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Abstract: Due to their robustness, versatility and performance, induction motors (IMs) have been
widely used in many industrial applications. Despite their characteristics, these machines are not
immune to failures. In this sense, breakage of the rotor bars (BRB) is a common fault, which is
mainly related to the high currents flowing along those bars during start-up. In order to reduce the
stresses that could lead to the appearance of these faults, the use of soft starters is becoming usual.
However, these devices introduce additional components in the current and flux signals, affecting
the evolution of the fault-related patterns and so making the fault diagnosis process more difficult.
This paper proposes a new method to automatically classify the rotor health state in IMs driven by
soft starters. The proposed method relies on obtaining the Persistence Spectrum (PS) of the start-up
stray-flux signals. To obtain a proper dataset, Data Augmentation Techniques (DAT) are applied,
adding Gaussian noise to the original signals. Then, these PS images are used to train a Convolutional
Neural Network (CNN), in order to automatically classify the rotor health state, depending on the
severity of the fault, namely: healthy motor, one broken bar and two broken bars. This method has
been validated by means of a test bench consisting of a 1.1 kW IM driven by four different soft starters
coupled to a DC motor. The results confirm the reliability of the proposed method, obtaining a
classification rate of 100.00% when analyzing each model separately and 99.89% when all the models
are analyzed at a time.

Keywords: induction motor; CNN; stray-flux; automatic fault diagnosis; soft starters; broken rotor
bars

1. Introduction

Induction Motors (IMs) are widely used in a large part of industrial applications in
industrialized countries [1]. Their robustness, reliability, easy maintenance and low cost,
among other characteristics, have contributed to this fact. Squirrel Cage Induction Motors
(SCIM), more specifically, are a significant part of the IMs used in those applications [2],
consuming almost 89% of the power that industrial facilities demand [3]. Despite those
characteristics, SCIM are not immune to failures. Due to the high currents during the
start-up and other transients, they deal with thermo-mechanical stresses in the rotor bars
that can lead to a fault. This is particularly true in applications where continuous cycles of
start–stop are required [4]. To avoid stresses during the start-up, several starting systems
are used in the industry. Among others, the use of auto-transformers, stator resistors, soft
starters or the star-delta starting are the most usual starting systems [5]. In this context, soft
starters have become one of the most preferred starting systems due to their advantages. By
means of a power electronics circuit, based typically on thyristors connected in anti-parallel
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and installed on one-, two- or the three-supply phases, these devices allow one to limit the
start-up currents. Changing the conduction time of the thyristors, the Root Mean Square
(RMS) value of the supply voltage can be modified, hence modifying the profile of the
starting current. These devices allow, also, to control the duration of the voltage ramp
and the initial voltage of the supply during the starting of the motor. Some models, even
allow to set a maximum value for the starting current. Nevertheless, although the use
of these devices reduces stresses in the motors during the starting, it has been proven in
some works that this does not eliminate the risk of failure. Indeed, the electronics in soft
starters amplify certain harmonics and introduce new ones that, in some cases, can lead to
additional stresses in the rotor [6–9]. Moreover, secondary torque harmonics can appear,
resulting in resonance problems [10].

On the other hand, although motors with rotor failures like broken bars can keep
running, their efficiency decreases, resulting in a higher energy consumption and hence,
higher energy costs [11]. Furthermore, their life expectancy will decrease, and unexpected
catastrophic failures could occur, due to the fact that this kind of failure does not reveal
external symptoms of existence in its initial stages [2,12]. As a consequence of this, the
processes depending on the machine that fails can suffer shutdowns, generating, depending
on the application, high economical and time losses [13]. It is because of this that in
recent years, high efforts in developing new condition monitoring methodologies for
electrical motors have been made. The aim of these methodologies is to detect the different
motor faults in their initial stages, allowing, consequently, to avoid unexpected costs and
catastrophic failures. In general terms, these techniques rely on extracting information from
a motor’s different physical quantities (vibrations, stray-flux, currents, temperatures, partial
discharges, etc.), once captured by means of proper sensors. That information is obtained
by applying advanced signal processing tools (STFT, FFT, DWT, etc.). Although after all
these years of research in this area it is accepted that no method based on analyzing a single
physical magnitude can determine the health state of the whole motor [14], the analysis of
a specific magnitude may be much suitable to detect some specific failures than others [15].
In this regard, the analysis of the stray-flux during the start-up transient is an effective
method to detect the presence of broken bars in the rotor of induction machines. The higher
harmonic content in the resulting time–frequency maps compared to that obtained in the
analysis of currents enables a more reliable diagnosis of this specific failure [16]. Another
conclusion that arises from [14] is that the development of intelligent diagnosis systems is
a current trend in this area of research. In this regard, many previous works have applied
several techniques to identify and classify rotor faults in induction motors, but near all
of them are referred to Direct Online (DOL) started motors [17]. For instance, in [18] the
authors applied a (Convolutional Neural Network) CNN to diagnose rotor bar breakages
in DOL-started induction motors, achieving an accuracy rate of 66.7%. In this case, images
of the STFT time–frequency (t–f) maps of the stray-flux were used. On the other hand,
in [19], the authors used t–f maps obtained from current signals of a DOL induction motor
to identify the typical patterns of bar breakages, reaching an accuracy rate of 97.5%. In [20],
the authors proposed the use of a Feed-forward Neural Network (FFNN) to analyze the
stray-flux signals obtained from a DOL induction motor, obtaining an accuracy rate of 97%.
In addition, in [21], the authors applied also an FFNN, but this time, to a combination of
stray-flux and current signals, achieving an accuracy rate of 95%. Other works, like [22–24],
used CNN for the detection of bar breakages in IMs, obtaining accuracy rates of 100%, 100%
and 97.87%, respectively, but all the cases applied to DOL-started motors.

On the other hand, as it was said before, the use of soft starters introduces new
harmonics in the current and stray-flux signals. In some previous works, it has been proven
that, because of this fact, the identification of the fault patterns with some time–frequency
tools becomes more difficult using both currents [7,8] and stray-flux [25,26]. Thus, it is
important to obtain new methods that could lead to automatically identifying the presence
of these faults, before a catastrophic failure occurs, when soft starters are used. In this
regard, in [27], the authors proposed the use of a CNN, applied to the stray-flux signals,
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as a method to detect the presence and the severity of bar breakages in induction motors
driven by soft starters. The accuracy rate achieved in this work was 94.40%. By their side,
in [28], the authors used Linear Discriminant Analysis (LDA) and an FFNN, applied to
a combination of current and stray-flux signals, to detect the presence and the severity
of bar breakages in an IM driven by soft starters. In this case, the accuracy rate achieved
was 94.40%.

Attending to all the above-mentioned considerations, the automatic methods for rotor
fault detection in soft-started induction motors are still improvable. This work presents a
new methodology for the automatic detection and severity categorization of rotor faults
in induction motors driven by soft starters. The novelty of the proposed methodology is
the use of the Persistence Spectrum (PS) applied to the start-up transient stray-flux signals.
Then, a convolutional neural network (CNN) is used to automatically categorize the
severity of the rotor faults. In order to improve the dataset, data augmentation techniques
are used. In this regard, Data Augmentation Techniques (DAT) have been proven to be a
reliable way to enhance the data base used in CNN. In [18,27] it was stated that the use of
Data Augmentation Techniques is a reliable method to deal with the scarcity of samples,
providing a good dataset to use in a CNN. In particular, adding Gaussian noise to a signal
is one of the DAT that is commonly employed.

On the other hand, Persistence Spectrum (PS), also known as Power-Spectrum His-
togram, shows the percentage of the time that a particular frequency is present in a signal.
That is to say that the longer a given frequency persists in a signal as it evolves, the higher
is its percentage of time. Therefore, the brighter it will appear in the persistence spectrum
(PS). Hence, if there is any hidden component in the signal, it will be revealed, even if it is a
light one. Thus, the PS images are suitable to be used in a CNN.

To summarize, since the use of soft starters makes it more difficult to identify the
fault-related patterns with the most commonly used time–frequency tools, the main goal of
this work was to obtain a methodology that led to an easier identification of the presence
of rotor faults in soft-started induction motors. Additionally, the suitability of the method
to perform an automatic fault classification system was also a goal of this work. Having
this in mind, the characteristics of the PS made it suitable for this application, one of them
being its ability to reveal very short events present in the analyzed signal. Finally, the
stray-flux during the startup transient was the chosen magnitude for this study due to its
richer harmonic content compared to other magnitudes.

In order to verify the effectiveness of the proposed methodology, a test-bench consist-
ing of a 1.1 kW induction motor and a DC motor acting as a load was used. Four different
commercial soft starters were used to start the motor. The obtained results, achieving an
accuracy rate of 100% for each model separately and 99.89% for all the models together,
show the capabilities of the proposed approach.

Finally, to provide a global idea of the paper, its structure is presented here: Section 2
exposes the materials and methods, including the theoretical background and the proposed
methodology. Section 3 gives information about the experimental setup used for the tests.
Section 4 shows the results and their discussion and finally, Section 5 gives the conclusions
of the study.

2. Materials and Methods
2.1. Stray-Flux Analysis

In recent years, the use of the magnetic flux generated by electrical motors to obtain
information about their health state has gained interest. The analysis of this magnitude has
been proven to be a good alternative to other typical techniques used in the industry for
the condition monitoring of electrical motors (e.g., MCSA).

Within this methodology, two approaches have arisen: (1) air-gap flux analysis [29]
and (2) stray-flux analysis [30]. Among them both, the second one has attracted a significant
interest because of many reasons. Among them, the low cost of the required sensors [31]
and their simple and flexible installation on the frame of the motor [20], the fact that it is
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a non-invasive technique [17] as well as the fact that it provides reliability in some cases
where other techniques yield to false fault positives [4,32] are the most important.

Due to the non-invasive nature of the stray-flux analysis technique, it is possible to
install sensors in different positions on the motor frame. This fact allows one to capture
different flux components depending on the sensor position [33]. In an induction motor,
axial and radial stray-flux components can be distinguished [34]. It has been proven in
other works that the presence of faults in electrical motors may affect to the stray-flux, thus
amplifying some specific frequency components of the stray-flux signal that depend on
the existing fault [35]. In Figure 1, the different stray-flux components and positions of the
sensor are shown. In this regard, in position A, mainly the axial flux is captured by the
sensor, while in position C, mainly the radial component is acquired. Finally, setting the
sensor in position B allows one to capture a combination of radial and axial stray-flux.
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2.2. Fault-Related Patterns: Theoretical Frequency Evolution during the Start-Up Transient

Many previous works have proven that the presence of rotor faults affect the stray-flux,
amplifying some specific harmonics which are related to each fault. Particularly, as it has
been stated by some researchers, rotor bar breakages affect the following harmonics in the
Fourier spectrum of stray-flux signals:

1. Side band harmonics (fSH): These harmonics mainly appear in the radial component
of the stray-flux [35,36]. Their frequency values can be calculated by Equation (1):

fSH = f ·(1± 2·s); (1)

2. Axial components: Mainly observed in the axial component of the stray-flux [17], can
be calculated by Equations (2) and (3):

fs f = s· f , (2)

f3s f = 3·s· f . (3)

For all the above-mentioned components, s refers to the slip and f is the
supply frequency.

The theoretical transient evolutions of radial and axial components related to rotor bar
breakages are shown in Figure 2. As it can be seen in that figure, the upper side harmonic,
given by fSH = f ·(1 + 2·s) and depicted in blue, drops from 150 Hz to almost 50 Hz. On the
other hand, the lower side harmonic, given by fSH = f ·(1− 2·s) and depicted in orange,
drops from 50 Hz to 0 Hz and then rises to almost 50 Hz. Regarding the axial components,
s· f (depicted in yellow) drops from 50 Hz to almost 0 Hz, while 3·s· f (depicted in purple)
drops from 150 Hz to almost 0 Hz. That evolution is valid for stray-flux signals during a
direct online start-up transient.
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2.3. Persistence Spectrum

Persistence Spectrum (PS) is a commonly used technique in spectrum analyzers. Also
known as Spectrum Histogram, it is a histogram in power–frequency space. It allows one
to see the percentage of time that a specific frequency is present in a signal. The more time
a specific frequency persists in a signal as it evolves, the brighter it will appear in the PS.
Therefore, it allows one to see very short events and even low power signals hidden in
other signals [37].

The procedure to obtain the PS follows the steps listed below [37]:

• Step 1: The original signal is split into different segments of the same length (see
Figure 3). These segments may overlap or not; but overlapping leads to more detailed
spectrum analyses. The time resolution, or segment length, has to be equal to or
smaller than the signal length. The number of segments, is given by Equation (4):

k =

⌊
Nx − L
M− L

⌋
(4)

with Nx being the signal duration or length, L the length of the overlap and M the time
resolution or segment length. Symbols b c denote a function that rounds the result to
the nearest integer.

• Step 2: Once the signal is split, the power spectrum of each segment is computed by
applying the Short-Time Fourier Transform (STFT), as shown in Figure 3. The STFT
matrix is obtained by applying Equation (5).

X( f ) = [X1( f ) X2( f ) · · ·Xn( f )] (5)
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Computation of the bivariate histogram for each power spectrum. Step 4: The accumulated histogram
is plotted.

As it was stated in [38–40], the mth element of the STFT matrix is given by Equation (6):

Xm( f ) =
∞

∑
n=−∞

x(n)·g(n−mR)·e−j2π f n (6)

where:
x(n) = input signal at time n,
g(n) = window function (Kaiser window in this work),
Xm( f ) = Discrete Fourier Transform (DTF) of windowed data centered in time mR,
R = number of samples between subsequent DFT (difference between segment length

and overlap length).
For each segment, as stated in [39,41], the power spectrum is given by Equation (7):

Pm( f ) = |Xm( f )|2. (7)

• Step 3: A bivariate histogram of the power spectrum logarithm is computed for each
time value. In this regard, each segment corresponds to a time value. Every power–
frequency bin in which there is signal energy at that time, increases the corresponding
matrix element by “1” (see Figure 3).

• Step 4: Once all the bivariate histograms are obtained, an accumulated histogram is
plotted against the frequency (X axis) and the power (Y axis). Brighter colors represent
higher presence in time of a component.

In Figure 3, an overview of the Persistence Spectrum computation procedure is
shown [37]. In this figure, a 50% overlap rate is applied, which is the same rate used
in this work.
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2.4. Convolutional Neural Network (CNN)

Being a type of Artificial Neural Networks (ANN), CNNs perform specially well in
recognizing images. They are composed of an input layer, several hidden layers and an
output layer. What differentiates CNNs from other ANNs is the presence of at least one
convolutional layer as a part of the hidden layers. And it is this convolution operation
which identifies local characteristics of the input data that can be used for the classification.

The basics of CNNs are explained In [42]. Nevertheless, their way of operation is
summarized here:

• Learning stage:

Assuming that the input data xl−1 includes m 2-D matrices, they are convolved in the
convolutional layer with the learnable kernels that a layer consists of. That is to say that
for each input matrix xl−1

i (i ∈ m), it is convolved with the kernel (or filter) k j. After this,
the sum of all that is added to the bias bl . Then, the activation function f (typically a ReLU
function) is fed with the result and produces the final output of the jth kernel (or filter).
This is mathematically expressed in Equation (8). After this, a batch normalization layer
is typically used. It helps to make the training faster by normalizing every input channel
across a mini batch. Finally, a pooling layer divides the input into smaller areas and then
calculates the average or the maximum of that areas [43].

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ kl

j + bl
j

 (8)

• Classification stage:

Consisting typically of two layers (fully connected layer and classification layer), this
stage combines all the features extracted from the input data in the learning stage. First, the
fully connected layer generates a vector with as much dimensions as the number of classes
the CNN is able to predict. Then, a classification layer, usually using a softmax function,
provides the classification output.

2.5. Proposed Methodology

The proposed methodology consists of 5 main steps. First, the current and stray-flux
signals are captured by means of different sensors. Then, White Gaussian Noise is added
to the original signal to increment the number of signals. In the third step, the persistence
spectrum of each signal is computed. Then, the PS images obtained are cropped and resized
to adapt them to the requirements of the CNN, and finally, these images are used as input
of the classification CNN in the fifth step. Stated yet another way, the input of the CNN
will be the PS images after being cropped and resized to 224 × 224 × 3 images, while the
output of the CNN will be the three rotor fault classes, namely healthy state, one broken
bar and two broken bars.

To better illustrate the sequence of the procedure, a flux diagram of the proposed
methodology is shown in Figure 4:
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Figure 4. Proposed methodology overview.

As mentioned before, the proposed methodology follows the steps listed here:

• Step 1: Acquisition of the current and stray-flux signals. These two magnitudes were
captured, simultaneously, during the start-up transients. To do this, a current clamp
and a coil-based flux sensor, both of them described in the next section, were used.
The signals were stored in a waveform recorder (oscilloscope) and then downloaded
to a PC, where the signal analyses were performed. The selected position of the flux
sensor was the one allowing one to capture a combination of radial and axial stray-flux
(Position B, see Figure 1).

• Step 2: Data augmentation. In order to generate a higher number of training samples,
a Data Augmentation Technique (DAT) was applied. In this case, the addition of White
Gaussian Noise (WGN) to the original stray-flux signals was the selected technique.

The addition of Gaussian Noise to the original signals is a data augmentation tool that
is frequently used. This technique can increase the dataset by selecting different values
of standard deviations (σ) [44] or, since it directly affects the value of σ, different values
of Signal-to-Noise Ratio (SNR). In this regard, also in [44], it is proven that values of SNR
smaller than 10 dB report low improvements to the accuracy of the classification methods.
On the other hand, authors in [45] pointed out that large ranges of SNR in the injected noise
allow one to obtain better performance of the test datasets. In other works, as in [46], the
authors set the SNR range for the injected noises between 10 dB and 20 dB. Taking all this
into account and also that a level of SNR of 20 dB is commonly considered as a good value
of AWGN in electrical signals [19], a set of Gaussian Noises with SNR from 10 dB to 20 dB,
in steps of 0.2 dB, was performed for this work. Thus, the number of signals of the dataset,
including the original ones, reached the values shown in Table 1:
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Table 1. Number of signals after data augmentation, including the original ones.

Soft-Starter Healthy 1 BB 2 BB

Schneider 420 420 420
ABB 252 252 252

Siemens 336 336 336
Omron 252 252 252
Total 1260 1260 1260

In Figure 5, a comparison between one original stray-flux signal and three of the
signals with AWGN is shown. In addition, the Persistence Spectrum computed for each of
the mentioned signals are shown.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 29 
 

 

Table 1. Number of signals after data augmentation, including the original ones. 

Soft-Starter Healthy 1 BB 2 BB 

Schneider 420 420 420 

ABB 252 252 252 

Siemens 336 336 336 

Omron 252 252 252 

Total 1260 1260 1260 

In Figure 5, a comparison between one original stray-flux signal and three of the sig-

nals with AWGN is shown. In addition, the Persistence Spectrum computed for each of 

the mentioned signals are shown. 

 

Figure 5. (a) Original stray-flux signal and different signals with AWGN overlapped. (b) Persistence 

Spectra of the original signal and the three signals with different AWGN. 

• Step 3: Computation of the Persistence Spectrum of each signal. Once all the stray-

flux signals were obtained, both the captured ones and those resulting from the data 

augmentation process, the start-up transient was identified and isolated from the sig-

nal itself. Then, the Persistence Spectrum (PS) was computed for all the transients 

obtained, setting an overlap of 50% and using the Kaiser window as window func-

tion. The process to obtain the PS was the one referred in Section 2, Section 2.3. As a 

result, a set of 3780 images was obtained, one for each transient. Those images were 

stored in different folders. For each model of soft starter, the images were divided 

into three folders depending on the health state of the rotor (namely healthy, one 

broken bar and two broken bars). Those folders contained, in each case, the resulting 

PS images for the different parameter settings of the soft starter model, with and 

without load. In Figure 6, an example of the PS images obtained is shown. 

Figure 5. (a) Original stray-flux signal and different signals with AWGN overlapped. (b) Persistence
Spectra of the original signal and the three signals with different AWGN.

• Step 3: Computation of the Persistence Spectrum of each signal. Once all the stray-
flux signals were obtained, both the captured ones and those resulting from the data
augmentation process, the start-up transient was identified and isolated from the
signal itself. Then, the Persistence Spectrum (PS) was computed for all the transients
obtained, setting an overlap of 50% and using the Kaiser window as window function.
The process to obtain the PS was the one referred in Section 2.3. As a result, a set
of 3780 images was obtained, one for each transient. Those images were stored in
different folders. For each model of soft starter, the images were divided into three
folders depending on the health state of the rotor (namely healthy, one broken bar and
two broken bars). Those folders contained, in each case, the resulting PS images for
the different parameter settings of the soft starter model, with and without load. In
Figure 6, an example of the PS images obtained is shown.
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Figure 6. PS images for the ABB model, with nominal load and with the time-ramp set in 20 s and
initial voltage set in 40%, for the three health cases: Healthy, one broken bar and two broken bars. All
obtained from the captured stray-flux signal.

As explained in Section 2.3, the Persistence Spectrum represents, by means of a color
map, the percentage of time that a particular frequency appears in a signal. The x-axis
shows the frequency (in Hz) and the y-axis the power (in dB). Thus, it is a time–frequency
view. In this regard, the representing limits for the frequency were set between 0 Hz and
200 Hz, while for the power, between −100 dB and 0 dB. Those limits were chosen due to
the following reasons:

• Regarding the power, the limits were set attending to the maximum and minimum
value obtained from all the Persistence Spectra computed for all the signals.

• Regarding the frequency, the limits were set attending to the frequencies where the
components related to the patterns of the studied fault (broken bars) must appear.

• Step 4. Crop and resize images. In order to adapt the PS images obtained in the
previous step to the needs of the CNN, they were cropped and resized. The main aim
for the cropping was to eliminate the color bar and the axis legends, keeping only the
area where the PS was represented. On the other hand, since the CNN input size for
the images was set in 224 × 224 pixels, the cropped images needed to be reduced to
that size. In Figure 7, an example of the cropped and resized images against the PS
images can be seen.

• Step 5. Automatic fault identification (CNN). For the automatic classification of
the different health states of the rotor (healthy, 1 BB and 2 BB), a self-developed
Convolutional Neural Network (CNN) was used. It was implemented in MATLAB
platform, and the detailed information of the CNN layers is shown in Figure 8 and
Table 2. Additionally, the MATLAB pseudocode is shown in Appendix A, Figure A1.
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Table 2. Detailed information of the CNN layers.

No. Layer Type Layer Activation Size Layer Parameters

1 Input 224 × 224 × 3 PS images
2 Convolution (Conv-1) 224 × 224 × 8 FS: 3; No. F: 8; Stride: 1; Padding: same
3 Batch Normalization (BN-1) 224 × 224 × 8 8 channels
4 ReLu-1 224 × 224 × 8 ——-
5 Max pooling-1 112 × 112 × 8 Pool size: 2; Stride: 2
6 Convolution (Conv-2) 112 × 112 × 16 FS: 3; No. F: 16; Stride: 1; Padding: same
7 Batch Normalization (BN-2) 112 × 112 × 16 16 channels
8 ReLu-2 112 × 112 × 16 ——-
9 Max pooling-2 56 × 56 × 16 Pool size: 2; Stride: 2
10 Convolution (Conv-3) 56 × 56 × 32 FS: 3; No. F: 32; Stride: 1; Padding: same
11 Batch Normalization (BN-3) 56 × 56 × 32 32 channels
12 ReLu-3 56 × 56 × 32 ——-
13 Max pooling-3 28 × 28 × 32 Pool size: 2; Stride: 2
14 Convolution (Conv-4) 28 × 28 × 64 FS: 3; No. F: 64; Stride: 1; Padding: same
15 Batch Normalization (BN-4) 28 × 28 × 64 64 channels
16 ReLu-4 28 × 28 × 64 ——-
17 Max pooling-4 14 × 14 × 64 Pool size: 2; Stride: 2
18 Convolution (Conv-5) 14 × 14 × 128 FS: 3; No. F: 128; Stride: 1; Padding: same
19 Batch Normalization (BN-) 14 × 14 × 128 128 channels
20 ReLu-5 14 × 14 × 128 ——-
21 Fully connected (FC) 1 × 1 × 3 Output size: 3
22 Softmax 1 × 1 × 3 ——-
23 Output ——- Fault class

FS: Filter Size; No. F: Number of filters.

With regards to the training process, the Stochastic Gradient Descent with Momentum
algorithm was selected. The initial learning rate was set in 10−4, the momentum in 0.9 and
the L2 regularization factor (or weight decay factor) in 10−4. Furthermore, the min-Batch
size was set in 10, attending to the results available in the technical literature. For instance,
in [47], it is stated that sizes smaller than 32 allow one to obtain better training stability
and generalization results. By their side, authors in [48] say that values above 10 allow
faster computations. Finally, the maximum number of epochs was set in 20. The number
of validation samples during the training was 25% of the available samples, randomly
selected. An overview of the properties is shown in Table 3.

Table 3. Training properties of the CNN.

Training Algorithm Stochastic Gradient Descent with Momentum (SGDM)

Momentum 0.9
Initial learning rate 0.0001

Weight decay factor (L2) 0.0001
Mini-batch size 10

Maximum epochs 20
Validation samples 25%



Sensors 2023, 23, 316 12 of 29

3. Experimental Setup

In order to validate the effectiveness of the proposed methodology, several tests were
carried out in the laboratory. The test-bench employed was the one shown in Figure 9. It
consisted of a 1.1 kW squirrel cage induction motor (tested motor), coupled to a DC motor
which acted as a load. The tested motor (SCIM) was started by means of four different
commercial soft starters. During every start-up, the stray-flux and the current demanded by
the motor were captured. To capture the stray-flux, a handmade coil-based sensor attached
to the motor frame was used. A picture of it and its shape and main dimensions are shown
in Figure 10(a1,a2), respectively. To capture the current signal of one of the supply phases of
the motor, a current clamp was used (see Figure 10b). All these signals were recorded with
an oscilloscope and then downloaded to a PC, where the signal analyses were performed.
Both the stray-flux and the current signals were acquired for 40 s at a sampling rate of
5 kHz. All the analyses and training and validation processes were conducted on a PC,
with an Intel Core i5-9400 1 CPU (2.9 GHz) and 8 GB of memory.
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Figure 9. Test-bench used in the laboratory.

The main characteristics of the tested motor (SCIM) are shown in Table 4.

Table 4. Rated characteristics of the tested motor (SCIM).

Frequency (Hz) 50
Power (kW) 1.1

Rated Current (A) 2.4
Rated Voltage (V) 400

Connection Star
Pole Pairs 2

Rated Speed (rpm) 1440
Number of Rotor Bars 28
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Figure 10. Sensors employed: (a1) Handmade coil-flux sensor. (a2) Dimensions and shape of the coil
sensor. (b) Current clamp.

The main characteristics of the coil-flux sensor are the ones listed in Table 5. In addition,
as said before, in Figure 10(a1, a2)), the shape and dimensions of the coil sensor can be seen.

Table 5. Main characteristics of the handmade coil-based flux sensor.

Number of Turns 1000
Wire Diameter (mm) 0.2

External Diameter (mm) 80
Internal Diameter (mm) 65

Width (mm) 15

On the other hand, the main characteristics of the current clamp are listed in Table 6
and a picture of it is shown in Figure 10b.

Table 6. Main characteristics of the current clamp.

Manufacturer Chauvin Arnoux

Model MN 60
Current range (A AC) 20–200

Maximum output signal (V AC) 2
Rated Voltage (V) 600 V (CAT III)–300 V (CAT IV)
Bandwidth (kHz) 0.04–40

Output Coaxial cable with insulated BNC connector

To carry out all the tests, four different models of soft starters were employed. Each of
them had different topologies, controlling one-, two- or the three-supply phases depending
on the model. Furthermore, each model allowed one to control the start-up time-ramp and
the initial voltage or torque. The different models of soft starters used for the tests were the
ones shown in Figure 11, and their main characteristics are listed in Table 7.
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Figure 11. Models of tested soft starters: (a) Schneider ALTISTART 01; (b) ABB PSR3-600-70;
(c) Siemens SIRIUS 3RW3013-1BB14; (d) Omron G3J-S405BL.

Table 7. Main characteristics of the four models of soft starter used.

Model A Model B Model C Model D

Manufacturer Schneider ABB Siemens Omron
Country of Production Germany China Germany Japan

Model ATS01N109FT PSR3-600-70 3RW3013-1BB14 G3J-S405BL
Rated Power (kW) 4 1.5 1.5 2.2
Rated Voltage (V) 400 380–400 380–400 380–400

Rated Frequency (Hz) 50 50 50 50
Maximum Current (A) 9 3.9 3.6 5.5

Voltage Ramp Duration (s) 1–5 1–20 0–20 1–25
Controlled Phases R R-S R-T R-S-T

Regarding the studied fault, different bar breakages were induced in the rotor of the
SCIM tested. Firstly, once the healthy rotor was tested, one rotor bar was broken by drilling
a hole in the junction with the end short-circuit ring. Then, once the one-broken-bar tests
were carried out, a second rotor bar, contiguous to the previous, was broken in the same
way. A detail of the healthy rotor and the bar breakages forced is shown in Figure 12.
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Figure 12. Detail of the rotor in the different health states: (a) Healthy. (b) One broken bar. (c) Two
broken bars.

The tests were carried out following the same sequence for the four models of soft
starters. First, the healthy motor was started, without load, by means of one of the soft
starters. Different combinations of time-ramp and initial voltage/torque were performed
for each model of soft starter and for each of those combinations, the tested motor was
started once. Then, the same tests were repeated, but this time with the tested motor fully
loaded. This was achieved by varying the excitation voltage of the DC machine coupled to
the tested motor. Afterwards, the procedure was repeated first for the case of one broken
bar and then for the case of two broken bars.

For each start-up, the coil-flux sensor was placed in a position which allowed one to
obtain a combination of axial and radial flux (called Position B, see Figure 1). In addition, the
current signals of one of the supply phases was captured by means of the above-mentioned
current clamp. These tests allowed one to obtain a batch of signals of the tested SCIM under
different starting conditions. The different combinations of parameters performed for each
soft starter are listed in Table 8, and also the number of signals obtained for each model.

Table 8. Parameter combinations performed for each soft starter. Number of signals obtained.

MODEL A: Schneider Combination 1 Combination 2 Combination 3 Combination 4 Combination 5 Signals

Time-ramp Duration (s) 1 2 3 4 5
Initial Voltage (%) 80 67.5 55 40.5 30
Total number of signals 10

MODEL B: ABB Combination 1 Combination 2 Combination 3 Signals

Time-ramp Duration (s) 1 10 20
Initial Voltage (%) 70 55 40
Total number of signals 6

MODEL C: Siemens Combination 1 Combination 2 Combination 3 Combination 4 Signals

Time-ramp Duration (s) 0 5 10 20
Initial Voltage (%) 100 70 50 40
Total number of signals 8

MODEL D: Omron Combination 1 Combination 2 Combination 3 Signals

Time-ramp Duration (s) 1 12.5 25
Initial Voltage (%) 72 58 44
Total number of signals 6
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4. Results and Discussion

In this section, the results obtained by applying the proposed methodology are shown.
First, a comparison of the different persistence spectra for the four models of soft-starter and
each health case are presented, highlighting the differences found. Then, the effectiveness
of the CNN proposed for each model of soft starter separately and for all of them combined
is shown.

Although many analyses were carried out in this work, only the most representative
are shown here. In this regard, in Figure 13, persistence spectra for each rotor health
state and soft starter model are compared. Those persistence spectra correspond to tests
when the motor was fully loaded. The settings for each soft starter model, were those
corresponding to the combination of longest time-ramp and lowest initial voltage (see
Table 8).
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Taking a look at the images in Figure 13, some differences can be distinguished. For
all the cases, some components from 0 Hz to 50 Hz increment their amplitudes as the
fault worsens. This also happens to some components from 150 Hz to 50 Hz. This fact fits
with the typical behavior of the axial and radial components associated to the presence
of broken bars. As it can be seen in Figure 2, axial components s· f and 3·s· f evolve from
50 Hz to almost 0 Hz for the first one and from 150 Hz to almost 0 Hz for the second one.
On the other hand, radial components evolve from 50 Hz to 0 Hz and again to almost
50 Hz for the case of f ·(1− 2·s) and from 150 Hz to almost 50 Hz for the case of f ·(1 + 2·s).
Since the position of the flux sensor allowed one to capture the combination of radial
and axial stray-flux, it makes sense to see the influence of both types of components in
persistence spectra.

In Figure 14, as an example, the above-mentioned differences for each health state of
the rotor are highlighted in a set of PS images. The same differences can be identified in all
the cases studied.
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Figure 14. Example of differences in PS for each health state of the rotor.

With regards to the effectiveness of the proposed methodology, Figures 15–18 show
the confusion matrices and the training progresses for each model of soft starter, separately.

For the case of the SCHNEIDER model, 945 training samples (315 samples per category)
were used to train the CNN and 315 different samples (105 samples per category) were
used for the validation. In Figure 15, it can be observed that the accuracy of the CNN
reaches 100%, which means that the methodology can identify and separate the different
rotor health states in every case, even with different combinations of time-ramp and initial
voltage. In addition, the training process reaches 100% accuracy after about 150 iterations,
in epoch two. Moreover, it becomes stable at 100% after, more or less, 900 iterations.

For the case of the ABB model, 567 training samples (189 samples per category) were
used to train the CNN and 189 different samples (63 samples per category) were used
for the validation. In Figure 16. it can be observed that the accuracy of the CNN also in
this case reaches 100%. Furthermore, the training process reaches 100% accuracy after
about 180 iterations, in epoch four. Moreover, it becomes stable at 100% after, more or less,
200 iterations.

For the case of the SIEMENS model, 756 (252 samples per category) training samples
were used to train the CNN and 252 different samples (84 samples per category) were
used for the validation. In Figure 17, it can be observed that the accuracy of the CNN also
in this case reaches 100%. In addition, the training process reaches 100% accuracy after
about 68 iterations, in epoch one. Moreover, it becomes stable at 100% after, more or less,
160 iterations.
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For the case of the OMRON model, 567 training samples (189 samples per category)
were used to train the CNN and 189 (63 samples per category) different samples were
used for the validation. In Figure 18, it can be observed that the accuracy of the CNN also
in this case reaches 100%. Furthermore, the training process reaches 100% accuracy after
about 160 iterations, in epoch three. Moreover, it becomes stable at 100% after, more or less,
340 iterations.

Finally, in Figure 19, the confusion matrix and the training progress for all the models
of soft starters combined are shown. In this case, 2835 training samples (945 samples
per category) were used to train the CNN and 945 (315 samples per category) different
samples were used for the validation. Although four different topologies of soft starter and
different combinations of time-ramp duration and initial voltage were compared in this
case, the accuracy achieved a rate of 99.89%. That is to say that only one of the samples
was misclassified. Moreover, the misclassified prediction was among the healthy and first
stage of failure (one broken bar). The training process reaches the referred accuracy after
about 650 iterations, in epoch three, and it becomes stable at 99.89% after, more or less,
3000 iterations.

Once the capabilities of the proposed methodology have been exposed, in Table 9, it
is compared with the results of other methodologies proposed for broken bar automatic
detection in soft-started induction motors. Additionally, since there are not many works
focused on soft starters, the results of other works focused on Direct Online starting are
also included in the table.

Table 9. Proposed methodology compared with other methodologies used for automatic detection of
rotor bar breakages.

Reference Methodology Start-Up Method Magnitude Analyzed Accuracy Rate

Pasqualotto et al. [18] CNN, STFT, Data
Augmentation Techniques DOL Stray-Flux 66.70%

Zamudio et al. [21] FFNN, STFT DOL Stray-Flux and Current 95.00%

Zamudio et al. [20] FFNN, STFT DOL Stray-Flux 97.00%

Rivera et al. [19] Tooth-FFT, Pearson Correlation DOL Current 97.50%

Ince et al. [24] CNN, Back-Propagation
Algorithm DOL Current 97.87%

Camarena et al. [50] Pearson Correlation, Wavelet
Transform DOL Current 99.00%

Valtierra et al. [22] CNN, STFT DOL Current 100.00%

Lopez et al. [49] Normal-Distribution, Otsu
Segmentation, Multi-STFT DOL Current 100.00%

Pasqualotto et al. [27] CNN, STFT and Data
Augmentation Techniques Soft Starters Stray-Flux 94.40%

Navarro et al. [28] STFT, FFNN, Arithmetic Mean
and Maximum Value Soft Starters Stray-Flux and Current 94.40%

Proposed Methodology
CNN, Persistence Spectrum

and Data Augmentation
Techniques

Soft Starters Stray-Flux 100.00%
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With regards to the accuracy of the methodologies, some of the works in Table 9
achieved a rate of 100% [22,23,49], but all of them were focused on DOL starting, and they
were analyzing current signals. On the other hand, those works focused on soft-started
induction motors and achieved, in both cases, an overall accuracy of 94.40%, analyzing the
stray-flux [27] and the combination of stray-flux and current [28]. Both of them relied on
the STFT as the time–frequency analysis tool, which displays noisy time–frequency maps
when soft starters are used, making it more difficult to identify the typical patterns related
to broken bars.

On the contrary, the proposed methodology relies on the use of Persistence Spectrum
as time–frequency display. This method allows one to see even very short events, leading to
an easier identification of fault-related patterns and allowing one to achieve an accuracy rate
of 100% when analyzing each model of soft starter separately and 99.89% when analyzing
all the models combined.

5. Conclusions

In this work, a novel methodology to automatically detect and categorize the severity
of rotor faults in induction motors driven by soft starters is presented. This methodology
relies on the computation of the Persistence Spectrum of the start-up transient of stray-flux
signals. Then, the images obtained are used as input for a self-developed CNN in order to
obtain their classification. Experimental results prove that not only the accuracy achieved
is very high, improving the ones of other works focused on soft-started induction motors,
but also the convergence of the training progress to the final accuracy rate is very fast.

Thus, taking into account all the above-mentioned and the results shown in the
previous section, the following conclusions arise:

• The use of the persistence spectrum as a way to analyze the stray-flux signals during
the start-up transient allows one to detect the health state of the rotor.

• Even in the case analyzed in this paper, where soft starters are used to drive the motor
and so the level of noise in the signal makes it difficult to identify the characteristic
patterns of the fault when using typical time–frequency tools (such as STFT), the
use of this method allows one to identify not only the presence of the fault, but also
its severity.

• Even when different starting settings are performed and different topologies of soft
starters are used, this method achieves a very high accuracy rate (99.89%), proving
its reliability.

• This method is a promising way to diagnose induction motors when using soft starters
and could lead to integrate the diagnosis system in the soft starter itself, only by
adding an external flux sensor.

The results prove that the use of this method could lead to a reliable diagnosis of the
health state of the rotor of SCIMs, allowing one to schedule proper maintenance and hence,
reducing the energy consumption due to the running of damaged motors and avoiding
unscheduled shutdowns of the processes depending on them.

Finally, although a very high accuracy has been achieved with this classification
method, further studies have to be carried out in order to evaluate the generalized possi-
bilities of the proposed methodology. The authors are carrying out more tests to evaluate
the application of this method to other faults and SCIMs of different nominal power. Fur-
thermore, the authors plan to evaluate the application of this method to other types of
motors, like synchronous reluctance motors or permanent magnet synchronous motors, to
detect other kind of failures, as well as proposing complementary methodologies based
on computing statistical indicators based on the obtained results that may enhance the
diagnosis in some specific cases.
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Appendix A

In this appendix, the pseudocode of the CNN is shown in Figure A1:
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Figure A1. Matlab pseudocode of the CNN.
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