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Estimating the number of new and repeated bidders in construction 

auctions 

ABSTRACT 

The number of new bidders – bidders from whom there is no previous registered 

participation – is an important variable in most bid tender forecasting models, since 

the unknown competitive profile of the former strongly limits the predictive 

accuracy of the latter. Analogously, when a bidder considers entering a bid or when 

an auctioneer is handling a procurement auction, assessing the likely proportion of 

experienced bidders is considered an important aspect, as some strategic decisions or 

even the awarding criteria might differ. 

However, estimating the number of bidders in a future auction that have not 

submitted a single bid yet is difficult, since there is no data at all linking their 

potential participation, an essential requirement for the implementation of any 

forecasting or estimation method. 

A practical approach is derived for determining the expected proportion of new 

bidders to frequent bidders as a function of the population of potential bidders. A 

multinomial model useful for selective and open tendering is proposed and its 

performance is validated with a dataset of actual construction auctions. Final remarks 

concern the valuable information provided by the model to an enduring unsolved 

bidding problem and the prospects for new research continuations. 

Keywords: Modelling; Forecasting; Bidding; Tendering; New bidders; Multinomial. 
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Introduction 

Public bidding constitutes a significant source of work for many contractors in 

the construction industry and makes a substantial contribution to the GDP of 

developed countries (8.7 trillion USD globally according to the International 

Monetary Fund  (IMF, 2014) or 9.7 trillion USD according to the World Bank (WB, 

2013)). Bidders weigh many factors when making their decision to bid (d2b) and 

setting an appropriate mark-up. According to studies in the UK (Shash, 1993) and 

the US (Ahmad & Minkarah, 1988), the number and identity of bidders to be faced 

are among the most important of these. Similarly, the huge literature on the 

economic theory of auctions makes the crucial assumption that these are common 

knowledge to the bidders or that all are independent and identically distributed (iid) 

(see Klemperer, 2004, for a review of the main contributions). It has been known for 

many years, for example, that the number and competitive profiles of bidders 

profoundly conditions major tender outcomes (e.g., Dyer et al., 1989; Levin and 

Ozdenoren, 2004; Hu, 2011, Ishii et al., 2014) with the phenomenon of the winner’s 

curse being the most celebrated (Capen et al., 1971).  

Also, from the auctioneer’s point of view, it is equally important to assess fairly 

and adequately the potential bidders that will submit bid proposals (Ballesteros-

Pérez, et al., 2015; European Union, 1999; Wang et al., 2013). It is known, for 

instance that inexperienced bidders are more unpredictable and more prone to submit 

abnormally high or low bids (Ballesteros-Pérez et al., 2013a, 2015b), while 

experienced, recurrent, bidding is correlated with a higher rate of success (Fu et al., 

2002, 2003). This usually requires designing effective awarding criteria in line with 

both the auctioned item characteristics and specific potential bidders in order to 

make a sound and effective discriminative ranking of proposals (Ballesteros-Pérez et 

al., 2016a; Liu et al., 2015). 
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Empirical tests have, however, shown the iid assumption to be inappropriate for 

construction contract bidding (Skitmore, 1991; Oo et al., 2010) – leaving the need 

for a reliable method of determining the number and identity of bidders in support of 

both bidding practice and the tenability of theory. In practice, this is done by the 

bidder’s personal experience and/or analysis of competitors’ previous participation 

ratios in projects of similar characteristics (e.g., owner, type and size) (Ballesteros-

Pérez et al., 2014) and nearby location (Fu, 2004) 1. More rigorous Bid Tender 

Forecasting models (BTFM) (Ballesteros-Pérez et al., 2012, 2013b; Carr, 1982; 

Friedman, 1956; Gates, 1967; Skitmore & Pemberton, 1994) have been advanced 

that rely on a database of the past bidding behaviour of individual bidders to provide 

a statistical base for accurate forecasts and projections for forthcoming bidding 

encounters. 

Such models work well in situations where there is a large proportion of regular 

bidders. Construction contract auctions, however, invariably involve a large 

population of potential bidders from which an irregular few bid or are selected to bid 

– a typical auction-bidder matrix for a database is well over 90% sparse (Skitmore, 

2013). This raises the question of how to deal with a situation where there is little or 

no data concerning potential bidders, either because the number of previous similar 

auctions is too low, too old or just because the information involved has not been 

shared or made publicly available. 

Friedman (1956) and Gates’ (1967) classical recommended treatment for 

potential bidders not contained (registered) in the database is to be modelled as an 

average bidder - a convenient imposed assumption of most BTFM (Ballesteros-Pérez 

et al., 2016b) as it reduces the problem to one of just knowing the number of such 

bidders and not their identities. Even in this simplified form, however, the number or 

                                                 
1 This is not to mention the known, but dubious, practice of informal intercommunication between 
bidders and their contacts – the bidders “grapevine”. 
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at least the proportion against other previously identified key competitors, cannot be 

directly inferred – a difficulty that has been regarded as problematic even from the 

very first studies in tendering theory (Runeson & Skitmore, 1999). 

Indeed, in order to sharpen the accuracy of any BTFM – which is particularly 

necessary when there is not a large proportion of regular bidders or at the early 

stages of data gathering - it is necessary to consider the identity of any potential 

competitor bidder in the model. Friedman and Gates’ models allowed for this 

feature, but their implementation is also problematic due to the one missing crucial 

piece of information: namely, when identities are considered, three essential pieces 

of information are required. First, it is necessary to model the competitive profiles of 

each bidder separately, as some will bid more aggressively or conservatively than 

others. Second, it is required to model the competitive profile of those bidders from 

which we know nothing (those who have not yet submitted even a single bid). These 

can be generally modelled as the average bidder. Third, it is necessary to anticipate 

the probabilities that each of the known and still unknown bidders will submit a bid 

for the next auction. However, estimating the probabilities of a single known bidder 

is relatively easy since it can be achieved by analysing, for instance, how frequently 

they submitted bids for similar contracts in the past. However, in terms of the 

probability that an unknown bidder submits a bid, the real problem is not to estimate 

the probability, but to anticipate the total number of the unknown bidders who might 

try to submit their first bid (or alternatively extend the problem to anticipate how 

many of the so far once-, twice, thrice-bidders might submit another bid). This is the 

essential piece of information that all current BTFM are lacking and the raison d’ 

être for the model proposed later. 

The problem endures today and, apart from Mercer and Russell’s (1969) distant 

suggestion to derive information from the analysis of other more frequent bidders for 

which data is available, no method has yet been developed for anticipating how 
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many such new bidders might enter a future bid (Skitmore, 1986). In recognition of 

this, and in view of its importance for both theory and practice, two approximate 

approaches are examined. First, assessing the number/proportion of bidders who, 

despite not having submitted a single bid yet, are likely to participate in the next 

auction, and, second, appraising the population size of all bidders from which such 

potential bidders are likely to emerge. For this, a well-known statistical distribution 

not commonly found in the construction management literature is used: the 

Multinomial distribution. This distribution is shown in the results to provide good 

approximations of the needed estimates for both open and selective tendering 

schemes. 

The paper is structured as follows. In the next section, a brief but focused 

Literature Review is provided. This is followed in Materials and Methods by an 

introduction of the construction tender dataset used in the study to exemplify the 

models’ performance; a clarification of the terminology and most important variables 

that are incorporated in the multinomial model; its theoretical basis; and a simple 

method for estimating the bidders’ population size. Next, a Calculations section 

presents two useful conceptual simplifications of the general multinomial model 

when the number of future participating bidders is known and unknown, and a 

numerical example of the use of the former. A Results section then provides a final 

performance summary of the model. Finally, the last Conclusions section 

summarises the conceptual framework developed, highlighting potential future ways 

of improvement and the prospects for new research continuations. 

Furthermore, for the sake of clarity it is noted that the terms tender and auction 

will be used synonymously from this point. 
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Literature review 

Estimating the number of new bidders not registered yet in a database, NN, for a 

forthcoming construction auction is more complex than it seems, particularly in the 

initial stages collecting historical construction auction data and/or when there is 

hardly any experience with similar types of contracts or specific contracting 

authorities (Ballesteros-Pérez et al., 2010). However, it is precisely in these 

situations that anticipating NN is the most useful. 

Many attempts are reported in the tendering literature to forecast the total 

number of bidders, N, for a future auction (Ballesteros-Pérez et al., 2015c). The first 

proposals by Friedman (1956) contain several alternatives to forecast the expected 

value of N. One of the most popular of these has been to treat N as a purely 

stochastic variable, with values being drawn randomly from a known probability 

distribution. In experimental settings, for example, N is frequently considered to be 

purely stochastic (McAfee & McMillan, 1987) or even as a fixed value in Games 

and Auctions theory (Harstad et al., 1990), the main concern being to examine how 

different assumptions relating to types of auction formats and bidders’ valuations of 

the auctioned items affect the players’/bidders’ optimal equilibrium strategies 

(Klemperer, 2004). Friedman’s initial suggestion for modelling this is the Poisson 

distribution, on the premise that the formation of N is due the ‘arrival’ of bidders into 

the auction, the Poisson being known to provide a good model in such ‘arrival’ 

situations. Indeed the use of this particular distribution triggered a long academic 

discussion about the suitability of this and other distributions for a wide range of 

bidding situations. Throughout the subsequent six decades, a long list of candidate 

distributions involving almost all the classical probability distributions (e.g. Poisson, 

Normal, Log-Normal, Uniform, Weibull, Gamma, Laplace) have been tested, but 

with inconclusive results (Stark and Rothkopf 1979, Engelbrecht-Wiggans et al. 

1986, Skitmore 2013, Ballesteros-Pérez et al. 2015a, 2015c). Nowadays, despite an 
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extensive multi distribution fit analysis performed by Ballesteros-Pérez et al. 

(2015c), the debate concerning the appropriate distribution for modelling the 

statistical variation of N remains open, although the Poisson distribution is still 

commonly adopted in the analysis of online auctions (Mohlin et al., 2015) and 

numerical simulations (Takano et al., 2014). 

Another of Friedman’s proposals, reiterated by Rubey and Milner (1966) ten 

years later, consists of just combining the little information available about the 

potential competitors with the bidder’s experience. In this respect, it is known in 

practice and theory that the value of N in a construction contract auctions depends on 

project type and size (Azman, 2014; Drew & Skitmore, 2006), client (Ballesteros-

Pérez et al., 2012), geographical location (Al-Arjani, 2002; Benjamin, 1969) and 

market conditions (Ngai et al., 2002; Skitmore, 1981). However, these variables are 

generally difficult to standardize (Oo et al., 2007, 2010a, 2010b). 

As a result, only one partial early refinement has been implemented so far to 

improve the estimation of N. This refinement utilises the usually existing moderate 

correlation between N and contract economic size (project budget) (Rickwood, 1972; 

Wade & Harris, 1976), a result that certainly offers higher accuracy in predicting the 

value of N than considering it to be purely random (Ballesteros-Pérez et al., 2015c). 

However, forecasting the number of new bidders, NN, involves an extra layer of 

uncertainty. An obvious approach is to infer its quantity from N-NF, the difference 

between N and the expected number of frequent bidders NF. Forecasting N-NF, 

although still quite imprecise, is likely to be far less so than forecasting NN. 

Forecasting N-NF has encountered two main problems though. Firstly, it is usual for 

the same bidder to bid for different types of work (multi-market scheme) (Morin & 

Clough, 1969). Secondly, the bidder’s decision to bid (d2b) is limited by the amount 

of work the bidder can carry out concurrently (Oo et al., 2012; Skitmore, 1988). Both 
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problems clearly act in opposite directions since they make bidders bid more or less 

competitively than imagined, respectively. 

The best approach found so far for forecasting NN or NN as N-NF has been to 

treat probabilistically the identities of bidders by groups of similar characteristics 

(Shaffer & Micheau, 1971; Wade & Harris, 1976). For example, Skitmore (1986) 

classified the potential competitors as “key” (frequent and highly competitive 

bidders) and “strangers” (bidders either with low competitiveness and/or low 

frequency of participation) (Dass et al., 2014).  

Nevertheless, these approaches do not solve the problem of anticipating the 

participation of bidders from whom the company does not have any information. As 

pointed out earlier, bidders from whom there is no previous experience can only be 

modelled as averagely competitive. However, the present study focuses only on the 

number of new bidders, not in their competitive behaviour. This latter issue will be 

left for a separate piece of research. Also, since 1986 there have been no significant 

contributions in this area with the exception of some adjacent studies concerning 

new advances on the statistical nature of N (e.g. Athias & Nuñez, 2009; Ballesteros-

Pérez et al., 2015c; Costantino et al., 2011; Skitmore, 2008). 

 

Materials and Methods 

Tender dataset 

In order to develop a thorough explanation of the two methods proposed for 

forecasting NN, a real construction tender database is presented. This comprises data 

in Skitmore’s (1986) PhD thesis obtained from the records of a bidding information 

agency that held details of most bids for most projects in the London area in card 

form. To collect the data, “a period of one week was spent copying a sample of 

project data for the period October 1976 to June 1977”. The bids and associated 

bidder’s names were recorded and the names later encoded for analysis. The 
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resulting number of projects for which a full set of bids, together with the identity of 

the bidders, were available for analysis totalled 373” (Skitmore, 1986: 353). 

The dataset retrieved contains 1915 sealed economic bids submitted by 354 

different bidders’ in 373 building-related auctions with an average number of total 

participating bidders of 5.13 (ranging from a minimum of 2 bidders up to a 

maximum of 11 bidders per auction). Concerning the contract (budget) size, the 373 

auctions ranged from 10,266 GBP to 8.8 million GBP. A complete transcription of 

the tender dataset can be found as Supplemental online material. 

Despite being relatively old, this dataset is chosen because it is large enough to 

reveal patterns that would not be otherwise revealed. Also, this kind of homogeneous 

database, including both bids and bidder ID information continuously over such a 

short-time period is generally extremely difficult to obtain in present day 

circumstances. 

Finally, it is noted that the dataset contains selective auctions only, that is, the 

maximum number of bidders was determined and restricted by the auctioneer 

(client/consultant) to a group of pre-qualified bidders. Therefore, the auctioneer 

knew the identities of the potential bidders but that information was not shared with 

the bidders themselves. This is in contrast with an open tendering scheme (open 

auctions), where there is no such upper limit set on number of bidders, and allows a 

comparison to be made between these two different bidding scenarios. 

The contracts (auctions) in the database are ordered in the sequence of the 

auction opening dates, such that contract i=1,2,…,c, where c is the number of 

contracts in the database. Letting r denote the cumulative number of bids recorded 

by a bidder by the time of the ith contract, Figure 1 provides two graphs of the 

number of bidders with r bids as i increases. The top graph shows the number of 

bidders with exactly r bids submitted, while the bottom graph shows the number of 

bidders with at least r bids (r bids submitted or more). By i=c=373 auctions, 123 
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bidders had r>5 bids submitted but, in order to provide essential information only, no 

curves representing r>5 bids are included. 

< Insert Figure 1 here > 

In Figure 1 it is easy to see how the cumulative r-graph (top) shows softer curve 

growths. This is because each cumulative ≥r curve contains the =r, =r+1, =r+2, … 

curves (from the bottom graph). 

Conversely, the top graph represents the number of bidders who have submitted 

exactly r bids at a given point in time (expressed in number of auctions completed). 

This means that, at any moment, any r bidder can become an r+1 bidder once it 

places another bid, which is the reason why the top curves can increase or decrease 

or even overlap (since it is possible that, at any auction i, there are more r+1 bidders 

than r bidders). 

Finally, both graphs are considered relevant since, once both kinds of curves are 

modelled, the mass r curves (top) will allow us to monitor the evolving experience of 

a given number of bidders (by bidding more times), while the cumulative r curves 

(bottom), particularly the r≥1 curve, will allow the number of new bidders to be 

estimated for the next auction through its decreasing gradient. 

 

Terminology 

Before continuing, it is necessary to establish a common nomenclature for the 

variables that will be used throughout the rest of the analysis. Let: 

M(i)  be the population of potential bidders in the market on completion of the ith 

auction. 

c the number of auctions (contracts) in the database, where i=1,2,…,c as shown 

in the X-axis labels from Figure 1. In our particular dataset c=373. 

k(i) the number of participating bidders for the ith auction (previously referred to 

as N) 
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r the number of bids a bidder has recorded in the database after the ith auction 

has been completed. That is, r=1 for a once-only bidder, r=2 for a twice-only 

bidder, etc., with r=0 denoting a bidder who has yet to appear in any of the 

auctions in the database at this point. 

n(i,r) number of r bidders in the database when the ith auction is completed  

(0 ≤ r ≤ i ≤ c) so that at any time n(i,r=0)+n(i,r=1)+…+ n(i, r=i)=M(i). 

xr is the change (increase or decrease) in the number of r bidders from the ith 

auction being completed to the i+1th auction being completed, that is, 

xr=n(i+1,r)-n(i,r). Obviously, -k(i+1) ≤ xr ≤ k(i+1) always. For example, 

xr=1>0 denotes the number of new bidders (now once bidders) from M(i+1), 

that is once auction i+1 is completed (previously referred to as NN). 

Pr(xr) is the probability of there being a change (increase or decrease) of xr in the 

number of r bidders from the ith auction being completed to the i+1th auction 

being completed. 

 
Multinomial model 

Of the k(i+1) participating bidders for the i+1th auction, the bidders can be either: 

• from the n(i,r=0) set - potential bidders in the market that are not yet in the 

database. 

• from any n(i,0<r≤i) set – bidders already identified in the database that have 

submitted r bids so far. 

At the same time, on completion of the i+1th auction, each of these participating 

k(i+1) bidders will move from being a r-bidder to a r+1-bidder and hence they will 

individually generate a one unit increase in their respective n(i+1,r+1) groups, while 

they will generate a one unit decrease in their respective n(i+1,r) groups. 

Obviously, the more r-bidders for the ith auction, the higher the chances that 

some will be promoted to the r+1 set in the i+1th auction. Namely, if we assume the 
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promotions happen at random, the probability of a r-bidder bidding for the i+1th 

auction is the number of r-bidders on completion of the ith auction, n(i,r), divided by 

the total population of bidders on completion of the ith auction, M(i). This is also the 

probability of a bidder from a r set being promoted to the r+1 set. In other words, the 

total number of bidders from the predecessor set of r-bidders, when divided by the 

total number of existing and potential bidders, determines the probability that the r+1 

set increases on completion of the i+1th auction. Mathematically this simple idea can 

be expressed as Pr(xr)=n(i,r-1)/M(i), which is exactly a multinomial distribution. 

The multinomial distribution is a generalization of the binomial distribution but, 

unlike the binomial where the outcome is either a success or failure (2 possible and 

complementary outcomes), the multinomial allows for multiple outcomes. The 

outcomes here are the “promotion” 2 of each of the k(i+1) participating bidders from 

a n(i,r) group to the n(i+1,r+1). With all this, the multinomial model can be stated 

as: 

                                                 
2 Until Equation 1 is simplified later into Trinomial and Binomial models, this tentative multinomial 
model only considers the promotions, not the desertions (only positive changes or increases of xr), of 
bidders from the r group to the r+1 group. Otherwise the sum of outcomes x1, x2, …, xi would be zero, 
since the promoted r-bidders would the same as the leavers from the r-1-bidders category; if not for 
the new bidders (r=1 bidders, that is, x1) who would be the only ones that would add (they would be 
the only new ones), but not subtract. 
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Therefore, for a series of k(i+1) independent trials, each of which leads to a 

success for exactly one of r categories (sets of n(i,r=1,2,…i+1) bidders at auction 

i+1), with each category having a given fixed success probability pi (equalling 

n(i,r=i-1)/M(i)), the multinomial distribution gives the probability of any particular 

combination of numbers of successes for the various i+1 categories (success 
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understood here as the promotion – desertions not counted – of one of the k(i+1) 

participating bidders from set n(i,r) to set n(i+1,r+1)). 

The problem now is that M(i) is not known, and that this multinomial distribution 

has a plethora of possible outcomes (different combinations of r-bidders promotions 

to the r+1 groups) for a higher number i of auctions. Therefore, it is quite difficult to 

know if the outcomes that have been obtained at each step (as we add one more 

auctions and the number of n(i,r) sets also increase) are similar to one of the most 

likely outcomes whose probabilities would be obtained by (1). This forces us to 

resort to a simplified trinomial (for PMF =r-bidder curves as in top Figure 1) or 

binomial (for CDF ≥r-bidder curves as in bottom Figure 1) expressions which are 

dealt with in the next section. 

 

Bidder population size 

As has already been noted, an estimate of the bidder population size M(i) is 

indispensable for the multinomial model. However, despite being an important figure 

for any auctioneer or bidder that operates in a particular market, its estimation has 

yet to be considered in the construction management literature. Particularly, it is 

important to remember that M(i)=n(i,r=0)+n(i,r=1)+…+ n(i, r=i), from which the 

number of sets n(i,r≥0) are known as they have been observed (counted) in the 

previous i auctions, but not the group of n(i,r=0) whose size is not known and also 

varies as auctions are completed. 

A simple, yet powerful, method for estimating M(i) relates to the ratio of new to 

not new bidders in each auction. This estimation method assumes that every bidder 

has the same probability of participating, which will not be true for a small group of 

intensive bidders, but it appears to work well for the overall bidder population, 

particularly with open auctions, as reported later in the Results. 
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To understand the method, suppose that, as bids are opened and contracts 

awarded, a register is kept of all the different bidders that have submitted at least one 

bid. It is expected that during the first auctions, most of the bidders will be “new” 

(they will have not submitted a bid before). However, as the number of auctions 

increase, the proportion of non-new (registered) bidders will start to catch up with 

the proportion of new bidders (who are registered for the first time on completion of 

the ith auction). Once these proportions become equal, for instance, we can assume 

that the probability of new and non-new bidders being present in an auction are also 

equal, which implies that the populations of new and non-new bidders are equal too. 

Hence, the total population of new and non-new bidders is twice that on the non-new 

bidders – the ones already in the database! Assume, for example, that on completion 

of auction i-1=24, 100 different bidders have been identified and that, for auction 

i=25, there are k(i=25)=8 participating bidders, 4 bidders of which are new and 4 

have submitted at least one bid in previous encounters. The number of different 

bidders in the database is now 100, so the estimated total population of potential 

bidders is 200. 

Of course, the higher the number of k(i) bidders in auction i, the higher the 

accuracy of the estimation, but the number of participating bidders tend to be rather 

small (especially in selective auctions).  

The estimate of M(i) at auction i is therefore 

)1,1()1,()(
)1,1()·(
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)(

)1,1()(
1 ≥−+≥−
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rinrinik

rinik
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where the numerator represents the number of “different” bidders identified until 

the previous auction (frequent bidders when auction i-1 is completed) divided by 

(k(i)-x1)/k(i) which corresponds to the proportion of “frequent” bidders (out of the 
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k(i) participating bidders in auction i). Substituting the values of the numerical 

example above into (2) gives 

bidders
rinrinik

rinikM i 200
4

800
1001048

100·8
)1,1()1,()(

)1,1()·(
25 ==

+−
=

≥−+≥−
≥−

==  

as expected.  

Figure 2 represents the evaluations of (2) for all auctions i (from 1 to 373) 

provided x1≠k(i) in our London dataset. Of course, every time the denominator in (2) 

equals zero (when the number of new bidders x1 from auction i-1 to auction i equals 

the number of participating bidders k(i)), Mi goes to +infinity, so these points are not 

included. Also, shown in Figure 2 is the best regression expression found. This has a 

coefficient of determination of 0.5611, which is sufficient for a rough approximation 

like this. 

< Insert Figure 2 here > 

In addition to providing the first approximation to the number of potential 

bidders in a given market, Figure 2 provides further interesting information, such the 

fact that this population keeps expanding over time (since once a bidder has been 

identified it cannot be a new bidder anymore). That is, it is not a constant value and, 

despite some bidders dropping out of the market, their cumulative registered number 

is monotonically increasing. It must be borne in mind, however, that this is not 

equivalent to say that the number of “new” bidders will keep growing. As noted 

above, it is quite likely that, sooner or later, the proportion of frequent bidders will 

grow faster than M(i), but without being able to exceed this value either. 

 

Calculations 

Simplified multinomial model when the number of bidders is known 

The problem with the multinomial model is the extraordinarily high number of 

combinations of sets of n(i,r) bidders, among which the k(i) participating bidders of 
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an auction i can be distributed at the same time. Two simplifications of the 

multinomial expression in (1) are proposed. First, a trinomial expression for the 

number of bidders that have submitted “exactly” r bids; second, a binomial 

expression for modelling the number of bidders that have submitted “at least” r bids. 

Therefore, a simplified expression of (1) for modelling the r-only bidders is a 

trinomial distribution (multinomial with just three outcomes) that focuses on one 

specific n(i,r) set at a time. However, whereas in the multinomial expression we only 

observed the increasing (promotions) numbers of bidders in all r sets at auction i+1 

(because it was implicitly assumed that an increment in n(i+1,r) meant a decrement 

in n(i,r-1)), now it is necessary to take into account both the inflows (bidders that are 

promoted from the r-1 set at the ith auction to the r set at the i+1th auction) and 

outflows (bidders that are promoted from the current r set at the ith auction to the r+1 

set at the i+1th auction) in the trinomial model. 

Consider a specific set of r bidders. For example if, on completion of the 50th 

auction in the database there are 15 twice-only bidders, then n(i,r)=15 for i=50 and 

r=2. For auction i+1, let x+ represent the number of bidders arriving from the r-1 set 

that increase n(i,r), x- represents the number of bidders departing to the r+1 set that 

decrease n(i,r), and x= represents the number of bidders that cannot cause an 

increase nor a decrease in n(i,r) as they do not belong to either the r set or r-1 set, so 

that  

x+
 + x-

 + x=
 =k(i+1), the number of bidders for auction i+1. 

Hence, the trinomial expression for a given n(i,r) set is: 
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However, this expression still requires further work, since there are several 

combinations of x+, x- and x= that produce the same xr value (increment or 

decrement of the number of bidders on the n(i,r) set from auction i to auction i+1, 

i.e., n(i+1,r)=n(i,r)+xr, where xr=x+ ˗  x- with -k(i+1) ≤ xr ≤ k(i+1)). For example, 

n(i,r) can remain constant (xr=0) when: 

• all k(i+1) bidders are x=. 

• there is one x+ and one x-, while the remaining k(i+1)-2 bidders are x=. 

• there are two x+ and two x-, while the remaining k(i+1)-4 bidders are x=. 

• … 

Therefore, what is wanted is to add the “probabilities” obtained by different 

evaluations of (3) which produce the same “equivalent outcome xr”. Adding these 

equivalent outcomes to compute the probability Pr(xr) of a specific value of xr 

involves counting all the possible ways this value of xr can occur as a combination of 

x+, x- and x= taking into account that each combination corresponds to one 

evaluation of (3). 

Table 1 contains the values of xr of all possible pairs of x+ and x-, since it is 

assumed that x==k(i+1) ˗  x+ ˗  x- for the i+1th auction. 

< Insert Table 1 here > 

In Table 1, the blank cells represent the impossible combinations of x+ and x- 

since x++ x- ≤ k(i+1). Also, as can be observed, the number of ways the same xr 

values can occur coincide with the diagonal elements in the Table. By induction, it is 

not difficult to develop the generic expression that summarises the count of all 

possible combinations of x+, x- and x= that result in the same xr value, which is 

( )( ) 21 rxik −++ α   with a parameter α that discriminates when the xr value is odd 

(α=1) or even (α=2). 
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Therefore, the extension of (3) considering the sum of all the equivalent xr 

outcomes from Tables 1 is 
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where the index “s” in (4) varies the values of x+, x- and x= so that they take the 

opportune diagonal values according to Table 1. Index s always starts by taking on 

the value 1 and finishes when it reaches the total amount of different (k(i+1)+α-

|xr|)/2 combinations. 

On the other hand, (4) is valid just for the number of bidders that have submitted 

“exactly” r bids, now a binomial expression for modelling the number of bidders that 

have submitted “at least” r bids (the CDF that models the values of n(i,≥r) sets over 

time) is presented by means of a simple binomial expression (multinomial with just 

two outcomes). 



20 
 

In the cumulative version (which increases every time a “new” r-1-bidder is 

promoted to a r-bidder, but it does not decrease every time a bidder leaves the r-

bidders category to become an r+1-bidder), each n(i,r) set increases with the same 

probability p+ that was used for the trinomial model. Therefore, this time the 

expression is straightforward 
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Numerical examples 

Since trinomial expression (4), even after simplification, may appear to be 

particularly daunting, a brief numerical example is provided for the ease of 

understating. This example will also include the application of (5). 

Assume it is desired to estimate the probability that the current set of twice-

bidders (n(i,r=2)) will decrease by one bidder (xr=2=-1) for the next auction given 

that there will be 8 participating bidders involved. That is, to find Pr(xr=-1) for r=2 

on completion of auction i+1 with k(i+1)=8. 

For the case of k(i+1)=8 bidders, Table 2 particularises Table 1. 

< Insert Table 2 here > 

Now, (k(i+1)+α-|xr|)/2=(8+1-|-1|)/2=4 is first calculated with α=1 since xr=-1 is 

considered an odd number. Therefore, index s from (4) will take on the values 1, 2, 3 

and 4. The x+, x- and x= trinomial variables depend on: 

• xr and |xr|, which are -1 and 1, respectively. 

• δx which equals 0 when xr is negative (as is our example, since x2=-1) and 

equals 1 when xr is positive (the case for xr=0 is irrelevant) 

• k(i+1) which equals 8. 
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Table 3 now summarises all the values for x+, x- and x= as index s changes: 

< Insert Table 3 here > 

It is easy now to realise that these results are forcing the x+ and x- through the 

right cells in Table 2 (which are (x- , x+)=(1,0), (2,1), (3,2) and (4,3), in bold and 

underlined text). 

The only variables that remain to be calculated are the ones corresponding to the 

probabilities p+, p- and p=. These probability values do not depend on the index s, 

but on the current number of bidders from the same and immediately previous n(i,r) 

group. In this case, we are interested in obtaining the probabilities for n(i+1,r=2). 

Suppose we know that M(i)=100, n(i,r=1)=25, n(i,r=2)=15 and n(i,r=3)=10, being 

the other groups with r>3 with 0 bidders at this point. Then, the probability values 

from (4) are simply 
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Hence, by using equation (4), the probabilities associated with a variation of 

xr=-1 bidders in the group of n(i,r=2) bidders will be: 
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On the other hand, the binomial expression (5) is easier, however, only positive 

xr values are allowed, since, by definition, the number of r-at least bidders is 

monotonically increasing (since once they have submitted r bids, they cannot leave 

the set of bidders that have submitted “at least” r bids, even by submitting more 
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bids). Assuming the same variable values so far with the exception of xr, that will be 

now considered to equal 3 (xr=3). With this, (5) becomes 
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As can be seen, calculations are not difficult and can be easily processed with 

the aid of standard spreadsheet software. 

 

Simplified multinomial model when the number of bidders is unknown 

On many occasions, particularly in Open tendering, neither the bidders nor the 

contracting authority will know (at least not accurately) how many bidders will 

participate in i+1th auction, therefore, the number of bidders for auction i+1 has to be 

considered as a stochastic variable. 

For simplification purposes, it is assumed here that k(i+1)~Poisson(λ), where λ is 

calculated as the average of the participating bidders. However, any other 

distribution would be feasible whenever it is discrete and standardised within the 

interval [0,+∞]. Therefore, the trinomial expression from (4), where the new index 

“j” takes the values of all possible k(i+1) participating bidders combinations, would 

now be  
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whereas the binomial expression would be: 
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which are relatively easy expressions to handle, since they just require 

calculating the right (Trinomial or Binomial) half as in the Numerical examples 

section for a single xr value but when the number of k(i+1)=j participating bidders 

varies according to a Poisson distribution, and then multiply all the possible 

outcomes by their respective probability that that number of bidders will occur 

(obtained by the Poisson distribution). 
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Results 

As can be easily observed, calculations with (4) and, to a lesser extent with (5), 

are extensive, yet not difficult, as the number i of auctions grow and the number of 

sets n(i,r) to be recalculated for auction i+1 also grow accordingly. Also, after each 

auction i is concluded, the size of each n(i,r) set (with r=1,2,…, i) has to be updated. 

This is the reason why here, only calculations for probably the most important group, 

r=1, are shown and a thorough comparative analysis presented. Experiments 

performed with other n(i,r) sets as well as in other databases, however, indicate that 

it is precisely the n(i,r=1) group that is the most difficult to forecast accurately. 

Hence, the results shown here will be representative of the worst predictions the 

model can offer, and therefore the minimum performance to be expected. 

Now, some aspects have to be attended to before the results are presented. The 

multinomial models (trinomial for the n(i,r) sets and binomial for the n(i, ≥r) sets) 

are incremental. That is, on completing the ith auction, they require gathering the 

values of the numbers of bidders belonging to the r sets of n(i,r), and along with the 

estimated M(i) value (as a function of i according to the regression result in Figure 

2), they launch i forecasts (one for each n(i,r) set) for auction i+1). These models are 

probabilistic (they give the probabilities for each possible increment of bidders xr for 

auction i+1 for the i sets of n(i+1,r) bidders), which is why here, with far more than 

two dimensions to work with, a graphical representation is not possible. Instead, the 

expected value of these predictions has been used (in order to provide a single 

numerical result for each auction i for the group of n(i,r=1) and n(i,r≥1) bidders). 

This enables this average value to be compared with the actual xr=1 values observed 

from auction ith to auction i+1th. 

Furthermore, since the forecasts obtained by this multinomial model are naturally 

incremental (they oscillate around or near zero most of the time), the chosen metric 

for comparing performance is the absolute deviation from the actual values. This is 
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instead of the quadratic deviations, which usually give biased results when working 

steadily near zero. The absolute deviations measures for the 373 auctions and for 

each sub model (trinomial and binomial), and the sum, average and maximum value 

of these residuals are included in Table 4. 

It is noted that the model has been assessed under two schemes: one in which the 

number of participating bidders k(i+1) was known for auction i+1 (as in Selective 

tendering), and other in which this number was not known (as in Open tendering). It 

is worth highlighting that all deviations when k(i+1) were known have been divided 

by the respective k(i+1) value from each auction i+1 in order to express them 

irrespective of the number of participants. 

< Insert Table 4 here > 

Here, as stated earlier, a Poisson distribution is used to model the number of 

participating bidders for situations in which k(i+1) is not known and the use of 

another more suitable distribution may possibly have improved the results of the 

multinomial models in the last column of Table 4. However, despite all the absolute 

deviation values being quite satisfactory in general, the best performance values in 

Table 4 are obtained by the binomial model. 

For the binomial model, even when the number of bidders for the next auction 

k(i+1) is not known, the absolute (error) deviation remains below one bidder (0.80) 

on average. Furthermore, even the absolute deviation of the trinomial model when 

k(i+1) is not known (the worst result from the Table) is a relatively small value 

(1.33); more if we take into account that the average number of participating bidders 

per auction in this database is 5.13 bidders, that is, the average variation of the xr=1 

value can range from -5.13 to 5.13 per auction (on average).  

The complete set of calculations and results can be found as supplemental online 

material, as they are too extensive to be included in the main body of the paper or in 

an Appendix. 
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Conclusions 

Estimating the number of “new” bidders for upcoming auctions as well as the 

approximate size of the population of potential bidders has important competitive 

implications in real-life bidding scenarios. Similarly, most Bid Tender Forecasting 

models need to somehow handle the appearance of new bidders from whom there is 

no registered information concerning both their competitiveness profiles and the 

number of these “unpredictable” bidders. However, literature references to either of 

these two topics are very scarce, especially in the Construction Management context. 

For the very first time, one model has been developed for anticipating the 

proportion and number of these new bidders, which are useful for both Open (where 

the number of participants is unknown) and Selective (where the number of 

participants is generally known) tendering. A performance analysis of the deviations 

for the model applied to set of London tenders indicates that a multinomial 

distribution model will constitute a good alternative for situations in which the 

number of “new” bidders needs to be predicted, as well as for the number of 

previously identified bidders who are submitting more bids for the next auctions. 

Both outcomes are relevant in the tendering context, as, for example, the second 

result is useful for describing the variations of the level of experience of potential 

bidders, assuming, as the literature has commented on many occasions, that those 

bidders who submit more bids are generally more successful. On the other hand, the 

multinomial model is also useful to describe how many bidders of whom we know 

nothing about will probably take part in a future auction, together with how long it 

will take them to submit their second bid on average, i.e., how often they will 

participate. In essence, this model provides a better understanding of the frequency 

of bid submission by bidders. 
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The implementation of the multinomial model requires a first approximation of 

the population size of potential bidders. Superficially, it may be thought that this 

population size should not be difficult to assess, at least in those cases in which there 

is a categorised pre-qualification system where potential bidders have to be 

registered beforehand if they want to submit bids for a certain kind of projects. 

However, this is not entirely true, since there are many aspects that make such pre-

qualification systems actually open lists of potential bidders. Firstly, most systems 

are not strictly compulsory and allow the participation of bidders who are not 

registered provided they prove their technical and economic solvency to carry out the 

job - otherwise many foreign contractors would not be allowed to take part, which 

might be considered discriminatory. Of course, the non-enlisted course of action is 

always more time-consuming and requires more bureaucracy, but it is not unusual 

for big budget contracts to attract several international competitors. Second, a pre-

qualification system cannot always take into account the contractor’s proximity to 

the project location, nor the idle capacity of each contractor over time, both of which 

are important determinants of the probability of bidder participation in terms of how 

many might participate and how likely it is that each will participate. Third, other 

possibilities are that bidders might form groups of companies (diminishing the 

absolute number of competitors); a project can require the participation of several 

disciplines or areas of expertise (making the count of potential pre-qualified bidders 

more difficult); and a common reality is that pre-qualification lists are not always 

updated. 

Furthermore, although the intention here is to develop a method and to illustrate 

its use by application to sample of data that happen to be obtained from the London 

area, the empirical results of further application to other similar and more recent 

databases are also worthy of note. One is to confirm that the graphical trends and 

shapes of the curves in Figure 1 do not appear to differ significantly for other similar, 
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more recent databases. Similarly, the highest R2 values when potential expressions 

like the one presented in Figure 2 for the estimation of the population size of bidders 

are used, also continuing to increase as more auctions are added.  

Finally, it is to be expected that the models developed here could also be applied 

to other markets where auctions have larger number of bidders and auctions that are 

rather similar (the complexity of the product does not vary) such as government sales 

of used cars for instance. In those auctions bidders behave, at least on average, more 

systematically and repetitively, which also allows a modelling like the one proposed 

here. 

To sum up, the method developed to assess the bidders population size is the 

very first one in the bidding literature, and that this indicates that the population 

keeps increasing over time also sheds some light on other tendering outcomes, such 

as, for instance, why some bidders bid repeatedly achieve higher participation ratios 

and why the steady inflow of new bidders is generally never interrupted. However, 

the model presented is far from perfect. For example, to somehow include the 

contract economic size in the models is likely to improve their accuracy, as this 

variable has been positively correlated to the “total” number of participating bidders. 

In addition, these models rely on rough estimates of bidder population size, which 

will need to be improved for the accuracy to be increased. In this vein, we have 

recently started work on a new deterministic Beta Binomial model which will offer a 

simpler estimation of the number of new and repetitive bidders to be found in future 

auctions. This alternative is expected to provide the practitioner with a simpler 

technique to anticipate only the average number of new and frequent (compared to 

the Multinomial model, which is able to calculate the probabilities associated with 

each potential number of r-bidders), but with the appeal of reduced calculation 

complexity and with the advantage of not being dependent on an estimation of the 
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population size of bidders. More work is still required on this alternative model and 

will probably be part of a future research paper. 

Finally, another line of future research will be to identify a way to conveniently 

model the highly frequent versus sporadic bidders (which is detrimental for the 

multinomial model since it necessarily assumes that all the bidder population has the 

same probability of participating) might also lead to more accurate predictive results. 

The approaches developed, therefore, constitute just the first treatment of a new 

problem whose future analysis offers considerable promise for understanding these 

and other important tendering phenomena. 
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x- ▼  x+► 0 1 2 3 … k(i+1)-3 k(i+1)-2 k(i+1)-1 k(i+1) 
0 0 1 2 3 … k(i+1)-3 k(i+1)-2 k(i+1)-1 k(i+1) 
1 -1 0 1 2 … k(i+1)-4 k(i+1)-3 k(i+1)-2  
2 -2 -1 0 1 … k(i+1)-5 k(i+1)-4   
3 -3 -2 -1 0 … k(i+1)-6    
… … … … … …     

k(i+1)-3 -k(i+1)+3 -k(i+1)+4 -k(i+1)+5 -k(i+1)+6      
k(i+1)-2 -k(i+1)+2 -k(i+1)+3 -k(i+1)+4       
k(i+1)-1 -k(i+1)+1 -k(i+1)+2        
k(i+1) -k(i+1)         

Table 1: Possible combinations of xr values as a function of the x+ and x- values. 



x- ▼  x+► 0 1 2 3 4 5 6 7 8 
0 0 1 2 3 4 5 6 7 8 
1 -1 0 1 2 3 4 5 6  
2 -2 -1 0 1 2 3 4   
3 -3 -2 -1 0 1 2    
4 -4 -3 -2 -1 0     
5 -5 -4 -3 -2      
6 -6 -5 -4       
7 -7 -6        
8 -8         

Table 2: Possible combinations of xr when k(i+1)=8. 



s ► 1 2 3 4 
1−+=+ sxx rxδ  0·(-1)+1-1=0 0·(-1)+2-1=1 0·(-1)+3-1=2 0·(-1)+4-1=3 

( ) 11 −+−=− sxx rxδ  (0-1)(-1)+1-1=1 (0-1)(-1)+2-1=2 (0-1)(-1)+3-1=3 (0-1)(-1)+4-1=4 

−+= −−+= xxikx )1(  8-0-1=7 8-1-2=5 8-2-3=3 8-3-4=1 

Table 3: Calculation of x+, x- and x= as a function of s, xr , δx and k(i+1) in the 

numerical example 



r-bidder curve (Sub) Model Absolute dev. k(i+1) known k(i+1) unknown 

n(i,r=1) set 
(PMF) 

Multinomial 
(Trinomial) 

Sum 103.22 497.50 
Average 0.28 1.33 

Maximum 1.28 5.85 

n(i,r≥1) set 
(CDF) 

Multinomial 
(Binomial) 

Sum 55.27 297.55 
Average 0.15 0.80 

Maximum 0.82 3.96 

Table 4: Summary of the model performance as a function of the absolute deviations 

between actual and forecasted values 



 

Figure 1: Number of bidders who had submitted “exactly” r bids (top) or “at least” r 

bids (bottom). 
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Figure 2: Potential regression depicting the best approximation for the bidders 

population size M(i). 
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