and would have made it
easier for physicists at the different institutes to gain access to data.

Independent of the architecture and technologies, a computing grid was defined by
Ian Foster and Carl Kesselman as:

“A hardware and software infrastructure that provides dependable, consis-
tent, pervasive, and inexpensive access to high-end computational capabil-
ities.” [46]

A more recent definition by Wolfgang Gentzsch is:

“A Grid is a hardware and software infrastructure that provides depend-
able, consistent, and pervasive access to resources to enable sharing of com-
putational resources, utility computing, autonomic computing, collabora-
tion among virtual organizations, and distributed data processing, among
others.” [47]

Therefore, the Grid combines distributed computational and storage resources to serve
an interface to final users through a middleware that can be used to solve various scien-
tific problems. The benefit is faster, more efficient processing of different tasks in large
computing centres while providing access to users sitting at their desks in their home
institutions.

The first definition of the Grid architecture was presented in the article “The
Anatomy of the Grid: Enabling Scalable Virtual Organizations”. the Grid architecture
identifies fundamental system components, specifies the purpose and function of these
components, indicates how these components interact with one another [48]. It defines
standard protocols and APIs to help with the creation of cooperative grid systems and
portable applications. It is defined in terms of layers, where each layer has a dedicated
scope.

At present, the coordinated efforts of HEP facilities around the world to have a co-
ordinated computing system fall under the name of Worldwide LHC Computing Grid
(WLCG) [49]. It is a large distributed computing infrastructure - more than 400,000
CPU cores, 300 PB of disk and more than 200 PB of tape - devoted to store, deliver and
analyse data generated by the LHC, making them available to all partners, regardless



Chapter 1. Introduction 17

of their physical location. The WLCG is operated by a global collaboration of more
than 170 computing centres, in 40 countries. The WLCG is supported by many as-
sociated national and international grids, such as EGI (Europe-based) and OSG (USA-
based), as well as many other regional grids. While both EGI and OSG provide comput-
ing resources to researchers from many different scientific disciplines, the high energy
physics community is their most important consumer (in terms of resource needs) and
the main driving force behind the projects. As a whole, the WLCG is the world’s largest
computing grid [50].

The WLCG features different layers, starting from the lower-level hardware and net-
work provisioning, going through the definition and cooperation of the middleware,
then leading to the user-facing applications and services. Hardware and networking
can vary from facility to facility, thus the need for a layer in between the final users and
the administrators of the local resources at a grid site. That is exactly the role of the mid-
dleware, consisting of various software components providing protocols and standard
APIs to enable the communication between the hardware at the site and the rest of the
Grid. This layer makes use of virtualisation to mask the underlying heterogeneous (in
terms of different CPUs and network configurations) resources. The applications and
services layer is defined by web portals and development toolkits. This layer provides
many management-level functions such as accounting, and measurement of usage met-
rics.

The resources available with the WLCG are much larger than any single research
centre could provide. The various participants in the sharing of the resources have been
called Virtual Organizations (VO). Each VO acts according to well-defined rules stat-
ing which grid resources are shared, who is allowed to access them and under which
conditions [48, 51, 52]. In WLCG, each LHC experiment is represented by a VO. Each
resource centre (site) may decide to support one or more of these VOs. The sites are
organized in tiers, according to their relative size (in terms of resources) and the func-
tions they accomplish. Even if the duties of each tier vary from one experiment to the
other, they are usually classified by an increasing number from zero to three, each la-
bel defined by some common characteristics. For example, the Grid Tier-0 is at CERN,
where raw data from the accelerator is sent to the data centre and either archived to
tape or sent to other tiers to create replicas. Tier-1 centres are still quite large in terms
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of resources available, usually they run the first processing steps of the data lifecycle
and host the datasets for the experiment collaborations. Tier-2 and Tier-3 centres host,
respectively, less resources, the first still being considered as part of the LHC collabora-
tion, the latter being based on opportunistic resources available at the local institution
with no formal commitment.

Figure 1.4 depicts the tier layout for WLCG. Though the duties of the Grid encom-
pass many phases of the data lifecycle, as far as storage is concerned the different insti-
tutions enable the replication of data and its distribution in order to minimise chances
of data loss. This is also done to reduce latency of analyses for scientists local to the cor-
responding research facilities who do not need to transfer data across long distances.

FIGURE 1.4: Topology of the WLCG tiers [6].

One of the main goals of employing a distributed computing system, including the
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particular case of the Grid, is that final users should not be bothered by the deploy-
ment of the services, the orchestration of the resources or the splitting of the workload.
Ideally, users would be presented with an interface which, in the most simple way, al-
lows them to request resources and use them as if they were running an application on
their own computer. This interface can actually be split according to at least different
aspects. One is how users can connect to the Grid resources, e.g. with a web-based GUI
or with SSH-based access from a terminal. Another is the software stack that is avail-
able to users once connected, whether it already contains all libraries that users may
need, whether it can be customised. Lastly, how the resources can be actually used:
what is the programming environment (e.g. GUI or code), what is the workflow to
send computations to the remote resources et cetera.

Users may connect to the Grid in different ways and will land in different environ-
ments depending on the particular grid implementation. It is often the case that they
will land on a node that is not responsible for running large scale applications, but is
just a gateway to other resources. The interface provided may be graphical, in which
case the connection will be web-based and the user will work within a web browser,
or just a shell starting in the user home directory. Examples of graphical computing
environments for the Grid date back to the early 2000s, showing concepts like the use
of online notebooks that have then developed and gained popularity in the last few
years [53, 54]. All physicists at CERN can use a common login platform to get access to
remote resources, including the Grid. This service is called LXPLUS and is shell-based.
Users receive a home directory with some disk quota and can submit applications to
the CERN batch system resources from a terminal.

Once connected to a portal and armed with a working software environment, a
HEP analyst can proceed with programming their application and launching it on one
or more computing nodes. The traditional workflow for such a distributed scenario is
as follows:

1. The main logic of the physics analysis is written in a program. This may include
reading the dataset, selecting the interesting events, defining new quantities fea-
turing various degrees of complexity. Sometimes, different parts of the analysis
are split in different programs and run one after another, saving the intermediate
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filtered datasets in between to run consequent steps faster.

2. The defined program represents a task, a kernel of operations that receive an in-
put and produce an output (either some relevant plots or intermediary data). This
needs to be distributed to the computing nodes. Grid computing inherently fol-
lows the approach of batch systems, large software libraries that take care of the
scheduling of resources, the distribution of a workload and its execution in multi-
ple nodes. Quite a few such systems exist, among which Slurm [55], MOAB [56],
HTCondor [57] or PBS [58]. In HEP, HTCondor is the most common resource
manager and batch queueing system found on distributed and HPC resources.
The user needs to take care of writing a job submission file, describing the pro-
gram they would like to run, requesting a certain number of resources and how
many parallel jobs should execute the program. Generally, each job will receive
as input a different part of the dataset that can be processed independently from
others. Also this decision is in the hands of the user.

3. When the tasks finish running on the remote nodes, they will produce some out-
put, each job its own. This poses the question of how the output should look
like from each process, which usually is addressed by writing to disk the par-
tial results of any task. Consequently, these need to be further processed so that
they can be merged together into the final result of the analysis. This step needs
intervention by the user, who needs to create another program to aggregate the
partial results. Said program can then be run either on the local user session or
launched again on remote resources. It must be noted that this whole part of the
workflow supposes that all tasks produced a result correctly, which is often not
the case. If any task fails, the user will need to keep track of them and perform
retries accordingly until all results are gathered.

Reading the above list can give the idea that the usual workflow of a HEP analy-
sis loosely follows the approach defined by the MapReduce paradigm [59]: the total
workload is divided in smaller pieces which are processed in parallel by different ex-
ecutors and output partial results that have to be merged in order to obtain the final
one. The traditional approach described above was employed before the definition of
MapReduce and differs from it in some aspects.
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In fact, there are some limitations related to this approach which should not exist
in a modern computing framework. All of them revolve around one key problem: the
user is responsible for too many parts of their workflow. This can be highlighted in
various places:

• The MapReduce paradigm supposes that the execution framework takes care of
aggregating the partial results of different tasks (at most giving the user the pos-
sibility to define a custom function that will do the reduction). In the traditional
batch computing workflow the merging step is a responsibility of the user.

• Splitting the input dataset is not a trivial task. For example, a splitting strategy
should be decided upfront: per-file, per-column, per-range of entries. The exe-
cution framework should support different reading granularities. The user then
needs to perform the split and find a way to give to each job a subset of the whole
dataset. They then need to think about how to guarantee that exactly all the re-
quired entries of the input dataset are read and processed, no less and no more.

• Task failures have to be handled by reading the log files from the jobs that failed,
understanding what was the issue, fixing it and resubmitting that particular job.

All of the above notwithstanding, it is also important to note that MapReduce was
designed with different use cases in mind than the ones specific to HEP, for example
processing data of customer purchases and aggregating by product. One complexity
of the MapReduce design, at least initially, was creating a shuffle mechanism to collect
same-valued keys coming from different mappers to the same computer before being
able to run the reduction step. Traditional HEP analysis as described above didn’t suffer
from this particular problem, but still presented the challenge of dealing with arbitrarily
deeply nested data structures which are not addressed by MapReduce.

In the last few years there have been efforts to improve the model just described,
both within HEP and in other fields, and also this thesis is framed in that same line of
research. The core proposal, which will be better described in Section 1.7, is to introduce
modern and ergonomic interfaces that remove as much burden as possible from the
shoulders of the final users, letting them focus on their research activities.
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1.6 Requirements for modern HEP software frameworks

The previous sections highlight the context that characterises the daily activities of an-
alysts in this field. Section 1.2 shows that data analysis is only the final step in a long
pipeline, since the information generated by the accelerator needs to be duly processed
before reaching a reasonable state that can be actually useful for researchers. As a mat-
ter of fact, the presence of all the steps in the data lifecycle can also be observed by the
fraction of the total CPU time spent on the Grid taken by each step. LHC experiments
provide figures regarding the distribution of computing resource usage, as can be seen
in Figure 1.6. The plot in Figure 1.5 shows historical data (from 2018, during Run 2)
about the CPU usage across all grid sites for the LHCb experiment. Clearly, the highest
portion of the time was spent in the Monte Carlo simulation campaigns, consistently
during the whole year. Event reconstruction and related data processing comes in sec-
ond place when aggregated together, followed by the “user” label representing the data
analysis portion of the CPU usage accounting for roughly 5% of time spent. Estimates
for future computing requirements given by the ATLAS and CMS experiments respec-
tively in Figure 1.6a and Figure 1.6b show similar distributions. For CMS, generation
and reconstruction of true events accounts for slightly more time spent than simulation,
the opposite for ATLAS. All charts agree that user data analysis represents only a small
fraction (around 5%-10%) of total resource usage on grid sites. And this remains true
also in the two images showing future estimates with conservative or no R&D at all.

Given these insights, one could reason about whether the final analysis use case de-
serves much attention, and whether any effort to optimise it should be made in the first
place. But the resource usage is not the only metric that should be taken into account.
On the one hand, the parts of the data lifecycle that take up the most resources, i.e.
simulation and reconstruction, are usually implemented in terms of large applications
that perform all the algorithms needed and are then organised in long campaigns that
run throughout the year, a few times over the course of an LHC run. Thus, whenever a
collaboration decides to launch one of these campaigns, the computing resources will
be extremely loaded, but the people that contributed to writing those applications will
be relatively less stressed while they run. Most of the work that needs human inter-
vention happens before the start of a campaign, while during the campaign only a few
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FIGURE 1.5: CPU consumption across all grid sites for the LHCb experi-
ment in 2018 [7].

maintainers need to check the status of the jobs and deal with the coordination of the
output files. On the other hand, the general category of data analysis in reality involves
a plethora of different applications, research groups and software tools. Within any
particular group that focuses on analysing a specific part of the phase space, an appli-
cation may be run daily, multiple times, with slightly different configurations to check
the corresponding behaviour of the particles. Often times the people in the group will
discuss the results obtained, comparing their applications to better understand what
are the aspects that brought to a particular insight. This approach then broadens to
different groups which may meet to compare the tools they use to run their analyses
or the decisions that led to a particular configuration. In practice, this last part of the
data lifecycle actually involves the highest amount of time for the highest amount of
people. It is usually the main occupation of students at CERN and partner institutions,
who will spend a few years of their lives focusing on how to get the insights their group
needs for the latest publication. Thus, it becomes clear that optimising the data anal-
ysis use case for HEP would have a very large impact in terms of personpower. For
any speedup factor obtained by running an application with faster code, the equivalent
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(A) (B)

FIGURE 1.6: Predicted CPU usage for future ATLAS (on the left) and
CMS (on the right) computing models, divided among the different parts

of the data pipeline [2, 3].

amount of time would be spared for the user while at the same time the same resources
could be used for some other application. Furthermore, if better, more modern and
ergonomic interfaces become widely available, researchers would spend comparably
less time writing the application code itself, gaining more time to focus on the insights.
In practical terms, improving the current data analysis scenario would lead at the very
minimum to a better experience for the physics community. But removing inefficien-
cies, thus having more time, may potentially also lead to enabling new possibilities for
exploring other analysis within a certain group which previously were not considered
due to lack of time.

Obtaining such improvements requires careful considerations regarding the HEP
analysis software scenario. As mentioned in Section 1.4, there are quite a few frame-
works which physicists rely upon for this task, some centrally managed by experiments
and others closer tied to the activities of the analysis group. Many of them in their
turn are based on a few key libraries, which serve as building blocks for higher-level
functions and data structures more specialised for the specific workflow of the anal-
ysis framework. The work of this thesis is based upon and improves one such core
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library, called ROOT [60], which will be further described later on. It should be the re-
sponsibility of this lower-level tools to address the problems and challenges of analysts
head-on, so that all the rest of the toolchain at higher levels may benefit. This purpose
can be spread across a few general lines of work: performance, user experience and
collaboration with other parts of the data pipeline.

Performance is a very generic yet relevant topic for any kind of Computer Science
application. For the HEP analysis use case, the main metric to optimise for is the so-
called “time to plot”, that is the time between the launch of an application by the user
and the final visualisations materialising on their screen. On a second level, memory
usage should also be kept under control, especially to avoid unpleasant situations with
memory issues leading to unrecoverable crashes which are hard to debug on the part of
the user. In this regard, it is worth mentioning that a design decision was made for Grid
sites, which are required to have at least 2 GiB of memory per physical core. Physics
analyses involve a high number of I/O operations, so making sure the software can
read data from disk as fast as possible must be a focus. Not only that, but also getting
the best out of a network connection is crucial since most often the datasets are stored
in remote facilities and have to be read over the network. In the best case scenario, the
computing facility running the analysis is also enabled for caching the data arriving to
the nodes, so the analysis software must be able to coordinate with existing caches or
even be able to serve as a caching system itself. The application runtime then involves
a usually large amount of complex operations, which makes it also computationally in-
tensive. In this regard, the analysis software should aim for the highest throughput (in
terms of physics events analysed per second) per core. Historically, physics software
was written based on single-core, sequential paradigm. Nowadays, multi-core comput-
ers are the norm and parallelisation should be part of the design of the software library,
on a single machine and on a cluster alike. When dealing with a computing cluster, the
analysis tool should be able to scale in terms of cores/nodes used, input dataset size
and complexity of the analysis operations. Ideally, since the events are independent,
the core logic of the execution of the analysis should scale linearly with the increase of
the resources available.

There are many aspects related to user experience. The analysis programming
model and its interface will be highlighted for the purposes of this document. It can
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be argued that the main objective should be simplifying as much as possible the appli-
cation development process for analysts, who should need to think primarily about the
physics involved and much less about the programming. For example, the traditional
programming model used by physicists employed iterative procedures to analyse the
events one at a time. This was reflected also in code, characterised by for-loops over en-
tries and bookkeeping the defined quantities and their aggregations by hand. Modern
practices brought a shift towards a declarative model, where simple, composable APIs
can be used to hide the underlying event loop while letting users focus on the “what”
of their analysis and not on the “how”. Once an API has been decided, it should be
carefully preserved and grown in a sustainable way, decreasing the steepness of the
learning curve for users and avoiding incompatible changes where possible. This ap-
proach has to go hand in hand with the necessity to perform well on many cores and
many nodes discussed earlier. Thus, it is crucial to hide also the complexities of re-
source scheduling and workload distribution from the users, enabling them to use the
same analysis code on their laptop as on any computing cluster.

The analysis stage is the last part of a long pipeline, and is itself divided further
into many pieces as discussed. The analysis software should feel naturally encased in
the pipeline. It should integrate with the I/O layer and make best use of it to gather
data as fast as possible. Also, it should carefully restrict the data read to only those
actually processed later in user code. Furthermore, it should be easy to integrate the
analysis tool onto various facilities that the experiments may want to use, be it grid
sites or other deployments. In this scenario, it may need to interact with other tools,
such as data management systems, statistical or machine learning inference software.

1.7 Objectives

The main goal set for this thesis was to develop a practical solution to the problems and
limitations of traditional distributed HEP data analysis previously described. Leverag-
ing the experience and best practices that were investigated at the start of the thesis and
that have been outlined in previous sections, it was chosen to focus the attention on de-
veloping a tool that physicists could use for their data analysis needs which would
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remove most of the burdens they had to sustain in the past. In particular, this objective
can be split in multiple parts:

1. The tool should feel modern and easy to use for physicists, ideally leveraging
already established tools and patterns. This is well suited by high-level APIs,
made to optimise the underlying runtime while providing a seamless experience
that lets users focus on the physics. Distributing an application written with this
interface should be transparent for users, adapting to both single and multi-node
deployments to improve shareability and reproducibility of the analysis.

2. It should make effective use of available hardware resources, ideally scaling in
a linear fashion even when distributing over thousands of cores. Furthermore,
it should stay effective whether the application is a simple exploratory analysis
with a few operations or a large-scale production-ready workflow.

3. It should be possible to use the analysis programming layer to make further op-
timisations for the users behind the scenes, particularly related to improving the
I/O throughput during an analysis.

4. It should be agnostic with respect to the particular execution engine or resource
manager, so that it can adapt to different sites of the Grid and also new types of
infrastructure deployments.

The perfect starting point for the purposes described above can be actually found
within a software library targeted at HEP use cases which is commonly used among
physicists, ROOT. In particular, it features a high-level interface to data analysis called
RDataFrame. This tool did not natively support the distributed computing use case
before the work of this thesis. Thus, it was chosen as the main building block on top of
which the objectives described above have been addressed.

1.8 Related work

The objectives described above have been implemented by first designing and creating
a distributed layer on top of RDataFrame, then evaluating it in various contexts and
expanding the research to a few key areas.



Chapter 1. Introduction 28

First, it was decided to follow the popular MapReduce paradigm for the distribution
of tasks. In order to achieve this, the distributed RDataFrame tool needs to take care
of packaging the user application in kernels of execution (i.e. the mappers) and then
reduce their partial results along the way. Also, the tool takes care of automatically
splitting the input dataset in chunks without user intervention, based on ranges of en-
tries. Finally, the implementation is modular, so that the logic to split the dataset and
create the MapReduce functions is separate from the logic that creates and distributes
tasks to computing resources.

This allows to program different execution backends for distributed RDataFrame.
In the course of this work, four different engines have evaluated. Two of them, namely
Apache Spark and Dask, fit in the HPC scenario and can be compared similarly on
managed computing clusters. Their scalability in using distributed RDataFrame has
been tested on CERN resources up to 2048 cores, but in general they are used as ex-
ecution engines throughout various works in this thesis. Another two engines, AWS
Lambda and OSCAR, belong to the serverless computing approach, a different model
than the traditional HEP distributed computing one, that is commonly used in cloud
environments. Their usage is evaluated in fact on cloud resources and their implemen-
tation to fit with distributed RDataFrame provided some unique challenges that will be
discussed later on in the thesis.

Another important line of research for this thesis was the improvement of through-
put related to I/O for distributed RDataFrame. In particular, the issue of caching input
datasets to speedup analysis runtime was evaluated. A first introductory work was
conducted by comparing two caching strategies, namely caching on a single server
vs. caching on the computing nodes, using existing tools in the field. Drawing from
this experience, a prototype for a new caching mechanism was developed for the
next-generation ROOT I/O system and it was tested with distributed RDataFrame on
bleeding-edge object store technology offered by Intel.

1.9 Structure of the document

After the introduction outlined in this chapter, this thesis is structured as follows:
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• The foundational tools for this work are better described in Chapter 2. Other
pieces of software that are more specific to a certain work will be mentioned in
the respective chapter.

• Chapter 3 contains a detailed description of distributed RDataFrame, its main
design concepts and implementation, discussing its role as an interface for dis-
tributed analysis in HEP.

• Chapter 4 discusses the works related to scalability in managed computing in-
frastructures with distributed execution engines such as Spark and Dask.

• The research about caching strategies in this context is detailed in Chapter 5.

• The particularities of developing a serverless engine for distributed RDataFrame
are outlined in Chapter 6, which also presents evaluations on different platforms
aimed at cloud computing.

• Finally, Chapter 7 draws a few conclusions from all the work put into this thesis,
outlining the current status of research and open questions for the future.
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Chapter 2

Tools

This chapter contains descriptions of the software libraries that are deeply connected
with the work pursued in this thesis. All the following chapters will feature the dis-
tributed analysis layer of ROOT as a key ingredient. Thus, the following sections of
this chapter will first describe in more detail the functionalities offered by ROOT rele-
vant for this work, then introduce other building blocks for most of the studies devel-
oped. Software which is relevant only for specific parts of this thesis is described in the
appropriate chapter.

2.1 ROOT

ROOT is a modular scientific software toolkit. It represents a de facto standard for
many parts of the HEP data pipeline, involving storage, processing and visualisation
of datasets. Its core logic is written in C++, but all its functionalities can be accessed
through a Python API as well. ROOT offers a complete framework and environment for
developing and running physics analysis, and for storing data in an efficient way [60].
The ROOT components that are most relevant for this thesis include:

• A powerful I/O subsystem, capable of writing arbitrary C++ objects to files.

• A columnar data format that has been used to store more than an Exabyte of
physics datasets so far [61].

• An interactive C++ interpreter, called Cling [62], which enables dynamic C++
code compilation and execution.
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• Automatic and dynamic Python bindings, called PyROOT, powered by Cling.

• A tool to program and parallelise HEP data analysis workflows, called RData-
Frame, the main reference for this thesis that builds new features on top of it.

• Graphical facilities to represent distribution of physics variables via plots.

2.1.1 I/O

Section 1.3 informs about the specific data layout that best represents particle informa-
tion coming from the accelerator. This has been implemented in ROOT, which defines
a data format (on disk and in memory) used in all HEP datasets. It is binary, columnar
and capable of storing any kind of user-defined object in a file. Since the software frame-
work is mainly implemented in C++, a ROOT file can store arbitrary C++ objects, with
an automatic compression mechanism that splits complex classes into simpler compo-
nents. Also, using a columnar layout further reduces the amount of read transactions
needed, since different columns can be read independently from each other. Tradi-
tionally, the I/O layer in ROOT was implemented in the TTree class [63], and soon in
RNTuple [64].

TTree A TTree is a generic container of data, capable of holding any type of C++ ob-
ject. This goes from fundamental types to arbitrarily nested collections of user-defined
classes. TTree organises data into columns, called branches. A branch can contain com-
plete objects of a given class or be split up into sub-branches containing individual
members of the original object. Each branch stores its data in one or more associated
buffers on disk. Different branches can be read independently, thus TTree is a columnar
data format at the top level of the branches (user-defined types stored in TTree are still
accessed in their entirety). Furthermore, the granularity with which a TTree dataset can
be read goes even further. When reading one or more columns, TTree is able to serve
different groups of entries independently. The minimum amount of rows that can be
read independently is also called an entry cluster or just cluster. By default, the size of
a TTree cluster is 30 MB, but this value can be adjusted by the user when writing the
dataset.
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TTree has become the de facto standard data format in the area. Its on-disk colum-
nar layout allows for efficient reading of a set of selected columns, a common case in
HEP analyses. However, future experiments at the HL-LHC are expected to generate
one order of magnitude larger datasets which makes researching the benefits of using
high-bandwidth low-latency distributed object stores especially relevant. TTree only
supports I/O transactions to file-based systems, which may prove not flexible enough
for future challenges. This will be further explored in Chapter 5.

RNTuple RNTuple [8] is the new, experimental ROOT columnar I/O subsystem that
addresses TTree’s shortcomings and delivers a high read throughput on modern hard-
ware. In RNTuple data is stored column-wise on disk, similarly to TTree and Apache
Parquet [65]. The further advantage is that RNTuple is truly columnar at all level of
structures, down to the fundamental types that make up even the most complex user-
defined classes. An overview of the data layout design is depicted in Figure 2.1.

FIGURE 2.1: Data layout of RNTuple [8].

Specifically, data is organized into pages and clusters: a page is the smallest unit
for storage and compression and they can also contain a certain amount of values of a
column; clusters contain all the columns for a range of rows. The RNTuple meta-data
are stored in a header and a footer directly within the RNTuple object. The header con-
tains the schema of the RNTuple; the footer contains the locations of cluster metadata,
from which information about columns and pages can be retrieved further. The pages,
header and footer do not necessarily need to be written consecutively in a single file. As
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long as the target container of the RNTuple specifies the location of header and footer,
data can be stored in separate containers (e.g. different files or different objects in an
object store).

The RNTuple class design comprises four decoupled layers. The event iteration layer
provides the user-facing interfaces to read and write events and can be used from
higher-level components in ROOT such as RDataFrame, which is described in Sec-
tion 2.1.3. The logical layer defines the mappings to split arbitrarily complex C++ objects
into different columns of fundamental types. The primitives layer manages deserialised
pages in memory and the representation of fundamental types on disk.

RNTuple’s layered design decouples data representation from raw storage of pages
and clusters, therefore making it possible to implement backends for different storage
systems, such as POSIX files or object stores. For example, a recent effort enabled using
the Intel Distributed Asynchronous Object Storage (DAOS) as a backend for RNTuple
and demonstrated promising performance results [66]. This thesis has explored the
usage of this novel storage backend in the context of caching datasets for analysis (see
Chapter 5).

TFile Datasets in the ROOT data format, be it through the TTree or RNtuple imple-
mentation, can stored on disk through the TFile class [67]. This class organises con-
secutive records of instances of objects on disk. In general, any type of object can be
stored with TFile, it is not only limited to storing datasets. For example, it is often used
to store histogram objects for easy sharing and portability. Objects in a TFile can be or-
ganised in a filesystem-like hierarchy, with subdirectories that can further contain other
objects of arbitrary types. Through TFile, the ROOT I/O subsystem is able to read and
write datasets both to a local disk on the computer and to remote machines with proto-
cols such as HTTP or XRootD [68]. The latter is the most common protocol for remote
data access used in the HEP field. This makes ROOT datasets easily transferable from
one physicist’s machine to another’s for easy sharing among colleagues or from large
storage facilities to the various computing nodes that may be used to run production
analyses.
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2.1.2 Interoperability between Python and C++

Cling is a C++ interpreter based on the Clang compiler from the LLVM software
suite [69]. Thanks to it, ROOT can be used as a fast prototyping system for C++.
The ability to open a ROOT prompt and type C++ code that gets executed on the fly
is unique to this library. In fact, this feature has generic value and can be relevant
for many other communities outside of High Energy Physics. This has become
particularly evident with the recent integration of Cling functionalities in the LLVM
suite with the name clang-repl [70]. Cling is used extensively within the various
ROOT components. The I/O makes use of the reflection mechanisms offered by the
interpreter to understand the objects that must be serialised to disk. RDataFrame sends
user-defined functions to the interpreter for Just In Time (JIT) compilation before the
execution of the computation graph. Furthermore, Cling is the foundational layer to
enable bindings to other programming languages, for example Python.

The Python bindings in ROOT are named PyROOT. They are based on a library
called cppyy [71], which in turn relies on the dynamic capabilities of Cling to create
bindings of C++ functions to Python objects on the fly. PyROOT enables access from
ROOT to any application or library that itself has Python bindings, and it makes all
ROOT functionality directly available from a Python interpreter. An RDataFrame ap-
plication can be written in Python thanks to both PyROOT and Cling, thus giving the
basis for the work of this thesis.

2.1.3 RDataFrame

RDataFrame is the high level interface to data analysis offered by ROOT [72]. It features
a programming model where the user calls lazy operations on the dataset through the
API and the tool effectively builds a computation graph that is only triggered when the
results are actually requested in the application. Through the Python bindings offered
by ROOT, RDataFrame allows physicists to write their code with the user friendliness
and flexibility offered by the Python language, while the underlying tool runs compu-
tations in C++. It also implements specific HEP features like support for systematic
variations, jagged arrays and producing histograms with associated statistics.

The API of RDataFrame can be divided in three categories of operations:
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• Transformations: operations that modify the dataset, such as removing uninter-
esting events (Filter) or creating new variables (Define).

• Actions: operations that return some result. Counting how many entries are left
after filtering (Count), summing the values of a column (Sum) or creating a one-
dimensional histogram (Histo1D) are all actions. When called, this type of op-
eration registers itself in the RDataFrame computation graph but does not run
immediately. The return value of this operation behaves like a future, it functions
as a pointer to a result that is not there yet. Once the user needs the specified
value, for example when they want to plot the histogram, the computation graph
will be executed and actions will store the computed values.

• Other operations that are not included in the computation graph, but give some
more information about the status of the RDataFrame. For example, users can ask
for the list of column names (GetColumnNames).

Parallelisation has been a key feature of RDataFrame since its inception. The native
C++ implementation allows to use all the cores in a single machine through implicit
multithreading, which can be activated by a single function call at the beginning of the
user application. RDataFrame stands on a very interesting advantange, that is the abil-
ity to know information about the input dataset such as the files and the columns that
the user has requested. Thanks to the lazy API and the creation of a computation graph
internally, it can thus leverage the ROOT I/O in the best way possible, for example
by reading only the columns requested; or, in the multithreaded case, by splitting the
execution in many tasks where each will read a portion of dataset entries that can be
independently retrieved from the file.

2.2 Engines for large-scale data analysis

It has been discussed in Chapter 1 that Apache Spark and Dask are two of the most
widely used distributed execution engines in industry for interactive data analysis.
They have both seen usage within HEP and are thus perfect candidates to employ in the
distributed RDataFrame effort. In particular, they are used as schedulers of distributed
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execution. The RDataFrame machinery takes care of creating a series of tasks that can
be processed independently, then passes them to the scheduler which will take care of
sending the tasks to the remote nodes. Each scheduler has a different API and thus the
implementation of this machinery may vary slightly. This section will briefly describe
them and include their most relevant features for this thesis.

2.2.1 Apache Spark

Spark is an Apache project aimed at cluster computing and based on Hadoop MapRe-
duce, extending it to more types of computations with a higher efficiency. The main
feature of Spark is the ability to perform in-memory cluster computing to increase the
processing speed of an application. Spark implements its own cluster management
logic, separate from Hadoop, providing a faster and more general data processing plat-
form [73].

Spark offers different client APIs to connect and send computations to a remote clus-
ter from within the user application. Specifically, distributed RDataFrame employs the
SparkContext class, which is connected to the concept of Resilient Distributed Dataset
(RDD), a Spark abstraction of a sequence of elements that can be processed in parallel.

On the cluster side, one Spark scheduler is responsible for submitting computations
to one or more Spark workers and retrieve the results before sending them again to
the user. It offers built-in scheduling capabilities, useful when there is complete con-
trol of the nodes and the Spark services can be started manually. Most often, a Spark
deployment will rely on external tools for the resource management. Among these:
YARN [74], the default Hadoop resource and Kubernetes [75], a deployment with fo-
cus on containerised environments.

2.2.2 Dask

Dask [76] is a Python library that allows to easily parallelise existing workflows. It is
mainly targeted at supporting other common Python analysis tools like Numpy [77] or
Pandas [78], but is flexible enough to accommodate any type of computation. Thus, it
offers many interfaces for data processing, including machine learning and real-time
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analysis. Dask offers a wide set of configurations thanks to which an application can be
scaled to different cluster setups, including:

1. Start all the remote nodes from a single machine through SSH.

2. Leverage existing cluster deployments with Kubernetes or YARN.

3. Connect to high performance computing resource managers that implement
batch submission systems, such as HTCondor, Slurm or PBS.

Two ingredients are necessary in order to distribute computations in a Dask appli-
cation. The first is the object representing the remote cluster itself, including how many
resources will be assigned to it for the duration of the application. The second is an
object representing the connection between the local machine and the remote cluster.
This is called Client and can be used with any of the different implementations of re-
source managers available in Dask described above. The Client API allows users to
asynchronously launch tasks to the remote cluster.
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Chapter 3

Design of a programming model for
distributed analysis in HEP

In order to address the objectives outlined in Section 1.7, ROOT RDataFrame was cho-
sen as the starting point to develop a new distributed layer for HEP data analysis pur-
poses. RDataFrame itself already addresses the vast majority of the use cases in this
field, while at the same time being part of the most established and commonly used
software for HEP data processing.

One of the contributions of this thesis is the development of an extension of RDa-
taFrame to help physicists seamlessly distribute their analyses. This has been imple-
mented in the form of a pure Python package natively integrated in the ROOT software
library, referred to as distributed RDataFrame. Its purpose is providing an API to scale
out an RDataFrame application to an arbitrary number of nodes. This chapter will go
into more detail about different aspects of this package, highlighting some of the design
choices and the machinery that was implemented consequently.

This package has served as a common tool for many different investigations
throughout the course of the thesis. Thus, this chapter represents a foundational layer
for the discussions in following chapters.

3.1 State of the art

Following the context introduced in Chapter 1, it is clear that HEP data analysis is char-
acterised both by very computationally intensive, large-scale distributed applications
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and a user base often lacking a computer science background and a varying degree of
programming skills. This motivation has led many efforts over the years to investi-
gate ways to abstract away from the lower-level programming logic, both in terms of
easier programming interfaces and more ergonomic interfaces to access to computing
resources.

The LHC experiments support their own software stack, which usually includes
also data analysis tools. ATHENA [79] and CMSSW [80] for ATLAS and CMS, respec-
tively, represent large code bases to cope with many requirements of the data pipeline
in the collaboration and are sometimes also used for the final analysis step. Since these
libraries can become quite heavy and their setup is not always trivial, it is also very
common to see smaller analysis frameworks developed within one or more research
groups of the collaboration, by those more interested in investigating certain particle
interactions. Sometimes, these smaller libraries aim at being generic, so that many re-
searchers could use them as building blocks for their code. A few examples include
the Latinos framework [81], Bamboo [82], CMGTools [83], which were all developed
in the context of various analyses of CMS data. In turn, these frameworks are usually
just higher-level wrappers around other APIs, for example the nanoAOD-tools [84] by
CMS, coffea [85] or RDataFrame.

This approach with multiple layers of software libraries between the low-level data
processing and the high-level interface for final users is quite common in the field. One
of its strengths is that it creates a better separation of roles, allowing a few domain
experts that develop analysis frameworks to use performant processing tools while ex-
posing an API that feels familiar to the physicists because it provides those operations
that are peculiar to HEP analysis. In fact, this can be brought to the point where the
analysis library exposes its own domain-specific language (DSL), keeping only those
keywords that physicists are used to the most when talking about analysing physics
events. Sometimes the DSL is embedded within a more generic interface and can be
used as part of the programming interface. For example ROOT itself has offered the
possibility to analyse TTree data by running the TTree::Draw function using a syntax to
filter events and create variables called TTreeFormula [86]. Other times the DSL is the
user-facing API itself, such as in the case of MadAnalysis [87] or ADL [88].
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On the side of gaining access to remote resources and using them, it has been men-
tioned in Section 1.5 that CERN users have been able for a long time to connect to a
terminal-based interface called LXPLUS that provides them with the software to run
the analysis and access to resources through HTCondor. This workflow based on batch
queues does not fit well with the goal of giving end users the ability to run their anal-
yses in an interactive environment. This approach has gained increasing popularity
in the HEP field in the last few years, also sustained by a similar, more generic trend
happening at wide in the industry, which relies on widely used data science meth-
ods and tools. It is characterised by a focus on interactive workflows, supported by
a mixture of infrastructure deployment that allows requesting computing and storage
resources with very low-latency and interactive software tools supported by a web-
based interface (most often based on Jupyter notebooks [89]). This combination is often
referred to with the term “Analysis Facility”. An example implementation is offered
by SWAN [90], a service developed at CERN that connects the Jupyter notebook to
personal user storage and all software libraries needed by physicists. The system also
integrates natively with a Spark cluster at CERN that can be used for interactive usage
of distributed nodes. The service has been bundled in a containerised environment for
general purpose and scientific use called ScienceBox [91]. Following the same model, a
team of CMS collaborators has developed an implementation of analysis facility on US
resources [92].

With respect to the literature detailed above, RDataFrame positions itself as a co-
herent and simple interface that removes many frictions in the analysis definition for
users. The composability of its API makes it a perfect candidate for the extension to
distributed environments that is proposed in this thesis. Adding an automatic system
for steering distributed computations natively in ROOT could benefit all higher-level
tools such as Bamboo or CMGTools that currently need to maintain their own logic
for splitting the dataset and creating tasks. The provided API, that is the one already
offered by RDataFrame, opens the door for different kinds of distributed analysis defi-
nition, including executing any valid C++ code expression that is interpreted by Cling,
loading C++ libraries with optimised functions or using native Python functions. The
implementation of distributed RDataFrame is generic enough that it can be used effi-
ciently on different types of deployment, ready for all the different implementations of
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analysis facilities that may arise in the field. Evidence of this modularity is presented
in Section 3.4 for what concerns managed facilities and Chapter 6 for scaling the appli-
cations in unmanaged cloud environments.

3.2 Maintaining the established API

The main features of RDataFrame have already been discussed in Section 2.1.3, among
which its use of a declarative interface and lazy evaluation of the functions called by
the user. These contribute to making a composable, user-friendly and generic API.
Not only that, but the declarative approach, since it defines a limited, high-level set of
operations that can be run on the dataset, also opens the door for a smooth integration
with various execution engines to apply data parallelism, be it local or distributed. In
fact, the first decision in designing the distributed layer was to keep exactly the same
user interface. To demonstrate this, Figure 3.1 shows two listings containing a simple
example of an application with RDataFrame (on the left) and the same application done
with distributed RDataFrame (on the right). Beginning from the listing on the left, we
can describe the following steps:

• The goal of this application is to compute the approximate value of π as four
times the number of points that fall within a circle with radius r = 1 divided by
the number of points of a square with side l = 2 that encloses the circle.

• The main function starts at line 8. The first step is creating the RDataFrame object
(line 9), which is the entry point for the rest of the analysis. There is no input
dataset in this case, the RDataFrame will simply generate sequential entries at
runtime, from zero (included) until the value of NPOINTS (excluded).

• The calls to the Define method create new columns in the dataframe, i.e. the
points in the square and the distance from the center. In line 20 the Filter oper-
ation removes those entries where the distance is lesser or equal to one, i.e. only
the points inside the circle are considered. The Count operation tells RDataFrame
to count how many entries pass that filter.
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• So far, all the calls to the API have not triggered any computations. The execution
starts at line 23, specifically by calling GetValue on the result of the previous call
to Count.

Looking at the listing on the right side of the same image, it should be noted that:

• The two main functions (lines 8-25 on the left, lines 23-40 on the right) are ex-
actly the same. That is, the user logic that expresses how the dataset should be
processed is kept intact.

• There is only one extra ingredient needed for the creation of the RDataFrame
object, as shown in lines 19-21. In order to distribute computations to a cluster,
the RDataFrame object needs a way to connect to the cluster itself.

• When using Spark, Dask and other distributed execution engines, the connection
to the cluster can be established in the application by creating a separate object
that will be responsible for sending tasks and retrieving their results. In Dask,
this is called a Client.

• The RDataFrame created at line 20 accepts an optional argument, called
daskclient when using the Dask backend, that takes in input a connection object
to the cluster. Thanks to this hook, the distributed RDataFrame can decouple
completely the scheduling of the resources from the definition of the analysis.

• Lines 10-16 show the creation of the Dask client object. In this case, a
LocalCluster will spawn multiple Python processes on the same machine
to parallelise the execution of the RDataFrame computations. This is just one
example, as already mentioned Dask offers facilities to send the computations to
multiple different nodes.
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1 import ROOT
2

3 NPOINTS = 10_000_000
4

5 def create_rdf() -> ROOT.RDataFrame:
6 return ROOT.RDataFrame(NPOINTS)
7

8 def main() -> None:
9 df = create_rdf()

10 pidf = (
11 df.Define(
12 "x",
13 "gRandom->Uniform(-1.0, 1.0)")
14 .Define(
15 "y",
16 "gRandom->Uniform(-1.0, 1.0)")
17 .Define("r", "sqrt(x*x + y*y)")
18 )
19 incircle = (
20 pidf.Filter("r <= 1.0").Count()
21 )
22 pi = (
23 4.0 * incircle.GetValue() / NPOINTS
24 )
25 print(f"pi is approximately: {pi}")
26

27

28 if __name__ == "__main__":
29 main()

1 from distributed import LocalCluster
2 from distributed import Client
3 import ROOT
4 RDataFrame = (
5 ROOT.RDF.Experimental
6 .Distributed.Dask.RDataFrame
7 )
8 NPOINTS = 10_000_000
9

10 def create_connection() -> Client:
11 cluster = LocalCluster(
12 n_workers=8, threads_per_worker=1,
13 processes=True, memory_limit="2GiB"
14 )
15 client = Client(cluster)
16 return client
17

18 def create_rdf() -> RDataFrame:
19 conn = create_connection()
20 return RDataFrame(
21 NPOINTS, daskclient=conn)
22

23 def main() -> None:
24 df = create_rdf()
25 pidf = (
26 df.Define(
27 "x",
28 "gRandom->Uniform(-1.0, 1.0)")
29 .Define(
30 "y",
31 "gRandom->Uniform(-1.0, 1.0)")
32 .Define("r", "sqrt(x*x + y*y)")
33 )
34 incircle = (
35 pidf.Filter("r <= 1.0").Count()
36 )
37 pi = (
38 4.0 * incircle.GetValue() / NPOINTS
39 )
40 print(f"pi is approximately: {pi}")
41

42

43 if __name__ == "__main__":
44 main()

FIGURE 3.1: Example application with RDataFrame (on the left) and dis-
tributed RDataFrame (on the right)



Chapter 3. Design of a programming model for distributed analysis in HEP 44

Figure 3.1 truly exemplifies the seamless transition from a traditional RDataFrame
analysis to a distributed one. At the time of writing, this feature has been integrated
in the main ROOT repository, but is still in experimental mode. This can be seen for
example in the listing on the right, where the creation of the distributed RDataFrame
depends on a previous alias to the correct class defined in lines 4-7. Once the extension
is declared ready for production use, this small difference could be removed by
dispatching the correct RDataFrame depending on whether the user provides a cluster
connection or not.

3.3 The workflow of a distributed application

The listing on the right side of Figure 3.1 can be used also to describe what happens
under the hood when a user runs a distributed RDataFrame application. A brief de-
scription would be that the tool creates a series of tasks by splitting the input dataset
in logical parts, sends the tasks to some execution engine, each task will process the
user-defined operations on its logical split, finally all task results are aggregated and
sent back to the user. In more details, the workflow is enabled by the cooperation of
different mechanisms:

1. The execution of the computations is triggered by usage of some action return
value, as described in Section 2.1.3. This happens at line 38 of the listing with the
call to GetValue on the result of the previous Count operation.

2. The action object calls into the head node of the computation graph to create all
the information necessary to build a series of tasks for the distributed execution.
The class responsible for this is named HeadNode and its functionality is better
described in Section 3.7. Each task contains three items: a logical chunk of the
dataset, a function that is able to create an RDataFrame object from that chunk,
the computation graph that must be applied to that RDataFrame. These are all the
ingredients needed for the execution of a mapper function. The head node takes
care of packaging the list of tasks, the mapper function and the reducer function
and give them to the distributed scheduler.
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3. The scheduler receives the information from the head node and builds a MapRe-
duce pattern. This can be implemented differently depending on the available
API of each scheduler (more on that in Section 3.4). The tasks are sent to the dis-
tributed processes, both the mapping and reduction phases are executed on the
workers.

4. The head node receives back from the scheduler the final results of the distributed
execution. There is one result for each action operation the user asked. The head
node takes care of filling the actions with their result values. This ensures that the
results are available in the user application and connected to the variables created,
as it would be expected.

3.4 A modular implementation

Another core design goal of this contribution is to decouple the logic that deals with
creating the RDataFrame tasks from the logic to steer the computations distributedly.
This translated into a modular structure of the package, providing base protocols for
the parts of the workflow that may have different implementations. Currently, this is
particularly evident in two areas, that are highlighted in the following sections.

3.4.1 Modularity with respect to the execution engine

The first aspect to analyse is how distributed RDataFrame can accomodate different
execution backends with ease. Until the moment of writing, four backends have been
developed and tested with this tool, of which two are natively integrated within ROOT,
namely Spark and Dask, another two have been the focus of more specific research
efforts detailed in Chapter 6.

A base class for all distributed RDataFrame backends is defined inside the Backends
subfolder of the project, which serves as a protocol for other implementations. Three
main ingredients are required from any backend:

• A method that creates an RDataFrame connected to the appropriate cluster type,
accepting the same input arguments as the traditional RDataFrame class.
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• A method that runs a MapReduce workflow, given the mapper and reducer func-
tions and a set of dataset chunks to apply them.

• A method to send files from the client session to the remote machines. This is a
crucial feature for distributing additional user code that may be needed during
the analysis, such as C++ header files.

New backend implementations may subclass the base backend and implement the
required methods. The package automatically picks up implementations placed under
a subfolder of the Backends folder. This is shown in Listing 1. For more details about
their implementation, see Chapter 4.
.
+-- Backends
| +-- Base.py
| +-- Dask
| +-- Backend.py
| +-- Spark
| +-- Backend.py
+-- [...]

LISTING 1: Simplified folder structure of distributed RDataFrame. The
Backends folder contains implementations for the execution backends.

3.4.2 Modularity with respect to the data format

Since RDataFrame supports different types of input data format, the same support is
desirable for distributed RDataFrame too. In fact, different data formats will have dif-
ferent I/O rules and may need different treatment in terms of how they are split into
smaller chunks. In distributed RDataFrame, the class responsible to handle the split-
ting of the dataset and generation of the tasks is called HeadNode. Instances of this class
represent the manager of a certain RDataFrame computation graph. Also this class is
a base for different implementations, which differ on the data format they target. The
data formats supported currently in distributed mode are TTree and the simple gener-
ation of sequential entries (previously shown in Figure 3.1).
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This approach makes it very easy to add support for other data formats which are
also supported by the local version of RDataFrame. For instance, support for RNTuple
has been developed and used in a research effort done during this thesis, described in
Chapter 5.

3.5 Generalised task creation algorithm for distributed back-
ends

Automatic creation of tasks for distributed execution is a core feature of the distributed
layer for RDataFrame. The main goal is ensuring that two distinct tasks will operate on
two distinct parts of the dataset specified by the user. This requires exploiting as much
as possible the I/O granularity offered by the data format when reading a ROOT file.
As a simple example, let us take a ROOT file containing a dataset with two columns
and two entry clusters (as defined in Section 2.1.1). Two tasks can be possibly defined
for this example, the first task operates on the first cluster, the second task on the second
cluster. Both tasks need to also receive the information about the file(s) that contain the
entries they were assigned. In general, the following rules can be derived about task
creation:

• A task should be assigned with a range of entries to process from a particular set
of files. This range should be aligned with respect to the cluster boundaries, to
avoid reading a whole group of rows in memory and then just processing a few
of them.

• For any given application, the maximum amount of tasks that should be created
is equal to the total amount of clusters in the dataset. Creating more tasks would
mean triggering unnecessary I/O requests to (potentially remote) ROOT files,
adding a significant overhead to the analysis.

3.5.1 Offloading the creation of task ranges to workers for parallelisation

Creating the list of tasks to be passed to the execution engine used to be a serious bottle-
neck in initial iterations of distributed RDataFrame. This issue arises from the fact that
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the information regarding clusters in a file can only be queried after the file has been
opened. Before this work, all files of the dataset had to be opened on the client side to
query the relevant metadata. Tests done at CERN have shown that a single open op-
eration of a remote file stored within the CERN network from a client machine within
the same network can take a few seconds to complete. A real HEP analysis can pro-
cess O(1000) files, thus bringing a startup time cost of tens of minutes just to create the
tasks. In this work, a new algorithm for task creation has been developed to completely
remove the need to open remote files in the client, thus bringing the startup time close to
zero. This is implemented via creating the task in two steps, one on the client side and
the other on a distributed worker.

3.5.2 Fast task generation on the client side

The generic idea of the algorithm is as follows. On the client side, the only information
that is readily available – because it is provided by the user – is some specification of
the input dataset, namely the list of files to process. This list is split into a series of tasks
with length equal to the number of chunks specified by the user. On the local machine,
no file is opened. Instead, splitting the input files into tasks is done by considering
each file as an entity that can be divided according to percentages. For example, an
application that processes two files in two tasks would have one task processing 100%
of the first file and the other task processing 100% of the other file. The granularity can
go even further: a task can be assigned with a range of percentage of a single file (e.g.
[33, 66)). This is done because such a generic task will then be sent to some distributed
worker which will need to convert these percentages into actual cluster boundaries.
The difference now is that files are only opened on the computing nodes that need to
process them. This step of the algorithm thus treats all input files as having the same
size (since they are all treated in terms of percentages of their content). Although this
is not always true, some considerations can be made about it. An example that could
lead to unbalanced load in the tasks would be if the dataset was made of two files, one
with a very large size (and number of clusters), the other with a much smaller size. In
case only two chunks were requested, then one task would process more data than the
other. But, in practice, different files that form datasets of HEP experiments usually
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have similar sizes and number of clusters. Furthermore, since a single dataset may be
composed of thousands of files as mentioned above, the possibility of creating smaller
tasks is mitigated.

1 def create_generic_tasks(filenames, n_partitions):

2 all_files = compute_files_in_tasks()

3 percs_f, percs_l = compute_percentages()

4 res = []

5 for files, perc_f, perc_l in zip(

6 all_files, percs_f, percs_l):

7 res.append((files, perc_f, perc_l))

8 return res

LISTING 2: Approximate implementation of the creation of tasks on the
client side.

Listing 2 shows more details about the client side. In particular:

• Line 1: the function expects in input only the list of files that must be processed
(i.e. the dataset) and a number of partitions in which they should be split.

• Line 2: gather a list of the files that should be processed in each task. This involves
a few extra steps which are omitted from the listing:

– First, the function creates a list of percentages according to how many parti-
tions are required. For example, 5 files and 3 partition would give a list such
as [0, 1.66, 3.33, 5].

– Then it retrieves the corresponding list of file boundaries as integers: [0, 1,

3, 5].

– Then it computes the difference element by element, to get the correspond-
ing portion of the file for each percentage of the first list: [0, 0.66, 0.33,

0].

– From the list of file boundaries, the begin and end index (end exclusive) of
the files in each task can be computed. Using this information, the all_files
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variable is a list where each element is another list containing the files that a
task should process (a subset of the list of files in input to the function).

• Line 3: gather two lists with the percentages of the first and last files, respectively,
in each task where the processing should begin or end. Using the same example
as above, percs_f is [0, 0.66, 0.33] and percs_l is [0.66, 0.33, 1]. Taking
the first task for example, it will read files 0 and 1, file 0 will be read starting from
percentage 0 (i.e. from its beginning) and file 1 will be read until percentage 0.66
(i.e. 66% of the entries in that file).

• Lines 4-7: construct the list of tasks by storing together the file indexes, the per-
centage of the first file and the percentage of the last file in a single object (i.e. the
payload) for each task.

At the end of this function, each created task contains: a list of files (subset of the list
of total files of the dataset), the percentage from which the task should start processing
the first file, and the percentage until which the task should start processing the last file.
Files in between the first and the last will be fully processed.

3.5.3 Remote-side conversion of the task

The payload obtained from the function described in the previous section will be
sent to a remote worker. There, the approximate task needs to be concretised, i.e. the
percentages need to be converted to actual entry numbers in the files. It must be noted
again that this is deferred until the task is processed on the remote workers to avoid
opening the files on the client side (a costly operation). Listing 3 shows an approximate
implementation of this conversion from the payload task to an actual task. In particular:

• Lines 2-5: gather information from the payload. These are shown here to help
readability, as they will be used in later parts of the function. first_file_idx

and last_file_idx represent the index of the first and last file that should be pro-
cessed from the list of files received in the payload. perc_f and perc_l represent
the percentages of the first and last file obtained from the function in Listing 2.
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1 def convert_task(task):

2 first_file_idx = 0

3 last_file_idx = len(files) - 1

4 perc_f = task.perc_f

5 perc_l = task.perc_l

6 clusters, entries = get_clusters_entries(task.files)

7 begin_entry_f = get_begin_entry(

8 perc_f, entries[first_file_idx], clusters[first_file_idx]

9 )

10 end_entry_l = get_end_entry(

11 perc_l, entries[last_file_idx], clusters[last_file_idx]

12 )

13 return task.files, begin_entry_f, end_entry_l

LISTING 3: Approximate implementation of the conversion of a generic
task into an actual task in a distributed worker.

• Line 6: retrieve, for each file in the payload, a list of the entry clusters and the
total number of entries in the file. Since the entry cluster is the minimum amount
of entries that can be read independently from the rest of the file, it is crucial
that concrete tasks are aligned with respect to cluster boundaries, so that I/O is
minimised.

• Lines 7-9: convert the percentage of the first file from the payload to a real begin-
ning entry of the first file. This is computed in the following steps:

– The percentage is multiplied by the number of entries in the file, to get a
candidate beginning entry.

– This candidate is compared against the list of cluster boundaries for that file.
The clusters are considered as bins and the corresponding cluster index is
computed for the candidate entry.

– The beginning entry of that cluster is taken as the beginning entry for the
task.



Chapter 3. Design of a programming model for distributed analysis in HEP 52

– The algorithm establishes whether a generic task should actually process a
cluster or not based on whether the candidate entry coincides with the be-
ginning entry of the cluster. For example, suppose a cluster spans entries
from 10 (inclusive) to 20 (exclusive). If the candidate entry is equal to 10, the
task will start processing from that cluster, otherwise not. This ensures that
only one task takes that particular cluster of entries, so that there cannot be
two tasks processing the same entries.

• Lines 10-12: convert the percentage of the last file from the payload to a real end-
ing entry of the last file. This follows the same algorithm as in the previous item.

• Line 13: return the concrete task. This includes the list of files received in the
payload, the beginning entry where the task should start processing the first file,
the ending entry where the task should stop processing the last file. These entries
are aligned with respect to cluster boundaries. Files in between the first and the
last are processed fully.

3.6 Efficient execution of C++ code in Python processes

The details given so far already show the core ingredient needed to enable the new
backend. But another important part of this work is taking care that parallelisation
of RDataFrame computations is properly handled by Dask on the computing nodes.
At the node level, the parallelisation is done through Python multiprocessing. Each
process is a separate Dask worker that will receive one or more tasks to run. Inside
each Python process, Dask will spawn multiple Python threads. The main thread is
responsible for running the user-provided function, which in the context of distributed
RDataFrame is a mapper (or reducer) task. Other threads involve Dask internal mech-
anisms such as inter-task and inter-node communication.

A distributed RDataFrame application is written in Python and also the functions
that are serialised and sent to the Dask workers are in Python. But when a worker
is executing a task and calls into the RDataFrame API, it is going to run C++ code
because the actual implementation of RDataFrame is in C++. This is made possible
thanks to the dynamic Python bindings available in ROOT, named PyROOT, which
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can load a C++ library at runtime and call into it right away, thanks to the ROOT C++
interpreter. Thanks to PyROOT, there is no need to generate or send static Python-C++
bindings to the computing nodes, Dask will see only the Python layer of the tool and
the implementation of distributed RDataFrame will transparently and automatically
call functions implemented in C++.

Since Python is constrained by the Global Interpreter Lock (GIL), the different
Python threads actually need to wait on each other before doing their job. Crucially,
the main thread that is running the computations should never acquire the GIL for
too long to avoid blocking resources for the others. Instead, by default, the thread
that runs the task code through PyROOT holds the GIL and does not release it when
calling into C++ functions. Thus, the threads that are responsible for communication
starve, leading to major slowdowns and timeouts when running the tasks on the Dask
workers.

In order to overcome this issue, this work changes the implementation of the dis-
tributed RDataFrame Python package to ensure that the Python GIL is released when
calling into C++ RDataFrame code to run a task. This is done by exploiting a feature
of the Python bindings in ROOT, that is the possibility to unlock the GIL for the du-
ration of a specific function. This is done at the beginning of the mapper function in
each task, before executing the computation graph. From the point of view of a Python
process running in one of the computing nodes, all Dask mechanisms can now work
freely while the C++ computations are running. Communication between different
Dask workers or with the Dask scheduler is ensured and the main Python thread does
not block them anymore, thus bringing a tangible performance increase. Without this
change, the Dask backend would just not be convenient for users and would not be
competitive with the already existing Spark backend.

3.7 Distributable representation of the computation graph

It is quite common in production HEP analyses to have very large computation graphs
made of thousands of different calls to the RDataFrame API. In the distributed version,
the computation graph needs to be sent as part of the information for the mapper func-
tion as briefly stated in Section 3.3. Thus, this opens the question of what is the best
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representation of the graph that can at the same time hold a large number of nodes and
be serialisable so that it can be packaged in a task and sent to the remote workers.

Let us start this discussion by saying that the computation graph connected to a
single RDataFrame object can be represented with a tree structure. The root node of the
tree is the RDataFrame object itself. All the calls to the API will branch out from that
object and each node may have any number of children. The tree can have arbitrary
depth, depending on how the user application is organised.

A first implementation would have every node of the graph store references to all
its children, then the graph would be recreated in each task with a top-down approach.
This approach had two downsides: it included unnecessary overhead in the serialisa-
tion step since every node had to also serialise its children recursively; no more than
one thousand nodes could be present in the graph, due to the default Python recursion
limit.

The current, more mature implementation overcomes the aforementioned issues by
representing the graph as a flat tree, completely avoiding recursion. Every node is as-
signed an integer identifier at creation. The computation graph sent to a task will be
a Python dictionary, where each key is the integer identifier and the value its corre-
sponding node. Inside the mapper, the dictionary is iterated and every RDataFrame
operation is called on the correct node thanks to a mechanism that associates the node
to its parent via their identifiers.

With the current implementation, there is practically no limit to how large a com-
putation graph can be when writing a distributed RDataFrame application. The flat
representation also removes the overhead of the recursive one, so that the creation of
the tasks on the client side is even faster.

3.8 Passing partial results between different processes

While running the MapReduce workflow, the most probable scenario is that different
mapper tasks will run in different Python processes, the same applies for the reducer
tasks. Thus, proper communication of the outputs of these functions between different
processes must be ensured. In turn, this means that the results must be serialisable.
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The return types of actions in the RDataFrame API are actually not properly seri-
alisable due to some details of their C++ implementation. These types are fairly com-
plex since they need to cooperate with the rest of the RDataFrame computation graph
machinery. But in practice, there are only two ingredients required to address the de-
scribed issue: storing the result obtained by running an action and knowing how to
merge two results coming from the same type of action. To this end, a new set of C++
classes was developed.

FIGURE 3.2: Simplified inheritance tree for the classes responsible to
store results of distributed execution and defining how to merge them.

Figure 3.2 depicts a simplified inheritance tree of these new classes. It shows a
base class, named RMergeableValue, which stores in its attribute value the result of
running the action. The class is templated on the type of the result. It also defines
a method Merge, that derived classes must implement to perform the merging steps
between their results. For example, merging two instances of RMergeableCount is sim-
ply done by adding their respective values, merging RMergeableMean objects requires
knowing both the mean and the count of each one involved, other types of actions may
need more complex merging functions. The image only shows a few examples of the
derived classes, but there is almost a different class for any operation supported in dis-
tributed mode. This class hierarchy allows efficiently communicating results between
different processes, leveraging the serialisation/deserialisation machinery already in
place within the distributed execution engines.
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3.9 Conclusions

This section introduced distributed RDataFrame, an extension to the RDataFrame data
analysis interface in ROOT. It is one of the main contributions of this thesis that targets
the first objective outlined in the list of Section 1.7 and provides a foundational tool to
address the other points of the list.

The extension is a Python package that wraps the operations requested by the user
in a serialisable computation graph and automatically splits the input dataset in logical
chunks. It implements a MapReduce pattern that is executed via a distributed engine,
where each mapper applies the RDataFrame computation graph to a different chunk of
the dataset and the reduction merges the partial results of the mappers two at a time
until only one final set of results is obtained and sent back to the user application.

The package is designed with modularity in mind and this is shown on two levels.
On the one hand, multiple execution engines can be fitted in this package by imple-
menting a backend that uses the correct API to launch the distributed tasks. In fact, two
backends are already integrated in the tool within the main ROOT repository, namely
Apache Spark and Dask. Examples of other backends developed for the research of this
thesis are shown in Chapter 6. On the other hand, different input data formats can be
used for distributed processing. Currently, the package supports the traditional TTree
I/O layer and in the future it will also support reading RNTuple data in the distributed
tasks (a first example of this is shown in the work presented in Section 5.5).

Many optimisations were brought to this tool over the research period of this PhD,
often based on input from the physicists and results of performance benchmarks. For
example, a task generation algorithm was implemented to avoid the need for opening
remote files on the local machine of the user, bringing the startup time close to zero.

This contribution thus provides a way for physicists to avoid the shortcomings of
traditional distributed computing workflows and make a step forward towards en-
abling future large-scale interactive data analysis use cases.
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Chapter 4

Efficient distribution of physics
computations

Chapter 3 has discussed how distributed RDataFrame can fulfill the first goal set in
Section 1.7 of allowing users to seamlessly distribute their analysis from one to many
nodes. But if this is put into the perspective of large-scale production workflows as
those described in Section 1.5, it becomes clear that the distribution of computations
should not only be possible, but also efficient and scalable. Modern workstations can
usually count on at least 8 or 16 physical cores, large server nodes that sometimes are
available within research groups feature CPUs with a few hundred cores. For the cases
when a single machine has enough computing power, the baseline RDataFrame im-
plementation can already offer full exploitation of the available resources with multi-
threading. Consequently, the target for distributed computations is coordinating tens
or hundreds of computing nodes with an aggregated core count in the thousands.

This chapter introduces a few performance studies, specifically targeting the second
requirement in the list of objectives of Section 1.7. In Section 4.3, the two backends for
distributed RDataFrame integrated in ROOT, namely Spark and Dask, are put to the
test on the same resources and the same analysis. The scaling achieved on many nodes
with both backends is satisfactory and comparable, as expected since the main driver
of the tool is the underlying C++ computation graph. In Section 4.4, a more concrete
analysis example is given, using distributed RDataFrame on HTCondor resources to
drive a full-scale application that involves the most complicated parts of the typical
analysis workflow.
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4.1 State of the art

Approaching distributed computing has some inherent challenges that are not present
when working on a single machine. One has to deal with the coordination of work be-
tween different nodes, status synchronisation, network I/O, data and work replication,
job failures, etc. Thus, specific software is needed to organise the different levels of the
workflow in a distributed cluster: resource management, task scheduling, communica-
tion with the user. Sometimes the same tool takes care of more than one aspect of the
overall process.

In HPC and scientific computing environments it is very common to manage the
computing resources via a batch job submission system. How these resources are
scheduled and used is then a responsibility of the final user or of some scheduling
library they may employ in their application. The batch system knows about the avail-
able hardware of the cluster, receives in input from users programs to execute and re-
quests for a certain amount of resources, then allocates and deallocates resources to
user applications based on a priority queue. As previously mentioned in Chapter 1,
HTCondor is the most widely used job queueing system in HEP and Slurm also sees
frequent adoption. Although their usage varies dramatically depending on factors such
as the field of research, level of expertise or the research group, some common patterns
can be highlighted as done in the introduction of this thesis and in a work by Erickson
et al. [93]. This approach often becomes elaborated and cumbersome for users, so it is
common to build layers on top of this queue systems to better organise and schedule
the work. For example, by employing master-worker concepts to schedule jobs and re-
trieve back their results [94]. This approach is quite generic and can be found in many
applications, such as in an effort by Zheng et al. [95] to standardise the usage of the
batch queues across different institutions for crop yield simulations [95]. Similarly, one
can find examples of workload abstraction for HTCondor in HEP as well. Collabo-
rations such as CMS and ATLAS use higher-level concepts such as pilot jobs to steer
the work of batch pools across their sites world-wide [96, 97]. Sometimes these tools
go even further and provide programmatic interfaces to help users in organising all
the files needed for an analysis, as is the case with the ATLAS PanDA and the LHCb
GANGA systems [97, 98].
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While using job submission frameworks has always been common in scientific en-
vironments targeted at HPC, this was not the case for other fields in industry. Thanks
to the huge increases in data volumes derived from massive usage of internet technolo-
gies and extraction of information from many more sources than before (a phenomenon
collectively referred to as Big Data), large-scale distributed computing has become a
pressing matter for a large majority of companies. In response, quite a few software li-
braries have emerged that allow to define computation graphs and then automatically
parallelise the operations on distributed resources, usually through running a sched-
uler service that sends tasks to various executors.

One of the pioneering actors in this regard was Google with two whitepapers: one
in 2003 regarding the definition of a new way to store files in a distributed cluster called
Google File System [99] and another the following year describing a new paradigm to
process those files, called MapReduce [100]. The latter in particular was one of the
founding elements of the Apache Hadoop software ecosystem [59, 101] and is to this
day one of the most widely used distributed computing paradigms. One important
piece of software derived from Hadoop MapReduce is Apache Spark, an evolution
of the concept with in-memory processing and strong scalability [73]. In many use
cases it has become a de facto standard for distributed computations, from Extract-
Transform-Load (ETL) to Machine Learning workflows alike [102]. Examples include
multi-stage deep learning approaches [103], generic feature selection frameworks [104],
streaming data analytics for IoT devices [105] and smart grid systems [106]. Usage
extends as well to academia, for example in a geoscience effort to compare different
storage systems with the objective of getting the best performance from a Spark-based
analysis framework [107].

Over the last decade, the Data Science community at large has increasingly favored
the usage of Python as the main programming language for data pipeline software
stacks. Thus, it most common to find Python APIs as a front-end of distributed exe-
cution engines, Apache Spark making no exception. At the same time, there was no
Python-only library for distributed computing. Around 2015, the Dask project was
started, giving the possibility to parallelise the existing Python data science software
packages in a familiar way for users [76]. Examples of using Dask to distribute com-
putations can be found in Earth and Climate sciences [108, 109]. Also in those fields
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datasets contain many years of data and can reach sizes of multiple TBs, with non-
trivial multidimensional schemas similar to what can be found in HEP. In one of the
cited works, data processing through Dask allows parallelising part of the data anal-
ysis workflow, the scalability results are shown up to 32 cores with a speedup value
of around 9 in the best cases [108]. The same community made an effort to develop
an ecosystem for distributed data analysis, recognising that previous approaches led to
fragmentation and unproductivity [110]. In another work, molecular dynamics simu-
lations were processed on a computing cluster using Dask as execution engine [111].
The split-apply-combine approach to distribute tasks shown in that work is similar to
the workflow of the distributed layer for ROOT that is discussed in this thesis, but ap-
plied to a different field with different user workflows in mind. The Dask library itself
provides a dataframe interface which can be directly used as an entry point for generic
data analysis [112].

Although many tools exist to address data analysis needs of industries and
academia, it should not be taken for granted that they can all work just as well in any
other field. Particularly, it has been shown that for the HEP data analysis requirements
a tailor-made tool like ROOT with its RDataFrame data analysis interface still has a
major advantage over other industry frameworks [113]. The HEP field is not new to
the investigation of large-scale distributed execution engines. The ROOT framework
itself offered the Parallel ROOT Facility (PROOF), a tool to automatically parallelise
HEP applications [114]. This provided a way to avoid all the manual submission work
required by traditional batch systems, but it could only work with ROOT services
that needed to be launched on the cluster resources (no other resource manager was
supported). In 2017 two similar works presented a distributed data analysis system
of the CMS experiment [15] data using Spark, but encountered limitations in having
to convert data from the standard HEP ROOT format to formats that Spark could
understand natively, incurring in major performance bottlenecks [115, 116]. A later
study overcame this issue, but did not achieve higher scaling when using available
CERN storage facilities [117]. An example of good scalability was provided by
researchers of the TOTEM experiment at CERN, with a first approach at distributing
a ROOT application over Spark resources in a cloud [118]. The presence of Spark in
the HEP community has become relevant enough that CERN has invested in specific
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infrastructure to support Spark analysis workflows [119].
No scalability test was presented with more than two thousand cores in the liter-

ature found for the HEP field. Also, while there are efforts to steer distributed com-
putations to computing clusters through large-scale engines, none of them combines
the possibility of using a user-friendly interface language like Python to actually dis-
tribute C++ computations. This thesis enables this kind of workflow through the dis-
tributed RDataFrame tool, which is able to natively distribute computations to Spark
or Dask clusters. The Dask backend in particular fulfills a very strong need to make use
of available HEP hardware resources which are tightly integrated with batch resource
managers.

4.2 Distributed backend implementation

The implementations of the backends for distributed RDataFrame usually differ in the
way the API of the respective distributed execution engine is used, but they all imple-
ment a MapReduce pattern to run the physics computations distributedly. Practically,
the RDataFrame machinery creates a list of logical dataset chunks, a mapper function
containing all the user-defined physics operations and a reducer function to automati-
cally merge the partial results. The goal is then for each backend to take these objects
and submit them to the computing cluster in the most efficient way. The next sections
will demonstrate how this is done with Spark and Dask, respectively.

4.2.1 Executing the computation graph with Spark

The main logic of the function that implements the MapReduce pattern for the Spark
backend can be seen in Listing 4. In particular:

• Line 4: the input list of chunks is passed to the parallelize method of the
SparkContext instance stored within the class object. This function creates a
Spark RDD.

• Line 6: the RDD supports the MapReduce process through the map and
treeReduce methods, which both accept a user-provided function that should
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1 def map_reduce_spark(

2 self, mapper, reducer, chunks):

3

4 spark_rdd = self.spark_context.parallelize(chunks, len(chunks))

5

6 return spark_rdd.map(mapper).treeReduce(reducer)

LISTING 4: Usage of the Spark API in the corresponding distributed
RDataFrame backend

be run in the corresponding stage of the distributed execution. The treeReduce

method differs from the reduce method in that it will run the reduction stage
on the computing nodes, rather than bringing back the partial results from the
mappers to the client node and reducing them locally.

Clearly, Apache Spark is built around the MapReduce pattern, so it is no surprise
that the two functions defined by the RDataFrame machinery can be passed as-is to the
engine API. The usage of the SparkContext and the RDD concepts, which are part of
the core Spark library and there since its inception, has the added benefit of ensuring
stability and minimal maintenance required.

4.2.2 Executing the computation graph with Dask

Similarly to the Spark backend, the Dask backend implementation must define a func-
tion that accepts the items described at the beginning of Section 4.2 and packages them
in a way that works with the facilities available in the Dask library.

Dask offers many interfaces for data analysis, but the most interesting for the pur-
poses of this work is called dask.delayed [120]. This is a Python decorator that effec-
tively allows to run custom workflows of any type, by wrapping the user provided
functions in objects that will delay the computations until actually requested by the ap-
plication. In particular, calling a function that was previously decorated with delayed

returns a Delayed object, i.e. a future, which will wait to start the computations until
the user calls its compute method. Both the mapper and reducer functions created in
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FIGURE 4.1: Visualisation of the Dask computation graph generated by
calling the delayed mapper and reducers in distributed RDataFrame.
The colours of the nodes represent their status: nodes that are waiting
for results from others are in grey; those that are currently processing a
task are in green; those that have completed their task but need to wait
for another task before sending their result to the next reducer keep the
result in memory and are shown in red; finally, the nodes that have com-
pleted their task and do not need to wait for others are shown in blue.

distributed RDataFrame are decorated with the delayed function, thus when they will
be called on any given data chunk, they will not be executed right away but they will
return a future. Dask delayed functions accept futures as input arguments, so that prac-
tically another computation graph is built at the Dask level: mappers return futures that
are passed as arguments to the reducers, which in turn produce other futures that are
passed as argument to following reducers. From the point of view of Dask, this is still a
MapReduce graph (like it is done in the Spark backend), with the reduce phase done in
a tree-like pattern. This is depicted in Figure 4.1. In the figure, each square represents
a node of the Dask computation graph. Looking at each vertical set of nodes, the first
one includes all mapper tasks, that is all the different applications of the RDataFrame
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computation graph to a separate range of entries of the original dataset. All other tasks
are reducing partial results of the mappers, two at a time until only the single, final
result is left to be sent to the user.

Implementing this pattern on the backend side is shown in Listing 5. This shows
the function that is responsible to take the computation graphs and the data chunks
from the framework and connect it to Dask. In particular:

• Lines 4, 5: calls to the delayed interface. This makes the execution of the mapper
and reducer functions deferrable. When they are called, they are registered in a
computation graph internal to Dask.

• Lines 7-9: creation of the tasks by calling the delayed mapper function on each
chunk of the dataset. This is represented by the first vertical line of nodes de-
scribed in Figure 4.1.

• Lines 11-13: implementation of the reduce phase. The first two elements of the
list of partial results are removed from the list and given to the reduce function;
the result of the reduction is then appended to the same list; this is repeated until
there is only one element in the list, meaning that all the partial results have been
merged into the final result.

• Line 15: trigger the start of the computations by the Dask scheduler, by calling
the compute method on the only remaining value of the described list.

4.2.3 Impact of the two execution engines on end user workflows

As stated in Section 3.4, one of the main design choices for distributed RDataFrame is
to make it modular so that it can plug in different execution backends. Thus, for the
final user, using the Spark backend or the Dask backend should make no difference
when running a distributed RDataFrame application. In fact, they write exactly the
same analysis code, with the only difference being in the setup of the connection to the
cluster.

The two engines also have many similarities. Notably, they both support express-
ing custom computations using the MapReduce paradigm (although Dask extends the
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1 def map_reduce_dask(

2 self, mapper, reducer, chunks):

3

4 dmapper = dask.delayed(mapper)

5 dreducer = dask.delayed(reducer)

6

7 futures = []

8 for chunk in chunks:

9 futures.append(dmapper(chunk))

10

11 while len(futures) > 1:

12 futures.append(dreducer(

13 futures.pop(0), futures.pop(0)))

14

15 return futures[0].compute()

LISTING 5: Implementation of the MapReduce pattern in the Dask dis-
tributed RDataFrame backend.

support to any arbitrary execution pattern). Furthermore, they will both present the
user with graphical dashboards showing real-time task execution and status of the
nodes [121, 122]. Nonetheless, the two execution engines have different approaches
which may result in nuanced differences regarding their usability.

One notable example is the cluster setup that is implicitly expected by the two differ-
ent engines. Factoring out the standalone setups (i.e. manually launching either Spark
or Dask services on various machines), Dask has the clear, crucial advantage of being
able to interface to submission systems that are ubiquitous in HEP computing infras-
tructures. This means that setting up a Spark cluster will require either manual user
intervention, or new facilities built ad-hoc for the purpose of interactive distributed
analysis. With enough user demand this may become worth its cost, as mentioned
in Section 4.1. But being able to use pre-existing computing resources with no added
engineering, logistic or maintenance cost is undoubtedly a valuable feature.
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This advantage is not only visible on the infrastructure side, but also on the end
user side. Not all HEP analysts have access to Spark clusters, so their only alternative,
if they would like to use the Spark functionalities, is to launch the services on the tradi-
tional distributed computing resources. This involves manually launching jobs on the
cluster, then launching the Spark services when the job is ready. Furthermore, although
this work and the distributed RDataFrame tool in general, are framed in the context of
Python-based analysis workflows, the Spark library depends on Java in order to work,
thus includes extra dependencies that need to be accounted for by the user. Dask on its
side is a pure Python library and thus feels more natural in the workflow of a Python
user. There is thus a larger overhead with choosing Spark over Dask for a user that
wants to start their analysis workflow for the first time, and it will be shown with more
details in Section 4.3.2.

4.3 Scaling distributed RDataFrame analysis to thousands of
cores

In this section, the performance of the two available backends for distributed RData-
Frame is tested on a computing cluster at CERN, running a physics analysis example
with different configurations. First, the analysis is run on a single node with varying
number of cores, in particular using only the Dask backend as a first baseline. The pro-
cessing throughput per core is compared against the processing throughput of running
the same analysis with RDataFrame in sequential execution. Later, the Dask backend is
compared against the Spark backend running the same analysis on a larger dataset. By
fixing the number of tasks executed by the two backends and the granularity of those
tasks, the aim was to compare their scalability and investigate whether they would
introduce any noticeable overhead with respect to each other.

The physics analysis used in this work processes data from events recorded by the
CMS experiment at CERN in 2012. The analysis extracts the di-muon mass spectrum
by computing the invariant mass of muon particles with opposite charge in the dataset.
The result of the analysis is a histogram of the mass spectrum, showing peaks highlight-
ing the presence of different particles in the physics events. This application is available
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through the CERN open data portal [123] and is also called “dimuon benchmark” from
now on.

The original application was implemented using RDataFrame to be executed on a
single machine. In this work, it was adapted to run with distributed RDataFrame. The
needed setup is minimal, similarly to Figure 3.1, leaving the calls to the RDataFrame
API completely unmodified.

In the two different test configurations mentioned above, the original dataset is
replicated in order to reach a higher size providing a more realistic computational
workload. In the first configuration that runs the application on one node only, the
dataset is replicated fifty times, whereas on the second configuration it is replicated
four thousand times. The final dataset sizes for both configurations are reported in
Table 4.1. Values in the table may present small rounding adjustments, the original
dataset contains exactly 61 540 413 entries and its size is 2 244 449 133 bytes.

Replicating a ROOT dataset can be easily done by providing multiple times the
path to a ROOT file to RDataFrame. Internally, the entries of the various files will be
chained together and RDataFrame will be able to process them as a single coherent
entity. This practice is valid for benchmarking purposes, since the physics events are
statistically independent. In a first round of tests, the dataset is made available locally
on each computing node, in order to factor out I/O performance from the results and
read directly from filesystem cache. Subsequently, the dataset will be read remotely
from its storage location at the CERN data center, providing a more concrete example
of what physicists may experience.

TABLE 4.1: Dataset sizes in the proposed experiments. First row: original
dataset. Second row: dataset used when testing the Dask backend on a
single node. Third row: dataset used when comparing the Dask backend

against the Spark backend on many nodes of the cluster.

Dataset # Files # Entries [K] Size [MB]

Original 1 61 540 2 224
1st configuration 50 3 077 020 111 222
2nd configuration 4 000 246 161 652 8 897 796
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4.3.1 Hardware setup

Resources from an HPC cluster at CERN are used for these tests. The computing nodes
have the following characteristics:

1. 2x AMD EPYC 7302 16-Core Processor (total of 32 physical cores, no hyper-
threading).

2. 512GB DDR4 3200Mhz memory.

3. Infiniband 100 Gbps network card.

4. Samsung PCI-e NVME SSD.

This cluster relies on the Slurm framework to manage hardware resources.

4.3.2 Methodology

In the following tests, the time to plot (as defined in Section 1.6) is measured in each
test between the beginning and the end of the RDataFrame computations, irrespec-
tive of whether they are run locally or distributedly. The processing throughput of an
application is then computed by dividing the size of the data that is actually read and
processed in the benchmark by the corresponding time to plot. The considered analysis
processes all columns and all entries of the input dataset.

Single node test with Dask

The original application is run on one of the nodes of the computing cluster, to get a
first baseline measurement of the processing throughput on a single core. Then, it is
converted to run with Dask, using a single computing node and increasing the num-
ber of cores used in that node. Details of the connection to Dask are specified in the
next section. Furthermore, the number of chunks in which the dataset is split is also
increased. Namely, 1, 2 and 4 chunks per core are tested.



Chapter 4. Efficient distribution of physics computations 69

Tests comparing Dask and Spark backends

Before actually running the tests with Spark, the needed resources must be requested
to Slurm. When they are granted, the Spark scheduler and all the worker services on
the computing nodes are started with a bash script that was provided in the Slurm re-
quest. Only after the Spark cluster is available, the Python application with distributed
RDataFrame code is started. Thus, there is no direct way to start the Spark cluster by
connecting to the batch system in the user application. The extra code needed by the
Spark version of the benchmark is shown in Listing 6. In this case, the object that repre-
sents the connection to the cluster is called SparkContext. Its configuration options can
be defined in the SparkConf, as shown in lines 8-14 in the listing. In this case, they just
mirror the same resource configuration that was used to launch the services through
the bash script mentioned above.

A different approach is shown in Listing 7 with the Dask setup. In this case, the
object representing the connection to the cluster is a Dask Client. The cluster resources
can be programmatically defined in the application itself, creating a cluster object from
the types supported by Dask. In this work, the SLURMCluster class was chosen to con-
nect to the cluster. It allows to automatically submit request for resources to Slurm,
without the need to invoke a separate bash script, and shows the more user-friendly
approach that Dask enables. This enables a direct interface with the resource manager,
providing a different, more ergonomic approach for users with respect to what was de-
scribed for Spark. The relevant steps needed for this setup are highlighted in Listing 7:

• Lines 6-14: The class SLURMCluster expects the information needed to create a job,
which corresponds to the resources that it should request to the Slurm manager
for every node. These include: the number of cores; the number of Dask worker
processes, which is set to the amount of cores per node; the name of the Slurm
queue where the job should be submitted; a few extra options that make sure the
job will gain exclusive access to the node.

• Line 15: Calling the scale method on the created object will launch as many
jobs as the number provided as argument. For these benchmarks, each job adds
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1 from pyspark import SparkConf

2 from pyspark import SparkContext

3 def main_spark(

4 master, n_nodes, cores_per_node, dataset):

5

6 total_cores = n_nodes * cores_per_node

7

8 sconf = SparkConf().setAll([

9 ("spark.master", f"spark://{master}:7077"),

10 ("spark.executor.instances", n_nodes),

11 ("spark.executor.cores", cores_per_node),

12 ("spark.cores.max", total_cores),

13 ])

14

15 scontext = SparkContext(conf=sconf)

16

17 run_analysis(scontext, dataset)

LISTING 6: Setup function of a Spark benchmark. The analysis receives
the created SparkContext object to distribute the application on the clus-

ter.

one more node to the reservation, and each node runs one (multiprocessed) Dask
worker.

• Line 18: Before starting the RDataFrame analysis, the Dask client waits for all
the Slurm jobs to be started and their corresponding Dask workers to be ready.
This is done to have consistent time to plot measurements for the purposes of the
benchmarks. In a real scenario, the application would start as soon as at least one
job is ready, in order to minimise the waiting time for the user.

The benchmarks are executed both with the Dask backend and the Spark backend
of distributed RDataFrame. Each benchmark is repeated ten times, using from one
to 64 computing nodes to distribute the computations. 32 distinct processes are run
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1 from dask.distributed import Client

2 from dask_jobqueue import SLURMCluster

3 def main_dask(

4 n_nodes, cores_per_node, dataset):

5

6 cluster = SLURMCluster(

7 cores=cores_per_node,

8 processes=cores_per_node,

9 queue=QUEUENAME,

10 job_extra_directives=[

11 "--exclusive",

12 "--ntasks-per-node=1"

13 ]

14 )

15 cluster.scale(n_nodes)

16

17 dask_client = Client(cluster)

18 dask_client.wait_for_workers(n_nodes)

19

20 run_analysis(dask_client, dataset)

LISTING 7: Setup function of a Dask benchmark. The analysis receives
the created Client object to distribute the application on the cluster.

concurrently on each node (one process per core). In Spark, this is handled through
a Java Virtual Machine (JVM) which in turn spawns Python processes, whereas Dask
spawns a different Python process for each core. For each test, the number of chunks in
which the dataset is split is four times the number of cores used for that particular test.
Source code of the tests discussed in this section is publicly available on GitHub [124].



Chapter 4. Efficient distribution of physics computations 72

4.3.3 Results

The results of the tests done on one computing node are shown in Figure 4.2. The lines
in the figure refer to benchmarks of distributed RDataFrame with the Dask backend,
using a variable number of cores of the node and also an increasing number of tasks
per core. Each task processes a separate partition of the original dataset. The figures
also report the result of the original application, which uses the traditional RDataFrame
version processing the dataset sequentially.

(A) (B)

FIGURE 4.2: Processing throughput achieved on a single computing
node, with increasing number of cores and tasks per core. Each task
processes a separate partition of the original dataset. In each plot, three
lines indicate the results of increasing the number of cores used in the
benchmark. Each line corresponds to a different number of partitions
per core. The result of running the original analysis sequentially is also
indicated at the 1 core data point of the x axis. (a): Processing through-
put expressed in Megabytes per second. (b): Processing throughput nor-

malised by the number of cores.

In Figure 4.2a, the processing throughput is reported in terms of Megabytes of data
processed per second. Generally, changing the number of partitions per core doesn’t
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affect the overall throughput of the benchmark, with the same number of cores. This
is a positive result because it means that the Dask backend is able to handle the tested
task granularities with no noticeable overhead, even if more tasks naturally ivolve more
runtime. For the granularities tested in this case, the backend is able to properly balance
the load.

In Figure 4.2b, the throughput shown in the previous figure is normalised by the
number of cores used in each benchmark run. Overall, the highest throughput per core
is achieved by the benchmark running the original analysis with RDataFrame sequen-
tially. This can be explained easily since there is no overhead in initialising the Dask
runtime and no extra communication and serialisation of data between scheduler and
worker processes, so it runs slightly faster. It should be noted that the benchmark us-
ing the Dask backend and running with one core and one partition has a slightly higher
throughput than the benchmarks using one core and two or four partitions. Since there
is only one processing core, it can be expected that having more than one task brings
some overhead.

When more cores are used and there is more than one task per core, different tasks
can be sent to those cores that are free. Potentially, this can be very beneficial when the
dataset is imbalanced (different files having very different number of entries) or when
it is read remotely and network I/O becomes an issue.

Varying the number of partitions per core leads to the same throughput when con-
sidering the same amount of cores. The throughput per core shows an almost flat line
with respect to the number of cores. The lowest point is reached when all 32 cores of
the node are used at the same time. Since the node is being fully utilised, the processing
tasks are influenced by other processes happening like I/O, Dask internal communica-
tion threads. Nonetheless, the drop in normalised throughput between using one core
and 32 cores is around 10%, while achieving a 28 times higher nominal throughput.

Figure 4.3 shows the results of running the tests on multiple computing nodes, com-
paring the Spark and Dask backends. On each node, 32 concurrent processes are run.
In the figure, the left column shows the time to plot of the first run of the benchmark
at each node count, whereas the right column shows the average time to plot of the
following runs at each node count (error bars are not visible because they are too small
with respect to the scale of the y axis). The figure presents three distinct rows which,
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(A) (B)

(C) (D)

(E) (F)

FIGURE 4.3: Benchmark results with Dask or Spark backend on multi-
ple nodes (32 processes per node). Left column: first run of the bench-
mark. Right column: average of consecutive runs. First row: total run-
time of the benchmark. Second row: processing throughput. Third row:

speedup relative to the result obtained with one node.
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from top to bottom, show the following metrics: time to plot (in minutes); processing
throughput (in Gigabytes per second); speedup with respect to the result on one node.
The time to plot experienced by the user continuously decreases with the increased
number of nodes, from slightly less than 90 minutes to less than 2 minutes. As far as
the time to plot is concerned, there is no appreciable overhead in the first run of the
benchmark with respect to following runs. The overhead of the first run can be ap-
preciated when considering the processing throughput results. The peak processing
throughput achieved in the first run is 87 GB/s, whereas in following runs a peak of
102 GB/s is reached when using the Spark backend. The Dask backend can still achieve
a very high throughput, although slightly lower than the Spark backend. The speedup
in the first run shows a change of slope after the 16 nodes count and stays further away
from the linear line. Consecutive runs show a better trend for both backends, closer to
a linear behaviour with respect to the number of nodes used.

The results for the next configuration of this benchmark, reading data from remote
CERN storage facilities rather than locally on the nodes, are shown in Figure 4.4. In
this case, only the runs with the Dask backend are shown, so that the comparison with
Spark is not influenced by variability due to the remote I/O. In fact, this image shows
the distributions of the time to plot measurements with each different number of nodes.

4.3.4 Discussion

All these results show that the new Dask backend performs on par with the Spark
backend. In general, the distributed RDataFrame tool can parallelise well even when
thousands of computing cores are used.

It should be noted that, from the comparison of the time to plot measurements with
the processing throughput of Figures 4.3, the experience for the user does not change
significantly between the first run and consecutive runs. The highest difference in time
to plot is present when using only one node and it is just less than two minutes with
respect to an overall runtime of almost ninety minutes. The overhead present in the first
run becomes more evident only when discussing the throughput and trying to lower it
becomes important in the effort to best utilise cluster resources.
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FIGURE 4.4: Time to plot (in minutes) achieved with an increasing num-
ber of nodes. 32 concurrent processes are run on each node. Data pro-
cessed in the experiments are read remotely from the storage facilities at
CERN. A box plot of the distribution of results is shown for each point
on the x axis, ten runs per node count. The box spans from the first to the
third quartile. Inside the box, a dashed line represents the mean, a solid
line represents the median. “x” marks at 1 and 64 nodes represent out-
liers, those points that are outside the range of the whiskers. This range
is defined as the distance between the first quartile and the third (also

called interquartile range) multiplied by 1.5.

The second row in Figure 4.3 clearly shows that the first run of the benchmark has
a lower throughput than consecutive runs. This is mainly due to the necessary startup
routines performed by ROOT and its C++ interpreter. Furthermore, when using RData-
Frame with the Python bindings, users still run their C++ functions by passing them as



Chapter 4. Efficient distribution of physics computations 77

Python strings to the RDataFrame API functions. These strings then need to be just-in-
time (JIT) compiled by the ROOT interpreter. This operation, also called JITting, incurs
in initialisation cost the first time it is done in a certain Python process and will cache
some information internally for later use. Notably, most of the functions, C++ template
instantiations, constant structures that belong to the computation graph. Since the ex-
ecution of the distributed application is done with multiprocessing on each computing
node, this means that the initialisation cost is incurred once per core used in the bench-
mark. Considering that in the interactive distributed data analysis use case several
application runs happen on the same resources, each with slightly different parameters
as needed by the user, this “cold run effect” is not a large bottleneck for the general user
workflow.

The benchmark runs following the first run, presented in the right column of
Figure 4.3, show a better throughput and speedup behaviour overall. Although the
throughput achieved in this case is very high at around 100 GB/s with both backends,
some non-idealities are still present and become more evident after the 32 nodes mark.
This is due to the fact that even though the interpreter has been already initialised
at this point, some JITting is still involved in each task. A clear improvement on
this side could be brought by creating and compiling the RDataFrame workflow in a
certain process when the first task starts, then caching it in memory and reusing it in
subsequent task happening in the same process.

The distributions in Figure 4.4 are much wider than in the previous cases, some-
times also showing outliers (as indicated by the “x” marks at 1 and 64 nodes). This
large variance could be helped by an even finer grained task distribution on the ap-
plication side, but it is also influenced by the status of the network and possibly the
implementation of the remote I/O. It is thus left for future studies directed at this spe-
cific issue.

Both in the first run and in consecutive runs, the amount of JITting is proportional
to the number of tasks. This also raises the question of finding a good balance in par-
allelising the processing of the input dataset. On the one hand, creating more tasks
means splitting the dataset in smaller chunks, thus leaving more room for the sched-
uler to assign work to the computing nodes, avoiding possible imbalances due to some
nodes being slightly slower than others or some parts of the dataset requiring higher
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computational load than others. On the other hand, creating more tasks leads to more
overhead in spawning them and recreating the computation graph on-the-fly.

The slopes of the speedup lines shown with both backends do not diverge greatly
from the linear behaviour shown for reference in the third row of Figure 4.3. Although
it might be possible in principle to reach this behaviour when using multiple nodes, the
non-idealities discussed in scaling the computation graph justify the missing perfor-
mance gains. It should be especially noted that the overhead discussed is per-task, not
per-core or per-node. This means that the more tasks, the more overhead on the whole
runtime of the distributed execution. This fact clashes with the intuition that splitting
the input dataset in more chunks should allow for a more fine-grained scheduling by
the execution engine, thus avoiding potential slowdowns due to some tasks or nodes
taking longer than others. In general, optimising dataset splitting is a non-trivial prob-
lem of distributed execution engines, with sparse literature suggesting different ways
to choose the splitting value. For example, the Spark documentation suggests setting it
to 2 or 3 times the amount of available CPUs in the cluster [125]. But other strategies
exist depending on the number of files and size of the input dataset and the available
resources [126] or even on the choice of the number of chunks being done statically
or dynamically [127]. The results discussed previously refer to benchmarks with four
tasks per computing core, which, for the purposes of this work, seems to strike a good
balance between making the load even on the nodes and avoiding too much overhead.

4.4 Example of full-scale distributed RDataFrame analysis on
HEP grid resources

Once the investigation on horizontal scaling axis of distributed RDataFrame execution
has been taken into account, it is interesting to focus on the axis of the computational
complexity of the analysis at hand. This section describes the main highlights of a col-
laboration with a research team affiliated with the CMS experiment at the LHC and the
Italian National Institute for Nuclear Physics (INFN). In this context, the distributed
RDataFrame tool was used for the first time to drive a real, production-level analysis
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of Run 2 CMS data on INFN computing resources using the Dask backend to lever-
age the existing HTCondor resource manager. The analysis was run on a prototype
analysis facility, an important topic within the R&D for the future computing model of
CMS analysis. For this work, my contributions included the developments of new fea-
tures for distributed RDataFrame that were not previously present (see Section 4.4.1),
together with the supervision of the performance benchmarks executed. The continu-
ous exchange of ideas and the constructive feedback loop in the software development
with the external research group, both with the infrastructure administrators and the
physicists programming the analysis, is a prime example of how the research done for
this thesis really fits within a dynamic community with practical problems to address.

4.4.1 New RDataFrame developments

This section reports the developments that were brought to the distributed RDataFrame
tool for the first time in the context of this work, in order to address some shortcomings
that were identified by the users in their first approach with distributed RDataFrame.

Systematic variations in distributed mode Introducing the systematic variations API
in the distributed mode leveraged the machinery developed for other types of actions
described in Section 3.8. In this case, the function VariationsFor of the RDataFrame
API is called, within the execution of a mapper, on the quantity for which the user
requested to compute systematic variations. The object returned from the mapper in
this case (an instance of type RMergeableVariations) will represent a collection of the
varied results for the corresponding action. The implementation of the Merge method
will just call the same method on all the stored results, both the nominal and the varied
ones. The user will be then presented with the collection obtained after all the merge
steps, following the usual distributed procedure of RDataFrame and not impacting the
user experience in any way.

Distributing multiple computation graphs concurrently The advantage of seam-
lessly distributing an RDataFrame computation graph removes many of the respon-
sibilities that were previously on users’ shoulders. Nonetheless, every time a result
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of an action is retrieved, it will launch the distributed execution of that particular
RDataFrame graph, blocking the application until the results are back. There are cases
where within the same analysis, more than one RDataFrame is needed to process
different sets of files with different operations, depending on the nature of the contents
of the different datasets. For such cases, whenever one distributed RDataFrame starts
processing, it blocks the others.

To overcome this, users are offered the possibility to submit multiple different com-
putations graph for distributed execution, concurrently within their application. This
can be done through the RunGraphs function, which is briefly described in Listing 8.

1 from concurrent.futures import ThreadPoolExecutor, wait

2

3 def RunGraphs(actions):

4 unique_graphs = {}

5 for action in actions:

6 unique_graphs[action.get_headnode()] = action

7

8 with ThreadPoolExecutor(max_workers=len(unique_graphs)) as executor:

9 futures = []

10 for graph in unique_graphs.values():

11 futures.append(executor.submit(execute_graph, graph))

12

13 wait(futures)

LISTING 8: Implementation of the submission of multiple computation
graphs concurrently.

In the listing, the following steps can be identified:

• Line 3: the function takes as input a list of actions that the user may provide.
The actions may belong to different RDataFrame graphs and can be of any type.
For example, a user may ask to submit a Count action to count entries of a cer-
tain dataset and a Histo1D action to create a histogram of a column from another
different dataset.
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• Lines 4-6: the list of actions is iterated to retrieve the corresponding head node.
The head node becomes the key of a dictionary and the action its correspond-
ing value. Using the head nodes as keys guarantees that only unique, different
computation graphs will be stored in the dictionary.

• Lines 8-11: the unique computation graphs are submitted for distributed execu-
tion. On the client side, a Python thread pool is created with as many threads as
unique computation graphs. Every graph is submitted to a different thread of the
pool. The operation of sending the trigger to the respective backend (Spark, Dask
or others) is non-blocking and not computationally intensive, so using Python
threads is a safe choice in this case.

• Line 13: the different executions are waited, so that the user will get all the results
once they are ready.

Dealing with empty files in the processing pipeline The analysis step is one of the
last parts in a long chain of operations involved in the HEP data processing pipeline.
Very often, physicists that approach the analysis of a dataset get the input files from
some central database centrally managed by their experiment. These files may in turn
be the result of some preliminary manipulation of the larger data formats. Thus, the
amount of data and the number of entries in each file is not always known a priori
by the final users (and it is not something they should need to know anyway). Still,
this introduces a particular element of uncertainty in the distributed execution. It may
in fact happen that, when a task running in some computing node opens a file, the
dataset inside that particular file is actually empty. This may be the result of a very
strict selection step which took place before the user started their analysis and some
files were completely emptied by this procedure.

The issue to address then is how to construct the logic of each task in distributed
RDataFrame such that it is resilient to this type of files, which are valid since they are
physically present in some storage facility but still useless for the purposes of the analy-
sis since they do not contain any entry. This is addressed on two sides: when retrieving
the chunk of the dataset to be processed on the task and during the execution of the
mapper and reducer functions. The algorithm of conversion from an approximate task
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to a concrete task shown in Listing 3 now also keeps track of the accumulated number
of entries that the task would process from all files assigned to it. When the algorithm
would create a task with no entries to process at all, it instead returns a null value.
A mapper that receives such empty value knows that it should transmit it as-is with-
out running the computation graph. The reducer is then implemented such that if it
receives a null value, it will not try to merge it with the other input result but it will
return the non-empty input directly, or will just return another null value if both inputs
are null.

This change turns what would have been previously a nuisance in the user work-
flow, the fact of tracking which files are effectively empty and removing them from the
input list of files, into a completely transparent procedure.

4.4.2 Experiments

This effort targeted the analysis of two same-sign W bosons decaying into an
hadronically-decaying τ lepton and a light lepton (µ or e), an example of the phe-
nomenon called Vector Boson Scattering (VBS) [128]. Being an analysis already run in
production by CMS physicists, this takes two main steps to process, which include the
elements introduced in Section 1.4:

• Preselection: in this first step, all the information regarding the particles involved
in the analysis is filtered with loose selection requirements. The operations in-
volved in this part mainly relate to defining new quantities that will be used in
the next stage of the analysis. The output of this stage is a new dataset containing
only the events that passed the selection, with a set of columns made of a subset
of the original columns together with the newly defined columns.

• Postselection: the analysis then proceeds by reading the output from the previ-
ous step and running the full set of complex operations needed. These notably
include systematic variations that are applied to many of the quantities relative
to the particles involved in the decay. The output of the postselection is a series
of histograms, that can be both visualised and further processed in a separate
statistical analysis workflow.
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Roughly around 1 Terabyte of simulated data was created per each year of the LHC
Run 2. The benchmarks performed in this work process a dataset with the following
characteristics:

• Size: 1.1 Terabyte, corresponding to a simulation campaign relative to the year
2017.

• Number of events: around seven hundred million.

• Number of files: 1274.

Methodology

The software implementation of this analysis currently used in production will be also
referred to as the “legacy” approach from now on. For the preselection step, it makes
use solely of the nanoAOD-tools Python package. The postselection step is instead
composed of a mix of nanoAOD-tools utility functions and a series of ad hoc Python
scripts using PyROOT to define the physics quantities and plot the final results. Both
steps are parallelised by manually submitting HTCondor jobs that take different parts
of the total dataset as input. Also the logical splitting of the dataset is done manually,
taking one file as input per each job. The postselection stage also includes procedures
to merge the outputs from the different jobs.

The re-implementation of the analysis developed in this work makes instead full
use of distributed RDataFrame for both the preselection and the postselection steps.
Some Python utility functions previously used in the legacy approach were converted
to C++ functions that could be easily distributed and declared to the various tasks on
the distributed nodes running the RDataFrame C++ process. Porting the analysis to
distributed RDataFrame also meant that the physicists were able to connect to the HT-
Condor resources ergonomically via a UI as explained in Section 4.4.2. Splitting the
input dataset and merging the results from the jobs is automatically taken care of by
the tool, without user intervention.
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Hardware setup

The benchmark setup is part of the distributed analysis facility deployed by INFN over
its CMS Tier 2 grid sites. To allow for a fair comparison all the tests were performed
on the same hardware at the same site at Legnaro (IT). The federated facility uses HT-
Condor as overaly resource manager. Physicists would access the cluster via a Jupyter-
based web interface, where they could create an instance of a Dask cluster that would
automatically request resources to HTCondor under the hood. In particular, three com-
puting nodes were available with exclusive access for the purposes of the benchmarks,
each with the following characteristics:

• CPU: two Intel Xeon E5-2640 v3 @2.60 GHz, 8C/16T each.

• RAM: 128 GB.

• Storage: 1 TB spinning disk.

• Network: one ethernet controller Broadcom BCM5720, 1 Gb/s.

The input files for all the benchmarks are stored on different machines within the
same grid site, so they will be read remotely via the XRootD protocol at runtime. The
Dask cluster configuration is such that the scheduler will reserve 4 CPU cores for itself,
so that of the total 96 cores available on the three nodes, 92 will be actually processing
the analysis computations.

Results

The following results are relative to running only the preselection step of the physics
analysis, on the computing nodes just described. Currently, the full set of results is
being gathered in a separate document that will be submitted for approval to the CMS
collaboration, then for publication in a journal. This section presents only a few key
results related to the computing performance of RDataFrame.

The first interesting result to report is the overall runtime, for both the legacy ap-
proach and the new RDataFrame approach. The total runtime for an application run
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is computed in slightly different ways for both approaches. For the RDataFrame ap-
proach, it is simply measured as the time between starting the Python application and
its end. Thus, it includes all the time it takes to generate the distributed RDataFrame
computation graph and tasks locally, submitting them to the cluster, executing the map-
pers and the reducers and sending the results back to the user. This approach employs
three tasks per core available on the clsuter, for a total of 276 tasks. For the legacy ap-
proach, the users measure the starting time of the HTCondor job that starts first and the
ending time of the job that ends last, then take their difference as the total runtime. This
time does not include any part of the user application running locally before submitting
the jobs and it does not include the merging step. The latter is not strictly relevant in
this case, since the output of preselection step is saving the modified dataset from each
job in some remote paths and there are no results that actually need merging. This ap-
proach runs one job per file of the dataset, for a total of 1274 jobs. Table 4.2 reports that
RDataFrame obtains a tangible speedup, roughly eight times faster than the framework
currently in production.

TABLE 4.2: Runtime of the analysis for the two different approaches.

Benchmark Average [m] Error [m]

Legacy 182.0 1.0
Distributed RDataFrame 23.8 0.6

During the execution of the distributed analysis, each task is monitored at intervals
of one second to gather information about the resource usage on the nodes. In particu-
lar, Figure 4.5 shows the CPU usage in percentage for a single mapper task running the
preselection step of the analysis. It can be seen that for roughly the first two minutes of
execution, the CPU usage is consistently very high, above 90%. Afterwards, it begins
oscillating widely.

For the same task, Figure 4.6 shows the corresponding memory usage in Megabytes.
The increase in memory as the task continues is a sign of the clusters of entries being
read into memory and processed. The profile of the curve is flat for most of the runtime.

Finally, Figure 4.7 shows the I/O throughput in Megabytes per second obtained
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FIGURE 4.5: CPU usage (in percentage) while executing one mapper task
of the distributed RDataFrame analysis.

FIGURE 4.6: Memory usage (in Megabytes) while executing one mapper
task of the distributed RDataFrame analysis.

from the network card of the node that was running the same mapper task of the pre-
vious two figures. In the image, the runtime on the x axis corresponds to the same
runtime of the mapper. The throughput is instead relative to the whole computing



Chapter 4. Efficient distribution of physics computations 87

node. It can be seen that for roughly the first two minutes of execution, the network
I/O was oscillating, with peaks of around 60 MB/s. Afterwards, the node sustains an
almost continuous throughput of 120 MB/s until the end of the task.

FIGURE 4.7: Network read throughput (in Megabytes per second) sus-
tained by one computing node that was executing the distributed RDa-
taFrame analysis. The duration on the x axis corresponds to the same

runtime of the mapper task of Figures 4.5 and 4.6.

Discussion

The result shown in Table 4.2 demonstrates that distributed RDataFrame can provide a
tangible benefit for physics users even in production environments. While developing
this work, the INFN team put careful considerations into optimising the legacy analy-
sis to avoid certain old patterns that were providing sensible bottlenecks, for example
by removing unnecessary operations that were present in the legacy workflow. Even
with the optimised legacy approach, RDataFrame can still provide an order of mag-
nitude speedup. This is due to various factors, including for example the improved
dataset splitting and job scheduling and the more lightweight environment, compared
to nanoAOD-tools, that doesn’t need to download external Python modules at runtime.
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Furthermore, the images shown in the previous section suggest that the new ap-
proach with RDataFrame could deliver even better results. The wide variability in CPU
usage seen after two minutes of execution in Figure 4.5 until the end of the task corre-
sponds to the same time period where the node is sustaining a constant 120 MB/s in
throughput from the network shown in Figure 4.7. This value corresponds to the nom-
inal throughput of the network interface on the node, namely 1 Gb/s. This is due to
many more tasks being running at the same time as the one that is shown in the images.
Thus, the distributed RDataFrame execution is capable of saturating the I/O capabil-
ities of the node. This brings a concrete insight useful for future computing models,
that is analysis facilities should make sure to have at least a 10 Gb/s interface on each
computing node and the storage nodes should be able to serve the aggregated nominal
throughput of all the computing nodes at any given time. The memory usage shown
in Figure 4.6 is well under 1 GB, thus leaving enough memory for even more complex
analyses and other services of the analysis facility that may need to run in the back-
ground.

4.5 Conclusions

This section has demonstrated the scaling of distributed RDataFrame on many cores,
many nodes scenarios, both with opendata benchmarks and real, production-grade
analyses.

Initial tests were run on a single node of a computing cluster at CERN, to compare
the throughput obtained running sequentially against the throughput obtained using
multiple cores of the node. This was also normalised to the number of cores used in
each run, showing that the extra work in scheduling the tasks does not account for a
high drop in throughput. Also, it was demonstrated that the dataset can be split in
many partitions without significant loss in performance, opening the door to heavier
workloads involving remote I/O where the finer granularity may lead to improved
balancing.

The comparison between Dask and Spark running on up to 2048 cores showed very
high raw processing throughput values (more than 100 GB/s with the highest core
count) and good scaling, with non-idealities showing up after the 512 cores mark. Both



Chapter 4. Efficient distribution of physics computations 89

backends perform similarly, with Dask having a slight disadvantage when more than
1000 cores are used, which can be due to being a less mature framework than Spark
in the data science ecosystem. Overall, this shows the advantage of using a modular
approach in the design of the backend system, that allows users to run their analysis
with no changes on different types of infrastructure deployments expecting always a
consistent performance.

Running a full-scale Run 2 CMS analysis demonstrated similarly good performance.
The results shown in Section 4.4 bring a concrete benefit to users who port their exist-
ing analysis logic to the modern approach offered by distributed RDataFrame, with
speedup of at least an order of magnitude. The Dask backend was used to seamlessly
scale the physics analysis to a cluster of HTCondor resources, thus enabling new work-
flows that leverage existing infrastructure with no extra cost and a much smoother user
experience. That work could make use of a subset of all the nodes of the grid site, being
mostly an R&D effort, but the available hardware was fully saturated during the run-
time of the RDataFrame version of the analysis, so that it would be possible to see even
better performance runnning on more nodes or switching to better network interfaces.
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Chapter 5

Fine-grained caching of physics data

The use cases provided by HEP data analysis workflows involve large amounts of I/O
transactions, as described in Section 1.4. This characteristic, together with the fact that
the big physics datasets are usually stored far from the nodes responsible for their pro-
cessing, means any analysis can be bottlenecked by poor scheduling of reading opera-
tions or slow network connections. Sometimes, this limitation is mitigated by employ-
ing data management systems, that should be able to schedule analysis execution closer
to the location of the datasets, but they are not always available to final users.

One common strategy to address this type of situation is through caching. The topic
of caching is very broad and clearly it has been studied also within the context of LHC
experiments (see Section 5.1 for the literature review). This chapter will highlight two
studies that were carried out in this thesis. Initially, the current scenario was exam-
ined, evaluating existing tools and finding two different caching strategies detailed in
Section 5.3. A series of tests was run comparing these two strategies, as shown in Sec-
tion 5.4. Another study, detailed in Section 5.5, explores a different paradigm based on
object stores with bleeding-edge libraries that can potentially introduce new caching
systems for HEP.

5.1 State of the art

Early examples of large-scale data caching strategies originate from the needs provided
by the advent of the Internet: distributed systems with a high number of servers with
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requests coming from distant parts of the world needed some type of coordination to in-
crease access speed to web resources [129, 130]. With the increased usage of distributed
execution engines such as Spark, also the data analysis scenario faced the consequences
of reading and processing large datasets over multiple nodes. Spark itself offers utili-
ties to automatically cache the dataset while it is being processed at intermediate steps
of the analysis, on user’s request. Zhang et al. [131] have analysed the different caching
strategies offered by default in Spark (in-memory, on-disk and a mix of both), highlight-
ing the cost introduced by serialisation when caching on-disk. Another study by Jiang
et al. [132] addresses the extra cost involved in the unpredictable nature of shuffling
dataset chunks across nodes during the reduction phase. Very recently, Uta et al. [133]
have proposed to address the shortcomings of traditional Spark dataframes with an in-
dexed dataframe, an abstraction aimed at in-memory caching on the computing nodes
with indexing to support lookup of rows for processing.

Clearly, one crucial aspect of caching in distributed computing is the topic of data
locality. It would be most desirable that computations happened as close as possible to
where data is located, in order to reduce access latency. LHC collaborations such as AT-
LAS or CMS employ data management systems to keep track of the location of particle
physics datasets, so that the submissions to the grid may then use such databases and
directly schedule jobs on the sites where datasets are stored. The ATLAS data manage-
ment system is called Rucio [134], whereas CMS has developed and used PhEDEx [135]
in the last two decades, although it is being phased out in favor of Rucio. These data
management systems only track the presence of data on some sites, statically. But this
poses the question of how and especially why data is stored at a specific location. Sup-
posing that all sites could support a certain amount of storage, it would be beneficial
to have datasets already present when jobs arrive, possibly even according to usage
patterns. For this reason, the same two collaborations have investigated algorithms
and techniques to place data dynamically on different sites by for example identifying
popular datasets and creating replicas for them on multiple facilities when many users
want to access them. C3PO [136] was developed inside the Rucio data management
system, whereas Dynamo [137] targets the CMS use case.

The exploration of integrating the caching systems with the analysis layer is inter-
esting for the field, both because the analysis layer brings precise knowledge on which
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columns the user wants to process and because physicists are not always able to rely
on some centralised data management system. Similarly to the previously cited works
related to Spark, one can imagine that HEP data analysis interfaces are well suited to
understand the dataset the user would like to process and possibly act accordingly
in terms of caching for subsequent uses. After all, it is often the case that HEP an-
alysts start their workflow with an exploratory phase, inspecting the physics events
and deriving a first set of statistics, later repeating the analysis with different config-
urations. Furthermore, since datasets are often read remotely, it could be useful to
hook directly into the remote transactions and stage data as it is being read for fur-
ther processing. This is precisely the functionality offered by the caching mechanism
in XRootD. A block-based mechanism to cache files on disk can be automatically en-
abled, so that incoming XRootD requests are staged to disk while they are being served
to the client application. As a first step, this can be set independently on any machine
that should cache data [138]. Furthermore, it can also be used to coordinate multi-
ple caching nodes forming a federated system (a technology called XCache commonly
used in grid sites [139, 140]). Although this caching system is common enough in HEP
computing environments, not often can it be found used directly by the analysis frame-
work, whereas usually it is activated at the level of the grid site. Many efforts from
literature are focused on analysing access patterns of certain datasets and evaluating
different strategies to improve network and I/O usage [141, 142, 143].

Another dimension to take into account when discussing storage in the context
of HEP analysis is the architecture. Most often, storage layer and caching systems
assume a file-based approach, whereas it is not uncommon in HPC and other dis-
tributed computing scenarios to see object stores being used for distributed databases
and caches. Over the years, various object store implementations have spawned within
industry. Notable examples are provided by vendors such as Amazon with the S3 ser-
vice [144], Microsoft with the Azure Blob Storage [145] and Intel with the Distributed
Asynchronous Object Store (DAOS) [146].

There is literature comparing different technologies according to established bench-
mark suites [147, 148]. In some cases, current knowledge allows to extract the best
performance of a given object storage tool, through fine-tuning of user space parame-
ters [149]. This work does not attempt to modify or tune the storage backend; rather,
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it focuses on addressing analysis needs from the perspective of the data format and
the layer that implements I/O of the data format to various backends. There are other
examples of I/O libraries that have attempted an integration of their data format with
fast object stores, such as the HDF5 connector for Intel DAOS [150].

Regarding the execution of distributed workflows that exploit object stores, some
efforts can be found for industry products [151, 152, 153]. In the cited approaches, the
object store is used as scalable storage layer to host big datasets and the computing
nodes read data directly from the object store. Furthermore, it is shown that once the
object store semantics are leveraged properly, read-intensive analysis workflows can
get 3-6 times faster.

Regarding caching large input datasets, very rarely do other investigations high-
light the possible benefits that it could have in distributed computing scenarios. In
a work that compared different object store engines in geospatial data analysis work-
flows [107], a part of the benchmark presented the improvements in performance of
the different engines with caching. But only the filesystem cache was used in that case,
hence data and queries could be kept in the memory of the nodes and no separate
caching mechanism was implemented.

In the HEP context, object stores still do not see widespread usage, even in large
scale collaborations. Research studies from the early years of the LHC have tried in-
tegrating object stores in the grid through the Storage Resource Manager (SRM) inter-
face [154]. This interface allowed accessing and managing storage resources on the grid.
In a first effort, a plugin was developed to connect Amazon S3 resources to the grid stor-
age layer [155]. Later on, a tier 2 grid facility of the ATLAS LHC experiment [14] was
extended to use the Lustre filesystem [156], with benchmarks showing 8 GB/s of peak
read speed [157]; the effort described in this chapter of the thesis is able to achieve a
much higher throughput, as will be shown in Section 5.5.5. More recently, the focus
has migrated towards the evaluation of such storage solutions on concrete examples of
HEP software such as ROOT [158], where a physics dataset was used to evaluate data
access patterns over an S3 API, leading to aggregated throughput of a few Gigabytes
per second. An interesting example of investigation into data analysis needs can be
found in a work by Charbonneau et al. [159], where 8 TB of physics events are stored in
a Lustre cluster; this work reveals that although resource scaling helps achieve higher



Chapter 5. Fine-grained caching of physics data 94

throughput, remote data access while processing can become a burden for analysts. It
is clear from this few examples that the potential of object stores, especially newer ap-
proaches that rely on low-latency high-bandwidth systems like DAOS, has not been
extensively explored in this field. In fact, even very recent mentions of such systems
are still a topic of discussion in internal workshops at CERN [160, 161].

This caching mechanism is explored in the context of this thesis and evaluated
against traditional ROOT facilities for file-based caching in Section 5.4. This thesis in-
cludes a study of object stores for caching HEP data, detailed in Section 5.5.

5.2 Tools

5.2.1 XRootD

The XRootD framework is a C++-based suite targeting fast, low latency and scalable
data access. Generically it can serve any kind of data that can fit in a hierarchical
filesystem-like approach, abstracting away from the particular implementation of the
data format. The core functionalities are greatly extended by a rich plugin system. It is
widely used in High Energy Physics both for its remote I/O protocol and for the suite
of data access tools that allow to expose the presence of large physics datasets from the
storage facilities to other nodes of the Grid.

One of the most used plugins for XRootD is the Proxy Storage Service (PSS), which
implements caching functionalities that can be activated on top of the data access layer.
In its simplest form, the Proxy cache can be activated on a single node, which will be
able to cache files streamed via the XRootD protocol, in a block-based fashion. This
allows for partial caching, staging of the datasets and is independent from the partic-
ular data format. The caching system can be extended on multiple nodes to create a
federated set of proxies, usually called XCache in the field, that is commonly employed
in computing sites of the Grid.

ROOT natively supports reading/writing files from/to remote servers via the
XRootD protocol, thanks to a plugin of the TFile class. Whenever a user specifies a
path that contains the root:// prefix, that file will redirect all I/O transactions through
the XRootD API.
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5.2.2 TFilePrefetch

The ROOT TFilePrefetch class [162], as the name suggests, implements a prefetching
mechanism for TFile. It defines a readahead window that will request blocks of entries
which are consecutive with respect to the one being processed, making them already
available in memory once the application needs them. It spawns a thread that will
run the prefetching in parallel with respect to the main execution. The class can also
be used as a lightweight caching system, by providing a directory where the blocks
of entries are stored on disk on the fly. This feature is optional and can be activated
in any ROOT application by setting the appropriate environment variables, namely
TFile.AsyncPrefetching and Cache.Directory.

5.2.3 Intel DAOS

Intel DAOS [146] is a fault-tolerant distributed object store targeting high bandwidth,
low latency, and high I/O operations per second (IOPS). DAOS addresses traditional
POSIX I/O limitations on two fronts in order to optimise data access. On the one hand,
it bypasses kernel I/O scheduling strategies, e.g. coalescing and buffering, that are
mostly relevant for high-latency few-IOPS spinning disks. On the other hand, it avoids
using the virtual filesystem layer, since the strong consistency model enforced by POSIX
is known to be a limiting factor in the scalability of parallel filesystems (an example of
such limitations can be found in a work by Liu et al. [147]).

On a DAOS system, there are two different categories of nodes: servers and clients.
All data in DAOS is stored on the server nodes. There can be many servers running a
Linux daemon that exports local NVMe/SCM storage. This daemon listens on a man-
agement interface and several fabric endpoints for bulk data transfers. RDMA is used
where available, e.g. over InfiniBand [163] or OmniPath [164] fabrics, to copy data from
servers to clients. The client nodes are the ones responsible for running computations
defined by the users in their applications. A DAOS client node does not store any data
on itself, rather it requests the dataset from the servers when it is needed.

The storage is partitioned into pools and containers that can be referenced by means
of a Universally Unique IDentifier (UUID) [165]. Objects can be partially read or written
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into a container. Each of these objects is a key-value store that is accessed using a 128-bit
Object IDentifier (OID). Object data may additionally have redundancy or replication.

5.3 Caching strategies

In a physicist’s exploratory analysis workflow, it is common to rerun an application
multiple times on the same input data, with slightly modified code. This opens the
door to caching the dataset (or better yet the portion of it which is actually processed)
during the first run of the user application. This will speed up subsequent runs where
the computing nodes can read data from the cache rather than from the remote storage.
The caching mechanism should be as transparent as possible for the user, in the sense
that it should not modify their workflow or ask them to learn new tools. To this end,
it should happen during the first run and asynchronously with respect to the main
RDataFrame computation. Through the I/O libraries in ROOT, only the columns and
the clusters of entries that are actually processed in the computation graph will be read
from the remote storage. Thus, caching systems should try to leverage this behaviour
by storing a subset of the input data that is as close as possible to what RDataFrame
actually reads, preferably exactly the same amount.

A first milestone set for this part of the work in the thesis was to address already
existing tools and evaluate how they can interact with a distributed RDataFrame anal-
ysis. In addressing these technologies, two main caching strategies were found: using
dedicated cache servers that are close to the computing nodes, or storing the caches in
the computing nodes themselves. The following sections will describe them in more
detail.

5.3.1 Caching on a file server

When applying a caching technique, one aspect to keep in consideration is the physi-
cal destination of the cached files. For example, everything could be stored in a single
machine, acting as caching server for the computing nodes. This approach would still
require all the machines to be in the same network, preferably with a high-bandwidth
connection between them, in order to have some chance to be faster than reading the
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files from a remote storage facility. The technology that will be tested for this config-
uration is XRootD. In particular, its proxy storage plugin described in Section 5.2.1 fits
in the requirements described so far. In this work, a single machine of the cluster acts
as caching proxy, standing between the client application and the remote storage sys-
tem. When the client asks for one or more remote files, the request will be redirected
through the proxy and then to the final endpoint. Any file that is not already present
on the proxy will be downloaded and stored in a specified directory.

An initial investigation on the behaviour of the XRootD proxy highlighted that its
default configuration leads to suboptimal performance. In particular, these are the de-
fault behaviours that were modified for this work:

• Files downloaded to the proxy are prefetched in chunks. Practically, it is a staging
phase that takes place at the beginning of the user application, slowing it down
with no added benefit. Thus, this behaviour was disabled in the XRootD config-
uration on the server.

• Since the XRootD proxy streams data in blocks that are agnostic to the particular
data format used, some consideration must be put in the difference between the
cluster size of TTree and the size of the blocks downloaded by the proxy. With
too large block sizes, the practical difference on disk between the real size of the
TTree and the size of the cache may become non-negligible. For this reason, the
minimum blocksize was used (4 KB), so that the size of a cached dataset would
respect its true size as much as possible.

• By default, users would need to prepend the URL of the proxy server to the URL
of any file they want to read from some remote location. To remove this extra
burden, the proxy was configured such that its URL is automatically prepended
to any user-supplied URL. This makes the proxy completely transparent in the
user application.

In its final configuration, this mechanism runs as follows. During the first run,
computing nodes make a request to the XRootD proxy to read a particular fragment of
the input remote dataset. The proxy then fetches the requested portion remotely, caches
it internally then serves it to the node which has made the request. During subsequent
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runs, the request of a worker node is served directly from the local cache on the proxy.
This workflow is shown in Figure 5.1.

FIGURE 5.1: XRootD proxy cache. During user analysis, computing
nodes (labeled “Worker” in the image) make read requests for their as-
signed ranges of entries to the proxy server, which in turn forwards such
requests to the remote storage system. The proxy stores the requested
entries in its local filesystem and will be able to serve them directly to

the nodes during subsequent runs of the application.

5.3.2 Caching on the computing nodes

Another approach is to make each computing node store only its portion of processed
data on its local filesystem. A first important takeaway is that the computing-node-local
caches are exploited best if the distributed execution engine can guarantee data local-
ity. That is, it always submits tasks where their input data fragments were previously
cached. This aspect will be further explored in tests, discussed in Section 5.4.3.

The TFilePrefetch class of ROOT was used for this second strategy. This system
was activated on each computing node, caching only the necessary TTree columns and
entry clusters on the machine. The TFilePrefetch thread is only responsible for the I/O
of the blocks of entries and in general does not put extra strain on the CPU running the
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RDataFrame computations, especially in runs where the cache is already populated. A
schema of this strategy is given in Figure 5.2.

FIGURE 5.2: TFilePrefetch cache. During user analysis, computing nodes
(labeled “Worker” in the image) make read requests for their assigned
ranges of entries directly to the remote storage system. On each node,
TFilePrefetch intercepts the incoming blocks of entries and stores them
on the local filesystem. In subsequent runs, each node will be able to
read the same range of entries from the local disk instead of requesting

it again from remote.

5.4 Evaluation of existing technologies for caching during an
RDataFrame analysis

The tests developed focus on showcasing the transfer of data from the remote storage
system to the computing nodes or the caching server. A reference dataset has been
created: a single ROOT file with a TTree of 105 entries and ten TTree clusters (exactly
ten thousand entries per cluster). The dataset contains five columns of randomized
data. The tests always try to read one specific column of type double. The total file
size is 1.8 GB, while the column of interest is 700 MB. This file is uploaded to a CERN
storage facility, from which it will be readable through the XRootD protocol.
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5.4.1 Methodology

The RDataFrame computation graph is the same for all the tests: a very lightweight
function running on the selected column of the dataset. This is enough to trigger the
XRootD read requests from remote storage and observe the different effects depending
on the caching mechanism enabled. The baseline is defined by running this RData-
Frame application on a single machine, either with no cache or with one of the two
caching mechanisms enabled. The following test configurations distribute the applica-
tion to a set of nodes using the Spark backend of the distributed RDataFrame interface.
The source code of each test is available in a GitHub repository [166].

5.4.2 Hardware setup

The hardware setup is made of a physical machine plus a set of virtual machines. The
baseline of tests runs on the following machines:

• 1 physical node, CPU i7-6700 (4 physical cores, 8 logical), 256 GB SSD storage and
16 GB RAM. Serves as cache server in the tests with XRootD cache enabled.

• 1 virtual machine (VM) with 1 core, 10 GB spinning disk storage, 1024 MB RAM.
Runs the RDataFrame application.

The second test configuration reuses the same physical node, but extends the num-
ber of total VMs to 5 (each with specifications identical to those of the VM described
above) in order to form a Spark cluster. The virtual machines are created in the CERN
OpenStack Cloud [167], while the physical machine is located at CERN. Thus, all ma-
chines used in the tests are inside the CERN network.

5.4.3 Results

In this section two different test scenarios are presented. In the first scenario, the RDa-
taFrame application described in Section 5.4 is executed on the single node setup de-
scribed above. In the second scenario, the same application is distributed over the
Spark cluster described above. Each scenario in turn presents three tests: the baseline
test with caching disabled, one test with XRootD cache enabled on a server separate
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from the computing nodes and one test with TFilePrefetch cache enabled on the local
filesystem of the computing nodes. The results of the tests are presented in this section
and are discussed in Section 5.4.4.

Single node

In the single node scenario, the reference dataset is read from remote storage on the
computing VM node during runtime. Only the selected column of the dataset is cached.
If XRootD cache is enabled, data belonging to the selected column in the test will be
stored on the caching server. The size of the cached data depends on the XRootD block
size. For that reason its default value has been changed as explained in Section 5.3.1,
so that the cache will contain approximately the same volume of data of the selected
column.

If TFilePrefetch cache is enabled instead, data are stored directly in the local filesys-
tem of the VM. This mechanism caches exactly the TTree clusters that the application
requests. Subsequent runs will read data from the cache and not from remote storage.
Each test is run a thousand times to get a significant distribution of the execution times
of the application, since this value might vary especially when the cache is disabled.
Figure 5.3 shows the execution time results. For the cache enabled cases, only the runs
where the cache was already populated are considered (i.e. no cold cache runs are
shown).

In the same figure, it is possible to observe the significantly higher variability in
execution time of the application when reading data from remote storage rather than
from the caches (the standard deviation with caching disabled is respectively 13 times
higher than the standard deviation with XRootD cache and 10 times higher than the
standard deviation with TFilePrefetch cache). At the same time, the average execution
times with cache enabled are lower, respectively by 38% with XRootD and by 48% with
TFilePrefetch. See Table 5.1 for a summary of these results.

The time to populate the caches was measured as well. XRootD cache takes on
average 43 s with a standard deviation of 35 s, while TFilePrefetch takes on average
60 s with a standard deviation of 41 s.
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FIGURE 5.3: Single node scenario. Box plots of the distributions of execu-
tion times of one thousand test runs in three configurations: Caching dis-
abled, XRootD cache, TFilePrefetch cache. The empty circles represent
the median values of the distribution, the whiskers are drawn at 1.5 · IQR
(interquartile range) and the crosses outside the whisker boundaries rep-

resent distribution outliers.

Distributed cluster

In the second test configuration, all the VMs are included in the setup and it is pos-
sible to send tasks to the Spark cluster through the distributed RDataFrame interface.
The Spark setup is thus made of one VM acting as Spark driver (the node from where
the tests will be submitted), one acting as Spark master (the cluster coordinator and
application scheduler) and the other three nodes acting as the Spark executors.

Each test is repeated 100 consecutive times, in order to simulate an interactive sce-
nario where an exploratory user analysis is run once and then rerun subsequent times
on the same data after some parameter modification. Less test repetitions are per-
formed in this scenario, as the focus shifts towards evaluating the behaviour of the
caching (both when populating the cache and when reading it in subsequent runs) and
the variability of the distribution for runs after the first is less important.

The input dataset is transparently split in three logical partitions by the distributed
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TABLE 5.1: Statistics for one thousand test runs along three configura-
tions, with the single node setup.

mean [s] median [s] σ [s]

Caching disabled 33 24 28
XRootD cache 21 21 2
TFilePrefetch cache 17 18 3

RDataFrame module: it is sufficient to give an optional parameter npartitions to the
RDataFrame constructor. Each partition is sent together with the computation graph
to one of the three worker nodes as described in Section 3.3. Each task then reads and
processes data independently of the others. When the XRootD cache is enabled, the
data corresponding to the whole selected column of the dataset is stored on the caching
proxy server. With TFilePrefetch enabled instead, each task caches the logical portion
of the column on the node which is processing it.

The results of this configuration are shown in Figure 5.4. The first points of the lines
corresponding to tests with caching enabled show the run during which the caching
mechanisms are downloading and storing the processed portions of the dataset. In the
particular case shown in the figure, the run where the cache is being populated takes
roughly 10 times longer than subsequent runs with both caching mechanisms. High
spikes in the execution times of some of the runs with TFilePrefetch cache enabled are
striking. They opened another topic of investigation in this work that will be further
discussed in Section 5.4.4. This investigation led to modify the RDataFrame distributed
module with the aim of forcing the Spark backend to apply data locality, i.e. to map
tasks operating on the same logical range to the same node in subsequent runs. Fol-
lowing the points of the TFilePrefetch cache line show a higher execution time than the
respective points on the XRootD cache line. This was not expected but could be due to
some unpredictable strain on the host machines of the VMs.

Rerunning the same tests with the improvements of forcing data locality leads to
Figure 5.5. In this figure the cold cache runs are not shown, instead the focus is on the
subsequent runs with the cache already populated. The spikes previously observed
using TFilePrefetch cache are no longer present. Average execution times with the
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two caching mechanisms are similar and summarized in Table 5.2. On average, run-
ning with a cache mechanism enabled (either XRootD cache or TFilePrefetch cache) is
slightly more than 2 times faster than running without cache.

TABLE 5.2: Statistics for one hundred test runs along three configura-
tions, with the distributed setup and a locality-aware scheduler.

mean [s] median [s] σ [s]

Caching disabled 36 26 17
XRootD cache 15 15 0.6
TFilePrefetch cache 16 16 0.5

FIGURE 5.4: Distributed scenario. Lines represent the execution times
along one hundred consecutive runs for three configurations: Caching
disabled, XRootD cache, TFilePrefetch cache. The first point of the two
configurations with cache enabled correspond to a run where the caches

were being populated.
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FIGURE 5.5: Distributed scenario, with data locality aware scheduler.
Lines represent the execution times along one hundred consecutive runs
for three configurations: Caching disabled, XRootD cache, TFilePrefetch
cache. In the configurations with cache enabled, the caches were already

populated in every run.

5.4.4 Discussion

The results presented in Section 5.4.3 generally show that enabling caching during the
first run of the application makes subsequent runs faster. Further non trivial insights
can be retrieved from the different scenarios investigated.

All test runs with caching disabled show a strikingly high variability in the execu-
tion time distribution, with a very long tail. This is a sign of the high load that storage
systems at CERN have to sustain. This translates into unpredictable slowdowns in net-
work I/O even when reading from within the CERN network as was done in this setup.
This is already a strong point in favor of enabling caching for this kind of analysis, in
order to protect the user from high latencies or overhead in remote data access.

In the single node scenario, XRootD cache shows the execution time distribution
with the lowest standard deviation. In general this is not expected, but it is likely
that the storage performance of the VM is responsible for the larger distribution in
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the TFilePrefetch case. Nonetheless, TFilePrefetch shows the lowest average runtime,
which is expected in general since data is stored directly on the same machine where it
is processed.

The preliminary results of the distributed scenario shown in Figure 5.4 demonstrate
that data locality is of utmost importance when caching on the computing nodes. This
actually opens a new research question for this kind of effort: how to guarantee task
pinning to nodes in a distributed computing environment. When distributing an RDa-
taFrame application, the scheduler does not read the actual dataset and stream portions
of it to the various nodes. Instead what the Spark master receives is a list of logical
ranges of entries in the dataset and each element of that list corresponds to a task on
some node of the cluster. In this context, task pinning would be beneficial. That means
having the same logical range (i.e. a pair of integers) cached on the same worker node
for all runs of the application.

Spark for example offers a Cache function in its API, but that still doesn’t guarantee
that tasks will always be sent to the same executors in the cluster. It is rather a way
to signal the Spark scheduler that it is desirable to have that particular logical range
cached on the cluster. In this sense, data locality is guaranteed eventually rather than
at all times. It is possible though to have a stricter guarantee if some limits are set
on the analysis workflow, namely that the application only runs computations of one
single RDataFrame object and that the user does not exit the scope of their application
until the end of their exploratory work. This was fully implemented in the distributed
RDataFrame module for the purposes of this study, with no change in user code. Within
this configuration, the distributed RDataFrame tests with the Spark backend indeed
always pinned the same task to the same executor. This result is what Figure 5.5 shows,
with the TFilePrefetch line overlapping the XRootD one for runs with the cache already
populated.

5.5 Exploiting object store for HEP data analysis

The work described in the previous section focused on the traditional I/O system of-
fered via TTree. Compared with the newer RNTuple implementation, it lacks both in
terms of performance and flexibility in supporting different storage architectures [8,
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168]. Thus, investigating caching mechanisms directly within RNTuple becomes inter-
esting in the context of future HEP data pipelines. This section will describe the ideas,
implementation and evaluation of caching RNTuple data using a bleeding-edge object
store technology, namely Intel DAOS.

5.5.1 Exploration of a caching mechanism for RNTuple

FIGURE 5.6: Overview of the proposed system. The upper box includes
the main ROOT components involved in an analysis. On the left of the
dashed line (Analysis layer) is the user-facing API and the processing en-
gine offered by RDataFrame. On the right is the I/O layer that brings com-
pressed physics data from disk to uncompressed information in memory
that is sent to RDataFrame for processing. The two orange boxes repre-
sent the parts introduced in this work: the introduction of RNTuple as a
supported input data format for the distributed RDataFrame layer in the

Analysis layer and a caching mechanism for RNTuple in the I/O layer.

In this study, a caching machinery has been developed for data reading via
RNTuple, so that any application that reads RNTuple data could benefit from it. This
includes notably RDataFrame applications that read data from RNTuple. The caching
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mechanism is independent of the storage backend, a crucial feature to maintain
transparency for the user and contribute towards a sustainable development in a
future where RNTuple will be able to read and write to even more storage systems
than today.

Figure 5.6 gives a high-level view of the interaction between ROOT and DAOS after
the proposed developments. A physics analysis with ROOT makes use of two main
components: an analysis layer and an I/O layer. The analysis layer is implemented
with RDataFrame, while the I/O layer in this case uses RNTuple. The user provides a
dataset specification to RDataFrame, for example a list of files to process. In turn, RDa-
taFrame will transparently invoke the low-level I/O layer which is in charge of opening
the files from disk, uncompressing their data and sending them back to the processing
layer. The image shows in particular the I/O layers defined within RNTuple as de-
scribed in Section 2.1.1. All the blue boxes in the figure represent already established
ROOT components, while the orange boxes demonstrate the parts that were specifi-
cally modified or developed in this work. In particular, the distributed RDataFrame
layer was not able to process data coming from the RNTuple I/O. After this work, the
algorithm that creates a distributed RDataFrame task on the client node also checks the
origin of the dataset. This allows creating the correct RNTuple object when the task
arrives on the computing node (bottom left part of the image). When a distributed task
starts executing, it creates an RNTuple instance to read data from the selected storage.
In case the RNTuple cache is activated, this can transparently start writing data from
the original storage system to the target one. For the purposes of this work, the target
storage system for the RNTuple cache is DAOS. If the DAOS server already contains the
desired dataset, the developed cache will serve it directly to the rest of the RNTuple I/O
pipeline which will in turn direct it towards the RDataFrame that requested it inside the
distributed task.

5.5.2 Integration within the I/O pipeline

RNTuple I/O operations are scheduled in a pipeline. The current implementation of
the pipeline is in two steps: first, data is read from storage into compressed pages
in memory, then bunches of pages are decompressed together and sent to the rest of
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(A)

(B)

FIGURE 5.7: Schema of the newly developed caching system in the
RNTuple I/O pipeline. Blue horizontal arrows represent the current
two steps of the pipeline: reading compressed pages and decompress-
ing them. (a): The analysis is reading from some file-based source and a
new RNTuple object is created to write data to a cache. (b): Data are read

from the cache during the analysis.

the application for processing. The idea for the caching mechanism is to take place in
between the two steps of the pipeline. This can be described as follows:

1. When programming an application, the user can enable the cache by simply pro-
viding a storage path (to a local directory or to an object store address for example)
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as an extra option when opening an RNTuple.

2. In order to write the cache, a new RNTuple is created with the same metadata as
the original RNTuple, this time pointing to the storage path provided by the user
in step 1. Figure 5.7a shows the input dataset to the left, in red. The metadata, i.e.
the list of three column names, are mirrored in the RNTuple cache that is shown
on the right side of the image.

3. At a later stage, when the first step of the RNTuple pipeline is over, the com-
pressed pages read into memory are grouped together in a cluster object. The
cluster object contains a list of column names that the cluster is spanning. From
any column name, a group of (compressed) pages belonging to that column can
be retrieved. Consequently, the caching algorithm proceeds by traversing all col-
umn names and for each column it writes the corresponding pages into the newly
created RNTuple object, thus populating the cache location (see Figure 5.7a). It is
important to note here that the RNTuple system is implemented such that the col-
umn metadata is stored separately from the actual compressed pages (or groups
thereof), so that information needed in the I/O pipeline is always available.

4. When the reading part is over, the RNTuple cache object finalises the writing oper-
ations and closes the open handle to the storage path (e.g. writes metadata about
the number of pages and cluster layout to an attribute key in the DAOS case).

5. Any subsequent access to the same dataset by the user, will fetch the cached
RNTuple rather than the original one. The caching mechanism is completely by-
passed in order to avoid extra operations and the user is transparently presented
with an RNTuple that resembles exactly their input dataset, but is read from a fast
storage system like DAOS (Figure 5.7b).

5.5.3 Considerations for HEP use cases

Another important notion to discuss revolves around how the cache will interact with
the ROOT I/O layer. As discussed in Section 1.2, HEP data is characterised by a “write-
once, read-many” condition. Consequently, any caching system aimed at analysts’
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needs in this field will need to optimise read operations as much as possible. Writ-
ing is also important to smoothen the user experience when the cache is still cold, but
providing a faster reading performance directly translates into an increased productiv-
ity in physics analysis research. The machinery developed in this work tries to address
both objectives: when writing, the cache does not need to wait for the decompression
step of the RNTuple pipeline; when reading, it directly forwards all requests to low-
level efficient RNTuple interfaces. During this investigation, the caching system could
not make full use of an asynchronous pipeline since the DAOS backend for RNTuple
could not support it at the time. Future iterations of this mechanism would write the
compressed pages to the RNTuple cache in parallel with respect to the main pipeline.

5.5.4 Interaction with DAOS

The I/O workflow from the point of view of the caching node (which in this work
corresponds to a DAOS server) looks like this: the user starts an analysis, requesting
to process some dataset; the dataset is opened and both sent from disk to memory for
processing and at the same time written as-is into the target caching node; after this,
any other time an analysis is run and requests the same dataset, it is automatically read
from the cache. Overall, the number of read operations is much higher than the number
of write operations in this context.

The DAOS specification also establishes the use of caches to boost data access for
its users. This is implemented at various levels, for example it is always enabled by
default if DAOS is configured to use the dfuse layer [169]. At the hardware level, it
exploits burst buffers on the server nodes. All of these characteristics are completely
transparent and orthogonal to the caching system for RNTuple developed in this work.
This is, from the point of view of DAOS, just like any other user application that reads
or writes data stored in the DAOS servers. Thus, any improvement to the DAOS library
or any site-specific tuning enabled on the server nodes will automatically be leveraged
by the RNTuple cache.

This study focused only on the point of view of a single user. In a multi-user
scenario, this caching system embedded in RNTuple should be synchronised with a
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storage-facility-wide service. Taking for example two different users that want to ac-
cess the same dataset, whoever does access it first will cache it in the object store thanks
to the system developed in this work. But in order for the other user application to
know about the presence of the dataset in the cache, some dataset register should be
queried and report whether the same data is already present. This kind of challenge
can be a topic for future studies.

5.5.5 Experiments

This section will present various test configurations that were employed to evaluate
the capabilities of the proposed caching mechanism. At first, the cache is exercised on a
small dataset, without running a physics analysis but just comparing the reading speed
of the RNTuple cache on DAOS with the reading speed from a local SSD. Afterwards,
a real HEP analysis is performed with the RDataFrame tool, either on one node or dis-
tributed to multiple nodes. For this second type of test, two different clusters have been
used. The first cluster features a DAOS system where the RNTuple cache can store data
on the DAOS servers and send it to the RDataFrame engine for processing. The second
cluster has a Lustre shared filesystem and in this case the same distributed RDataFrame
analysis processes data with the traditional ROOT I/O system using TTree.

Methodology

The following groups of tests have been set up for the caching system developed in this
work:

1. A single-threaded C++ application that uses the RNTuple interface to read se-
quentially all the entries of a dataset stored in a ROOT file. No other computation
is done in the application. The dataset size is 1.57 GB. The purpose of this test is
comparing the runtimes of three different configurations: (i) reading the dataset
stored in a file on the local SSD of a node; (ii) reading the dataset stored in a file on
the local SSD of a node and at the same time caching data to DAOS; (iii) reading
the dataset stored in the DAOS cache.
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2. An open data analysis of the LHCb experiment at CERN [170], named from here
on “LHCb benchmark”. This analysis is run on both clusters described in Sec-
tion 5.5.5. It uses the distributed RDataFrame tool to steer computations from
one to multiple nodes. In the DAOS cluster, it reads data from the DAOS servers
through the RNTuple cache. In the Lustre cluster, I/O is done with the traditional
TTree implementation. The application processes the dataset used in the cited
publication, replicated eight-hundred-fold to get a 1259 GB sample. In the tests
with TTree and Lustre, the dataset is replicated simply by providing a list of paths
to multiple copies of the original dataset. In the tests with RNTuple and DAOS,
the replicated dataset is obtained by running a C++ program that reads all the
entries in the original file (stored on the same SSD of the node in the previous
group of tests) and copies them to one or more separate RNTuple objects stored
in DAOS, until the desired size is reached. The number of objects is equal to the
number of distributed RDataFrame tasks, so that each task processes exactly one
RNTuple object. As previously discussed, particle physics events are statistically
independent, so this approach is valid for benchmarking purposes.

The benchmarks in Section 5.5.5 request a variable amount of nodes and cores per
node on the cluster through the distributed RDataFrame tool. In all tests, 2 GB of RAM
are requested per core. For the DAOS tests, data is always cached on the DAOS server
nodes, never on the computing nodes. The tests on the Lustre cluster present a similar
situation.

The tests done on the cluster with the Lustre filesystem are run by submitting jobs to
the Slurm resource manager. In each job, the desired number of nodes and cores for that
test is requested. Furthermore, each job requests exclusive access to all the computing
nodes involved in the test, to avoid unpredictable loads on the machines due to shared
usage with other users of the cluster.

The test suite is available in a public code repository [124].

Hardware setup

DAOS cluster In the DAOS cluster there are seven client nodes and two servers. Ac-
cording to the DAOS specification, the dataset that is processed in the experiments
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described in the next sections is always stored on the server nodes. Specifically, the
server nodes are the caching nodes. Client nodes on the other hand only read the data
from the server nodes and run the computations defined in the physics analysis. Each
client node features the following hardware specifications:

• Motherboard: Newisys DoubleDiamond TCA-00638.

• CPU: 2x Intel Xeon E5-2640v3, for a total of 2 NUMA sockets, 8 physical cores per
socket, 2 threads per core.

• RAM: eight Micron 36ASF2G72PZ-2G1A2 DIMMs, 16 GiB each, for 128 GB of
total memory.

• Inifiniband interfaces: one Mellanox MCX354A-FCBT two port NIC, only one
port was cabled, 56 Gb/s FDR speed; one HPE P23842-001 two-port NIC, only
one port was cabled, 100 Gb/s EDR speed. Each interface is connected separately
to one NUMA socket.

Each server node features the following hardware specifications:

• Motherboard: Supermicro X11DPU-Z+.

• CPU: 2x Intel Xeon Gold 6240, for a total of 2 NUMA sockets, 18 physical cores
per socket, 2 threads per core.

• RAM: twelve Hynix HMA82GR7CJR8N-WM volatile DIMMs, 16 GB each, 6 per
socket. 192 GB total memory.

• DAOS storage: twelve Intel HMA82GR7CJR8N-WM persistent memory DIMMs,
128 GB each, 6 per socket. Also, eight Samsung MZWLJ3T8HBLS-00007 3.84 TB
NVMe SSD, four per socket.

• Infiniband interfaces: two Mellanox MCX654105A-HCAT one-port NICs
200 Gb/s (HDR). Each interface is connected to one NUMA socket. The node has
PCIe Gen3 buses, so the actual bandwidth is 100 Gb/s per NUMA socket.
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In practice, the maximum bandwidth that can be obtained when reading data on
one of the client nodes is given by the sum of the two nominal bandwidths of its Infini-
band interfaces. That is, a client node can read up to 156 Gb/s, or 19.5 GB/s.

The maximum bandwidth overall of the whole DAOS cluster is given by the sum of
the nominal bandwidths of the server nodes. Thus the maximum reading throughput
for the whole cluster is 400 Gb/s or 50 GB/s.

The DAOS version installed on this cluster is 1.2.

Lustre cluster The second cluster used for this work is a large computing cluster with
hundreds of nodes and a shared Lustre filesystem. Access to the cluster was granted
via a user account registered with the Slurm resource manager of the cluster. Cluster
resources were shared among many other users. Also in this case there are server nodes
where data is stored (on Lustre) and computing nodes that read the data from the server
nodes and run the computations.

Each client node features the following specifications:

• Motherboard: Supermicro H11DST-B.

• CPU: 2x AMD EPYC 7551, for a total of 2 NUMA sockets, 32 physical cores per
socket, 2 threads per core.

• Inifiniband interface: one Mellanox ConnectX-4 VPI adapter card, FDR IB 40GbE,
56 Gb/s.

The network topology is built like a fat-tree, with a 2 to 1 blocking factor on the
computing nodes. More information about this cluster can be found in its user man-
ual [171].

Results

Caching RNTuple to DAOS The first group of tests described in Section 5.5.5 is exe-
cuted on a single node. The dataset is initially stored on SSD in order to gather more
consistent measures and avoid possible network instabilities. Nonetheless, the same
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tests could be repeated with the dataset stored in a remote file, since RNTuple data can
be also read through HTTP.

Table 5.3 shows average runtime of the application with three different configura-
tions. On the one hand, caching to DAOS while reading from SSD brings roughly 50%
overhead with respect to only reading from SSD. On the other hand, reading from the
DAOS cache is more than 6 times faster than reading from SSD.

TABLE 5.3: Runtime metrics of tests reading an RNTuple dataset, 50 rep-
etitions per configuration.

Read location Average [ms] Error [ms]

SSD 3694 7
SSD (while caching) 5606 5
DAOS 600 7

Distributed RDataFrame analysis benchmarks reading data from DAOS A second
series of tests evaluate the performance of running an RDataFrame analysis on top
of RNTuple data cached in DAOS. The LHCb benchmark described in Section 5.5.5 is
executed in a Python application with the distributed RDataFrame tool. This allows
to parallelise the analysis both on all the cores of a single machine and on multiple
nodes, all with the same application. Furthermore, while the user code is written in
Python, this is just used as an interface language and each task is actually running C++
computations through RDataFrame. Within the test, the dataset is split into multiple
RNTuple objects stored in DAOS. Then, one task is defined to run the analysis on a
single RNTuple in its own Python process. In general, for any given number of cores
used in the following tests, there are as many Python processes and as many RNTuple
objects stored in DAOS.

At runtime, the application is monitored with a timer that is used to compute the
processing throughput (that includes time spent reading and time spent in the compu-
tations). 72% of the total dataset is read and processed, roughly 904 GB. The processing
throughput is then computed dividing the processed dataset size by the execution time.
Figure 5.8 and Figure 5.9 both show the absolute value of the processing throughput
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(with increasing amount of cores either with a single node or multiple nodes) and the
value relative to one core for the single-node case or one node for the multi-node case.

The following results are representative of tests where the application processes
are pinned to run on either NUMA domain of the node. The backend of distributed
RDataFrame is set up such that there are two executor services running on the node,
one that will accept and process tasks running on the first NUMA domain, the other
running its tasks on the second NUMA domain.

(A) (B)

FIGURE 5.8: Processing throughput (i.e. reading the dataset and running
analysis computations on it) of a distributed RDataFrame analysis on a
single node of the DAOS cluster. (a): Real throughput values compared
with a linear throughput increase obtained by multiplying the through-
put on one core by the number of cores on the x axis. (b): Speedup

obtained by scaling the analysis to multiple cores on the node.

Figure 5.8 shows the throughput obtained by running the application on one node,
with an increasing amount of cores up to 16 (8 physical cores per NUMA domain).
In particular, Figure 5.8a shows the absolute processing throughput on a single node
with increasing amount of cores. Here it can be seen that this tool is able to reach a
peak processing throughput of more than 8 GB/s on one computing node. Figure 5.8b
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instead reports relative speedup on one node, which in this case is almost perfectly
linear. In both images, up until 8 cores the test is using one of the NUMA domains
on the node. When more than 8 cores are used, 8 of them are pinned to run on the
first NUMA domain of the node, while the remaining are pinned on the second NUMA
domain, to factor out NUMA effects.

The same analysis is then scaled to multiple nodes. Figure 5.9a shows that the
peak processing throughput achieved is 37 GB/s, while the speedup plot in Figure 5.9b
shows a plateau when more than five nodes are being used.

(A) (B)

FIGURE 5.9: Processing throughput (i.e. reading the dataset and running
analysis computations on it) of a distributed RDataFrame analysis on
multiple nodes of the DAOS cluster (using 16 cores per node). (a): Real
throughput values compared with a linear throughput increase obtained
by multiplying the throughput on one node by the number of nodes on
the x axis. (b): Speedup obtained by scaling the analysis to multiple

nodes of the cluster.

Distributed RDataFrame analysis benchmarks reading data from Lustre The same
physics analysis is then run on the cluster that uses the Lustre shared filesystem for
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data access. In this case, the traditional ROOT I/O system using TTree is put to the
test with a file-based storage system. The LHCb benchmark described in Section 5.5.5
is executed in a Python application with the distributed RDataFrame tool. The same
dataset with the same size is processed, with the only difference being that it is stored
in TTree format rather than RNTuple.

One other difference in this case is that the TTree I/O, being more mature than
RNTuple, already implements a way to read only a group of rows from a certain dataset
when requested. Thus, the distributed RDataFrame tool is already capable of automat-
ically splitting the user-provided dataset specification (i.e. the list of files to be pro-
cessed) into multiple tasks, each containing a range of entries to process. When a task
reaches a computing node, it will automatically create a local RDataFrame and open a
TTree-based dataset reading only the entries supplied in the task metadata.

(A) (B)

FIGURE 5.10: Processing throughput (i.e. reading the dataset and run-
ning analysis computations on it) of a distributed RDataFrame analysis
on multiple nodes of the cluster with the Lustre filesystem (using 16 cores
per node). (a): Real throughput values compared with a linear through-
put increase obtained by multiplying the throughput on one node by the
number of nodes on the x axis. (b): Speedup obtained by scaling the

analysis to multiple nodes of the cluster.
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Figure 5.10 shows the throughput obtained by running the application on an in-
creasing number of nodes of the cluster, in order to recreate as closely as possible the
same configuration used in the tests described in Section 5.5.5. In particular, from one
to seven computing nodes are requested to the Slurm resource manager, with exclu-
sive access in order to avoid unpredictable CPU load from other users of the cluster.
On each node, the benchmark requests exactly 16 physical cores. Each core will be as-
signed with one task, that will read a portion of the dataset as described above from the
Lustre filesystem.

In Figure 5.10a, the processing throughput obtained on an average of 10 bench-
mark runs per node count is compared with a linear throughput increase obtained by
multiplying the value at the 1-node mark by the number of nodes on the x axis. The
maximum throughput achieved is 13.3 GB/s. Figure 5.10b reports the speedup of run-
ning the analysis on multiple nodes relative to one node, comparing it with a linear
speedup. The figure shows a perfect alignment between the two lines until the 4-node
count, with a slight decrease in real speedup when using more nodes.

Discussion

Adding a new caching mechanism to a complex library such as ROOT requires careful
design, both for usability and performance purposes. The proposed design is com-
pletely transparent to the user, who still only has to program their analysis through
the RDataFrame high-level API. Drawing inspiration from the flexibility offered by
the RNTuple layers described in Section 2.1.1, the caching system is injected in the
I/O pipeline. The developed cache is backend-independent, thus enabling reading
and writing RNTuple objects from/to any of the supported storage backends. This
approach is the most sustainable in a field such as HEP, where large datasets can be
stored in many different facilities around the world, each one with their own storage
architecture.

In this work, the cache was exercised at different levels. At first, a physics dataset
was either stored on an SSD or cached to DAOS with the developed tool. The results
in Table 5.3 are promising for the caching mechanism. When caching data that is being
read from the local SSD of a node, it is expected to have some overhead. But the speed
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gained when reading from the DAOS cache more than compensates this overhead. It
is also worth highlighting that the main use case for such a tool is when the dataset is
still in a remote location. In fact, the same dataset used in these tests and the following
ones was originally stored at CERN and downloaded locally on the cluster. The time
to download the dataset was not included in Table 5.3, but it is safe to state that long-
distance network I/O does not achieve the same reading speeds as a local SSD.

The following results presented in Section 5.5.5 demonstrate the capabilities of the
distributed RDataFrame tool used in conjunction with the new storage layer offered by
RNTuple and its DAOS backend. In this case the dataset was replicated to reach a size
of more than 1 TB, in order to give enough workload to the computing nodes. This was
chosen in accordance with the usual dataset size for an LHC Run 2 analysis, which is
in the order of one to a few tens of Terabytes.

On the DAOS cluster, the analysis reached a peak processing speed value of 8 GB/s
and 37 GB/s respectively with one node and seven nodes. Comparing these numbers
with the maximum bandwidths described in Section 5.5.5 reveals that the peak pro-
cessing throughput on one node is equal to 40% of the maximum reading throughput,
while the peak processing throughput on seven nodes is equal to 74% of the maximum
reading throughput of the whole cluster. It must be noted that the processing through-
put numbers include all the steps of the analysis: opening the RNTuple objects, reading
the data, bringing it to the RDataFrame processing layer and running the computations
defined in the analysis application. Thus, this first result is promising considering that
the HEP analysis are I/O bound. The scaling shown is close to ideal on one node with
processes pinned to either NUMA domain, less than ideal when using multiple nodes.
These results showed that the implementation of the DAOS backend for RNTuple at
the time could not fully make use of the bandwidth, although that has been addressed
in more recent developments of RNTuple and will be tested in future works.

The results obtained on the DAOS cluster can be compared with the benchmarks
shown in Section 5.5.5, which involve running the same analysis on another cluster
that uses the Lustre filesystem. The comparison, while not done on exactly the same
hardware because the DAOS cluster does not provide a Lustre filesystem, is still rep-
resentative of the advantages offered to ROOT by a low-latency high-bandwidth ob-
ject store like DAOS. The Lustre cluster also uses Infiniband interfaces like the DAOS
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cluster. All the same, the results presented in Figure 5.10 show an overall worse perfor-
mance of the analysis. It should be considered that the slope of the speedup is better
in this case, almost aligned to a linear speedup all the way up to seven nodes. This
is due to TTree being a much more mature I/O system than RNTuple, especially con-
sidering the RNTuple interaction with DAOS. In fact, file-based I/O in ROOT dates
back to its very beginning in 1995. In spite of this difference in maturity between the
two I/O systems, RNTuple with DAOS is able to achieve an almost three times higher
processing throughput than TTree with Lustre at the moment. This demonstrates the
potential gain of exploiting a high-throughput system such as DAOS as a data source
for HEP analysis in ROOT with RNtuple, compared with a traditional file-based ap-
proach with TTree, even when the latter is supported by a first-class parallel filesystem
that is currently used by most of the top supercomputers in the world [172].

5.6 Conclusions

This chapter has shown a few approaches to drive the caching input data directly from
within the analysis layer.

The first work made a first attempt at using existing technologies already avail-
able to HEP users and applying them to distributed analysis with RDataFrame. Two
different caching strategies were evaluated, i.e. on a dedicated cache node or on the
computing nodes. Both gave a factor 2 speed improvement with respect to the average
baseline measurement with caching disabled. This evaluation also highlighted that a
caching mechanism for HEP data analysis should store only the data that is actually
read by the application. Thus, it should be aware of the data format used in the anal-
ysis so that the cache can be well integrated with it. For example, it should be able to
cache a dataset at the level of the single cluster of entries of the columns that are read.

The second effort moved away from the traditional file-based approach for stor-
ing physics data. It featured a new integration between a bleeding-edge object store
technology such as DAOS and the next-generation ROOT I/O offered by RNTuple, via
a simple caching service that was storage-backend-agnostic. This idea allows to run
an application that transparently reads a remote dataset from a POSIX filesystem and



Chapter 5. Fine-grained caching of physics data 123

writes it to an object store, opening the door to previously unavailable fast storage sys-
tems to cache HEP data in an analysis environment. The throughput achieved when
pairing RNTuple with distributed RDataFrame was very high. Starting from a single
core with close to 600 MB/s, a peak of 37 GB/s was reached using seven nodes (16
cores per node). A comparison was performed by testing the selected physics analysis
with distributed RDataFrame processing a TTree dataset stored on a Lustre filesystem,
using the traditional ROOT I/O system. This resulted in a 2.8 times lower processing
throughput, peaking at 13.3 GB/s with the same number of nodes and cores used in
the DAOS benchmarks. Consequently, this effort demonstrated the potential of using
low-latency high-bandwidth object stores to accelerate HEP data analysis.



124

Chapter 6

Serverless computing for HEP data
analysis workflows

The previous chapters outlined a more traditional computing approach for physics
workflows, based on the exploitation of HPC resources and the use of distributed ex-
ecution engines. As it was made clear in Section 1.1, future challenges in computing
highlight the need for exploring different paradigms that may accompany established
workflows, thus providing viable alternatives for parts of the community. Thus, this
chapter of the thesis takes on a different research path that evaluates the model offered
by serverless computing in the context of HEP data analysis. Two main efforts are pre-
sented in this sense. In both cases, the distributed RDataFrame tool was augmented
with execution backends based on the serverless approach.

The first effort, described in Section 6.3, shows an implementation of the MapRe-
duce workflow employed internally within distributed RDataFrame via the Amazon
Web Services (AWS) cloud. The main advantages and limitations of using that service
are discussed and the performance of the engine is evaluated with a set of benchmarks,
including a real use case of physics analysis.

The second effort drew inspiration from this first prototype, creating a new server-
less backend that leverages an open source cloud platform. The contribution, written in
Section 6.4, also introduces different strategies to implement the MapReduce pattern,
especially regarding the reduction phase. Furthermore, it presents a thorough analy-
sis of the different sources of overhead that may interfere with the core physics event
processing when using a serverless platform.
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6.1 State of the art

Distributed computing for scientific applications is very often driven by large facili-
ties or federated grids managed through job submission systems, as detailed in Sec-
tion 1.5. In HEP this is exemplified by the WLCG, but the same type of resource man-
agers is commonly employed in world-class supercomputers such as Frontier [173] or
LUMI [174]. This kind of approach bears a cost for final users as already discussed in
Section 1.5, who need to follow a strict series of steps in order to run their applications.

One alternative approach which has been explored in recent years, especially in the
context of cloud computing, is a complete separation of all the logic to manage the
hardware infrastructure and the task scheduling from the interface to input an appli-
cation. This paradigm is broadly known as serverless computing, a model in which
the cloud provider allocates machine resources on demand, taking care of the servers
on behalf of their customers. It makes it easier for developers to access a high amount
of computing power without having to think about setting up or managing the ma-
chines executing the code. Although the serverless paradigm is employed in a large
suite of services such as serverless databases or storage layers or event streaming and
messaging workflows, for the purposes of this thesis the main usage of this model is the
so-called “Function as a Service” (FaaS). This concept operates on the notion of “func-
tion” - a piece of code that will be replicated and invoked on multiple nodes. It allows
to execute user-provided functions in response to events without knowledge about the
underlying infrastructure and the scheduling of the resources. The introduction of the
serverless computing paradigm improved on some of the pitfalls of managed systems
described above. For example, the end user does not need to have any knowledge of
the underlying cluster infrastructure while submitting tasks to the remote machines.
This allows to run massively parallel computations outside of typical supercomputing
facilities, as less deployment-specific administration overhead is required.

Every serverless execution engine relies on a type of abstraction layer for the in-
frastructure itself. This is usually provided by big vendors, such as Cloud Functions
by Google [175], Lambda by Amazon [176], or open source solutions such as Open-
Whisk [177] running on real or virtual machines or Knative [178] running ephemeral
Docker [179] containers directly on Kubernetes [75]. All the solutions offered by these
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players share many features. In some cases, communities compare the products in
terms of cost efficiency and availability to make informed choices about the workflow
they will propose to users. An example is offered by a recent overview of the serverless
computing scenario in bioinformatics by Grzesik et al. [180].

Efficient orchestrating frameworks are useful in utilising the power of serverless
functions in data processing applications. One among these would be PyWren [181]. It
allows to seamlessly distribute arbitrary Python code over multiple nodes with server-
less functions. Needed objects and dependencies are serialised and sent to the Lambda
execution environment in order to run the application on AWS resources natively. As
of 2021, the original project is no longer maintained, but it was used as a basis for in-
teresting extensions, including NumPyWren for numerical algebra [182]. The newer
development, Wukong [183], builds on NumPyWren experience with a focus on data
locality and improved, decentralised scheduling.

The serverless research scenario is quite wide. Other works in this line of research
are MARLA [184] (MApReduce on AWS Lambda) and SCAR (Serverless Container-
aware ARchitectures). MARLA is a framework that supports the MapReduce model
in AWS Lambda for Python. One of the advantages of MARLA over other similar
frameworks is that it is in charge of managing the entire MapReduce process, from the
partitioning of the data to the generation of the final result, where the user only has
to define the Map and Reduce functions of the process. SCAR [185] is a framework
that offers the possibility of executing any programming language in AWS Lambda
through the use of containers, allowing the execution of any type of application in a
FaaS environment, which supported this execution model before AWS itself. In partic-
ular, the use of containerised environments to run the serverless functions has become
more and more popular thanks to a few key advantages it brings in terms of repro-
ducibility and ease of deployment. But this also comes with issues to be addressed.
Bila et al. [186] discuss how containers may hide vulnerabilities which can be exploited
at runtime. Li et al. [187] present the benefits of reusing the same container for multiple
serverless functions to avoid cold startups. Oakes et al. [188] go as far as implementing
a new container runtime especially aimed at serverless workflows to obtain factors of
speedup with respect to using Docker.

Serverless workflows are not a common topic in High Energy Physics literature.
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Nonetheless, there have been some efforts in this direction. A recent review has high-
lighted a few motivations that would make the FaaS model applicable to the online trig-
ger systems employed by LHC experiments [189]. This paper theorises that inference
using neural networks could be triggered by the events streaming from the accelerator.
A more concrete example is provided by a paper related to CernVM-FS (CVMFS) [190],
a file system that provides the software distribution backbone for collaborations in the
field. The paper describes advances in the publishing system of the software distribu-
tions. The default model has a single server node responsible for the compilation of
all the libraries and only upon a commit from this machine the distribution would be
actually published and replicated. The envisioned changes would have any machine
enabled with CVMFS publish the changes to cloud storage (e.g. Amazon S3) through
a gateway serverless function [191]. Regarding the data analysis use case, a good ex-
ample of serverless engine is provided by Lambada [192], that adds facilities on top
of AWS Lambda to steer the serverless functions and shows a cost-efficient usage of
the resources. Another notable effort is represented by funcX [193], a FaaS platform for
HEP computing that allows registering user functions on arbitrary endpoints. Function
registration and execution can be managed within the same Python application and the
authors demonstrated good scaling of the solution up to two thousand function con-
tainers.

With respect to the efforts cited above, this chapter of the thesis introduces server-
less engines that abstract even the last bit of interaction with the distributed system
for the user, the creation and upload of the functions. The next sections will describe
how the generic programming model adopted by RDataFrame can be fitted to generate
and run serverless workflows, using industry-grade products such as AWS Lambda or
open-source scalable frameworks such as OSCAR [194].
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6.2 Tools

6.2.1 AWS Lambda

AWS Lambda is a service that allows running event-driven short-lived computations
in a serverless environment. It supports writing serverless functions in different lan-
guages, among which Python. The functions can be executed with the native Amazon
runtime or within a user-provided container. Lambda functions can be triggered by
events such as uploading a file to AWS S3 [144] or sending an HTTP request. Once
deployed, the number of function executions can be scaled dynamically based on the
computational load.

One notable characteristic of this service is that once a container is spawned to ex-
ecute a function, it is retained for some time that depends on the current workload on
AWS resources [195]. Further invocations running on the same container will reuse it,
thus reducing the startup time of the execution.

6.2.2 OSCAR

OSCAR is a FaaS execution environment aimed towards file-based event processing.
The execution of the functions is done through the use of Docker containers. An OS-
CAR installation is based on a Kubernetes cluster that is deployed using the follow-
ing tools: EC3 [196] to provide horizontal cluster elasticity; Infrastructure Manager,
IM [197], to support multi-cloud deployment; and CLUES [198] to manage the elastic-
ity of the cluster by taking care of the scale in and scale out of the nodes in the cluster,
based on job demand.

An OSCAR manager service provides a REST API through which authorised clients
may create, modify or delete serverless functions. When creating a new function, a
user can specify a storage volume to associate it with. OSCAR employs object stores,
in particular MinIO [199], to manage the storage of a function. Modifications to the
storage, such as uploading a new object, will be considered as events by OSCAR. The
input events need to be managed within the OSCAR platform, whereas the output of
functions can also be uploaded externally to other object stores such as Amazon S3.
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OSCAR was designed for file-driven workflows first. When a user uploads a file,
this generates an event, to which a serverless function can react. The function defined
within OSCAR spawns a Kubernetes pod launching the user-provided container image
with the code that should process that file.

6.2.3 EOS

EOS [200] is the mass storage system used at CERN. LHC experiments’ data are stored
on EOS, which continuously serves files to users. Most of remote I/O transactions at
CERN, e.g. when reading a file through the XRootD protocol, are served by EOS.

6.3 AWS Lambda functions for distributed RDataFrame

Allowing HEP scientists to benefit from the advantages of serverless computing with-
out needing to teach them completely new tools requires a new method of communi-
cating with existing platforms. The modular design of distributed RDataFrame offers a
good opportunity to integrate the user-facing analysis framework with FaaS platforms.
In order to achieve this goal, the MapReduce pattern needs to be adapted to the server-
less model, in this work offered by the AWS Lambda service.

6.3.1 Overview of the interaction between RDataFrame and the serverless
environment

The main idea for this contribution is to leverage the distributed RDataFrame machin-
ery, developed for this thesis, to generate a MapReduce workflow and then execute
it via the AWS Lambda service. When a user triggers the execution of a distributed
RDataFrame action, the machinery described in Section 3.3. The input dataset is split
in a list of logical partitions. The operations requested by the user in their code are
registered with the head node instance, which then creates a computation graph object
that can be serialised as described in Section 3.7. Finally, a new backend for distributed
RDataFrame is implemented targeting specifically the AWS Lambda API. This backend
is responsible for taking the list of partitions and the computation graph and creating a
list of tasks for the Lambda functions. Each task contains one logical partition and the
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computation graph object. This becomes the payload given to the AWS Lambda API, so
that there is one Lambda invocation per task created. More specifically, a Lambda func-
tion is created on the AWS platform and configured such that it accepts a task created
by the distributed RDataFrame machinery as payload. Practically, this is equivalent to
the mapper of the MapReduce workflow. When one invocation has finished its job, it
will store the partial results on an AWS S3 bucket. The backend on the client application
waits for all the mapper invocations to finish. Afterwards, it retrieves all the partial re-
sults from all the buckets and runs the reduction locally on the client side, sequentially
merging the partial results two by two. An overview of this workflow is depicted in
Figure 6.1. The bottom left part of the image represents the moment when a user re-
quests some result, for example drawing a histogram. From that point, the rest of the
machinery as described above follows, from left to right in the image.

FIGURE 6.1: Overview of the distributed RDataFrame machinery
adapted to run with AWS Lambda services.

The developed engine decouples the logic for the client side from the logic regarding
the Lambda invocation (later called “worker side”). The first is run within the user
application and the machine where it is started, through the newly developed AWS
backend for RDataFrame. The latter is managed with Hashicorp Terraform [201] to
deploy the required infrastructure on AWS resources with no user intervention. The
whole execution environment is packaged in a Docker container which includes also a
ROOT installation.
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Client Side The client side is an implementation of a backend for distributed RDa-
taFrame. The integration with AWS resources in Python is done via the Boto3 [202]
software development kit. The overall mechanism of the client side is described in Al-
gorithm 1. The machinery serialises the mapper function, metadata about the range
of entries it should process and optionally an authorisation token. It spawns multiple
Python threads that will invoke the Lambda functions. More detail about this spe-
cific part is given in Section 6.3.2. When the invocations finish, their partial results
are streamed back to the client process and they are reduced sequentially, locally. In
general, this could provide a bottleneck, both due to the extra remote I/O required to
stream back the partial results and to the sequential operation that could be approached
distributedly like in other RDataFrame backends. This was addressed in a later inves-
tigation, discussed in Section 6.4.

Algorithm 1 Invocation of the Lambda functions on the client side.

1: mapper ← Function that applies RDataFrame computations
2: token← Kerberos authentication file
3: headers← Paths to optional C++ headers
4: ranges← Partitions of the input dataset
5: for range in ranges do
6: begin THREAD(range)
7: payload← {range, script, token, headers}
8: {single_result, monitoring_data} ← call Worker(payload)
9: call save(monitoring_data)

10: end THREAD
11: end for
12: results← call reduce(single_result) foreach THREAD(range)
13: return results

Worker Side The worker, i.e. the Lambda function that reacts to the event of submit-
ting the serialised object from the client side, operates as shown in Algorithm 2. The
only other service on which it depends is Amazon S3 for the storage of the output par-
tial results. The execution of an RDataFrame computation graph via the deserialised
mapper function is an example of a C++ runtime for AWS Lambda, which is not sup-
ported by default.
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At the start of the function invocation, a monitoring service is launched in paral-
lel, directly within the Python interpreter. It extracts information every second about
the runtime of the function, CPU and network usage, which will be aggregated in Sec-
tion 6.3.7.

Algorithm 2 Engine Algorithm on the worker side.

1: {range, mapper, token, headers} ← payload
2: for header in headers do
3: declare header to ROOT interpreter
4: end for
5: monitoring← start ASYNC monitoring process
6: result← call mapper(range)
7: write result into S3 bucket
8: monitoring_result← stop(monitoring)
9: return monitoring_result

6.3.2 Controlling the invocations via Python threads

AWS Lambda provides two kinds of invocations - synchronous and asynchronous [203].
The asynchronous one is based on the “fire and forget mechanism” and the response
to the invocation request is sent straight away when Lambda queues the event for
processing. In contrast to the previous one, the synchronous invocation waits until the
computation is finished and reports the execution state directly to the caller.

In this first preliminary work, the synchronous invocation mechanism provided an
easier way to implement a retry mechanism, to resubmit those invocations that may
fail. After sending the synchronous invocation request, a connection with the Lambda
is established and a thread calling an invocation procedure is waiting for the Lambda
to complete processing. When the Lambda’s work is done, the thread gets a response
containing JSON serialized payload, the content of which can be specified inside the
Lambda function’s code. This allows for passing information about the success of the
computation as well as the errors that occurred during the computation.

Error handling mechanism was achieved by running a pool of asynchronous Python
threads, each managing a single synchronous Lambda execution. If the Lambda fails,
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it sends a type of error and an error message to the client side, where those are logged
and a retrial is done on the same thread. A single Lambda instance that still fails after
several retrials will make the entire application fail, similar to the pattern provided by
Apache Spark or Dask.

Using this approach did not provide any tangible overhead to the launch of the
application. The only limitation was the limit of ten synchronous lambda invocations
per second, imposed by AWS [204].

6.3.3 Kerberos token placement

To enable authentication to private storage at CERN, a transferable Kerberos ticket
needs to be provided by the user on the client side. When the execution is triggered,
the contents of the ticket are serialised and transported in the payload to each worker.
Then, it will be unpacked at a specified location where XRootD will be able to read it
(managed via the KRB5CCNAME environment variable). This will practically allow every
Lambda invocation to have the same permissions as the user that invoked it.

6.3.4 Experiments

Two analyses are run on the AWS infrastructure:

1. A CPU-bound benchmark. This serves as a baseline for local resources utilisation,
as opposed to the typical data-intensive analysis. Creates a simulated dataset
with one billion randomly generated entries and three columns storing scalar
floating-point values. The simulated dataset total size is 96 Gigabytes. The ap-
plication computes the mean value of each column, ten times per column. This
application will be called “CPU-bound benchmark” from now on.

2. A real physics analysis processing data from the PPS subsystem of the CMS exper-
iment at CERN [205]. It consists of the selection of candidate events of exclusive
dilepton production, pp → p ⊕ ℓℓ ⊕ p, with ℓ ∈ {e, µ, τ}. The measurement of
exclusive production of lepton pairs involves two selections: (1) Exclusive cuts -
leptons are produced exclusively, i.e., no other particles are produced during the
proton-proton interaction, and (2) correlation between leptons and protons. The
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total dataset size is 420 Gigabytes. This application will be called “PPS analysis”
from now on.

6.3.5 Methodology

Each analysis is run with a distributed RDataFrame increasing the number of partitions
of the input dataset, which is equal to the number of Lambda invocations. The values
chosen are 8, 16, 32, 64, 128, 256 and 512. The distributed RDataFrame applications
are started within an environment that has both the AWS credentials and the Kerberos
ticket available (the latter is needed to access the dataset of the PPS analysis).

6.3.6 Hardware setup

There was no direct control over the hardware resources used for this work, since that
is a characteristic of serverless computing. What could be controlled is the resource
configuration for a Lambda function, which was:

• 1769 megabytes of RAM (corresponding to one vCPU-second of credit per second,
which means that a full vCPU core is allocated to the Lambda function).

• The analysis runs on Intel(R) Xeon(R) Processor @ 2.50GHz as reported by moni-
toring tool.

• 15 minutes timeout, the maximum value allowed by AWS at the time of writing.

• The Lambda function is kept warm by running it as many times as partitions
defined in the application, before the start of the main analysis, meaning that the
ROOT initialization time is excluded thanks to avoiding additional time due to
cold start.

6.3.7 Results

Runtime scaling The developed engine is put to test with the two analyses described
in Section 6.3.4. The total runtime of the execution of the Lambda functions is measured
by subtracting the minimum starting time among all executions belonging to a single
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(A)

(B)

FIGURE 6.2: Comparison of runtime scaling of the CPU-bound bench-
mark and the PPS analysis, with an increasing number of Lambda invo-
cations. (a): comparison of the absolute runtimes. (b): comparison of the

speedup with respect to a linear increase.

test run from the maximum ending time within the same run. Figure 6.2 shows the
behaviour of the system with both applications and an increasing number of Lambda
invocations. Furthermore, the scalability of the tests in this work is subject to specific
limitations imposed by AWS, which are highlighted further down in this section.
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FIGURE 6.3: CPU usage (in orange) and network traffic (in blue) in a
single Lambda execution running PPS analysis. This execution belongs

to a run with 64 concurrent invocations.

Network and CPU usage patterns during Lambda execution Running the PPS anal-
ysis with the Lambda infrastructure requires streaming the pieces of the dataset needed
for the analysis to the functions during their runtime. Given that a certain RDataFrame
range can span one or more TTree clusters, these will need to be downloaded by the
Lambda when they are needed for processing. The ROOT I/O streams a cluster of
entries and processes them as they arrive, leading to the usage patterns shown in Fig-
ure 6.3. This figure focuses on a single Lambda invocation of the whole PPS analysis.
During runtime, RDataFrame requests clusters of entries, thus triggering remote read
requests that translate to higher spikes in network usage (in blue in the figure). Subse-
quently, the entries are processed leading to higher CPU usage (in orange in the figure).
It can be seen that the spikes in the network and CPU usage alternate one another.

Aggregating the CPU percentage usage over all Lambda invocations of a particular
PPS analysis run produces the pattern shown in Figure 6.4a. Initially, as all invocations
finish downloading the first chunk of the dataset they need to process, a high spike in
CPU usage is shown, reaching 74% of the total available 64 vCPUs. Consecutively, the
CPU usage hovers around 40% until the first Lambda execution finishes and there is a
corresponding drop that lasts until all functions finish their workload.
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(A)

(B)

FIGURE 6.4: Aggregated CPU usage (in percentage) of 64 Lambda invo-
cations. On the y axis of both figures, 100% percent corresponds to full
utilisation of a single core. (a): PPS analysis. (b): CPU-bound bench-

mark.

The CPU-bound benchmark shows a different story. In Figure 6.4b the usage is
always above 90% of the total vCPUs available until the end of the benchmark.

Variability in starting and ending time of Lambda executions The monitoring tool
running in the Lambda execution also reveals delays in the starting and ending times
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of different Lambda invocations in the same analysis run. With serverless computing,
there is no direct control or access to the computing resources, and this means that
the actual starting time of a certain computation after the Lambda has been invoked
from the client can show some variability. Figure 6.5 shows that different Lambda in-
vocations in the same test run can vary both in their starting time and in their ending
times. In this particular CPU-bound run, the maximum delay between the first starting
Lambda and the last one is around 4 seconds, while the maximum delay at the end is
around 10 seconds. While quite limited, this delay is still noticeable and it is another
peculiarity of the serverless workflow.

(A) Distribution of the start time of a Lambda execu-
tion relative to the Lambda that started first.

(B) Distribution of the end time of a Lambda execu-
tion relative to the Lambda that ended first.

FIGURE 6.5: Comparison of distribution for start and end Times for 128
concurrent Lambda invocations running the cpu-bound benchmark.

Real utilization of available resources on AWS Lambda The CPU-bound benchmark
can be used to evaluate how efficiently the serverless invocation can use the underlying
resources. Figure 6.6 shows that every invocation is able to use over 90% of allocated
vCPU at all times. However, the actual time the analysis takes is two times as long
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as that of the average execution, where the outliers are few and differ little from the
average Lambda. This is due to the throttling imposed by AWS on the number of new
synchronous invocations per second, leading to delays in the startup time when a large
number of functions is invoked.

The PPS benchmark in the same figure shows greater variability in execution time,
with some instances finishing much earlier than the few outliers. In this case, the overall
analysis time is very similar to duration of the longest invocation.
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FIGURE 6.6: Comparison of average CPU usage for every Lambda in
both analyses for 512 Lambdas. The left column shows both analyses,

while the right shows closeups of both.
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A run of the experiments with 512 invocations is shown in Figure 6.7. In the figure,
each line represents the duration of a single invocation, sorted by starting time. The
right side of the image shows invocations running the PPS analysis, showing some
variability. Possibly, some instances stumble upon network slowdowns or slower I/O
that results in a lower utilization of CPU on a particular Lambda. In comparison, the
CPU-bound benchmark (left side of the image) shows a very uniform duration for all
invocations. Thus, RDataFrame is able to saturate the CPU resources available on the
AWS resources.

6.3.8 Discussion

Previous plots have shown that the new backend can make good use of the CPUs
through the Lambda invocations, but there are several limitations imposed by AWS
that have proven to be bottlenecks for proper execution. The choice of implementing
synchronous calls to the AWS API is impacting the startup time with a limit of 10 invo-
cations per second, although it allows for a fine-grained control over the status of the
executions and allows to better act on errors.

Despite that, as seen on Figure 6.2, the scaling is promising, once the limitation
on the number of invocations per second is lifted. While this may seem an issue if
only looked at from the perspective of a single user running a single analysis, it is
actually a demonstration of how the serverless approach would allow to fully utilize the
underlying hardware. This can be seen for example with the execution pattern shown
in Figure 6.7, which differs quite a lot from what HEP analysts are used to. In both the
traditional HEP distributed computing and serverless scenarios, resources are shared
among many users. Physicists are used to requesting resources by submitting jobs to
a queue. Once the resources are granted, they can start using them. Similarly to the
serverless case, some resources might be granted earlier, other resources later (although
the difference in time between jobs starting could be much higher in a job queue system
than on AWS). The key difference is that on an HPC cluster, it is the user’s responsibility
to utilise the resources they are granted as much as possible. Oftentimes though, cores
are not utilised at 100% and this leads to an overall bad utilisation of the hardware. The
AWS platform tries to optimise usage of resources by sharing them among as many
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FIGURE 6.7: Comparison of runtime variability in executions. The top
row shows the actual time of a single analysis computation, aligned to
the beginning of first Lambda. The bottom row has every Lambda invo-
cation start aligned at 0. The left column shows synthetic CPU bench-

mark, the right PPS analysis.
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users as possible, for example letting users also request fractions of a CPU for their
jobs, and at the same time forces users to take better care of their applications since
they are paying for the amount of time they are using the resources.

Another important aspect to consider is data locality, where the stream of I/O com-
ing directly from CERN causes the PPS analysis to stumble on the network connection
between CERN and AWS data centre, as well as probably on CERN storage speed.

The variability both in starting and ending times of the mapper tasks, as shown
in Figure 6.5, can be explained considering that the serverless workflow runs on
non-dedicated resources. The AWS platform needs to sustain a very large amount of
requests from many users and many geographical locations, thus the scheduling of
Lambda invocations may show variability due to this kind of load.

6.4 Open source serverless framework for HEP analysis

Using the first implementation discussed in the previous section as a baseline, a new
investigation focused on another serverless platform to address some of the previously
found shortcomings. To start, the limitations imposed by the private cloud were hin-
dering the research process. An open source platform could in principle provide a more
direct control over the orchestration of the workflow. Furthermore, the previous effort
did not explore the issue of having to launch only 10 mappers per second or the fact
that the reduction phase was performed on the client side.

Thus, this section presents a new implementation of a serverless backend for dis-
tributed RDataFrame, which brings some improvements in the MapReduce workflow
while also highlighting some common sources of overhead that can be common to
many serverless platforms. The backend is based on OSCAR, described in Section 6.2.2.

6.4.1 Implementation of the backend

Similarly to the first work based on AWS Lambda, also in this case the implementation
of the serverless backend is split in two parts, namely the client and the worker side.
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RDataFrame backend on the client side

The implementation on the client side follows the usual schema. The distributed RDa-
taFrame machinery generates a list of ranges, a mapper and a reducer. These need to
be packaged as a single object and serialised so they can be sent to the remote workers.
Sending the serialised objects represents the event that the serverless functions should
act upon.

In the case of OSCAR, the events are file-driven, so the objects should be sent to
some bucket on the platform, either a newly created one or a previously existing one.
For simplicity, in the rest of the discussion the term “folder” may be used to refer to a
bucket on the OSCAR platform.

For this first implementation, it was decided to use one bucket per application run.
This bucket will be used a top-level “root folder” and more folders will be created in-
side of it to serve various parts of the workflow. Alternatively, multiple buckets per run
could have been used, one per each part of the workflow that needs storage. Prelimi-
nary tests showed that there was no performance difference between using one bucket
with a folder hierarchy and using multiple buckets, so the first option was chosen. The
difference relates to configuration issues, certain properties and permissions. There-
fore, the final decision on the configuration should be relegated to the requirements of
the specific cluster deployment.

To identify an application, a universally unique identifier (UUID) is generated dur-
ing the creation of the RDataFrame and then used as the name of the folder.

The serialised mapper and reducer are uploaded to a folder called functions, but
this does not trigger the execution of any serverless function. Instead, the functions
could be further reused if needed and the backend only needs to define a way to invoke
them when the user asks for a result.

The act of invoking a function is a blocking call, the client will wait for the results.
The final result can be written either to an external provider such as MinIO, Amazon
S3, or ONEDATA, or to the cluster’s own internal object store (which still uses MinIO
underneath). In this work, the default system in OSCAR was chosen for storage of final
results. Conveniently, MinIO provides a way to receive notifications of certain events
such as the upload of a file to a specific location. Through this, the client application
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does not need to poll at regular intervals for the status of the function executions. In-
stead, it can just wait for the notification from the storage service.

OSCAR services defined

The functions needed to perform the MapReduce approach must be defined within the
OSCAR system. Access to the OSCAR services, and specifically to the MinIO buckets,
requires specific access credentials, similar to AWS.

Mapper The mapper service listens to the mapper-jobs folder of the main bucket.
Practically, each task generated on the client side will be written to this folder. At
the time of invocation, the service reads the mapper function previously uploaded,
deserialises it and applies it to its assigned range of entries. At the end of the map-
per execution, the partial results are uploaded to the MinIO bucket in a folder called
partial-results. An upload to this folder is an event for the reduction process.

Reducer The reduction phase is much less computationally intensive than the execut-
ing the mappers. Nonetheless, performing it in a stateless scenario is not a trivial prob-
lem. There is no central scheduler that can decide when the reduction phase should
start and how the reducers should be run. The main issue to overcome is then how to
check the state of execution of the MapReduce workflow, which sets of partial results
should be merged together and in what order. Thus, two different reduction methods
were explored and implemented in this work. They are better described in the next
section.

Reduction strategies

Uncoordinated reduction In this model, each event of uploading a set of partial re-
sults from a mapper to MinIO will trigger the invocation of a reducer. The partial results
are written to a file that is assigned an identifier, i.e. the index in the input list of ranges
of the task that produced those results. The reduction phase follows a tree pattern. Sets
of partial results are merged in pairs until only one set is left. Thus, an order can be
established that takes into account the identifiers of the partial results. For every pair
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FIGURE 6.8: Generation of the identifiers for mappers and reducers in
the uncoordinated reduction scenario.

of identifiers, a new file is created that contains both. Each file represents a reduction
task. The files are stored in a separate folder named reducer-jobs. Upon completion of
a mapper, the reduction task corresponding to its index will be triggered. If the partial
results from the other mapper are already available, the task will proceed. Otherwise,
that reduction task will not be executed. The reduction task that is triggered by the
other assigned mapper index will then merge the partial results of the two mappers,
now that both are available.

The algorithm used to determine the names of the files in the reducer-jobs folder
is as follows. The MapReduce pattern is visualised as a binary tree. The leaves of the
tree represent the mappers. All other nodes represent reduction tasks. The algorithm
traverses the tree bottom-up, combining the names assigned to the mapper results two
by two until reaching the root node. The name combination is done by taking the
identifiers of the extremes that will match the minimum and maximum identifiers that
have been reduced up to that point. Whenever a reducer is executed, it will write
its merged results again in the partial-results folder, the same output folder as the
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mappers. Once there is only one result file in the folder, it means that it is the set of final
results that can be sent back to the user. An example of this name assignment is shown
in Figure 6.8, assuming the analysis workload is split in 8 mapper tasks.

The main advantage of this approach is that it needs no extra process to manage
the reduction phase, something which also does not naturally fit in the FaaS approach.
There is also one disadvantage. If two mappers, which results should be later merged
together, end at the same time, both will check whether there is already the counterpart
set of partial results in the folder in order to trigger the corresponding reduction task.
Consequently, two reductions will happen at the same time merging the same two sets
of partial results. On the one hand, this is inconsequential to the results of the analysis,
as the result of merging those two sets will be just one (the reducer that finishes last will
overwrite the result of the previous reducer). On the other hand, it incurs in slightly
more resources used. Figure 6.9 shows a schema of all the components involved in the
uncoordinated reduction scenario.

FIGURE 6.9: Component interaction in the uncoordinated reduction sce-
nario. Numbers denote the order of the steps.

Coordinated reduction Another alternative consists in using a separate service which
oversees the whole reduction phase. In this case, the RDataFrame backend invokes the
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service at the beginning of the distributed execution, when the mappers are invoked. It
also receives a list of integers when it is invoked, each value represents how many sets
of partial results that should be merged by a single reducer invocation. The coordinator
service will monitor the state of the mappers and the contents of the partial-results

folder. Once there are at least as many partial results as the current value of the input
list, the coordinator generates a reduction job that includes the names of all the mappers
that it should merge. These names are assigned similarly to the uncoordinated reduc-
tion scenario and are also written in the reducer-jobs folder. Every time a reduction
task is performed, the coordinator will pass to the next element in its input list.

An optimisation employed in this work is that the last reduction job is performed
directly by the coordinator service, so that no extra time is spent waiting. With the co-
ordinated reduction is not necessary to keep the order of the file names. Indeed, the
coordinator can structure the process of reduction as convenient, e.g. into two parts
or choosing an imbalanced splitting (80%-20%). It should be noted that since the re-
ducer function only accepts two input parameters, these “multiple” reductions are per-
formed by iterating over the assigned reduction tasks. Nonetheless, this avoids multi-
ple reducer invocations and the limitations of the uncoordinated reduction approach.
Figure 6.10 shows a schema of the coordinated reduction process.

Considerations on the implementation of the backend

Preliminary attempts of integrating the backend with OSCAR tried using the OSCAR
API to call the mapper and reducer services. The final implementation instead accesses
directly the files on MinIO to generate events. This choice conveniently provides the
possibility to resume the execution at any point of failure during the MapReduce work-
flow.

Regarding the reduction strategies, in the uncoordinated reduction the jobs are writ-
ten before the mappers start whilst in the coordinated one the jobs are written by the
coordinator when necessary.

One of the current requirements of this backend is the need to define the number of
mappers to be invoked for the analysis, similarly to the AWS Lambda backend. In the
Spark and Dask backend a default value can be used which corresponds to the number
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of available cores in the cluster. But in serverless platforms this information is not avail-
able at the time the services are invoked. In fact, the whole serverless approach relies on
the idea that users can scale the number of function calls automatically depending on
the amount of work provided. A possibility for future research would be to attempt at
predicting the best number of functions that should be invoked, based on the workload
given by the user application.

FIGURE 6.10: Component interaction in the coordinated reduction sce-
nario. Numbers denote the order of the steps.

6.4.2 Experiments

Two types of analysis were employed as benchmarks in this work. The first type is an
open data physics analysis, the same one used for the tests in Section 4.3. The dataset
size for this experiment consists of roughly 200GB obtained from replicating one hun-
dred times the original dataset file. The second type of analysis consists of a simulated
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workload that reads no data from disk or network and can better highlight the best CPU
usage the backend can drive. A simulated dataset is created at runtime in-memory, with
roughly the same amount of data that would be processed in the other analysis.

Methodology

The experiments that will be described in this section all have to go through the usual
two stages of the MapReduce scheme, plus some extra scheduling and orchestration
that is more specific to OSCAR, such as container start and kill, interaction with the
MinIO storage. The OSCAR services also contain monitoring code to evaluate resource
usage and time spent during a mapper or a reducer.

The dimuon benchmark is carried out reading data from different locations: either
from the CERN storage facility (EOS) or in the MinIO storage attached to the OSCAR
cluster, much closer to the computing nodes.

For each of the three configurations (two for the dimuon benchmark, one for the
cpu-bound), an increasing number partitions was studied: 1, 2, 4, 8, 16, 32, 48, 64,
80. Each partition corresponds to a task, thus to one invocation of the mapper service
on OSCAR. The overall number of cores in the cluster would be 96, but in each node
the Kubernetes service consumes a small amount of CPU thus hindering performance
when all cores of a single VM are used.

As it was done in the work with AWS Lambda, the images needed by the serverless
functions are cached on the cluster before the running the experiments to avoid cold
starts.

At first, all the benchmarks are executed using the uncoordinated reduction ap-
proach. Subsequently, a comparison between the two reduction approaches will be
demonstrated.

Hardware setup

A total of 6 working nodes were made available for the purposes of this work. Each
working node is a virtual machine hosted on an OSCAR-enabled computing cluster,
located in Valencia (Spain). Each node has a 16 physical cores Skylake Intel CPU (no
hyperthreading) and 62.5 GB of RAM. The network connection among nodes of the
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cluster is 10 Gb over ethernet. The object storage system (MinIO) is hosted on a dedi-
cated SSD. Each OSCAR service created, i.e. the mapper and the reducer, is configured
to invoke functions with 1 vCPU and 3 GB of RAM available.

Results

Figures 6.11 and 6.12 show, respectively, the time to plot (as defined in Section 1.6)
and the relative speedup for all the experiments can be observed. As expected, the
experiment with the data located within the cluster is faster than the experiment with
the data located on EOS. For the two configurations of the dimuon benchmark, the
speedup when reading data from CERN is higher than the speedup when reading data
from MinIO. This is counterintuitive, as the MinIO storage is placed within the same
network and the same machines that run the OSCAR services. Thus, probably a bot-
tleneck in the I/O operation of the storage devices is hit in this case. The speedup in
the dimuon benchmark remains constant when at least 48 cores are used, which may
be due to network I/O. But a similarly poor scaling is shown also in the simulated
workload example, reaching less than half of the optimal speedup as the core count
increases. This opened an investigation into finding the possible causes of overhead in
such serverless scenario.

FIGURE 6.11: Time to plot with an increasing number of cores.
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FIGURE 6.12: Speedup with an increasing number of cores.

Regarding the CPU and Memory utilization, Figure 6.13 shows the expected be-
haviour. The simulated workload has a CPU usage close to 100% and the experiment
with the data stored in MinIO also makes a better usage of the CPU as it has to spend
less time waiting for the data to arrive due to its locality. Looking at Figure 6.14 we can
see that none of the experiments is close to reaching the 3 GB memory limit set, so we
can discard this limit as a reason for the poor performance.

In order to better investigate the lack of scaling, the focus is shifted to the simulated
workload. The other applications that read data may be influenced by I/O with the
network or the local filesystem, so it is preferable to have a fully CPU bound workload
to avoid any noise from other factors. Table 6.1 describes the difference in time between
the fastest mapper and the slowest one for the simulated workload. In the table, the
absolute time difference represents the difference between the runtime of the slowest
mapper and the runtime of the fastest mapper. The relative time difference is computed
with respect to the runtime of the fastest mapper. In this workload the difference should
be within a reasonable margin (e.g. 2-3%), which may be justifiable due to noise from
other processes on the nodes, but we can see that the difference in time reaches up
to 29.45%. Figure 6.15 shows this information graphically. The same workload was
run with distributed RDataFrame outside of the OSCAR cluster, on a single physical
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FIGURE 6.13: CPU usage of mapper invocations.

machine. The difference in time between the fastest and the slowest mapper in this
controlled condition is on average 3%. With this information we can conclude that
there are unknown sources of bottlenecks coming from the OSCAR cluster.

TABLE 6.1: Variability in the execution time of mappers during a simu-
lated workload run.

Mapper Count Absolute Time Difference [s] Relative Difference Time [%]

1 0.0 0.0
2 119.0 2.79
4 154.0 7.41
8 105.5 10.03

16 63.5 11.72
32 40.5 13.64
48 32.5 15.44
64 48.0 29.45
80 39.0 27.76

Coordinated reduction For the comparison between the two coordinated strategies,
only the CPU-bound benchmark was considered.
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FIGURE 6.14: Memory usage of mapper invocations.

FIGURE 6.15: Distribution of the runtime of mapper invocations for 48,
64 and 80 mappers, respectively from left to right in the image.

A first test was performed which used exactly 80 mapper tasks, as that would create
the highest number of subsequent reduction tasks. In an attempt to mitigate the over-
head introduced by the extra scheduling needed for the serverless functions, a two-
step reduction approach will be tried. This means that the coordinator will launch a
reduction service to merge a determined amount of partial results, while the remaining
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partial results will be merged by the coordinator itself. For this coordinated reduction
three different configurations of load partitioning have been studied:

• 0%: all the reductions are performed by the coordinator.

• 50%: the invoked reducers process 50% of the reductions and the remaining re-
ductions are performed by the coordinator

• 87.5%: the reducers are invoked for 87.5% of cases, the coordinator performs the
remaining 12.5%.

Table 6.2 shows the results for this fine-tuning, all the configurations have similar
results and the differences can be attributed to the runtime variability of the various
mappers. For the following comparison with the uncoordinated reduction the 87.5%
configuration will be used.

TABLE 6.2: Time to plot results for different workload partitioning of the
coordinated reduction strategy.

Workload partitioning Time to plot [s]

0% 205
50% 208

87.5% 202

The next test then runs the CPU-bound benchmark with an increasing amount of
cores, the results of which can be seen in Figure 6.16. It is clear that, despite the variabil-
ity of the system, the coordinated reduction is faster than the uncoordinated reduction,
and this difference increases with the amount of mappers. This is due to the fact that for
the uncoordinated reduction, the mapper that finishes last has to travel the entire path
to the root of the tree invoking a service on each step. The greater the amount of map-
pers, the deeper the tree. This could be partially solved if instead of performing only
one reduction in the uncoordinated reduction, the reducer also checks if it can perform
any more reductions in the path to the root and also performs those automatically.
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FIGURE 6.16: Time to plot comparison between using the coordinated
reduction and the uncoordinated reduction patterns.

Discussion

The results presented in the previous section demonstrate that the distributed RData-
Frame workflow can also be fitted in the file-driven serverless approach provided by
OSCAR. CPU utilisation is close to 100% for all tasks when running the CPU-bound
benchmark, and scales well also with data-locality, as the tests reading data from the
MinIO object store result in higher utilisation than the tests reading data from CERN.

All the same, the scaling plots shown for example in Figure 6.12 show a worse sce-
nario with respect to other works presented in this thesis. After a thorough examination
of the resource usage and monitoring the status of the nodes on the cloud platform,
it became clear that the overhead was due to bad performance of the underlying re-
sources. To further demonstrate this claim, the CPU-bound benchmark was re-run on
the same machines, using the Dask backend for distributed RDataFrame instead of the
OSCAR one. The scalability of the Dask backend was already proven in previous works
(see Chapter 4), so it provides a proper baseline. Since there are 6 nodes, an increasing
number of cores per node (from one to fourteen) was used to run this test. The same
number of nodes and cores per node was then used to run the test on the HPC cluster
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FIGURE 6.17: Time to plot comparison between using the Dask backend
to run the CPU-bound benchmark on either the HPC cluster at CERN or

the machines of the OSCAR cluster.

at CERN (the same one used for the experiments in Section 4.3). The comparison of
the time to plot for these two configurations is shown in Figure 6.17. The plot focuses
on core count starting from twelve and shows that for the higher core counts (sixty
and onwards), the time to plot taken by the OSCAR cluster is almost double as the
time taken by the CERN cluster. This is final proof of the issues that were found with
the available hardware, while at the same time provide an interesting insight into the
serverless computing scenario. It should be noted again that in all cases, either when
using the OSCAR functions or in the tests with the Dask backends, the 6 nodes were
actually virtual machines, on top of which a Kubernetes cluster was also running (used
in the case of OSCAR, unused in the case of Dask). Thus, this suggests that careful
consideration must be taken when using resources that build on top of multiple layers
of virtualisation, which not always provides the stability usually taken for granted in
HPC environments.
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6.5 Conclusions

This chapter discussed the first efforts to fit the analysis layer available in ROOT in the
context of serverless computing. This is still a very novel approach for HEP analysis in
general, only one other similar effort was found in the literature review of Section 6.1.
Two distinct research studies were developed with the aim of understanding the ad-
vantages and disadvantages of this new approach.

In the first work, RDataFrame computations were packaged and sent to be run on
the AWS Lambda infrastructure. This could make use of Docker images to package
ROOT and the needed code for distributed RDataFrame. Another advantage of us-
ing a Docker image is that all the needed libraries can be included there too, making
this an easily customisable environment for users. The serverless functions defined in
the cloud platform were made readily available to the tested benchmarks by executing
them before testing, so that the Amazon engine would cache them. A real physics anal-
ysis was employed to also drive a first investigation on the use of authorization tokens
in such scenario, which require careful considerations. In this work, the token lived as
long as the function invocation, being destroyed immediately afterwards. The engine
presented shows a promise for deployment at large scale as an alternative to a typical
on-premises analysis run on the Grid. The results are promising, as the engine was ca-
pable of fully utilizing the AWS resources available during function execution and the
only real bottleneck was the limit in Lambda invocations per second. Another inter-
esting takeaway from that work was that, through Cling, it practically enabled a new
C++ runtime environment for AWS, which is not supported natively by the platform.
Furthermore, it showed that a better overall resource utilization of resources can be
potentially achieved by serverless platforms, with a combination of sharing resources
with as many users as possible (similarly to traditional HEP distributed systems) and
an increased incentive for users to optimise their resource utilisation since they pay
based on the CPU time used.

In the second work, the distributed RDataFrame machinery was connected to a
different serverless platform, open source and with focus on file-driven applications,
named OSCAR. This time, the invocation of mappers and reducers had to go through
the creation of small files on the object store attached to the cloud platform, namely
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MinIO. The reduction phase was explored further, with the definition of two reduction
strategies, uncoordinated and coordinated. Both cases provide a way to push the reduc-
tion phase to the cluster, rather than keeping it on the client side as was done in the pre-
vious effort. Being OSCAR still in an experimental phase, some areas of improvement
were found and discussed with its developers. In particular, the asynchronous func-
tion invocations rely on the underlying Kubernetes batch job scheduler and the layers
of virtualisation seemed to provide a tangible overhead. This sparked a few interesting
research questions regarding the possible sources of overhead of such a pattern with re-
spect to classic MapReduce. It was highlighted that spawning the serverless functions
and writing the partial results to buckets lead to additional steps in the workflow that
can hinder the parallelisation offered by the RDataFrame backend.



159

Chapter 7

Conclusions and future work

This thesis was devoted to investigating a possible new solution for distributed and
interactive data analysis in High Energy Physics. The distributed computing scenario
in this field has been traditionally characterised by running large-scale complex ap-
plications on batch computing systems which are the only type of resource manager
employed within the WLCG. For the specific case of the analysis, the last step in a
long data pipeline, users are effectively compelled to write their applications in sepa-
rate parts, manually submitting the computations as jobs that process different parts of
the input dataset to the queue. Thus, it is an inherently non-interactive approach. More
modern approaches that leverage interactive distributed execution engines, which have
become popular thanks to the Big Data phenomenon and find ample use in the larger
Data Science community, can provide in fact a much smoother experience also to HEP
analysts.

The work examined in this thesis thus focused on contributing to the improvement
of final analysis workflows in the field, also taking into account the fact that future
computing requirements of the LHC will increase by one or two order of magnitudes
with respect to the past. This aim can be approached with a new analysis interface that
provides high-level facilities for users to express the physics computations and at the
same time seamlessly distributes them with no change in code. A solid baseline was
identified within ROOT RDataFrame, an already established analysis tool that features
a declarative programming interface. This tool was augmented with a distributed exe-
cution machinery that is able to take existing applications and parallelise them on mul-
tiple nodes of a cluster. Distributed RDataFrame takes care of automatically splitting
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the input dataset in logical chunks, sending each one as a payload for a different task on
the computing nodes. This extension is built with modularity in mind, so that different
input data formats and different execution backends can be fitted in the package.

Different aspects of distributed RDataFrame have been put to the test. First, the
scalability that the users can expect from this tool, leveraging existing batch computing
resources while keeping the more modern interface. Tests using open data benchmarks
were run on up to 2048 cores showing an almost linearly increasing speedup with both
the Apache Spark and Dask backends. This result is very promising for future physics
computing workflows, opening the door for physicists to use many more resources to
run their analysis without sacrificing ease of use and programmability, a crucial aspect
for the HL-LHC era. In particular, the Dask backend also offers the highly valuable
capability to directly connect and submit jobs to the batch systems that are commonly
employed in the WLCG and other HEP computing facilities.

The same backend was then used by a team of researchers to develop a full-scale
CMS analysis with distributed RDataFrame. The results were remarkable, showing an
order of magnitude increase in speedup with respect to the legacy approach. The col-
laboration with these users highlighted some existing bottlenecks and missing features,
which led to further developments of the software tool.

The typical data analysis workflow in HEP is I/O bound, with large datasets usu-
ally being read over the network or shared filesystems. Therefore, in order to make
the new model of interactive distributed analysis viable and effective for final users,
it should adapt to and rely on I/O optimisations that already play an important role
in traditional analysis systems, notably caching. A first evaluation of existing tech-
nologies, found in the XRootD library and in ROOT, with different caching strategies
highlighted the main requirements that such mechanism should fulfill, in particular
with regards to storing only the portions of the dataset that are actually read. The pro-
gramming model already offered by RDataFrame nicely plays with respect to that need,
since it can examine what properties of the dataset the analyst is using and read only
those. In addition, distributed computations that operate on different ranges of entries
of the input dataset can be instructed to read strictly the entries required. Another study
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regarding the same topic went a step further, employing technologies beyond the tradi-
tional caching stack seen in HEP. The aim was to switch from file-based caching to ex-
ploiting bleeding-edge object stores backed by highly-optimised HPC hardware. This
study focused on the next-generation I/O layer offered by RNTuple, using Intel DAOS
as the object store technology for caching. The developed system was actually indepen-
dent of the storage backend, which enabled the possibility to read a file remotely and
store it in different target caching systems, be it the object store itself or the local disk.
This same mechanism can be reused for storage backends that will be supported in the
future by RNTuple. The throughput obtained when reading data that was cached on
the Intel DAOS cluster during a distributed RDataFrame execution achieved 37 GB/s,
a remarkable achievement since it is anywhere from 2 times to an order of magnitude
faster compared to benchmarks of the same type running on traditional I/O technolo-
gies. Furthermore, that result can still be improved considering that it is equal to 74%
of the nominal throughput available on the cluster.

Although computing resources in the field are usually managed, on-premises in-
frastructures, the research of this thesis went beyond that and also evaluated a differ-
ent paradigm: serverless computing in the cloud. Cloud resources have the potential
of scaling better considering the future computing needs in HEP. This thesis thus in-
cluded as well a few studies on the FaaS paradigm applied to distributed RDataFrame.
Two backends were developed, one based on AWS Lambda and another on OSCAR.
The benchmarks run with these new execution engines demonstrated a very promising
scalability, although still lower than other benchmarks run with Dask or Spark on tra-
ditional dedicated infrastructures (HPC or batch computing facilities). Moving to the
serverless approach also introduces a few extra scheduling steps that are usually not
required, mainly related to the communication between the client and the serverless
platform, or between the mappers, reducers and the storage layer used to pass around
the information regarding their status and their results. Nonetheless, the serverless
platforms can potentially lead to better overall resource utilisation, especially in multi-
tenant scenarios, due to both the optimisations carried out by the overlay services and
the model of paying per amount of CPU time used which increases users’ awareness of
their resource usage.
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7.1 Publications

The contributions brought by this thesis have been included in different publications
during its development. This section lists published articles, conference proceedings
and presentations related to the work done for this thesis, grouped by the different
research topics that were discussed in previous chapters.

Design of a programming model for distributed analysis in HEP The studies on
addressing the limitations of traditional HEP distributed computing led to the devel-
opment of distributed RDataFrame, a package to seamlessly distribute physics analyses
efficiently, while keeping the already established user API intact. I was responsible for
the development of this tool during the PhD. It was first mentioned, still in a prototype
state and not integrated natively within RDataFrame, at the 24th International Confer-
ence on Computing in High Energy and Nuclear Physics (CHEP 2019). CHEP is the largest
venue for sharing research regarding computing, network and software in the field,
with hundreds of contributions presented at each edition. The following peer-reviewed
conference proceedings are available:

• Vincenzo Eduardo Padulano, Javier Cervantes Villanueva, Enrico Guiraud and
Enric Tejedor Saavedra. Distributed data analysis with ROOT RDataFrame. In:
24th International Conference on Computing in High Energy and Nuclear Physics
(CHEP 2019). https://doi.org/10.1051/epjconf/202024503009, 2022.

After I developed a new backend for distributed RDataFrame which leverages Dask
as the distributed execution engine, I presented it at the Dask Summit 2021:

• Vincenzo Eduardo Padulano (speaker), Enric Tejedor Saavedra. Dask back-
end for distributed RDataFrame. In: Dask in High-Energy Physics community
workshop, Dask Distributed Summit 2021. https://summit.dask.org/schedule/

presentation/24/dask-in-high-energy-physics-community, 2021.

The first presentation of the tool being natively integrated with the main ROOT
project was done at the PyHEP 2021 workshop. PyHEP is a series of workshops provid-
ing a large, international venue for discussing the research regarding Python usage in
the HEP field. The contribution regarding distributed RDataFrame follows:

https://doi.org/10.1051/epjconf/202024503009
https://summit.dask.org/schedule/presentation/24/dask-in-high-energy-physics-community
https://summit.dask.org/schedule/presentation/24/dask-in-high-energy-physics-community
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• Vincenzo Eduardo Padulano (speaker), Enric Tejedor Saavedra. A Python
package for distributed ROOT RDataFrame analysis. In: PyHEP 2021.
https://indico.cern.ch/event/1019958/contributions/4419751/, 2021.

Some of the latest developments in terms of algorithms for task creation and
scheduling are included in the contribution to Journal of Grid Computing mentioned in
the next paragraph.

Efficient distribution of physics computations This area of research focused on
demonstrating the scalability of distributed RDataFrame. A comparison of the Spark
and Dask backend was performed on a Slurm-managed computing cluster at CERN.
This contribution has been published in the Journal of Grid Computing:

• Vincenzo Eduardo Padulano, Ivan Donchev Kabadzhov, Enric Tejedor Saave-
dra, Enrico Guiraud, Pedro Alonso-Jordá. Leveraging state-of-the-art engines
for large-scale data analysis in High Energy Physics. https://doi.org/10.1007/
s10723-023-09645-2, 2023.

Another work was carried out in collaboration with a team of physics researchers
of the CMS experiment at CERN. In this collaboration, a production-grade analysis
was written with the RDataFrame API and distributed through the Dask backend on
the resources of a grid site. There is currently no peer-review publication regarding
this effort, the relative paper is being written and is pending submission to a scientific
journal. A presentation at the latest PyHEP workshop is available:

• Tommaso Tedeschi, Vincenzo Eduardo Padulano (speakers). Lessons learned
converting a production-grade Python CMS analysis to distributed RDataFrame.
In: PyHEP 2022. https://indico.cern.ch/event/1150631/contributions/

5002793/, 2022.

Fine-grained caching of physics data In this part of the thesis the focus was oriented
towards evaluating caching mechanisms for the analysis layer. I carried out a com-
parison between existing technologies and different caching techniques, which was

https://indico.cern.ch/event/1019958/contributions/4419751/
https://doi.org/10.1007/s10723-023-09645-2
https://doi.org/10.1007/s10723-023-09645-2
https://indico.cern.ch/event/1150631/contributions/5002793/
https://indico.cern.ch/event/1150631/contributions/5002793/


Chapter 7. Conclusions and future work 164

presented at CHEP 2021. My presentation was later published in the following peer-
reviewed conference proceedings:

• Vincenzo Eduardo Padulano, Enric Tejedor Saavedra and Pedro Alonso-Jordá.
Fine-grained data caching approaches to speedup a distributed RDataFrame anal-
ysis. In: 25th International Conference on Computing in High Energy and Nuclear
Physics (CHEP 2021). https://doi.org/10.1051/epjconf/202125102027, 2021.

Later on, I developed and tested a new caching mechanism within RNTuple, with
benchmarks that used Intel DAOS as the caching system. This contribution was pub-
lished in the Journal of Cluster Computing:

• Vincenzo Eduardo Padulano, Enric Tejedor Saavedra, Pedro Alonso-Jordá,
Javier López Gómez and Jakob Blomer. A caching mechanism to exploit object
store speed in High Energy Physics analysis. https://doi.org/10.1007/

s10586-022-03757-2, 2022.

Serverless computing for HEP data analysis workflows Another topic of research in
this thesis was the serverless computing paradigm and how it can potentially be ap-
plied to the HEP analysis use case. Two new backends for distributed RDataFrame
were developed and tested in this regard. A first implementation leveraged the AWS
Lambda service to run the serverless functions. It featured a synchronous invocation
mechanism and the reduction stage was performed locally on the client side. Two dis-
tinct publications contribute to this part of the research:

• Jacek Kuśnierz, Maciej Malawski, Vincenzo Eduardo Padulano, Enric Tejedor
Saavedra, Pedro Alonso-Jordá. Distributed Parallel Analysis Engine for High En-
ergy Physics Using AWS Lambda. In: HiPS ’21: Proceedings of the 1st Workshop
on High Performance Serverless Computing. https://doi.org/10.1145/3452413.

3464788, 2021.

• Jacek Kuśnierz, Vincenzo Eduardo Padulano, Maciej Malawski, Kamil
Burkiewicz, Enric Tejedor Saavedra, Pedro Alonso-Jordá, Michael Pitt, Valentina
Avati. A Serverless Engine for High Energy Physics Distributed Analysis.

https://doi.org/10.1051/epjconf/202125102027
https://doi.org/10.1007/s10586-022-03757-2
https://doi.org/10.1007/s10586-022-03757-2
https://doi.org/10.1145/3452413.3464788
https://doi.org/10.1145/3452413.3464788
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In: 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). https:://doi.org/10.1109/CCGrid54584.2022.00067, 2022.

The other backend leveraged OSCAR, an open source serverless platform aimed
at large-scale file-driven applications. The following contribution also introduced two
different distributed reduction strategies which were compared. This work has been
published in the Journal of Supercomputing:

• Vincenzo Eduardo Padulano, Pablo Oliver Cortés, Pedro Alonso-Jordá, En-
ric Tejedor Saavedra, Sebastián Risco, and Germán Moltó. Leveraging
an open source serverless framework for High Energy Physics computing.
https://doi.org/10.1007/s11227-022-05016-y, 2023.

7.2 Future work

The HEP landscape is rich with computational challenges already today, that will
clearly become even more complex with the beginning of the HL-LHC era. This thesis
contributes towards the collective effort of meeting those challenges, specifically in the
data analysis scenario. As such, many more improvements and lines of research could
be derived from the work that has been presented. For instance, the scalability of the
tool must be demonstrated with many more different analyses, searching for different
data access patterns and computation graphs of varying complexity in final user code.
At the same time, running it on different infrastructures that may be leveraged through
either Spark or Dask could give the tool further solidity with respect to the different
computing resources available to HEP research groups, thus also maximising the
portability and reproducibility of the analysis.

It would be also interesting to add some remaining steps of the full analysis work-
flow to the distributed execution, in particular the machine learning inference which
is more and more commonly employed by physicists. Possibly, some parts of the dis-
tributed execution could be offloaded asynchronously to computing accelerators.

The serverless paradigm needs to be studied further in order to evaluate if it can
be of effective assistance to the already available computing resources in the field, for

https:://doi.org/10.1109/CCGrid54584.2022.00067
https://doi.org/10.1007/s11227-022-05016-y
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example to supply further resources during peaks of high demand. In particular, a thor-
ough evaluation of its cost efficiency is needed. The implementation of the MapReduce
pattern using only serverless functions demonstrated that it is possible to rely fully on
this model for single analysis executions, but it would be necessary to remove the bot-
tlenecks detected in the current implementation, which make it scale worse than the
distributed execution engines running on managed resources presented.
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