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Abstract: SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms
as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral
organ identities. However, there are published reports that suggest that some SEP members also
regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence
architecture, with potential for application in breeding programs in crops. The SEP subfamily
underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking
advantage of the many whole genomic sequences now available, we present a revised and expanded
SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot
supports the evidence that the major SEP3 clade is highly specialized for the specification of the three
innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been
recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence
determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that
their evolution was driven by whole-genome duplications rather than small-scale duplication events.
Our work may help to identify those SEP lineages that are the best candidates for the improvement
of inflorescence traits, even in far distantly related crops.

Keywords: MADS-box; SEPALLATA; phylogeny; core eudicots; monocots; angiosperms; inflorescence
architecture; meristem determinacy; floral organ development; crops

1. Introduction

Several classes of MIKC-type MADS-box TFs are essential for the specification of all
floral organs, as described by the ABC model [1]. They function by forming homo- or
heterodimers that, based on the quartet model, further combine into tetramers [2,3]. Unique
tetrameric combinations of MADS-box TFs specify the identities of each of the floral organs
(sepal, petal, stamen, carpel) and ovules, as well as floral meristem determinacy. Although
there are plenty of in vitro experiments supporting the quartet model, conclusive proof
is still lacking in vivo, where, although most interactions have been confirmed [4], it has
not been exactly confirmed that tetramers must form, such that it cannot be excluded that
simple dimers might be functional at least in some of the target genes [5,6].

Among these classes of MADS-box TFs, the so-called SEPALLATA (SEP) is the only
common component of all the known functional complexes and is thus essential for the
identities of all floral organs [7–9]. Most plant genomes encode several SEP TFs, which
are often functionally redundant; hence, single mutants may display no or only a slight
phenotype. However, in the absence of SEP function, flowers lose determinacy and all their
organs are reverted to leaf-like structures [10], thus suggesting that all floral organs are,
indeed, modified leaves, as proposed by Goethe in 1790 [11]. Although the ABC model
was derived from the observation of loss-of-function mutants in Arabidopsis thaliana and
Antirrhinum majus and although the possible homology of perianth organs between core
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eudicots, monocots and other taxa is a highly debated topic [12–14], the model seems to
largely hold for angiosperms, albeit with some variations ([15,16] and references within).

Most angiosperms produce flowers arranged in diversified clusters termed inflores-
cences [17,18], which are orchestrated by the inflorescence meristem (IM) and, eventually,
by a subsequent hierarchical order of specialized reproductive meristems, such as the
branch meristems (BMs) [19–21]. The relevant products of most crops and ornamental
plants are their fruits and seeds or flowers, respectively. Therefore, the modification of
inflorescence architecture is a major goal of breeding programs in crops and ornamental
plants [22–25].

A few works conducted on distantly related angiosperms have shown that some SEP
TFs have important roles not only in floral development but also in the regulation of IM func-
tion and/or of the other reproductive meristems that derive from it. For example, the SEP
genes of tomato (Solanum lycopersicum) JOINTLESS-2 and ENHANCER-OF-JOINTLESS-2
(J2 and EJ2) are two important domestication loci for jointless pedicel and large calyx traits,
respectively, but are also important regulators of inflorescence complexity and productiv-
ity [26,27]. The loss of OsMADS34/PANICLE PHYTOMER2 (PAP2) function profoundly
alters inflorescence development and architecture in rice (Oryza sativa) [28–30]. Similar
SEP genes have been shown to regulate IM function and determinacy even in the highly
modified and specialized capitulum inflorescence of Asteraceae [31].

Within MIKC-type MADS-box genes, SEP forms a well-defined subfamily specific
to and ubiquitous in angiosperm plants. It is divided into two major sister clades, SEP3
(AGL9) and LOFSEP (AGL2/3/4) [32,33], whose split coincided with the whole-genome
duplication ‘Epsilon’ (WGD-ε) that predated the most recent common ancestor (MRCA) of
angiosperms [34,35].

Thanks to the incessant advances in DNA sequencing techniques, thousands of high-
quality genomes, and even some pangenomes, are now available for most angiosperm
clades, with some agriculturally important families, such as Poaceae in monocots and
Solanaceae, Asteraceae, Rosaceae, Cucurbitaceae, Fabaceae and Brassicaceae in core eu-
dicots, being particularly well-represented. The use of annotated high-quality genomes
allows more precise assessment of the real numbers of orthologous genes in each species
and better tracing of their patterns of duplication, loss and retention and in- and out-
paralogous relationships throughout different plant taxa. The MADS-box genes encoding
for subunits of tetrameric complexes are supposed to be needed in relatively strict stoi-
chiometric ratios, which might explain why they mostly duplicate by WGDs, while copies
originated from segmental or single-gene duplications are preferentially lost ([36] and
references therein). This makes it effective to support their sequence-based phylogenies
also by studying microsynteny, that is, the conservation of local gene content and order.
Despite microsynteny having rarely been studied in plant MADS-box genes so far, such
analyses have already contributed substantially to the reconstruction of their evolution and
expansion in angiosperms [35,37,38].

Here, we present an updated analysis of SEP subfamily evolution in core eudicots and
core monocots (i.e., Petrosaviidae sensu Cantino et al., 2007 [39,40]), including taxa that were
previously poorly or not covered by whole genomic and transcriptomic sequencing data.
In conjunction with available and future functional data, this phylogenomic snapshot helps
to correlate specific SEP lineages with sub- and neo-functionalization processes associated
with inflorescence and floral functions in non-model species and crops.

2. Results and Discussion
2.1. Evolution of the SEPALLATA Subfamily in Core Monocots

To better understand the evolution and complexity of the SEP subfamily in core
monocots, we took advantage of high-quality genome assemblies currently available
from Poales, other commelinids and a few Asparagales (orchids, Asparagus officinalis and
Allium cepa), the remaining taxonomic orders being still poorly or not represented. All the
SEP gene models that we retrieved from these monocots, as well as those from core eudicots
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and Amborella trichopoda, had eight exons and seven introns. The few exceptions were clearly
due to incomplete or incorrect annotations, showing that the SEP gene structure is highly
conserved across angiosperms. By comparison with the protein structure of Arabidopsis
SEP3 TF [3], we determined that, in all the SEP genes that we studied, the MADS-box
domain is encoded by exon 1, the I (intervening) domain by exon 2, the K (keratin-like)
domain by exons 3 to 6, and the less conserved C-terminal region by exons 7 and 8 (data
not shown).

A phylogenetic analysis revealed that LOFSEP formed two large subgroups in com-
melinid monocots, which we refer to as LOFSEP-A and LOFSEP-B hereafter (Figure 1).
Grasses, Joinvillea ascendens (sister to grasses) and palms possessed genes from both clades.
The result was supported by microsynteny analysis of representative species (Figure 2),
which also compensated for the low bootstrap values in the phylogenetic tree for the palm
species Elaeis guineensis and Phoenix dactylifera. As shown in Figure 2, a strong microsyn-
teny is common to each group, A and B, of LOFSEP genes. Interestingly, a lower degree
of microsynteny is also shared between A and B, indicating that they originated by an
ancient large-scale or whole-genome duplication. Such an event was most likely the ancient
WGD-τ that took place before the MRCA of core monocots [41,42]. Although the positions
of sequences from Asparagales were unresolved in the phylogenetic tree (Figure 1), the
analysis of microsynteny allowed us to assign the LOFSEP sequences of orchids to group A
and an orphan gene of Asparagus officinalis (06.1985; Figure 1) to group B (Figure 2).

A very similar picture emerged from the analysis of the SEP3 clade, which was also
separated into two large ‘A’ and ‘B’ groups (Figure 1). In this case, all the genes from
grasses fell in the SEP3-A group, suggesting that grasses lost SEP3-B after their divergence
from Joinvillea ascendens, while all orchid genes clustered strongly with several other genes
of commelinids to form the SEP3-B group. Pineapple (Ananas comosus), Joinvillea ascendens
and banana (Musa acuminata) possessed genes from both clades (Figure 1). Microsynteny
results further supported the existence of the two groups (Figure 3). The small unresolved
clade of five Allium cepa and Asparagus officinalis genes (Figure 1) likely belong to SEP3-A,
based on microsynteny scores (Figure 3a). As exceptions to the evidence that single-gene
duplications of MADS-box genes are rapidly lost, we found tandem duplications of SEP3
genes in Asparagus and Elaeis (Figure 1).

In conclusion, core monocots are characterized by four main groups of SEP genes:
LOFSEP-A, LOFSEP-B, SEP3-A and SEP3-B, which, however, have been differentially
retained throughout their radiation. Among the species that we analyzed, only Joinvillea
ascendens (Poales, Joinvilleaceae) possessed member genes from all four clades (Figure 1).

Deciphering the Evolution of SEPALLATA Genes along the Lineage That Led to Grasses

Since the phylogenomic data suggested that an early duplication of both LOFSEP and
SEP3 occurred in monocots, we sought to reconstruct the subsequent evolutionary path of
these genes in Poaceae, the family of true grasses and cereals.
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Figure 1. ML phylogenetic analysis of the SEPALLATA (SEP) subfamily genes from the core monocots
commelinids and Asparagales. Dichotomies unequivocally linked to the angiosperm WGD-ε and the
grass WGD-ρ events are marked with a red star. The three LOFSEP subclades of grasses, OsMADS1,
OsMADS5 and OsMADS34, are marked with different shades of green. The two SEP3 subclades of
grasses, OsMADS7/45 and OsMADS8/24, are marked with different shades of blue. Two tandem
duplication events of SEP3 genes were detected in Asparagus officinalis and in Elaeis guineensis, which
are marked with green and blue connected circles, respectively.
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Figure 2. Microsynteny analysis of LOFSEP genes from representative species of commelinids and
Asparagales. Conserved loci are connected by lines of the same color. For simplicity, the non-
conserved loci were omitted. In each chromosomal region, the LOFSEP locus is marked with a red
asterisk. The LOFSEP-A gene is lost in the conserved region of Ananas comosus, in agreement with the
phylogenetic analysis shown in Figure 1. The linked SQUA locus, when present, is marked with a
black asterisk.

Two more rounds of WGD occurred in the MRCA of Poales (WGD-σ) and then
in the MRCA of Poaceae (WGD-ρ) [43], which would predict up to eight SEP3 and eight
LOFSEP genes in extant diploid grasses, such as rice, barley (Hordeum vulgare), Brachypodium
distachyon, Sorghum bicolor and Pharus latifolius. Instead, only two SEP3 (OsMADS7/45 and
OsMADS8/24) and three LOFSEP (OsMADS1, OsMADS5 and OsMADS34) paralogous
lineages have been maintained in grasses, respectively (Figure 1, Table 1), which we named
after their corresponding genes in rice [44]. These five lineages are highly conserved in
diploid grasses (Figure 1, Table 1). Comparison of the relatively ancient allotetraploid maize
(Zea mays; [45–47]) versus the recent allohexaploid bread wheat (Triticum aestivum; [48])
gives clues as to the speed of the process of selection of SEP homeologous genes after a
polyploidization event: while only two out of five duplicated copies have been retained
in maize, three homeologs for each gene still exist in bread wheat (Table 1). In addition,
atypical local duplications of the OsMADS1- and OsMADS5-like genes were found in
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the Aegilops–Triticum complex (Table 1), whose existence and functionality are mostly
supported by transcriptome assemblies publicly available in NCBI GenBank (data not
shown). Therefore, these two well-studied polyploid genomes suggest that the elimination
of excessive SEP homeologous genes is quite a long process. In recent polyploids, processes
of pseudogenization and epigenetic silencing are likely to take place beforehand [49].
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Figure 3. Evolutionary analysis of the SEPALLATA (SEP) subfamily in core monocots. (a) Microsyn-
teny analysis of SEP3 genes from representative species of commelinids and Asparagales. Conserved
loci are connected by lines of the same color. For simplicity, the non-conserved loci were omitted. In
each chromosomal region, the SEP3 locus is marked with a red asterisk. The linked FLC locus, when
present, is marked with a black asterisk. (b) Representation of the most likely pattern that drove the
evolution of the SEP subfamily in extant grasses (Poaceae), based on our analysis and previous works.
Based on the phylogeny results shown in Figure 1, the grass lineage lost SEP3-B after its divergence
from the sister family Joinvilleaceae.
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Table 1. Accessions of all the LOFSEP and SEP3 loci found in the diploid genomes of Oryza sativa (rice), Pharus latifolius, Brachypodium distachyon, Hordeum vulgare
(barley), Aegilops tauschii and Sorghum bicolor, in the ancient allotetraploid Zea mays (corn) and in the recent allohexaploid Triticum aestivum (bread wheat).

Oryza sativa P. latifolius B. distachyon H. vulgare A. tauschii T. aestivum S. bicolor Z. mays

LOFSEP

OsMADS1

TraesCS4A02G028100
TraesCS4A02G058900
TraesCS4A02G078700

Zm00001d028217
Zm00001d048082

LOC_Os03g11614 Phala.01G312100 Bradi1g69890 HORVU4Hr1G067680
AET4Gv20607600
AET4Gv20611300
AET4Gv20678000

TraesCS4B02G245700
TraesCS4B02G245800
TraesCS4B02G277800

Sobic.001G455900

TraesCS4D02G243700
TraesCS4D02G245200
TraesCS4D02G276100

OsMADS5

TraesCS7A02G122000
TraesCS7A02G122100

LOC_Os06g06750 Phala.04G039300 Bradi1g48520 HORVU7Hr1G025700 AET7Gv20313600
AET7Gv20313900

TraesCS7B02G020800
TraesCS7B02G020900
TraesCS7B02G021000

Sobic.010G050500 Zm00001d045231

TraesCS7D02G120500
TraesCS7D02G120600

OsMADS34
TraesCS5A02G391800

LOC_Os03g54170 Phala.01G078100 Bradi1g08326 HORVU5Hr1G095710 AET5Gv20911100 TraesCS5B02G396700 Sobic.001G086400 Zm00001d034047
TraesCS5D02G401700

SEP3

OsMADS7/45
TraesCS7A02G260600

LOC_Os08g41950 Phala.08G027600 Bradi3g41260 HORVU7Hr1G054220 AET7Gv20638300 TraesCS7B02G158600 Sobic.007G193300 Zm00001d031620
TraesCS7D02G261600

OsMADS8/24
TraesCS5A02G286800

Zm00001d021057
Zm00001d006094

LOC_Os09g32948 Phala.12G134000 Bradi4g34680 HORVU5Hr1G076400 AET5Gv20667800 TraesCS5B02G286100 Sobic.002G258000
TraesCS5D02G294500
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Grasses are devoid of SEP3-B genes, while their highly homologous OsMADS7/45 and
OsMADS8/24 paralogous lineages seem to have emerged by duplication of SEP3-A after
their divergence from Joinvilleaceae (Figure 1), suggesting that such duplication coincided
with the grass-specific WGD-ρ. This is strongly supported by the observation that the
OsMADS7/45 and OsMADS8/24 lineages reside in highly syntenic chromosomes, as can
be seen, for example, in synteny maps of rice and barley [50]. Based on our phylogeny
results (Figure 1), the origins of the OsMADS1 and OsMADS5 paralogous lineages were
likely the same; however, they are located on unrelated chromosomes, and OsMADS5 even
lost the microsynteny shared by the other monocot LOFSEP genes (data not shown). This
suggests that either OsMADS5 transposed or that major rearrangements of its genomic
position occurred in the grass MRCA.

The third and more functionally diverged LOFSEP clade of grasses is OsMADS34,
which was believed to exist only in grasses up to now. However, our analysis clarified that
it belongs to the LOFSEP-B lineage (Figures 1 and 2), meaning that it very likely diverged
from its out-paralogues OsMADS1 and OsMADS5 at the time of the ancient WGD-τ,
which occurred before the MRCA of core monocots [41,42]. Since rice OsMADS34/PAP2 is
an important regulator of inflorescence architecture [28–30,51], this interesting and non-
canonical SEP function might exist also in its orthologues within and outside grasses—a
matter that requires further research.

Taken together, our data support a precise pattern of SEP subfamily evolution and
expansion in grasses, which is summarized in Figure 3b, where the Poales-specific WGD- σ
made no contribution.

In general, the rate of sequence divergence seems to be much higher in LOFSEP than
in SEP3 TFs, which could already be noticed by comparing the homeologous peptides
encoded by bread wheat A, B and D sub-genomes. The SEP3-like homeologous peptides ac-
cumulated just 0–4 aminoacidic changes only in the C-terminus (Figures S1–S5), suggesting
that SEP3 is under stronger selective constraints.

2.2. Three LOFSEP Sister Clades and a Single SEP3 Clade Evolved in Core Eudicots

In core eudicots, our analysis confirmed with strong support the existence of three
highly conserved LOFSEP clades (Figure 4), which we named SEP1/2, FBP9/23 and SEP4,
in agreement with a previous work [32]. Since all extant core eudicots are descendants of a
hexaploid MRCA, such expansion of the LOFSEP lineage is likely related to the ancestral
whole-genome triplication event known as gamma (WGT-γ) [52–56]. Indeed, our analysis
of grape (Vitis vinifera), a model for the study of genome evolution in core eudicots [34,55],
revealed that the genomic regions of SEP1/2, FBP9/23 and SEP4 share significant collinearity
with each other (Figure 5), in agreement with previous models of the origin of angiosperm-
specific MADS-box subfamilies [35]. The FBP9/23 clade was lost in Brassicales after the
divergence from Carica papaya and, probably, also in coffee (Coffea arabica) and Lamiales
(which are represented by Erythranthe guttata, Antirrhinum majus and Olea europaea in our
analysis) (Figure 4). Three MADS-box genes involved in inflorescence complexity in tomato,
J2, EJ2 and LONG INFLORESCENCE (LIN), have been reported as SEP4 homologues [26].
However, our phylogenetic analysis unambiguously placed J2 and EJ2 in the FBP9/23 clade,
while only LIN and its close homolog RIPENING INHIBITOR (RIN/LeMADS-RIN; [57])
belonged to the SEP4 clade (Figure 4).
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Figure 4. ML phylogenetic analysis of the SEPALLATA (SEP) subfamily genes in core eudicots.
Dichotomies unequivocally linked to the angiosperm WGD-ε and the core eudicot WGT-γ events are
marked with a red star. The three LOFSEP subclades of core eudicots, SEP1/2, FBP9/23 and SEP4, are
marked with different shades of green. The main SEP3 subclade and the Asteraceae-specific SEP3
clade are marked with different shades of blue.
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Figure 5. Conserved microsynteny between the three LOFSEP subclades of core eudicots, visualized
in grape (Vitis vinifera L.). In each chromosomal region, the linked LOFSEP and SQUA loci are marked
with red and black asterisks, respectively. They form the three tandems SEP1/2–FL, SEP4–EuAP1 and
FBP9/23–EuFUL [35].

In striking contrast, we only found one conserved monophyletic SEP3 group in core
eudicots, except for an Asteraceae-specific clade (Figure 4) that was already reported
by Malcomber and Kellogg [32]. In the Vitis vinifera genome, the only SEP3 locus re-
sides on chromosome 1, orthologous to the whole core eudicot clade. As expected, we
have identified two other microsyntenic regions in grape that derived from WGT-γ, on
chromosomes 14 and 17 (data not shown), but these have lost their ancestral SEP3 copies.
Intriguingly, the genomic location of the Asteraceae-specific SEP3 clade corresponds to
the microsyntenic region of grape chromosome 17 (data not shown), revealing that this
lineage has ancient origins related to WGT-γ. Considering the evolutionary position of
Asteraceae, this implies that recurrent independent losses of this paralogous clade occurred
a surprising number of times throughout the radiation of extant core eudicots.

In conclusion, the LOFSEP clade is significantly more expanded than SEP3 in core
eudicots, and those genomes that experienced only WGT-γ are predicted to possess a 3:1
ratio of LOFSEP to SEP3 genes (Figures 4 and 6), while further cycles of polyploidizations
and gene losses occurred repeatedly and independently in the majority of core eudicot
lineages. Our analysis supports the model of SEP subfamily expansion in core eudicots
represented in Figure 6.
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2.3. Conserved Genetic Linkage between SEPALLATA, SQUAMOSA and FLOWERING LOCUS
C Subfamilies

Phylogenomic reconstructions showed that, in the angiosperm MRCA, the ancestral
LOFSEP and SQUAMOSA (SQUA) genes formed a close tandem, while the ancestral SEP3
was in tandem with FLOWERING LOCUS C (FLC), and that this configuration has been
maintained in many extant angiosperms [35]. In core eudicots, SQUA underwent a process
of triplication just as LOFSEP did, which led to three paralogous LOFSEP–SQUA tandems,
as clearly shown in the grape genome (Figure 5). All these LOFSEP–SQUA and SEP3–FLC
linkage relationships were lost in the lineage of Arabidopsis and other Brassicaceae.

While noticing several such tandems during our analyses of monocots (Figures 2 and 3a
and additional data not shown), we found that only one LOFSEP–SQUA tandem, i.e.,
OsMADS34–OsMADS14, is still conserved in rice (Figure 2), with an intergenic space of just
6 kb, and in other grasses. These two loci act synergistically in floral induction in rice [58],
and the latter regulates vernalization-induced flowering in winter cereal crops [59]. An
SEP3–FLC tandem is also conserved in rice genomes: OsMADS7/45–OsMADS37 [35,44].
More generally, both LOFSEP and SQUA genes play pivotal and diversified roles in agro-
nomically relevant traits, such as floral induction, vernalization, inflorescence architecture
and flower and fruit development. Targeted gene modifications, selection of natural or
mutagenesis-induced variants and functional characterizations must be carried out with
awareness of these conserved genetic linkage groups, which also hint at possible coregula-
tion mechanisms. In tomato, the misinterpretation of the classic rin (ripening inhibitor; [60])
mutant led to models depicting the SEP4 ortholog RIN (Figure 4) as indispensable to the
induction of fruit ripening. Unexpectedly, however, rin is not a knock-out but a gain-of-
function mutant encoding a chimeric protein from RIN and from the downstream SQUA
gene Macrocalyx (MC), whose new properties as a transcriptional repressor actively repress
ripening: RIN, indeed, is not indispensable to the induction of fruit ripening, being only
required for the completion of normal ripening [61].

2.4. Patterns of Sub- and neo-Functionalization Associated with Diverged SEPALLATA Lineages

Our analysis provides new insights into the evolutionary history of the SEP subfamily
in core monocots and core eudicots. Inferred polyploidization events at the base of both
lineages caused a first round of independent amplifications of LOFSEP and SEP3 genes,
followed by many others throughout the radiation of these angiosperms. The resulting
duplicated genes followed different paths of retention and loss in different taxa. In addition,
SEP genes seem to have diverged significantly between commelinids and Asparagales, and
even within Asparagales. Here, we were able to bypass the limits of phylogenetic analysis
by analyzing microsynteny.

An increasing number of functional studies are clarifying that the concept of full
redundancy is misleading and that the several LOFSEP and SEP3 subclades that we have
defined are instead specialized to regulate specific functions. Arabidopsis has only one
SEP3 gene (Figure 4), which is highly redundant, along with the LOFSEP genes SEP1 and
SEP2, in conferring FM determinacy and the identities of the three inner floral whorls.
The Arabidopsis sep1 sep2 sep3 triple mutant produces indeterminate flowers made only
of sepals [7]. SEP3 in not expressed at early developmental stages in the first whorl
domain [62], where the last LOFSEP member of Arabidopsis, SEP4, is expressed instead [10].
In the Arabidopsis sep1 sep2 sep3 sep4 quadruple mutant all the floral organs are converted
to leaves, showing that SEP4 alone is sufficient to specify sepal identity in the sep1 sep2
sep3 triple-mutant background [10]. Despite the significant degree of redundancy shown
under experimental conditions, mass spectrometry analysis of in vivo formed complexes
showed that SEP3 is far more abundant than SEP1 and SEP2 in the petal, stamen and
carpel identity MADS-box complexes of Arabidopsis, while SEP4 is absent [4]. Moreover, the
transcriptional activation potential of SEP3 exceeds those of SEP1 and SEP2 [63]. Altogether,
these data point to SEP3 as the most important SEP TF for floral identity in Arabidopsis.
Unfortunately, only partial gene titration experiments on sep mutants have been reported
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so far [9,10], which include data not shown, yet which support the molecular data. Other
studies have suggested that SEP3 and LOFSEP are even more sub-functionalized in other
species. The specific or preferential expression of SEP3 genes in the three inner whorls is
commonly observed in core eudicots (petal, stamen, gynoecium; [62,64–66]) and grasses
(lodicule, stamen, gynoecium; [67]). Therefore, cases where SEP3-like genes are involved
in first-whorl organ development, as in the orchid Phalaenopsis equestris [68], probably
reflect deviations from a conserved and ancestral model which caused the expansion of
SEP3 gene activity in the outermost perianth organs or calyx. Interestingly, the sepals of
Phalaenopsis are showy and mimic petals. Petunia hybrida has only one SEP3 gene, FLORAL
BINDING PROTEIN2 (FBP2), whose loss of function results in the conversion of petals
into green sepaloid organs and the development of secondary inflorescences in the third
whorl [64,69,70]. In Asteraceae, one SEP3 gene of Gerbera hybrida is GERBERA REGULATOR
OF CAPITULUM DEVELOPMENT5 (GRCD5; Figure 4), which also shows unique functions
in petal development. Interestingly, GRCD1 belongs to the Asteraceae-specific SEP3 clade
(Figure 4) and seems to be sub-functionalized to regulate stamen identity. In orchids, the
suppression of one SEP3 gene is also sufficient to trigger a partial loss of floral organ
identity [68,71]. The co-suppression of rice OsMADS7/45 and OsMADS8/24 led to serious
defects in all the inner three whorls (lodicule, stamen, gynoecium; [67]), suggesting that
SEP3 and LOFSEP are even more sub-functionalized in rice than in core eudicot model
species. However, the reversion of the flower into leafy, indeterminate, shoot-like structures
required the simultaneous suppression of most or all LOFSEP and SEP3 genes in core
eudicots and rice [10,31,67,72]. In rice, we have previously shown that the combined
mutation of the three LOFSEP genes (OsMADS1, OsMADS5 and OsMADS34) is sufficient to
convert the flowers almost completely into indeterminate leafy organs, but it is important
to notice that this phenotype was associated with a dramatic decrease in the expression of
SEP3 genes (OsMADS7/45 and OsMADS8/24). Therefore, it seems that rice LOFSEP genes
positively regulate SEP3 genes, and that the floral phenotypes observed in lofsep triple
mutants were caused by global reductions in both LOFSEP and SEP3 function [73]. Rice
LOFSEP genes are also important regulators of the bract- and prophyll-like spikelet organs
that protect the flower and represent evolutionary innovations: OsMADS1 specifies the
identities of lemmas and paleas [74–78], OsMADS34 represses the development of the two
lateral sterile lemmas [28,29,79] and, finally, all these organs are converted into leaves in
the osmads1 osmads5 osmads34 triple mutant [73].

It is intriguing that LOFSEP genes have been recruited to regulate inflorescence de-
velopment in several species, mostly by limiting branching and promoting the switch to
FM identity, which are functions that temporally precede their well-known and essential
functions in flower development. In Solanaceae, the FBP9/23 subclade is the main player,
with contributions from SEP4 [26,27,72], while SEP1/2 genes are the main regulators of IM
determinacy in the capitulum of Gerbera hybrida [31,80]. Rice OsMADS34 and SQUA-like
genes synergistically act to specify IM identity, downstream of the florigen signal [58].
Subsequently, OsMADS34 limits inflorescence primary branching by repressing IM ac-
tivity [28–30]. In addition, OsMADS34 shares functions with OsMADS5 in repressing
secondary branching by promoting the maturation of meristems toward the spikelet meris-
tem stage and in promoting the elongation of the inflorescence rachis and branches [30].
As a consequence, osmads34 and osmads5 osmads34 knock-out mutants produce much more
branched inflorescence primordia, but several meristems subsequently fail to develop into
mature, fertile spikelets [30], similarly to what has been observed in tomato plants defective
with respect to J2, EJ2 and LIN functionality [26]. Unfortunately, mild OsMADS34 alleles
able to trigger more productive inflorescences, which could be beneficial for breeding
programs, have not emerged so far. The function of OsMADS34 in inflorescence architec-
ture is likely conserved in other grasses [81,82]. Our analysis reveals that genes similar to
OsMADS34 exist in other core monocots, which opens new perspectives for future func-
tional studies, especially in monocot crops with complex inflorescences, such as pineapple
and palms.
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Given the fact that different LOFSEP subclades have been recruited for similar inflo-
rescence functions in rice, Solanaceae and Asteraceae reveal their ancestral potential in
regulating inflorescence development, which then was lost or retained during evolution.

3. Conclusions

We found both LOFSEP and SEP3 genes ubiquitously in core eudicot and monocot
species, which suggests that each clade has specific essential functions besides their shared
roles in FM and floral organ identity. The strong conservation of SEP3 genes, in terms
of sequences and expression patterns, suggests that their major role in petal, stamen and
carpel identity complexes was established and fixed before the MRCA of monocots + eu-
dicots, while LOFSEP genes appear to have enjoyed more functional flexibility to allow
their neo-functionalization, acquiring diversified roles in different angiosperm families,
such as the regulation of bract identity, pedicel abscission zone, calyx size and inflorescence
architecture. Therefore, besides their relevance for understanding angiosperm evolution,
some SEPALLATA genes are major players in agronomically relevant traits. While SEP3
or other MADS-box homeotic mutants are potentially useful in the creation of ornamental
floral oddities and flowers less attractive to insect pests [71,83], the biotechnological manip-
ulation of LOFSEP genes or their network shows promise with respect to the improvement
of inflorescence characters, such as numbers of flowers and fruits. To this aim, genes from
the FBP9/23 and SEP4 clades are promising candidates for further studies in asterid species
with branched inflorescences, while homologues of rice OsMADS34 are likely the main
players in grasses and, perhaps, even in other core monocots.

4. Materials and Methods

All the SEPALLATA genes used in this study were identified through BLAST analysis
of the following databases: NCBI Genome (Tarenaya hassleriana, Gerbera hybrida, Petunia
x hybrida, Zingiber officinale, Elaeis guineensis, Phoenix dactylifera, Apostasia shenzhenica,
Dendrobium catenatum, Phalaenopsis equestris), Gramene (Aegilops tauschii and Triticum
aestivum), www.oniongenome.wur.nl (Allium cepa), the Snapdragon Genome Database
(http://bioinfo.sibs.ac.cn/Am/index.php; Antirrhinum majus) and Phytozome 13 (all the
other species). Genes from Asparagus officinalis and Ananas comosus were identified
from both the NCBI and Phytozome 13 databases, and incomplete or incorrect annotations
were eventually corrected by searching the NCBI Transcriptome Shotgun Assembly (TSA)
database. Accession numbers are available in Table 1 and Table S1. Protein sequences were
aligned using MAFFT (https://mafft.cbrc.jp/alignment/server/), checked manually and
then back-translated to nucleotide alignments with PAL2NAL (http://www.bork.embl.de/
pal2nal/).

Phylogenetic trees were calculated with MEGA 11 [84]. Evolutionary history was
inferred using the Maximum Likelihood (ML) method and the Tamura–Nei model [85]. The
model was accepted based on the high consistency of the resulting topologies with respect
to previously published clades and genes. The trees with the highest log likelihoods were
shown. The percentage of trees in which the associated taxa clustered together is shown
next to the branches. Initial tree(s) for the heuristic search were obtained automatically
by applying the Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances
estimated using the Tamura–Nei model and then selecting the topology with a superior
log likelihood value. The trees were drawn to scale, with branch lengths measured as the
number of substitutions per site. Codon positions included were 1st + 2nd + 3rd.

Microsynteny was calculated and scored using SynFind [86] on the CoGe platform
(https://genomevolution.org/coge/). Then, selected genomic regions and genes were
downloaded from Phytozome 13 Phytomine and NCBI Genomes. Gene homology was
confirmed manually with BLAST analysis. The final images shown in this work were
generated with Simple Synteny online (https://www.dveltri.com/simplesynteny/; [87]).
All the databases and online tools were accessed between November 2021 and July 2022.

www.oniongenome.wur.nl
http://bioinfo.sibs.ac.cn/Am/index.php
https://mafft.cbrc.jp/alignment/server/
http://www.bork.embl.de/pal2nal/
http://www.bork.embl.de/pal2nal/
https://genomevolution.org/coge/
https://www.dveltri.com/simplesynteny/
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Images were edited with InkScape 0.92 (https://inkscape.org/) and GIMP 2.10.32
(https://www.gimp.org/).
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46. Swigoňová, Z.; Lai, J.; Ma, J.; Ramakrishna, W.; Llaca, V.; Bennetzen, J.L.; Messing, J. Close Split of Sorghum and Maize Genome
Progenitors. Genome Res. 2004, 14, 1916–1923. [CrossRef] [PubMed]

47. Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73
Maize Genome: Complexity, Diversity, and Dynamics. Science 2009, 326, 1112–1115. [CrossRef]

48. Matsuoka, Y. Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and
Allopolyploid Speciation in Their Diversification. Plant Cell Physiol. 2011, 52, 750–764. [CrossRef] [PubMed]

49. Shitsukawa, N.; Tahira, C.; Kassai, K.I.; Hirabayashi, C.; Shimizu, T.; Takumi, S.; Mochida, K.; Kawaura, K.; Ogihara, Y.; Muraia,
K. Genetic and Epigenetic Alteration among Three Homoeologous Genes of a Class E MADS Box Gene in Hexaploid Wheat.
Plant Cell 2007, 19, 1723–1737. [CrossRef]

50. Thiel, T.; Graner, A.; Waugh, R.; Grosse, I.; Close, T.J.; Stein, N. Evidence and Evolutionary Analysis of Ancient Whole-Genome
Duplication in Barley Predating the Divergence from Rice. BMC Evol. Biol. 2009, 9, 209. [CrossRef]

51. Meng, Q.; Li, X.; Zhu, W.; Yang, L.; Liang, W.; Dreni, L.; Zhang, D. Regulatory Network and Genetic Interactions Established by
OsMADS34 in Rice Inflorescence and Spikelet Morphogenesis. J. Integr. Plant Biol. 2017, 59, 693–707. [CrossRef]

52. Vekemans, D.; Proost, S.; Vanneste, K.; Coenen, H.; Viaene, T.; Ruelens, P.; Maere, S.; Van De Peer, Y.; Geuten, K. Gamma
Paleohexaploidy in the Stem Lineage of Core Eudicots: Significance for MADS-BOX Gene and Species Diversification. Mol. Biol.
Evol. 2012, 29, 3793–3806. [CrossRef]

53. Jiao, Y.; Leebens-Mack, J.; Ayyampalayam, S.; Bowers, J.E.; McKain, M.R.; McNeal, J.; Rolf, M.; Ruzicka, D.R.; Wafula, E.;
Wickett, N.J.; et al. A Genome Triplication Associated with Early Diversification of the Core Eudicots. Genome Biol. 2012, 13, R3.
[CrossRef]

54. Chanderbali, A.S.; Jin, L.; Xu, Q.; Zhang, Y.; Zhang, J.; Jian, S.; Carroll, E.; Sankoff, D.; Albert, V.A.; Howarth, D.G.; et al. Buxus
and Tetracentron Genomes Help Resolve Eudicot Genome History. Nat. Commun. 2022, 13, 643. [CrossRef] [PubMed]

55. Jaillon, O.; Aury, J.M.; Noel, B.; Policriti, A.; Clepet, C.; Casagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N.; Jubin, C.; et al.
The Grapevine Genome Sequence Suggests Ancestral Hexaploidization in Major Angiosperm Phyla. Nature 2007, 449, 463–467.
[CrossRef] [PubMed]

56. Chanderbali, A.S.; Berger, B.A.; Howarth, D.G.; Soltis, D.E.; Soltis, P.S. Evolution of Floral Diversity: Genomics, Genes and
Gamma. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20150509. [CrossRef]

57. Vrebalov, J.; Ruezinsky, D.; Padmanabhan, V.; White, R.; Medrano, D.; Drake, R.; Schuch, W.; Giovannoni, J. A MADS-Box Gene
Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus. Science 2002, 296, 343–346. [CrossRef]

58. Kobayashi, K.; Yasuno, N.; Sato, Y.; Yoda, M.; Yamazaki, R.; Kimizu, M.; Yoshida, H.; Nagamura, Y.; Kyozukaa, J. Inflorescence
Meristem Identity in Rice Is Specified by Overlapping Functions of Three AP1/FUL-Like MADS Box Genes and PAP2, a
SEPALLATA MADS Box Gene. Plant Cell 2012, 24, 1848–1859. [CrossRef] [PubMed]

59. Trevaskis, B.; Bagnall, D.J.; Ellis, M.H.; Peacock, W.J.; Dennis, E.S. MADS Box Genes Control Vernalization-Induced Flowering in
Cereals. Proc. Natl. Acad. Sci. USA 2003, 100, 13099–13104. [CrossRef]

60. Robinson, R.; Tomes, M. Ripening Inhibitor: A Gene with Multiple Effects on Ripening. Rep. Tomato Genet. Coop. 1968, 18, 36–37.
61. Ito, Y.; Nishizawa-Yokoi, A.; Endo, M.; Mikami, M.; Shima, Y.; Nakamura, N.; Kotake-Nara, E.; Kawasaki, S.; Toki, S. Re-Evaluation

of the Rin Mutation and the Role of RIN in the Induction of Tomato Ripening. Nat. Plants 2017, 3, 866–874. [CrossRef]
62. Mandel, M.A.; Yanofsky, M.F. The Arabidopsis AGL9 MADS Box Gene Is Expressed in Young Flower Primordia. Sex Plant Reprod.

1998, 11, 22–28. [CrossRef]
63. Honma, T.; Goto, K. Complexes of MADS-Box Proteins Are Sufficient to Convert Leaves into Floral Organs. Nature 2001,

409, 525–529. [CrossRef]
64. Ferrario, S.; Immink, R.G.H.; Shchennikova, A.; Busscher-Lange, J.; Angenent, G.C. The MADS Box Gene FBP2 Is Required for

SEPALLATA Function in Petunia. Plant Cell 2003, 15, 914–925. [CrossRef] [PubMed]
65. Pnueli, L.; Hareven, D.; Broday, L.; Hurwitz, C.; Lifschitz, E. The TM5 MADS Box Gene Mediates Organ Differentiation in the

Three Inner Whorls of Tomato Flowers. Plant Cell 1994, 6, 175–186. [CrossRef] [PubMed]
66. Davies, B.; Egea-Cortines, M.; de Andrade Silva, E.; Saedler, H.; Sommer, H. Multiple Interactions amongst Floral Homeotic

MADS Box Proteins. EMBO J. 1996, 15, 4330–4343. [CrossRef] [PubMed]
67. Cui, R.; Han, J.; Zhao, S.; Su, K.; Wu, F.; Du, X.; Xu, Q.; Chong, K.; Theißen, G.; Meng, Z. Functional Conservation and

Diversification of Class e Floral Homeotic Genes in Rice (Oryza sativa). Plant J. 2010, 61, 767–781. [CrossRef] [PubMed]
68. Pan, Z.J.; Chen, Y.Y.; Du, J.S.; Chen, Y.Y.; Chung, M.C.; Tsai, W.C.; Wang, C.N.; Chen, H.H. Flower Development of Phalaenopsis

Orchid Involves Functionally Divergent SEPALLATA-like Genes. New Phytol. 2014, 202, 1024–1042. [CrossRef] [PubMed]
69. Vandenbussche, M.; Zethof, J.; Souer, E.; Koes, R.; Tornielli, G.B.; Pezzotti, M.; Ferrario, S.; Angenent, G.C.; Gerats, T. Toward the

Analysis of the Petunia MADS Box Gene Family by Reverse and Forward Transposon Insertion Mutagenesis Approaches: B, C,
and D Floral Organ Identity Functions Require SEPALLATA-like MADS Box Genes in Petunia. Plant Cell 2003, 15, 2680–2693.
[CrossRef]

http://doi.org/10.1186/1471-2164-8-242
http://www.ncbi.nlm.nih.gov/pubmed/17640358
http://doi.org/10.1101/gr.2332504
http://www.ncbi.nlm.nih.gov/pubmed/15466289
http://doi.org/10.1126/science.1178534
http://doi.org/10.1093/pcp/pcr018
http://www.ncbi.nlm.nih.gov/pubmed/21317146
http://doi.org/10.1105/tpc.107.051813
http://doi.org/10.1186/1471-2148-9-209
http://doi.org/10.1111/jipb.12594
http://doi.org/10.1093/molbev/mss183
http://doi.org/10.1186/gb-2012-13-1-r3
http://doi.org/10.1038/s41467-022-28312-w
http://www.ncbi.nlm.nih.gov/pubmed/35110570
http://doi.org/10.1038/nature06148
http://www.ncbi.nlm.nih.gov/pubmed/17721507
http://doi.org/10.1098/rstb.2015.0509
http://doi.org/10.1126/science.1068181
http://doi.org/10.1105/tpc.112.097105
http://www.ncbi.nlm.nih.gov/pubmed/22570445
http://doi.org/10.1073/pnas.1635053100
http://doi.org/10.1038/s41477-017-0041-5
http://doi.org/10.1007/s004970050116
http://doi.org/10.1038/35054083
http://doi.org/10.1105/tpc.010280
http://www.ncbi.nlm.nih.gov/pubmed/12671087
http://doi.org/10.2307/3869637
http://www.ncbi.nlm.nih.gov/pubmed/12244235
http://doi.org/10.1002/j.1460-2075.1996.tb00807.x
http://www.ncbi.nlm.nih.gov/pubmed/8861961
http://doi.org/10.1111/j.1365-313X.2009.04101.x
http://www.ncbi.nlm.nih.gov/pubmed/20003164
http://doi.org/10.1111/nph.12723
http://www.ncbi.nlm.nih.gov/pubmed/24571782
http://doi.org/10.1105/tpc.017376


Plants 2022, 11, 2934 17 of 17

70. Angenent, G.C.; Franken, J.; Busscher, M.; Weiss, D.; Van Tunen, A.J. Co-suppression of the Petunia Homeotic Gene Fbp2 Affects
the Identity of the Generative Meristem. Plant J. 1994, 5, 33–44. [CrossRef] [PubMed]

71. Mitoma, M.; Kanno, A. The Greenish Flower Phenotype of Habenaria Radiata (Orchidaceae) Is Caused by a Mutation in the
SEPALLATA-like MADS-Box Gene HrSEP-1. Front. Plant Sci. 2018, 9, 831. [CrossRef]

72. Morel, P.; Chambrier, P.; Boltz, V.; Chamot, S.; Rozier, F.; Bento, S.R.; Trehin, C.; Monniaux, M.; Zethof, J.; Vandenbussche, M.
Divergent Functional Diversification Patterns in the SEP/AGL6/AP1 MADS-Box Transcription Factor Superclade. Plant Cell
2019, 31, 3033–3056. [CrossRef]

73. Wu, D.; Liang, W.; Zhu, W.; Chen, M.; Ferrándiz, C.; Burton, R.A.; Dreni, L.; Zhang, D. Loss of LOFSEP Transcription Factor
Function Converts Spikelet to Leaf-like Structures in Rice. Plant Physiol. 2018, 176, 1646–1664. [CrossRef]

74. Jeon, J.S.; Jang, S.; Lee, S.; Nam, J.; Kim, C.; Lee, S.H.; Chung, Y.Y.; Kim, S.R.; Lee, Y.H.; Cho, Y.G.; et al. Leafy Hull Sterile 1 Is
a Homeotic Mutation in a Rice MADS Box Gene Affecting Rice Flower Development. Plant Cell 2000, 12, 871–884. [CrossRef]
[PubMed]

75. Prasad, K.; Parameswaran, S.; Vijayraghavan, U. OsMADS1, a Rice MADS-Box Factor, Controls Differentiation of Specific Cell
Types in the Lemma and Palea and Is an Early-Acting Regulator of Inner Floral Organs. Plant J. 2005, 43, 915–928. [CrossRef]
[PubMed]

76. Prasad, K.; Sriram, P.; Santhosh Kumar, C.; Kushalappa, K.; Vijayraghavan, U. Ectopic Expression of Rice OsMADS1 Reveals a
Role in Specifying the Lemma and Palea, Grass Floral Organs Analogous to Sepals. Dev. Genes Evol. 2001, 211, 281–290. [CrossRef]
[PubMed]

77. Agrawal, G.K.; Abe, K.; Yamazaki, M.; Miyao, A.; Hirochika, H. Conservation of the E-Function for Floral Organ Identity in Rice
Revealed by the Analysis of Tissue Culture-Induced Loss-of-Function Mutants of the OsMADS1 Gene. Plant Mol. Biol. 2005,
59, 125–135. [CrossRef] [PubMed]

78. Hu, Y.; Liang, W.; Yin, C.; Yang, X.; Ping, B.; Li, A.; Jia, R.; Chen, M.; Luo, Z.; Cai, Q.; et al. Interactions of OsMADS1 with Floral
Homeotic Genes in Rice Flower Development. Mol. Plant 2015, 8, 1366–1384. [CrossRef]

79. Lin, X.; Wu, F.; Du, X.; Shi, X.; Liu, Y.; Liu, S.; Hu, Y.; Theißen, G.; Meng, Z. The Pleiotropic SEPALLATA-like Gene OsMADS34
Reveals That the “empty Glumes” of Rice (Oryza Sativa) Spikelets Are in Fact Rudimentary Lemmas. New Phytol. 2014,
202, 689–702. [CrossRef]

80. Uimari, A.; Kotilainen, M.; Elomaa, P.; Yu, D.; Albert, V.A.; Teeri, T.H. Integration of Reproductive Meristem Fates by a
SEPALLATA-like MADS-Box Gene. Proc. Natl. Acad. Sci. USA 2004, 101, 15817–15822. [CrossRef]

81. Wang, Y.; Yu, H.; Tian, C.; Sajjad, M.; Gao, C.; Tong, Y.; Wang, X.; Jiao, Y. Transcriptome Association Identifies Regulators of Wheat
Spike Architecture. Plant Physiol. 2017, 175, 746–757. [CrossRef]

82. Hussin, S.H.; Wang, H.; Tang, S.; Zhi, H.; Tang, C.; Zhang, W.; Jia, G.; Diao, X. SiMADS34, an E-Class MADS-Box Transcription
Factor, Regulates Inflorescence Architecture and Grain Yield in Setaria Italica. Plant Mol. Biol. 2021, 105, 419–434. [CrossRef]

83. Kater, M.M.; Franken, J.; Inggamer, H.; Gretenkort, M.; Van Tunen, A.J.; Mollema, C.; Angenent, G.C. The Use of Floral Homeotic
Mutants as a Novel Way to Obtain Durable Resistance to Insect Pests. Plant Biotechnol. J. 2003, 1, 123–127. [CrossRef]

84. Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021,
38, 3022–3027. [CrossRef] [PubMed]

85. Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in
Humans and Chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [CrossRef] [PubMed]

86. Tang, H.; Bomhoff, M.D.; Briones, E.; Zhang, L.; Schnable, J.C.; Lyons, E. SynFind: Compiling Syntenic Regions across Any Set of
Genomes on Demand. Genome Biol. Evol. 2015, 7, 3286–3298. [CrossRef]

87. Veltri, D.; Wight, M.M.; Crouch, J.A. SimpleSynteny: A Web-Based Tool for Visualization of Microsynteny across Multiple Species.
Nucleic Acids Res. 2016, 44, W41–W45. [CrossRef] [PubMed]

http://doi.org/10.1046/j.1365-313X.1994.5010033.x
http://www.ncbi.nlm.nih.gov/pubmed/7907515
http://doi.org/10.3389/fpls.2018.00831
http://doi.org/10.1105/tpc.19.00162
http://doi.org/10.1104/pp.17.00704
http://doi.org/10.1105/tpc.12.6.871
http://www.ncbi.nlm.nih.gov/pubmed/10852934
http://doi.org/10.1111/j.1365-313X.2005.02504.x
http://www.ncbi.nlm.nih.gov/pubmed/16146529
http://doi.org/10.1007/s004270100153
http://www.ncbi.nlm.nih.gov/pubmed/11466523
http://doi.org/10.1007/s11103-005-2161-y
http://www.ncbi.nlm.nih.gov/pubmed/16217607
http://doi.org/10.1016/j.molp.2015.04.009
http://doi.org/10.1111/nph.12657
http://doi.org/10.1073/pnas.0406844101
http://doi.org/10.1104/pp.17.00694
http://doi.org/10.1007/s11103-020-01097-6
http://doi.org/10.1046/j.1467-7652.2003.00013.x
http://doi.org/10.1093/molbev/msab120
http://www.ncbi.nlm.nih.gov/pubmed/33892491
http://doi.org/10.1093/oxfordjournals.molbev.a040023
http://www.ncbi.nlm.nih.gov/pubmed/8336541
http://doi.org/10.1093/gbe/evv219
http://doi.org/10.1093/nar/gkw330
http://www.ncbi.nlm.nih.gov/pubmed/27141960

	Introduction 
	Results and Discussion 
	Evolution of the SEPALLATA Subfamily in Core Monocots 
	Three LOFSEP Sister Clades and a Single SEP3 Clade Evolved in Core Eudicots 
	Conserved Genetic Linkage between SEPALLATA, SQUAMOSA and FLOWERING LOCUS C Subfamilies 
	Patterns of Sub- and neo-Functionalization Associated with Diverged SEPALLATA Lineages 

	Conclusions 
	Materials and Methods 
	References

